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Development of Robust Fractional-Order
Reset Control

Linda Chen, Niranjan Saikumar™, and S. Hassan HosseinNia™, Senior Member, IEEE

Abstract—1In this paper, a framework for the combination
of robust fractional-order CRONE control with nonlinear reset
is given for both first and second generation CRONE control.
General design rules are derived and presented for these CRONE
reset controllers. Within this framework, fractional-order control
allows for better tuning of the open-loop responses on the one
hand. On the other hand, reset control enables a reduction
in phase lag and a corresponding increase in phase margin
compared to linear control for similar open-loop gain profile.
Hence, the combination of the two control methods can provide
well-tuned open-loop responses that can overcome the fundamen-
tal linear control limitation of Bode’s gain-phase relationship.
Moreover, as established loop-shaping concepts are used in
the controller design, CRONE reset can be highly compatible
with the industry. The designed CRONE reset controllers are
validated on a one degree-of-freedom Lorentz-actuated precision
positioning stage. On this setup, CRONE reset control is shown to
provide better tracking performance compared to linear CRONE
control, which is in agreement with the predicted performance
improvement.

Index Terms— CRONE, CRONE reset control, fractional-order
control, fractional-order reset control, loop shaping, mechatron-
ics, nonlinear control, precision motion control, reset control,
robust control.

I. INTRODUCTION

OTION control in (sub)nanometre precision position-

ing remains a present-day challenge in the high-tech
industry. Advances in semiconductor manufacturing, produc-
tion of microscale and nanoscale electronic devices (MEMS
and NEMS), and imaging of nanostructures are among the
applications that have increased demand for high degree
of precision positioning systems. Conventional and popular
proportional—integral—differential (PID) controllers and even
other linear controllers find it increasingly difficult to satisfy
the demands in presence of uncertainties, which become more
prominent when moving to smaller scales and higher band-
widths. In linear control, fundamental relations as the Bode’s
gain-phase relation and the waterbed effect [1] inevitably
establish tradeoffs between system performance in terms of
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reference tracking, noise attenuation and disturbance rejection,
and robustness. This makes precision positioning control an
interesting problem from both system design and control point
of view, considered, for instance, in [2] and [3].

In Commande Robuste d’Ordre Nonentier (CRONE—
translates to noninteger order robust control) control [4]
additional flexibility in the tradeoff between robustness and
performance is obtained using fractional operators. Although
fundamental relations of linear control still apply, the fractional
operators allow for better and easier tuning of required stability
margins and open-loop shape. To overcome Bode’s gain-
phase relation and provide greater relief to the robustness-
performance trade off, nonlinear reset control is considered.

Nonlinear reset control has been the focus of many
researchers in past and present years, starting from the first
work of Clegg [5]. In this work, a reset integrator [also known
as Clegg integrator (CI)] was introduced: an integrator that
is reset when its error input equals zero. Using describing
function analysis [6], it is seen that the reset integrator has a
phase lag of only 38°, hence providing 52° phase lead with
respect to a linear integrator for the same —20 dB/decade gain
slope. Recognizing the potential of this profitable gain-phase
characteristic, several works prove the improved performance
using reset control, such as [7] and [8]. Alternative resetting
laws for improved robustness and/or performance have also
been proposed. These include partial reset (nonzero after-reset
state value), variable reset [9], both constant and variable reset
band in [10] and [11], respectively, and (variable [12]) reset
percentages in the PI4-CI compensator approach (PI controller
with a reset integrator), for which a control design frame-
work has been developed in [13]. Other resetting conditions
include resetting at fixed time instants rather than fixed state
values [14], quadratic resetting conditions [15] and conditions
obtained in an optimization problem [16].

For these reset approaches, stability theorems have been
developed. Generally, the works concerning stability proofs
can be divided into Lyapunov-based and passivity-based
proofs [17]. In the former, the Hg-condition [18] is one of the
conditions with which one can prove stability for reset systems
with stable linear base. In a recent work, sufficient stability
conditions based on the measured frequency responses are
given [15], which aims to eliminate the need for solving linear
matrix inequalities (LMIs) present in most of the previous
stability conditions and, thus, making reset controllers more
accessible to control engineers in industry. As a result of the
existing research, many applications of reset control exists.
Examples include applications in process control [19], [20],
positioning systems [9], [21], and hard-drive disks [22], [23].

