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Battery Adaptive Observer for a Single-Particle
Model With Intercalation-Induced Stress
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Abstract— Battery electrode particle fracture due to stress
generation is a critical mechanism causing capacity fade, and thus
reducing battery life. This paper develops a nonlinear adaptive
observer for lithium-ion battery state of charge (SOC), electrode
particle stress, and solid phase diffusivity estimation using a
high-fidelity coupled single particle—mechanical stress model,
where the stress submodel captures stress development during
lithium-ion intercalation and deintercalation. Simultaneous state
and parameter estimation based on coupled single particle and
mechanical stress model is extremely challenging because the
coupled model is given by highly nonlinear partial differential
equations. We address this problem by reducing the coupled
model to a nonlinear finite dimensional system. The key novelty of
this paper is a nonlinear internal state and parameter estimation
methodology, from which the internal stress and the state of
health-related parameters are monitored from real-time electric
current and terminal voltage measurements. Numerical studies
on simulation and experimental data have been conducted to
illustrate the performance of the proposed estimation scheme.

Index Terms— Adaptive observer, electrochemical modeling,
Li-ion batteries, Lyapunov stability, mechanical stress.

I. INTRODUCTION

SAFE operation and degradation of lithium-ion (Li-ion)
batteries have always been critical, especially when the

usage of batteries gets ubiquitous. To address this problem,
a battery management system (BMS) implements real-time
control and estimation algorithms to enhance performance
while improving safety [1]. One of the important functions of
a BMS is battery SOC and state of health (SOH) estimation.
However, simultaneous SOC and SOH estimation are partic-
ularly challenging due to: 1) limited real-time measurements;
2) complex electrochemical-thermal-mechanical physics; and
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3) limitations of control theory—especially for nonlinear par-
tial differential equation (PDE) models.

Battery models are typically used in a BMS for infer-
ring internal states based on measured current, voltage, and
temperature [2], [3]. The equivalent circuit models possess
simple structure but sacrifice the information of internal states,
while high-fidelity electrochemical models can capture the
underlying physical and chemical processes [4]. Though elec-
trochemical models accurately predict the internal states, their
mathematical structures are often very complicated for con-
trol/estimation design. This point motivates model reduction
techniques to reduce the complexity of full-order electro-
chemical models. Among the numerous reduced order models,
the single-particle model (SPM) is the most commonly used
one. The SPM is derived from the full-order electrochemical
model, and hence it inherits some important properties. Each
electrode of the SPM is assumed to be a single spheri-
cal particle, and the current distribution is uniform across
both electrodes. In addition, the electrolyte concentration is
assumed to be constant in space and time [3]. Based on the
SPM, Kalman filter (KF) for SOC estimation was designed
in [5] and [6]. The shortcoming of KF approaches arises
from the difficulties to verify the asymptotic convergence
properties. Lotfi et al. [7] proposed an SOC estimation tech-
nique using the SPM, where the radial domain dependence
of solid phase lithium concentration is approximated by a
fourth-order polynomial. One of the important drawbacks of
the SPM is that it does not accurately predict voltage at high
C-rate, since the electrolyte dynamics are neglected. In order
to compensate this, models that combine the SPM with other
components are developed. For instance, electrolyte phase
contribution is approximated by polynomial functions in [8].
State estimation scheme with provable convergence for the
SPM with electrolyte dynamics is derived and analyzed in [9].
Temperature distribution inside the battery is a crucial quantity
for thermal management in BMS. An electrochemical model
coupled with electrolyte dynamics and temperature-dependent
parameters is presented for SOC estimation [10]. Battery SOC
and internal temperature are estimated from a reduced and
reformulated electrochemical model in [11].

In recent years, battery SOH has gained increased focus
due to concerns over battery safety and life. Various fac-
tors contribute toward battery degradation, e.g., capacity fade
and resistance growth. See [12] for a particularly excel-
lent review. Though simultaneous SOC and SOH estima-
tion problem has been well studied using circuit models
[13]–[15], it is less examined for electrochemical models.
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Moura et al. [16] created an adaptive PDE observer for com-
bined SOC and SOH estimation by adopting PDE backstep-
ping observer design procedure. A nonlinear Luenberger-type
adaptive observer is designed on a coupled electrochemical–
thermal model in [17]. In the aforementioned papers, certain
parameters, e.g., diffusion coefficient and contact resistance,
are used as indicators of SOH, and these parameters are
identified in real time.

Other than the model parameter-dependent health indica-
tor for Li-ion batteries, this paper inspects another quantity
for studying battery health, namely, the intercalation-induced
stress generated inside the solid phase particles. An impor-
tant capacity fade mechanism is the particle fracture due
to intercalation- and deintercalation-induced stresses [18].
Volume changes of the electrode particles due to stress genera-
tion may induce particle fracture if the stress (radial or tangen-
tial [19], [20]) exceeds the yielding stress of the material [21].
This phenomenon motivates the development of models that
incorporate stress mechanics into the SPM. Seminal work con-
ducted by Christensen and Newman developed a mathematical
model to capture volume expansion and contraction during
lithium insertion [21]. Later, models that combine the SPM
with diffusion-induced stress was introduced in [22], relying
on an analogy to thermal stress. In [23], a modified SPM
that incorporates stress-enhanced diffusion and electrolyte
concentration distribution was developed. This model strikes
an intriguing balance of fidelity and structural simplicity.
An interesting BMS application of these models is introduced
in [24], where the authors performed optimal charging under
stress constraints. It is worth noting that spatial nonuniformity
in battery electrode can cause degradation even when operating
within the manufacturer specified limits. Although applying
the SPM-based model for battery SOH estimation and moni-
toring cannot capture this spatial distribution of degradation
patterns due to heterogeneities in electrode geometry [25],
we seek quantitative aggregated stress prediction to better
understand battery SOH in this paper.

In summary, there now exists a keen interest to address the
SOH estimation problem, and recent model developments on
diffusion-induced stress can be enabling. However, no work
currently exists on state and parameter estimation with coupled
SPM-stress models to the best of our knowledge. In this paper,
we extend our previous work [26] and design a nonlinear
observer based on this coupled model to estimate the bulk
SOC, the particle stress profile, and the anode lithium dif-
fusivity from current and voltage measurements only. Con-
sequently, the real-time electrochemical model parameter can
be monitored as a battery health indicator, and the electrode
stress supports the studies on several physical degradation
phenomena associated with battery health. This contribution
departs from previous works in estimation for battery models
in the following ways.