1063-6536 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. (a) Typical open-loop response with conventional linear controllers. Under gain variations, the phase margin (PM) fluctuates. (b) After achieving

constant phase in the frequency range around bandwidth, the phase margin is close to constant.

Still, reset control synthesis remains an actively researched
topic.

In the works of [24] and [25], the framework for fractional-
order reset has already been mathematically founded. Several
works in this field include generalization of the CI, PI4CI and
first-order reset element (FORE) to CI* [25], PI*+CI* [25],
and GFrORE [26], respectively. In [27], a fractional-order reset
system with an iterative learning algorithm was proposed to
increase robustness in the presence of model uncertainties and
avoid limit cycles simultaneously.

Although fractional-order reset control exists in the litera-
ture, reset applied to CRONE control specifically has not yet
been done. The motivation for this paper arises from the fact
that a robust design methodology already exists with CRONE.
Howeyver, as noted earlier, CRONE controllers are linear and
hence suffer from fundamental limitations. This paper aims
to extend this design methodology to include reset actions
to obtain further relief in the robustness-performance tradeoff
and provide new design rules for robust fractional-order reset
control. The preliminary work with this regard has been
presented in [28] with reset introduced into the first generation
CRONE controllers. However, the second-generation CRONE
that can provide robust performance even in the case of
nonasymptotic phase behavior for the system in the region
of bandwidth is of greater interest to the precision control
community. The ideas for the first-generation CRONE are
provided and then extended for the second generation in this
paper. In addition, apart from the analysis of results obtained
from the second generation CRONE reset, the performance in

terms of disturbance rejection for both generations has also
been addressed in this paper.

This paper is structured as follows. Section II concerns
fundamentals of CRONE control and reset control. Then
follows the formulation of CRONE reset control and design
rules in Section III. The practical application of designed
CRONE reset controllers is given in Section IV, followed
by a discussion of experimental results in Section V. Finally,
conclusions are provided in Section VI.

II. PRELIMINARIES

A. Robust CRONE Control

The CRONE control framework provides a methodology for
robust fractional-order control design. Robustness is achieved
by the creation of constant phase around open-loop bandwidth.
This can be seen in Fig. 1. Under system gain deviations,
robustness of the system is ensured as phase margin remains
equal. Three generations of CRONE control have been for-
malized in [4]. Only the first two generations of CRONE are
considered in this work: CRONE-1 and CRONE-2. CRONE-1
can be used for plants with asymptotic phase behavior
around the required bandwidth. CRONE-2 can be used for
plants without this asymptotic phase behavior. Both genera-
tions of CRONE provide robustness against gain deviation.
CRONE-3 control uses complex fractional order, which is
not practically implementable and thus not taken further into
account.
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1) First Generation CRONE: A first generation CRONE
controller, also referred to as CRONE-1, has a similar transfer
function to an integer-order series PID controller

cF(s)=cO(1+%)m(iiZj:)v< 1 7 (M

n
1+ )

with w; and wr being the integrator- and low-pass filter corner
frequencies, wp and wy, the corner frequencies of the band-
limited derivative action, v € R N [0, 1] the fractional order
of the derivative action, and n;,nr € N being the order of
the integrator and low-pass filter, respectively. The difference
between a series integer-order PID controller and a first
generation CRONE controller is that the order v is fractional
instead of an integer, making first generation CRONE “a
fractional PID controller.” The flat phase behavior illustrated
in Fig. 1(b) is created by choosing a wider frequency range in
which the derivative action is active (compared to PID control)
and by decreasing the order v to a fractional value.
The fractional order v can be calculated from

—7+Mo —arg G(jwcg) +nF arctan %Fg +ny (% — arctanc;))—‘f)

V= g

p

W,
arctan —= — arctan
p

)

where G(jw) is the plant frequency response and Mg is the
required phase margin. The gain Cyp is chosen such that the
loop gain at frequency w is equal to 1.