1) It makes one of the first attempts to exploit the stress-
enhanced electrochemical model for the estimation of
internal stress on top of SOC and model parameters. This
issue is relevant for batteries consisting of electrodes that
tend to expand and fracture due to stress.

Fig. 1. Sketch of the SPM concept.

2) It considers a nonlinear state dynamical model stemming
from intercalation-induced stress effects, which contrasts
with linear state dynamics in [16] and [17].

3) A sliding mode observer-based adaptive estimation
scheme is proposed, which differs from, e.g., output
inversion and least-squares estimation [16]. The used
observer is known to be robust against model uncer-
tainties.

4) It performs state and parameter estimation simultane-
ously while providing convergence conditions for the
proposed estimation scheme through a rigorous stability
analysis.

The remainder of this paper is organized as follows.
Section II presents the battery SPM with intercalation-induced
stress. Section III motivates the importance of monitoring
the electrode stress via a simulation example. Section IV
discusses model properties, model reduction, and state-space
model formulation. The observer design with convergence
analysis is presented in Section V. Section VI demonstrates
the performance of the designed observer via simulation and
utilizing experimental data. The limitations of the proposed
scheme and future work are enumerated in Section VII.
Finally, conclusions are drawn in Section VIII.

II. MODEL DESCRIPTION

Fig. 1 portrays the concept of the SPM. In the full-
order electrochemical model (a.k.a. Doyle–Fuller–Newman
model [4]), Li-ion transports in the solid and electrolyte
phases. The key idea of the SPM is that the solid phase of
each electrode can be modeled as a single spherical particle,
and Li-ion concentration in electrolyte phase is assumed to
be constant in space and time [16]. The SPM captures less
dynamic behavior than the full-order model and specifically
does not include mechanical responses, whose effect on diffu-
sion becomes significant when the electrode material has high
modulus and high partial molar volume [22].
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TABLE I

SPM-STRESS MODEL SYMBOL DESCRIPTION

The model equations for the coupled SPM and stress pre-
sented here closely follow the derivation by Zhang et al. [22].
A list of description for symbols can be found in Table I. For
the case of a 2-D spherical particle, the intercalation of Li-ions
in the solid phase is modeled as a process due to diffusion and
stress generation, given by
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the radial position and time to hydrostatic stress in electrode j .
The current density i j
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by the relation i j
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The stress tensor consists of radial stress σr and tangential
stress σt , which are functions of the lithium concentration
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where β j = � j E j/3(1 − ν j ). The hydrostatic stress is a
weighted sum of σr and σt

σ
j

h = σ
j

r + 2σ
j

t

3
= 2

3
β j

[
3(

R j
s
)3

∫ R j
s

0
c̃ j

s r2dr − c̃ j
s

]
. (5)

Substituting (5) into (1) yields
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where θ j = (� j/RT )[(2� j E j )/9(1 − ν j )] is a constant
depending on electrode material mechanical properties. The
boundary condition is obtained by substituting (5) into (2)
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For well-posedness, the Neumann boundary condition at r = 0
is required

∂c j
s

∂r
(0, t) = 0. (8)

The two variables, concentration and stress involved in
PDE (1), are decoupled into a single nonlinear PDE (6) that
describes the diffusion of Li-ion under the influence of stress,
and concentration-dependent radial and tangential stresses in
(3) and (4). Therefore, the dynamical equation for the solid
phase Li-ion concentration with intercalation-induced stress is
given by (6), with the boundary conditions (7) and (8). The
nonlinearities in PDE (6) can be regarded as a diffusion with
state-dependent diffusivity as well as a square of the spatial
derivative of the state. Note that the intercalation-induced
stress effect is ignored if θ j = 0, resulting in the regular SPM.

The output terminal voltage VT is a function of solid phase
surface concentration, open-circuit potentials (OCP), electric
overpotentials, and Butler–Volmer kinetics
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Fig. 2. Maximum radial and tangential stresses for a commercial NMC cell
under UDDS cycle loads.

U+(·) and U−(·) in (9) are the equilibrium potentials of
positive and negative electrode material as functions of solid
phase surface concentrations.

III. MOTIVATION

In this section, we illustrate the importance of monitoring
stress inside the electrode solid particle via a simulation study.
The model parameters are identified from the experimental
data presented in Fig. 7 in Section VI-B, and they correspond
to a commercial LiNiMnCoO2 (NMC) - LiC6 cell. A transient
electric vehicle like charge/discharge cycle generated from
urban dynamometer driving schedule (UDDS) is applied, and
the maximum absolute radial and tangential stresses for anode
(graphite) are simulated and plotted in Fig. 2. The maximum
absolute radial and tangential stresses are located at the center
and the surface of the electrode particle, respectively [22], and
they are dependent on the change of radial Li-ion concentra-
tion from its stress-free value
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The red dotted lines in Fig. 2 represent the yielding stress for
graphite. It is evident that the yielding stresses of materials
are generally lowered by repeated cycling, and it is possible
that the yielding stress of carbonaceous materials will fall
below 30 MPa when the cell is cycled [21]. Consequently,
the maximum absolute radial and tangential stresses exceed the
yielding stress at approximately 4 and 1.2 min after the current

switches to nonzero value, respectively. The anode particle
may fracture during the large portion of this driving cycle
since the maximum stresses are significantly higher than the
yielding stress. Hence, from the safety point of view, the users
of the BMS shall greatly benefit from the real-time particle
stress information to ensure safe operation and longevity of
the battery.

Remark 1: The electrode particles are very likely to fracture
if the maximum stresses exceed the yielding stress of the
electrode material. However, the stresses at which particles
actually fracture may greatly vary, and the yielding stress of
the material is an upper limit on the stress required for particle
fracture. It is possible to fracture during cycling even when the
maximum stress is below the yielding stress [27]. Although the
exact condition for particles to fracture may not be determined,
criteria for electrode fracture tendency have been identified
in [20], namely, strength-based and energy-based criteria.

IV. MODEL ANALYSIS AND REDUCTION

This section presents model properties, system observability
analysis, and state-space formulation for observer design.

A. Conservation of solid-phase lithium

The moles of lithium in the solid phase nLi,s are conserved,
where
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∑
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The lithium conservation can be verified by differentiating
(14) with respect to time
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where the second equality comes from the dynamical equa-
tion (6), the third equality follows from integration by parts,
the fourth equality results from the boundary conditions (7),
and the last equality utilizes the relation ε j = a j R j

s /3.
The lithium conservation property will be leveraged for

model reduction in Section IV-B.
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B. Model Reduction

The cell voltage in (9) depends on U+(c+
ss) − U−(c−

ss),
which makes the difference of the OCP observable from the
voltage measurement but does not guarantee the observability
of each OCP [6]. This paper adopts the idea in [6] to overcome
this issue by seeking a relation between the positive and
negative solid phase surface concentrations by the lithium
conservation property in (14)

c+
ss = nLi − ε−

s L−ac−
ss

ε+
s L+ A

(16)

and the output function (9) can be adjusted accordingly

VT (t) = RT

α+ F
sinh

[
−I (t)

2a+ AL+i+
0

(
γ c−

ss(t) + κ
)
]

− RT

α− F
sinh

[
I (t)

2a− AL−i−
0

(
c−

ss(t)
)
]

+ U+(
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ss(t) + κ
) − U−(

c−
ss(t)

) − R f I (t) (17)

where γ = −(ε−
s L−)/(ε+

s L+) and κ = nLi/(ε
+
s L+ A).

The reduced system is then modeled by the anode dynamics
(c−

s -system) from diffusion equation (6) and output func-
tion (17). Ideally, we intend to check the observability of the
reduced nonlinear PDE system (6) and (17), but the theoretical
results of the PDE system observability is not well developed,
and as a result, we discretize the PDE system into a system of
ordinary differential equations (ODEs) in the following section
and evaluate the local observability of the spatially discretized
system.

Remark 2: In this paper, we introduce state and parameter
observer for the graphite anode in particular. Although the
above model reduction is motivated by the observability con-
dition from a control theory perspective, the anode selection
arises from the physics. The graphite anodes are prone to
degradation due to volume changes and concentration gra-
dients [28]–[30], and such degradation results in diffusion-
induced stress that might lead to particle fracture [21], [31].

C. State-Space Model Formulation and Analysis

There is a growing but small body of theoretical results
on adaptive estimation of parabolic PDEs. For instance,
an extended Luenberger-type observer is designed for a class
of semilinear parabolic PDEs in [32], achieving exponential
stability of the linearized observer error dynamics. However,
the model therein reflects only semilinearity and no parameter
uncertainties. The methods introduced in [33] stands out as
it provides a thorough analysis and proof of adaptive scheme
using output feedback for linear parabolic PDEs with spa-
tially varying coefficients. Nonetheless, this approach does
not directly extend to this paper as the SPM-Stress model
contains highly nonlinear components. Ahmed-Ali et al. [34]
developed an adaptive boundary observer for parabolic PDEs
with both domain and boundary parameter uncertainties, with
convergence results, where the PDE is linear in the states
and parameters, making it more tractable for the backstepping
technique. In the context of battery applications, Ascencio
derives an adaptive PDE observer for the SPM, including

a parameter estimate for the diffusion coefficient [35].
Sum-of-squares programming is used for solving the kernel
PDE online. Although these results have advanced our under-
standing of adaptive estimation for parabolic PDEs in infinite
dimensional space, the considered problem in this paper is still
extremely difficult. Hence, this paper uses model discretization
so that finite dimensional estimation tools can be leveraged.

Henceforth, we will only consider dynamics for anode
and drop the subscripts and superscripts to simplify notation,
namely, c = c−

s , D = D−
s , Rs = R−

s , a = a−, L = L−, and
θ = θ−. Suppose (N + 1) nodes are used for discretization in
the r direction, and �r = Rs/N . Define the parameter

τ = D

(�r)2 . (18)

The central difference method is used for discretizing the
PDEs into ODEs. The system of ODEs for the internal nodes
of the anode diffusion dynamics is

∂ci

∂ t
= τ

[
(1 + θci )(ci−1 − 2ci + ci+1)

+
(

2

i
+ θ

ci+1 − ci−1

2
+ 2θ

i
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) (
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2

)]
(19)

where i ∈ {1, 2, . . . , N − 1}. At the right boundary point
i = N (r = Rs), the method of imaginary points is utilized
to discretize the governing equations

∂cN
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[
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3τεFAL(1 + θcN )

]
. (20)

The terms including 1/r has singularity at r = 0. Applying
L’Hopital’s rule eliminates the singularity, and (6) becomes

∂c

∂ t
= D

[
3(1 + θc)

∂2c

∂r2 + θ

(
∂c

∂r

)2 ]
. (21)

Method of imaginary points can be employed again to dis-
cretize the governing equation at i = 0 (r = 0)

∂c0

∂ t
= 6τ (1 + θc0)(c1 − c0). (22)

The state-space model can be written in the following form
based on (19), (20), (22), and (17)

ẋ = τAx + τθ f (x, τ, u)

y = h(cN , u) (23)

where the state vector x = [c0 c1 c2 . . . cN ]� ∈ R
N+1, input

u = I ∈ R is the applied current, output terminal voltage
y = h(cN , u) = VT ∈ R, nonlinear function f (x, τ, u) =
[ f0(x) f1(x) . . . fN−1(x) fN (x, τ, u)]� ∈ R

N+1, and
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matrix A ∈ R
(N+1)×(N+1). Following the derivation from (19),

(20), and (22), we have

A =
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where
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+ cN
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+ 1

N
cN

]

×
[

cN − cN−1 − I · N

3τεFAL(1 + θcN )

]
. (26)

Assumption 1: It has been verified by numerous litera-
ture [36] that the nonlinear output function h(cN , u) is strictly
increasing with respect to the surface concentration cN . We can
conclude that for any given finite input u and any two different
surface concentration values cN,i , cN, j ∈ [�−

min,�
−
max]·c−

s,max,
the following expression holds:

sgn(h(cN,i , u) − h(cN, j , u)) = sgn(cN,i − cN, j ) (27)

where the operator sgn(·) is the signum function.
This property will become important, as it eases the analysis

of observer convergence in the next section.
Remark 3: The function f (x, τ, u) is continuously differ-

entiable with respect to the state x and the parameter τ ,
a sufficient condition for Lipschitz continuity [36]. For any
two vectors X1, X2 ∈ R