2) Second Generation CRONE: In the second genera-
tion CRONE, which is alternatively addressed as CRONE-2,
the desired open loop is first designed. The resulting controller
is comprised of this desired open loop in series with the plant
inverse.

Desired open-loop fo(s) is given as

Bo(s) = Co (1 + %)’” (1 ‘t Zji)_v (1 + IL)VZF (3)

where the order v € R N [1,2] is again fractional and
given by

Weg T Weg
—+Mgp+np arctan —+n; | — —arctan —
wOF 2 (]
v = @
(Weg (cg
arctan — — arctan —
(o) wp

The second generation CRONE controller finally has the
following structure

Cs(s) = Gy ' (5)Bo(s) Q)

in which Go(s) is the nominal plant.

In both CRONE-1 and CRONE-2, the resulting fractional-
order derivative is approximated in the required frequency
range using CRONE approximation [4]. The resulting higher
order integer-order transfer function approximates the required
fractional-order derivative’s frequency behavior.

B. Reset Control

A general reset system can be described using the fol-
lowing impulsive differential equations, according to the
formalism in [18]:

Xg(t) = Agrxg(t) + Bre(t), if e(t) 20
xr(tT) = Apxp(1), ife(t)=0 (6
u(t) = Crxg(t) + Dge(t)

ZR =

where matrices Ag, Bgr, Cr, and Dg are the base linear state-
space matrices of the reset controller, e() is the error between
output and reference, u(t) is the control input signal, xg (¢) are
the states with xz = [er anr]T where x, are the n, number of
states being reset and xy, are the ny, states not being reset with
n, +ny,, = ng (total number of states of feedback controller),
and A, is the reset matrix. A, is designed as a diagonal matrix
with the elements corresponding to states xpr equal to one.

When the frequency response of a reset system is approxi-
mated using describing function analysis, it is seen that phase
lag is significantly reduced by the nonlinearity.

1) Describing Function Analysis: The general describing
function of a reset system as defined in [29] is given by

Gpr(jw) = Cr(jol — AR)"'Br(I + jOp(®)) + Dg  (7)

where O p(w) is defined as

2
Op0) = L A@ITp@) ~ A @) ®)

The definitions of the set of equations used are given in the
following:

2 2
Aw) = w1 —i;AR

A(w) = I + eo’r

Ap(w) =1+ Ape%AR

I'p(@) = Ay (@)A, A(w) A~ (o).

2) General Stability Analysis: The reset system given in (6)
can be represented in closed loop as

xX(t) = Agx(t) + Bogw(t), if x(t) ¢ M(z)
x(tT) = A,,x(1), if x(t) € M(t)
u(t) = Cox(t) +d(t)
e(t) = w(t) — Cox(r)

©)

where x = [xg x;]T
_ Ay B,C, 10

I 0
Apc/ = [ 61) Ap:| P Ccl = [Cp O]

with A, B,, and C), being the state-space matrices of the
plant to be controlled with n, number of states and reset
surface M(¢) is given as

M) = {¢ e R s e(1) = 0, (I — AR)E # 0}
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Fig. 2. Frequency-domain open-loop responses showing CRONE reset control concept. Open-loop with indication of open-loop slopes for (a) step 1: robust
CRONE controller, (b) step 2: additional nonlinear reset adds phase ®@,, and (c) step 3: improved open-loop shape with new fractional slope v* > v.

Theorem 1 [30]: Let V : R" — R be a continuously
differentiable, positive definite, radially unbounded function
such that

: AN ,
Vx) := (a) Agx <0, ifx#0 (10)
AV(x):=V(@A,,x)—Vkx)<0, ifxeM. 1D

Then, the equilibrium point x = 0 is globally uniformly
asymptotically stable.

From this condition, Beker et al. [30] obtained the following
theorem for proving quadratic stability:

Theorem 2 [30]: The reset control system (9) is said to
satisfy the Hp condition if there exists a constant f € R
and positive-definite P, € R" " such that

Onpxn,
Pﬂ] (SI - ACl)il Onnr Xny
I,

Hp(s) = [ﬁCp

On,xnn,

(12)

is strictly positive real. The reset control system in (6) is
quadratically stable if and only if it satisfies the Hy condition.