N+1, where each entry of X1 and X2
is within the range [�−

max,�
−
min] · c−

s,max, a Lipschitz constant
with respect to the state x can be obtained by computing the
infinity norm of ∂ f/∂x , i.e., Kx = ‖∂ f/∂x‖∞, such that

‖ f (X1, τ, u) − f (X2, τ, u)‖ ≤ Kx‖X1 − X2‖. (28)

Similarly, for any two scalars T1, T2 ∈ R, a Lipschitz
constant with respect to the parameter τ is expressed as
Kτ = ‖∂ f/∂τ‖∞, such that

‖ f (x, T1, u) − f (x, T2, u)‖ ≤ Kτ‖T1 − T2‖. (29)

From (28) and (29), a multivariable Lipschitz continuous
condition for the function f (x, τ, u) is inferred

‖ f (X1, T1, u) − f (X2, T2, u)‖
≤ Kx‖X1 − X2‖ + Kτ‖T1 − T2‖. (30)

It also immediately follows from (28) that fN (cN , cN−1, τ, u)
is bounded within the compact operating interval cN−1,
cN ∈ [�−

min,�
−
max] · c−

s,max, for all finite input current u and
finite parameter τ . Mathematically, for any (cN−1, cN ) and
(c′

N−1, c′
N )∣∣ fN (cN−1, cN , τ, u) − fN

(
c′

N−1, c′
N , τ, u

)∣∣ ≤ M (31)

where 0 < M < ∞.
Remark 4: It should be pointed out that the considered set-

up can be readily transferred to the case of concentration-
dependent parameters, e.g., D = D(c) and θ = θ(c). Suppose
the dependence is continuous, then the Lipschitz continu-
ity property on nonlinear function f (x, τ, u) introduced in
Remark 3 still holds since the discretized concentration ci is
bounded by [�−

min,�
−
max] · c−

s,max.

D. Observability Analysis

The observbility of a nonlinear finite-dimensional system
can be verified by a rank test based on the concept of Lie
Derivatives. It should be pointed out that the local observabil-
ity of a nonlinear system is not equivalent to the observability
of the linearized system, which was examined previously
in [37] and [38] for battery equivalent circuit models. Here,
we present local observability rank test by considering the
following form of nonlinear system:

ẋ = η(x) +
m∑

i=1

ui gi(x) (32)

y = φ(x) (33)

where x ∈ R
n is the state, ui ∈ R is the input, y ∈ R is the

output, and η, gi , and φ are real-valued smooth functions. The
gradient of φ, denoted by dφ, is expressed by

dφ =
[

∂φ

∂x1

∂φ

∂x2
· · · ∂φ

∂xn

]
. (34)

The Lie derivative of φ with respect to function η is denoted by

Lηφ = dφ · η =
n∑

i=1

∂φ

∂xi
· ηi . (35)

The following theorem [39] provides the rank test for
local observability of a nonlinear system in the form of
(32) and (33).

Theorem 1: Suppose x0 ∈ R
n is given. Consider the

expression

� = (d Lzs Lzs−1 · · · Lz1φ)(x0) (36)
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where s ≥ 0, zi ∈ {η, g1, . . . , gm}, evaluated at x0. If there
are n linearly independent row vectors in �, then the system
is locally observable around x0.

Herein, for the simplicity of the calculation, we evaluate the
local observability under constant input current. The expres-
sions of η(x), g1(x), g2(x), and φ(x) can be derived from
the state-space model (23)–(26), and u1 = I and u2 = I 2.
The calculation of � in (36) reveals that the system is locally
observable at x0.

V. OBSERVER DESIGN AND ANALYSIS

The state and parameter estimation problem seeks to design
an adaptive observer system to reconstruct the unknown state x
and parameter τ in the plant model (23) with the knowledge of
output y and input u measurements. In this paper, the available
energy of the battery cell is quantified by the bulk SOC in the
anode, and it can be computed from normalizing the anode
volume average of Li-ion concentration against the maximum
concentration

SOC(t) = 3(
R−

s
)3

c−
s,max

∫ R−
s

0
r2c−

s (r, t)dr. (37)

Note that the SOC calculation in (37) yields an unnormalized
value. The actual bulk SOC should be normalized with respect
to the difference of upper and lower stoichiometry points of
anode material. The estimation of radial and tangential stresses
is computed using solid phase Li-ion concentration estimation
by (3) and (4).

Remark 5: The magnitude of diffusion-induced electrode
stress is not a comprehensive indicator of battery health,
but certainly is a contributor to several physical degradation
phenomena associated with battery health. Examples include
the growth of particle surface cracks as a function of maximum
tangential stress according to Paris’ Law [40], and mechanical
fatigue described by the Palmgren–Milner (PM) rule [41].

The primary unknown parameter considered in this paper
is the diffusivity in the anode D−

s , or equivalently τ , as it
directly affects the dynamics of Li-ion transportation in the
solid phase. There is also consensus within the literature that
the diffusion coefficient is one of the most sensitive parameters
to the battery cycling aging [42]. Aside from improving the
state estimation accuracy, the estimated parameter can be
regarded as an indicator of SOH. Thus, the battery health
condition is assessed by both model parameter values and
physical degradation phenomena associated with the diffusion-
induced stress.

Systematic ways for adaptive observer design for nonlinear
systems have been studied in the existing literature [43], [44].
These approaches often consider certain dynamic model struc-
tures with linear model output function, where the linearity
in the output is an essential property for deriving the update
law for parameter estimate. Nonetheless, the output map in
the battery application is highly nonlinear with respect to the
states and input, which makes the adaptive observer design
intricate. In this paper, we adopt a similar approach as in [43],
with the extension to: 1) a nonlinear output equation and
2) a more general model dynamics structure. The stability

Fig. 3. Block diagram of adaptive observer structure. It consists of the
solid phase surface concentration observer (blue), the adaptive observer
(yellow), and the stress estimation calculation (coral). The adaptive observer
is comprised of two parts: diffusion coefficient identification (yellow/left) and
full-state observer (yellow/right). The observers utilize measurements of input
current and output terminal voltage only.

of the proposed observer will be rigorously analyzed by
Lyapunov’s direct method.