This Hg condition has been used in this paper for stability
analysis. However, this is not the only stability theorem
for reset systems present in the literature. For example,
NeSic¢ et al. [31] provides the conditions for L, stability for
arbitrary p € [1, oo). Since the focus of this paper is not on
developing stability theorems, this is not discussed in greater
detail.

III. RoBUST CRONE RESET CONTROL

CRONE control by itself is fundamentally limited as a linear
controller. Thus, being a robust controller, the system may
underperform in terms of tracking, disturbance rejection, and
noise attenuation as a result of fundamental tradeoffs in linear
control. It is, in this scenario, that nonlinear reset can provide
relief. The novel combination of CRONE and reset control
will be addressed as CRONE reset control. The CRONE reset
control concept can be broken down into three steps as follows.

1) Design of robust CRONE controller.

2) Addition of phase around bandwidth with nonlinear
reset.

Retuning of open-loop slope around bandwidth to
improve open-loop shape for same phase margin.

3)

The first step results in a linear controller that is robust
and, hence, suffers in tracking and noise attenuation. The
introduction of reset and the subsequent retuning results in
robustness being retained with the improvement in other
performance characteristics. Above procedure is summarized
in the open-loop responses depicted in Fig. 2. In the final step
as depicted in Fig. 2(c), it can be seen that open-loop gain has
improved at both low and high frequencies (for better tracking
and improved attenuation of noise, respectively) with respect
to the linear CRONE case in Fig. 2(a).

CRONE reset control design requires computation of a new
slope around bandwidth v*. This value differs, depending
on the amount of phase added by resetting action, and thus
varies for different reset strategies. In this section, first, reset
strategies are formulated, a CRONE reset control structure
is established and the new design rules are given for the
calculation of slope v* for a selection of reset strategies for
both CRONE-1 reset and CRONE-2 reset. Finally, the general
stability analysis, as introduced in Section II-B2, is adapted
for the developed CRONE reset control framework.

A. Reset Strategies

We define reset strategy as a unique combination of choices
for: base controller, part of controller transfer function to be
reset, the order of the part to be reset, and the selection of
reset approaches.

In the following, the construction of a reset strategy is
illustrated for CRONE-1 reset as an example

CF(S) =X, Zur (13)

in which X, is the linear part and X, is the reset part of the
transfer function as given in (1). The reset part could be one
of the following.
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1) Integrator part (w;/s).
2) Lead/lag part

N

1+CU_h
T lead : wp < wp, lag: wp > wp |.

wp

3) First-order filter part

1 1
or .
I+ 1+

These reset elements can be of first order or higher. However,
in this paper, we focus on the FOREs only.

With the second of three choices listed above, the lead and
lag filters are assessed in two different ways. In the case of
both lag and lead filters, resetting can be performed either
only on the pole or on the pole-zero combination and results
in unique frequency response. This is as shown in Table. I.
In the case where only the pole is reset as shown in the top
row of Table I, the zero part is made proper by combining with
the low-pass filter part of the designed CRONE controller.

Comparing the amount of additional phase lag reduction
seen, resetting of lag part is more favorable than resetting of
lead part. Thus, the remaining of this paper will focus on the
following.

1) Integrator part (w;/s).
2) Lag part.
3) First-order filter part (1/(1 + (s/wp))).

As in the literature, different approaches can be taken to
reset [18].

1) Partial reset—where the state is not reset to zero result-
ing in the corresponding element of A, having a nonzero
value.

2) Reset percentage—which uses the PI+CI compensator
approach of having a PI loop in parallel with CI. Both
loops have a weight assigned to them with the combined
weight equalling one.

3) Variable reset—where the nonzero value of partial reset
and/or the weights of reset percentage are not fixed and
can vary during operation.

4) Reset band—where the reset is carried out when the
error signal enters a band instead of zero-crossing.