Fig. 3 depicts the observer design concept. The surface
concentration observer (blue block) takes the measurements
of input current and output voltage to estimate the sur-
face concentration only. The estimated surface concentration
becomes a pseudomeasurement signal utilized in the subse-
quent adaptive observer (yellow blocks). The model used for
adaptive observer design is reformulated such that the surface
concentration estimation becomes the model output, which is a
linear function of the state vector. Finally, the stress estimation
(coral block) can be calculated from the state estimates. The
details are illustrated in the following sections.

A. Surface Concentration Observer Design

In this section, we present the observer design for estimating
solid phase surface concentration (blue block in Fig. 3),
and the corresponding convergence analysis using Lyapunov’s
direct method.

In order to obtain surface concentration information and
reformulate the state space model for adaptive observer design,
we separate the state vector x into two components, namely,
define ξ = [c0 c1 · · · cN−1]� that contains the first N entries
of x , and x = [ξ� cN ]�. Rewrite the plant model (23) as

ξ̇ = τAx + τ F(x) (38)

ċN = τ
N − 1

N
cN−1 − τ

N − 1

N
cN + τθ fN (x, u) (39)

y = h(cN , u) (40)
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where matrix A is the matrix A excluding the last row, and
F(x) = [ f0(ξ) f1(ξ) · · · fN−1(x)]�. Note that in the plant
model (38)–(40), the unknown parameter is τ and the unknown
states are ξ and cN . Despite the fact that τ is unknown, proper
upper and lower bounds of τ are assumed. These bounds can
be retrieved from existing literature based on the electrode
materials. Mathematically, we have

0 < τ ≤ τ ≤ τ < ∞. (41)

Consider the following observer structure:

˙̌cN = τ o N − 1

N
čN−1 − τ o N − 1

N
čN + τ oθ f̌N

+ L · sgn(y − y̌) (42)

where the quantities with the “inverse hat” symbols denote
their estimation, and the scalar observer gain L > 0 is to
be designed such that the estimation converges to the actual
value. Moreover, f̌N = fN (čN−1, čN , τ o, u). The parameter
τ o is a nominal value chosen a priori such that τ ≤ τo ≤ τ ,
and we further assume that τ = τ o + δτ . Our objective is
to estimate the surface concentration with the presence of
parameter uncertainty, which can be achieved by selecting a
sufficiently high observer gain L. The above-mentioned sliding
mode observer structure adopts the error injection concept
and is well known for its robustness against parameter/model
uncertainty when applied to nonlinear systems [45].

Proposition 1: Consider the surface concentration dynam-
ics (39) with bounded unknown parameter τ ≤ τ ≤ τ , and
observer (42). If there exists a scalar gain such that

L > τ
N − 1

N
|c̃N−1|max + τθ M + � (43)

in which � > 0 is finite and given by (45), then the estimation
error c̃N = cN − čN converges to zero in finite time.

Proof: Consider the estimation errors c̃N = cN − čN and
c̃N−1 = cN−1 − čN−1. Subtracting (42) from (39), and the
error dynamics can be written as

˙̃cN = τ o N − 1

N
c̃N−1 − τ o N − 1

N
c̃N + τ oθ f̃N − Lsgn(c̃N )

+ δτ
N − 1

N
cN−1 − δτ

N − 1

N
cN + δτθ fN (44)

where f̃N = fN (cN−1, cN , τ, u) − fN (čN−1, čN , τ o, u).
Note that we have utilized the monotonicity property of y
(see Assumption 1) to substitute sgn(y − y̌) with sgn(c̃N ).
Based on the fact that cN , cN−1, and fN are bounded under
finite input current, let

� � δτ
N − 1

N
cN−1 − δτ

N − 1

N
cN + δτθ fN ≤ � (45)

with � > 0 being the upper bound of � .
We analyze the error dynamics (44) using the Lyapunov

function candidate

V = 1

2
c̃2

N (46)

and the derivative of the Lyapunov function along the trajec-
tory of c̃N is

V̇ = c̃N ˙̃cN

= c̃N

[
τ o N − 1

N
c̃N−1 − τ o N − 1

N
c̃N + τ oθ f̃N

− Lsgn(c̃N ) + �

]

≤ |c̃N |
[
τ

N − 1

N
|c̃N−1| + τθ | f̃N | + �

]
− Lc̃N sgn(c̃N )

− τ o N − 1

N
c̃2

N

≤ |c̃N |
[
τ

N − 1

N
|c̃N−1| + τθ | f̃N | + �

]
− L|c̃N |

≤ |c̃N |
[
τ

N − 1

N
|c̃N−1| + τθ M + � − L

]
. (47)

If the gain L is chosen high enough such that

L > τ
N − 1

N
|c̃N−1|max + τθ M + � (48)

then we have that V̇1 ≤ 0.
Choose L∗ that meets the condition in (48), and define

ρ = L∗ −
[
τ

N − 1

N
|c̃N−1|max + τθ M + �

]
> 0. (49)

From (47) and (49), we have that

V̇ ≤ −√
2ρ

√
V . (50)

The time required for c̃N to converge to zero can be analyt-
ically computed by solving (50) for V using the comparison
principle [46], and setting V = 0 and solving for t f

t f =
√

2V (0)

ρ
(51)

where V (0) is the initial condition of V . Therefore, after
t ≥ t f , c̃N → 0. Finite time convergence of čN → cN is
attained.

B. Adaptive Observer Design

In this section, we develop the adaptive observer by extend-
ing the results from [43]. The surface concentration estimation
čN from the surface concentration observer is leveraged as
a pseudomeasurement signal for a reformulated plant model.
The dynamical equations in (23) are preserved while the output
is reformulated as a linear function of the state vector

ẋ = τAx + τθ f (x, τ, u) ys = Cx (52)

where ys = cN and C = [0 0 · · · 0 1] ∈ R
1×(N+1).

The adaptive observer is designed such that the unknown
state x and parameter τ are converging to their actual values
simultaneously. The estimation system consists of a copy of
the plant model (52) plus the output error injection, as follows:

˙̂x = τ̂Ax̂ + τ̂ θ f (x̂, τ̂ , u) + La(ys − ŷs)

ŷs = Cx̂ (53)

where the quantities with the “hat” symbols denote their
estimation, and La ∈ R

N+1+ is a vector of positive scalar gains
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to be designed. We seek to derive an update law for τ̂ and
conditions on La that guarantee the convergence of state and
parameter estimates. Theorem 1 summarizes the convergence
results for adaptive observer (53).