The describing function analysis in the case of variable
reset and reset band is not straightforward and the equations
provided in Section II-B1 are not valid making design and
analysis difficult. Also, these approaches are not robust and,
hence, are not considered. Partial reset and reset percentage
both provide ways to control the level of reset and hence
nonlinearity and phase lag reduction achieved.

B. Control Structure

The chosen reset approaches of partial reset and reset
percentage constitute a CRONE reset controller with two
degrees of freedom in tuning nonlinearity in the system. The
general state-space representation of the CRONE reset control
system X g that consists of the reset part £, and nonreset part

r o+ e Uy U Y

Fig. 3. Control structure of the CRONE reset controller X g, which contains a
linear part ¥, and a nonlinear reset part X,. X is the plant being controlled.

Fig. 4. Structure of the CRONE reset controller Xp with two-degree-of-
freedom nonlinearity tuning, which contains a linear part £,, and a nonlinear
reset part X, with Ay =y I. I, pase is the base linear system of X,.

2nr 1 constituted as follows:

Xr(t) = Apx,(t) + Bre(t), ife(t) #0

2= 4 0T) = Apx, (1), ife(t) =0 (14)
ur(t) = Crxr(t) + Dre(t)

s, = [xnr(t) = Anrxnr(t) + Bnrur(t) (15)
unr(t) = CyrXnr (t) + Dnrur(t)
Xg(t) = Agxg(t) + Bre(t), if e(t) #0

Sk = {xr(t) = Apxr(), ife(t) =0 (16)

u(t) = Crxg(t) + Dge(t)

where e(t) is the error signal, u,(¢) is the output of X, which
is, in-turn, input to the nonreset part, x,(¢), xn(¢), and xg (¢) =
[x] anr]T are the reset-controller states, nonreset controller
states, and CRONE reset controller states, respectively, and
Ay, Ap are the reset matrices. Matrices Ag, Bg, Cg, and Dp

are the base linear state-space matrices of the reset system,

defined as
A 0]
Ap = " 17
. [Bnrcr Anr} (1
B,
Br = 18
4 [BmDr} (1%
CR - [Dnrcr Cnr] (19)
Dg = Dy, Dy (20)
and reset matrix A, is defined as
A, = diag(A,, I,,). (1)

The structure of this controller £ is shown in Fig. 3.

Slight alterations are made to the system definitions from
(14) to (16) to obtain two degrees of freedom in tuning
nonlinearity within the system. The first chosen reset approach
of partial reset establishes the first degree of freedom; reset
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TABLE I

DESCRIBING FUNCTION FOR RESETTING DIFFERENT PARTS OF A LEAD AND A LAG FILTER. LAG RESET PROVIDES MORE PHASE AT BANDWIDTH
THAN LEAD RESET. RESET OF THE FIRST-ORDER FILTER WITH LOWER CORNER FREQUENCY wj, PROVIDES MORE PHASE AT
BANDWIDTH THAN THE SAME FILTER WITH HIGHER CORNER FREQUENCY oy

s

1+
tead filter (5 +ﬁ)

Reset part

15 T

Magnitude (dB)
(=]

—
15

Magnitude (dB)

-15 . . .

first order filter
reset

Phase (deg)

0 L L L

60 T T T

40

20

Phase (deg)

-20

-40

wr Weg Wh
Frequency (rad/s)
=)
w14+ =
w1+ o

Spr

(1+

-60 . . .
wi Weg Wh
Frequency (rad/s)
s ) 1
wr 1+ =
wp” 14+ w
——

1+

Znr

,_.
ot

—
o

ot

Magnitude (dB)
C‘ﬂ (=]

—
o

—
=3

Magnitude (dB)

60 T T T

lag/lead reset

Phase (deg)

60 . . .

w Weg wh w Weg wh
Frequency (rad/s) Frequency (rad/s)
142 14+ =
T Trs
=, o
matrix A_p is taken as value x,(f). When y = 0 traditional reset occurs, whereas

Ay =71y, (22)

where I, is an identity matrix of size n, with n, being the
number of reset states. With this reset matrix, the after-reset
state value x,(t%) is a fraction y of the before-reset state

the system simplifies to a full linear system when y = 1. The
conditions for the open-loop stability of such a reset controller
with nonzero resetting matrix are provided in [29].