Theorem 2: Consider the plant model (52) and observer
system (53), given accurate estimation of surface concentration
from Proposition 1. Let the error between the actual and
the estimated quantities to be x̃ = x − x̂ , τ̃ = τ − τ̂ ,
and ỹs = ys − ŷs . Furthermore, assume the actual value of
the unknown parameter is bounded by τ ≤ τ < τ . Then,
the estimation errors x̃ and τ̃ converge to zero asymptotically,
if the observer gain vector La is designed such that for all
τ † ∈ [τ, τ ], there exists a positive semidefinite matrix Q that
verifies

τ †A + τθ Kx IN − Lac � −Q (54)

and τ̂ evolves according to the system

˙̂τ = ỹsCAx̂ + ỹsθ fN (x̂, τ̂ , u)

γ
(55)

where IN denotes a (N + 1) × (N + 1) identity matrix, and
γ > 0.

Proof: The state error dynamics are expressed by sub-
tracting (53) from (52)

˙̃x = τAx − τ̂Ax̂ + τθ f (x, τ, u) − τ̂ θ f (x̂, τ̂ , u) − La ỹs

ỹs = Cx̃ . (56)

The Lyapunov function candidate is chosen as

Va = 1

2
x̃� x̃ + 1

2
γ τ̃ 2, where γ > 0. (57)

The derivative of Va along the trajectory of x̃ is

V̇a = 1

2
˙̃x�x̃ + 1

2
x̃� ˙̃x + γ τ̃ ˙̃τ

= x̃� ˙̃x + γ τ̃ ˙̃τ
= x̃�[τAx − τ̂Ax̂ + τθ f (x, τ, u) − τ̂ θ f (x̂, τ̂ , u)

− La ỹs] + γ τ̃ ˙̃τ
= x̃�[τAx − (τ − τ̃ )Ax̂ + τθ f (x, τ, u)

− (τ − τ̃ )θ f (x̂, τ̂ , u) − Lacx̃] + γ τ̃ ˙̃τ
= x̃�[τAx̃ + τ̃Ax̂ + τθ( f (x, τ, u) − f (x̂, τ̂ , u))

+ τ̃ θ f (x̂, τ̂ , u) − Lacx̃] + γ τ̃ ˙̃τ
≤ τ̃ [x̃�Ax̂ + x̃�θ f (x̂, τ̂ , u) − γ ˙̂τ ]

+ x̃�(τA − Lac)x̃ + τθ‖x̃‖‖ f (x, τ, u) − f (x̂, τ̂ , u)‖
≤ τ̃ [x̃�Ax̂ + x̃�θ f (x̂, τ̂ , u) − γ ˙̂τ ]

+ x̃�(τA − Lac)x̃ + τθ‖x̃‖(Kx‖x̃‖ + Kτ‖τ̃‖)
= τ̃ [x̃�Ax̂ + x̃�θ f (x̂, τ̂ , u) − γ ˙̂τ ]

+ x̃�(τA + τθ Kx IN − Lac)x̃ + τθ Kτ‖x̃‖‖τ̃‖ (58)

where we have applied the Lipschitz continuity of the function
f with respect to x and τ at the second inequality according to
Remark 3, and the last equality follows from ‖x̃‖‖x̃‖ = x̃� x̃ .

Now, choose the update law for τ̂ by eliminating the terms
associated with τ̃ in the last line of (58)

x̃�Ax̂ + x̃�θ f (x̂, τ̂ , u) − γ ˙̂τ = 0. (59)

Since x̃ is unavailable because the actual states are unknown,
we multiply both sides of (59) by CC� = 1 to get

ỹsCAx̂ + ỹsCθ f (x̂, τ̂ , u) − γ ˙̂τ = 0. (60)

Then, the update law for τ̂ can be explicitly written as

˙̂τ = ỹsCAx̂ + ỹsθ fN (x̂, τ̂ , u)

γ
(61)

and the inequality (58) is simplified to

V̇a ≤ x̃�(τA + τθ Kx IN − Lac)x̃ + τθ Kτ‖x̃‖‖τ̃‖. (62)

Choose gain La such that for all τ † ∈ [τ , τ ], there exists a
positive semidefinite matrix Q that satisfies

τ †A + τθ Kx IN − Lac � −Q (63)

and therefore,

V̇a ≤ −x̃�Qx̃ + τθ Kτ‖x̃‖‖τ̃‖
≤ −λmin(Q)‖x̃‖2 + τθ Kτ‖x̃‖‖τ̃‖
= −[‖x̃‖ ‖τ̃‖]

[
λmin(Q) −τθ Kτ

0 0

] [‖x̃‖
‖τ̃‖

]
� −ṽ P ṽ� (64)

where ṽ = [‖x̃‖ ‖τ̃‖]. Apparently, the matrix P is positive
semidefinite since the eigenvalues of P are {λmin(Q), 0},
where λmin(Q) ≥ 0. Hence, it follows that V̇a ≤ 0. Next,
we analyze the convergence of state and parameter estimation
errors.

1) Convergence of State Estimation: Integrating both sides
of (64) and we have that

Va(t) ≤ Va(0) −
∫ t

0
ṽ� P ṽdt (65)

which implies 0 ≤ Va(t) ≤ Va(0), so Va ∈ L∞. From (57),
x̃ ∈ L∞ and τ̃ ∈ L∞. Moreover, x̂ = x − x̃ ∈ L∞ and τ̂ =
τ − τ̃ ∈ L∞. Since Va(0) is finite and Va(t) ∈ L∞, x̃ ∈ L2.
In addition, from (56) and the fact that f is bounded, we have
˙̃x ∈ L∞. According to Barbalat’s Lemma [47], x̃, ˙̃x ∈ L∞
and x̃ ∈ L2 allows us to conclude that

lim
t→∞ x̃ = 0. (66)

Therefore, x̂ converges to x asymptotically.
2) Convergence of Parameter Estimation: It has been shown

in the previous sections that x̃ is differentiable and has a finite
limit as t → ∞. Since f is the Lipschitz continuous, f is
immediately uniformly continuous. Let χ = τAx − τ̂Ax̂ −
La ỹs = τAx̃ + τ̃Ax̂ − LaCx̃ , which are the terms at the
right-hand side of (56) that are not associated with function
f , and we would like to show χ is uniformly continuous by
verifying the boundedness of χ̇ . Taking the derivative of χ
with respect to time