The second chosen reset approach of reset percentage forms
the second degree of freedom in tuning nonlinearity in the
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50 T T T T

Magnitude (dB)
(=]

-50
0 T T T T

20k il

-40 =

60 1 1

Phase (deg)

-80

-100 L L L
107! 10° 10! 10? 10° 10t

Frequency (Hz)
(2)

Fig. 5.
y =0.

system. A convex combination between the reset part X, and
its linear base system X, pase is taken as shown in Fig. 4 in .
p is the percentage of linearity in the system. When p = 0,
X% is equivalent to £, and when p = 1, the system becomes
fully linear.

The describing function of both reset approaches applied to
a reset integrator is shown in Fig. 5. It is evident that with
both reset approaches, the nonlinearity in the system can be
tuned and the amount of reset phase lead can be adjusted.

C. New Design Rules

As noted at the beginning of this section, the design of
CRONE reset controller consists of three steps with the first
step being the design of linear CRONE controller. This is
followed by a selection of reset strategy involving choice over
%, and choice of control structure variables y and p. With
these choices, the application of reset results in reduction in
phase lag compared to its linear counterpart. This reduction
which can be seen as phase lead achieved through reset
can be calculated using describing function analysis for both
CRONE-1 reset and CRONE-2 reset control.

1) Derivation Reset Phase Lead: A linear combination is
made between describing function of the reset system and
its linear base equivalent to include the convex-combination
structure with reset percentage p

Ghr(jo) = p(C(jol — A)~'B + D)
+(1 = p)(C(jol —A) "B + jOp()) + D).
(23)

50 : . ‘ ‘
Preset =0
—— Preset =0.25
Preset =0.5
) — Preset =0.75
g —— Preset =1
K]
5 0f ]
=
B
]
=i
50 | | | ]
0 ; i : :
-20 + ]
& -40F A
T
[
£
= 60+ ]
~
-80 + ]
-100 | | ‘ ‘
107! 10° 10! 102 e o
Frequency (Hz)
(b)

Describing function of a reset integrator when tuning nonlinearity (a) for different values of y with p = 0 and (b) for different values of p with

The additional phase at bandwidth is given by ®,(wc),
which is retrieved by filling in 0 = w¢, in
D, (w) = LGHp(jo) — LG (jw). (24)
2) Reset Strategy-Dependent Phase Lead: The amount of
phase lead achieved by resetting is different depending on the
chosen reset strategy. The reset phase leads are directly derived
from (23) and (24) and given in the following for different
reset strategies.
a) CRONE integrator reset: The reset phase lead for an
integrator reset is

4 |-
(Dr,int(y s P) = arctan (_(1 - p)—y) (25)
bis 14y

which is frequency independent.

b) CRONE lead/lag reset: As a base filter to define
lead/lag reset strategy and finally acquire the controller rep-
resentation in the form of (14)—(16), first consider following
filter:

1+
1+

Q=

(26)

Hy(s) =

e

where a and b are the corner frequencies. For such first-order
filters ® p(w), as in (8), is expressed as

b

214e¢ "o 1—y
G)D(wab’y):_ b2 b
Tl4(5) 14yeme

27)
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Then, the phase lead for Hj(s) in (26) with partial reset y
and reset percentage p can be computed using (24) as

(Dr,ll(a)7 a» b; )’7 p)

(1-p)Op(w,b,y)(1-2) )

= arctan( 3 b
1+(2)"+ (1= p)2Op(w,b,y) (1 - 2)
(28)

c) CRONE first-order filter reset: When, in (26), a — o0
Hj;(s) simplifies to a first-order filter. Therefore, the phase lead
of (28) becomes

@ fof (@, b, 7, p) = arctan((1 — p)Op(w, b, 7)). (29)

Using the phase leads achieved with resetting in (25)—(29)
for different reset strategies and applying (36) and (37),
the reset strategies applied to CRONE-1 and CRONE-2 are
illustrated in Sections III-C.3-III-C 4.

3) CRONE-1 Reset: Applying the new design rules to
specific reset strategies for CRONE-1 results in the following.

a) CRONE-1 integrator reset:

Cint(s)
ny—1 nr 1+ <\’
~ (%) Co(iJrl) (1 _) L o
$ or + wp (1 + CUS_F) \é;"
2r
Zl‘li’
(30)

and phase lead with integrator reset is given by (25).
b) CRONE-1 lag reset:

s

v+ s

o wr\" 1 1+ 2

Crag(s) = @) ¢ (1 —) h
lag (5) (1+i) U (1+L)"F I+ 3
oF —_—

wp

Zr

€19

Znr

and phase lead with lag reset is given by (28) with b = wy
and a = wy.

In the case of CRONE-1, it should be noted that the linear
CRONE-1 has a lead element since the structure of CRONE-1
is similar to that of PID. However, according to Table I, since
resetting lag part results in more lag reduction, a lag element
is introduced with a corresponding

c) CRONE-1 first-order filter reset:

(1 n wib)wrl oy | 1
e e(+T)
(
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4) CRONE-2 Reset: Results for CRONE-2 reset are
retrieved as the following.
a) CRONE-2 integrator reset:

Bo.int ()
wy\ni-1 K m 1+wib - 1 wy
= (—) CO — +1 1+ S nE J—
S oy o (1_}_6%) s
%
Znr
(33)
and phase lead with integrator reset is given by (25).
b) CRONE-2 lag reset:
ﬂO,lag(s)
142\ o1 142
112 co(1+5) g
o, (1 + wS_F) p
%
Znr
(34)

and phase lead with lag reset is given by (28) with b = wy
and a = wy,.
¢) CRONE-2 first-order filter reset:

Po,fot (5)
0D
(1+w_;,) c (l+w1)n1 1 1
= -V 0 . nr S
(1+2) Vo(rg) L
Zor *
(35)

and phase lead with the first-order filter reset is given by (29)
with b = wp,.

Once the phase lead achieved through the application of
reset is calculated for the chosen reset strategy and reset
variables, new slope v* as a function of reset phase lead at
bandwidth frequency @, (cwcg) can be calculated as (36), shown
at the bottom of this page, with v* € [0, 1] for CRONE-1 and

W, T We
, 7 + Mg +np arctan w‘Fg +ny (7 —arctan w;lg) — D, (cweg)
V) =

arctan CZ)—Lf — arctan CZ)—L:)
37
with v* € [1, 2] for CRONE-2.

Crof (s) = 5 I+ — i 5
A+ § 1+ af—F) '+2, b Stability Analysis

S z, Theorems 1 and 2 can be used to guarantee asymptotic

" (32) stability using the following A-matrix:
and phase lead with the first-order filter reset is given by (29) Ay = A BGuyp (38)

with b = wp. —BurpC Anrp
., 7 + Mo — LG(jweg) + np arctan Z—f +ny (% — arctan CZ)‘f) — D, (weg) G6)

yV =

Deg
arctan -

Wcg
— arctan —=
arcta ”
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TABLE II
PARAMETERS OF CRONE-1 LAG RESET AND CRONE-2 LAG RESET CONTROLLERS

Symbol  Parameter Value CRONE-1  Value CRONE-2
PM phase margin 55° 55°

Weg bandwidth 100 Hz 100 Hz
wp lead corner frequency 12.5Hz 12.5Hz
wp, lag corner frequency 800 Hz 800 Hz
wr integrator corner frequency 8.33Hz 8.33Hz
wp low-pass filter corner frequency 1200 Hz 1200 Hz
nr integrator order 1 2

ng low-pass filter order 1 3

N Oustaloup approximation order 4 4

p reset percentage 0.5 0.5

o7 partial reset 0.5 0.5

where (A, B, C, D) are the state-space matrices of X and
(Anrps Burp, Curp, Dnrp) are the state-space matrices of non-

reset controller X, and plant X, combined in series. A is

defined as
-l 8]
B and C are defined, respectively, as
B= [ﬁ] . C=[pC (1-pC] (40)
and A7 is defined as
A}, = diag(Ay, In,, In,,,)) (41)

where npyp is sum of the number of states of nonreset controller
nyr and plant n,.