χ̇ = τA ˙̃x + ˙̃τAx̂ + τ̃A ˙̂x − Lac ˙̃x . (67)

Since x̂ ∈ L∞ and f is bounded, we have ˙̂x ∈ L∞
from (53). Based on (61), ˙̃τ = − ˙̂τ is bounded because x̂ and
f are bounded. Then, it can be concluded that χ̇ is bounded,
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TABLE II

SUMMARY OF OBSERVER DESIGN

which reveals that χ is uniformly continuous. Therefore, ˙̃x is
uniformly continuous. Again, apply Barbalat’s Lemma [47]

lim
t→∞

˙̃x = 0. (68)

Consider the first N state error dynamical equations in (56),
and it implies that when t → ∞

τAx − τ̂Ax̂ + τθ F(x) − τ̂ θ F(x̂) → 0. (69)

Theoretically, if the states converge asymptotically, i.e., x̂ → x
as t → ∞, then from (69), we have

[Ax + θ F(x)](τ − τ̂ ) → 0 as t → ∞. (70)

Therefore, τ̂ converges to τ asymptotically. The value which τ̂
converges to highly relies on whether x̂ provides an accurate
estimation. In other words, the state estimation error deter-
mines how accurate the parameter estimation will be. The
uncertainties in the adaptive observer may result from uncer-
tainties in current and voltage measurements, and model mis-
match. In addition, the performance of the adaptive observer
is highly sensitive to the accuracy of the surface concentration
observer since its output becomes the input of the adap-
tive observer. Any uncertainties in the surface concentration
observer are passed into the adaptive observer stage.

C. Summary of Observer Design

The design of the complete observer is summarized
in Table II. It lists equations for each subsystem, the corre-
sponding design parameters, as well as the convergence type
based on the analysis in Sections V-A and V-B.

VI. RESULTS AND DISCUSSION

In this section, we present results from simulation and
experimental data to demonstrate the performance of the
proposed nonlinear observers.

A. Simulation Study

The parameters used in the simulation are adopted
from the DUALFOIL simulation package that is publicly
available [48]. The model parameters for anode, including dif-
fusion and mechanical properties, are enumerated in Table III.
The mechanical parameters of anode material are obtained
from [23]. We illustrate the observer performance by initial-
izing the state and parameter estimates at incorrect values.

TABLE III

SPM-STRESS MODEL PARAMETERS

Fig. 4. Surface concentration observer results for a 1C constant current
discharge. The estimate of surface concentration is initialized with incorrect
value.

We apply a constant 1C discharge cycle for around 45 min.
Fig. 4 portrays the evolution of input current and the sur-
face concentration estimate from the surface concentration
observer. The surface concentration estimation is initialized
with a 12.8% error to validate the convergence property.
Note that with a proper selection of the gain as presented
in (48), the convergence time for č−

ss is 15 s. Next, the surface
concentration estimate is fed into the adaptive observer as a
pseudomeasurement signal for combined state and parameter
estimation. The estimation for surface concentration, terminal
voltage, bulk SOC, and anode diffusivity is plotted against
their simulated values from the plant model (23) in Fig. 5.
Fig. 6 provides the plot of estimation for the maximum
absolute radial and tangential stresses over time, which are
located at the center and the surface of the anode electrode
particle, respectively. With an appropriate choice of gain as
presented in Sections V-A and V-B, the estimates effectively
converge to their simulated values from the plant model. It is
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Fig. 5. Adaptive observer results for a 1C constant current discharge. The
states and parameters converge to their true values asymptotically.

Fig. 6. Maximum radial and tangential stresses estimation under 1C discharge
current.

worth mentioning that the internal stress estimates can be
monitored in real time to prevent it from getting higher than

the yielding stress of the electrode material, and utilized to
analyze the stress-related physical degradation.

B. Experimental Studies

In this section, the performance of the designed adap-
tive observer is demonstrated via experimental data from a
commercial LiNiMnCoO2 (NMC)—LiC6 cell. The ambient
temperature of the battery cell under test is retained at 25.5 ◦C
inside an ESPEC BTL-433 environmental chamber, and an
Arbin high current cylindrical cell holder is used to hold the
battery cell. A PEC SBT2050 cycler applies a vehicle charge–
discharge cycle. The experimentally collected data, current,
and voltage have been used for the identification of SPM-stress
model parameters. For the model identification, we utilized
particle swarm optimization (PSO) to minimize the root mean
squared voltage error between experimental data and model
output to get the best model fit [49]. Besides the parameters
associated with battery geometry, mechanical properties, and
equilibrium structure, the model parameters that are fitted by
PSO are D−

s , R−
s , k−, and k+. The mechanical parameters

are adopted from [23] for graphite. A summary of the para-
meter values are listed in Table III. The state and parameter
estimations are initialized with random (incorrect) guess to
evaluate the convergence of the observers. Unlike the cases in
the simulation study, we no longer know the true solid phase
Li-ion concentration and SOC. Consequently, the criteria for
assessing the observer performance is through the comparison
of measured voltage and voltage estimates computed from
Li-ion concentration estimation.

The “actual” quantities plotted in the figures are obtained
through the following ways.

1) The “actual” diffusion coefficient is obtained by fitting
the voltage output from the plant model in (23) to the
experimental voltage measurement offline by PSO.

2) The “actual” surface concentration, maximum radial
stress, and maximum tangential stress are simulated uti-
lizing the plant model (23) with the identified parameters
from the last step.

3) The “actual” bulk SOC is computed by the coulomb
counting technique, by integrating the applied current
normalized with battery capacity.

During the experiment, the battery cell was first charged
to 100% SOC using a standard constant–current–constant–
voltage (CCCV) protocol, followed by a discharge period until
the SOC drops down to 80% SOC. An electric vehicle like
charge–discharge cycle is then applied to the battery cell,
plotted in Fig. 7. The results for the surface concentration
observer and adaptive observer are given in Figs. 7–9. The
root mean squared percentage error (RMSPE) is selected to
quantified the estimation accuracy

RMSPE(z, ẑ) =
√√√√1

n

n∑
i=1

(
ẑi − zi

zi
× 100%

)2

(71)

where z and ẑ denote the true and estimated quantities and n is
the number of data points. After the initial transition period,
the RMSPE between the voltage estimation and experimentally
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Fig. 7. Electric vehicle like charge–discharge cycle is applied to the
battery cell. The surface concentration observer successfully tracks the surface
concentration, compared against the simulated value from the model.

Fig. 8. Adaptive observer results for the charge–discharge cycle using
experimental data. The “actual” SOC plotted in blue solid line is computed
by coulomb counting method, and the “actual” diffusion coefficient in anode
is obtained by fitting the voltage output from the plant model in (23) to the
experimental voltage measurement offline using PSO.

measured voltage is 0.143%. Similarly, the RMSPE for SOC
and anode diffusivity estimation against their true values is
1.24% and 5.53%, respectively. As expected, the estimated
variables converge to their actual values starting with an incor-
rect initialization. Note that the estimated variables from the
adaptive observer exhibit large uncertainties at the beginning,

Fig. 9. Maximum radial and tangential stresses estimation in the using
experimental data. The “actual” maximum radial stress, and maximum tan-
gential stress are simulated utilizing the plant model (23) with the identified
parameters.

mainly because the adaptive observer requires correct surface
concentration estimation from the previous stage.

This paper presents and rigorously analyzes simultaneous
state and parameter estimation utilizing the nonlinear cou-
pled SPM and stress model. Similar to most other existing
techniques [28], [42], the method proposed here is capable of
estimating aging-related parameters in the battery model, e.g.,
diffusivity. Moreover, estimation of stresses generated inside
the electrode particles provides another crucial measure for
evaluating stress-related battery degradation phenomena.

Remark 6: This paper addresses observer design for nonlin-
ear PDEs by projecting the PDEs onto a finite-dimension sub-
space, and applying nonlinear observer design for ODEs. For
linear PDEs, one can avoid projection in the observer design
by utilizing methods such as backstepping [50] or optimal
estimation [51]. Unfortunately, a unified theory for nonlinear
PDE observer design does not yet exist. Nevertheless, results
can be obtained in special cases—a topic for future work.

VII. LIMITATION OF THE PROPOSED SCHEME

The adaptive estimation performance is reasonably well in
the simulation study and using experimental data. Nonetheless,
there are limitations in the proposed algorithm. In this section,
we discuss and illustrate these limitations.

A. Flatness of Anode OCP

For the purpose of system observability, we reduce the
coupled SPM and stress model by only considering the anode
dynamics. A potential issue is that the OCP of the anode is
generally flat, which means the sensitivity of output voltage
with respect to the state is low. This may lead to large
estimation error due to sensor and modeling uncertainties [52].
In order to compensate for the low sensitivity, observer with
high gain is proposed. However, high gains amplify the output
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Fig. 10. Effect of measurement noise on the sliding mode observer in the sur-
face concentration observer stage with constant input current (in simulation).
Uniformly distributed noise with magnitudes of 1, 10, 30, and 70 mV is
manually injected to the voltage signal.

measurement noise, but we expect the sliding mode observer
to provide certain robustness. The effect of measurement noise
on the sliding mode observer performance in the surface
concentration observer stage is tested in the simulation with
constant input current (see Fig. 10). Uniformly distributed
noise with magnitudes of 1, 10, 30, and 70 mV is manually
injected to the voltage signal. Due to the effect of high
observer gain, the surface concentration estimation deviates
from the actual (simulated) signal when uncertainties grow.
This illustration reveals that the measurement uncertainty
weakens the effectiveness of the estimation scheme owing to
high observer gain.

B. Modeling Inadequacy

The coupled SPM and stress model adopted from [22] is
derived from physical principles relying on an analogy to
thermal stress and provides a quantitative aggregated stress
prediction, which is useful to understand battery SOH asso-
ciated with stress. This model has also desired computational
simplicity for our application. However, the model is never
validated against experimental data. It is derived based on
the SPM, so: 1) it cannot capture the electrode localized
stress as a function of position along the electrode and 2) its
accuracy can be compromised for high input current, and
electrolyte dynamics are expected to be incorporated as the
electrode region in which fracture takes place depends on the
electrolyte properties [53]. Moreover, reviewing the dynamical
equation (6) and Remark 4, it is evident that the effects
of temperature and concentration on θ j and D j

s were not
taken into account. Finally, the model used here does not
account for phase change and staging in the electrodes, which
have a significant impact on the stress generation of some
materials [27].

C. Unknown Actual Initial Condition

To compute the estimates σ̂r,max and σ̂t,max in real time,
one needs to know the change of solid phase concentra-
tion estimation from the actual stress-free value, which is
recognized as the concentration profile after relaxation. In the
numerical studies in this paper, the “stress-free value of con-
centration” is simply the actual initial condition of the solid-
phase concentration in the battery cell, and apparently, this
information is unavailable. In the above-mentioned numerical
studies (for instance see Fig. 7), zero current is injected at the
beginning of an input profile, which allows: 1) the battery cell
to relax and 2) the state observer to converge to the actual
initial concentration instantly. The concentration estimation at
the end of zero current can be used as the “actual” initial
concentration. However, the convergence of observer within
zero-current period is not guaranteed.

VIII. CONCLUSION

This paper presents a nonlinear observer for mechanical
stress estimation in Li-ion batteries, along with solid-phase
Li-ion concentration, i.e., SOC, and diffusion coefficient esti-
mation. A key feature is utilizing an SPM coupled with an
intercalation-induced stress model. Monitoring the mechanical
response of electrode materials is crucial because particle
fracture due to stress generation is a major source of battery
capacity fade. The reduced PDE system for the SPM-stress
model is approximated by nonlinear ODEs using the finite
difference method. A nonlinear observer based on the sliding
mode observer concept is proposed for estimating the surface
concentration from current and voltage measurements only.
The estimated surface concentration is then utilized as a
pseudomeasurement signal for combined state and parameter
estimation in the subsequent adaptive observer. The observers’
convergence is mathematically proved using Lyapunov sta-
bility theory and Barbalat’s Lemma. Real-time monitoring
of aging-related parameters in battery model and internal
mechanical stress enables: 1) a BMS to apply optimal control
methods that protect against particle fracture, and consequently
extend battery life and 2) further understanding of battery
degradation behavior associated with diffusion-induced stress.
Studies from simulation and experimental data are carried
out to demonstrate observer performances. Future work seeks
observer design on more advanced stress models.
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