IV. PRACTICAL APPLICATION

The idea of CRONE reset control is to obtain a robust
controller capable of overcoming the robustness-performance
tradeoff. This is achieved by breaking Bode’s gain-phase
relation through introduction of nonlinearity. However, since
the controller is analyzed and designed using the pseudolinear
describing function approximation, the proposed controllers
are tested on a precision positioning stage for validation.

A. System Overview

The system considered is a custom-designed one-degree-of-
freedom nanometre precision positioning stage, actuated by
a Lorentz actuator. This stage is linear-guided using flexures
to attach the Lorentz actuator to the base of the stage and
actuated at the center of the flexures. With a Renishaw RLEI10
laser encoder, the position of the stage is read out with 10 nm
resolution. The setup is depicted in Fig. 6. All CRONE reset
controllers are designed within a MATLAB/Simulink environ-
ment and implemented digitally via dSPACE DS1103 real-time
control software with a sampling rate of 20 kHz. The transfer
function of this system is identified as

0.5474
P(s)

~0.5718s2+0.95 + 146.3

The frequency response of the system is shown in Fig. 7
and shows the behavior of a second-order mass-spring-damper
system with additional dynamics at higher frequencies and
delay.

—2.5x 107%s ) (42)

Fig. 6. Picture of the Lorentz stage (right) with the laser encoder (left).
0 T T T T
a 50 Identified system |
<A
@
2 1100 ]
=1
5
< 4
= 150
-200 1 1 1 I
0
-50
¥
< -100 -
3
2 -150 F
=
A~
-200 |
-250 I I I
107! 10 10! 102 10%
Frequency (Hz)
Fig. 7. Frequency response of the system and the identified system model.

B. Controller Design

The design of CRONE reset controllers for testing and
validation provides us with choices over part of controller
being reset as well as over the values of p and y, resulting
in infinite possible choices. In this paper, we have chosen
resetting lag part and also p = y = 0.5 for validation. Both
CRONE-1 and CRONE-2 reset controllers are designed for
the above-described positioning stage. The complete set of
parameters of the two controllers can be found in Table II.
Linear CRONE controllers are also designed with either p = 1
or y 1 or both, since all combinations result in linear
CRONE design.
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Fig. 8. Theoretical open-loop responses linear CRONE versus CRONE reset for (a) CRONE-1 lag reset and (b) CRONE-2 lag reset. The expected responses

of CRONE reset are shown for y = p = 0.5 as provided in Table. II

The theoretical open-loop responses are plot against its
linear base equivalents in Fig. 8. Within these graphs, it is
evident that for the same phase margin, the open-loop fre-
quency response of CRONE reset provides a better open loop
shape, i.e., higher gain at low frequency which should result
in better tracking.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental data have been retrieved for two purposes,
namely: showing improvement in frequency domain through
sensitivity functions and, thus, applicability of describing
function analysis, and; showing improvement in time domain
proving better robustness-performance tradeoffs of CRONE
reset control compared to linear CRONE control.

A. Frequency-Domain Results

Complementary sensitivity function 7'(j) and sensitivity
function S(jw) were identified using a frequency sweep at the
position of signal n in Fig. 9. T (jw) then can be identified
as the transfer from —n to y, whereas S(jw) is identified as
the transfer from n to y + n. The frequency sweep was done
from 0.1 Hz to 2.5 kHz with a target time of 120 s and a total
duration of 480 s.

The identified frequency responses S(jw) and T (jw) for
CRONE-1 lag reset and CRONE-2 lag reset for y = 0.5
and different values of p are shown in Fig. 10. In the
complementary sensitivity functions in Fig. 10(b) and (d),
it can be seen that the peak value reduces for decreasing value

O—— Cls)

P(s)

+
+
n

Fig. 9. Block diagram of the control loop and signals used for identification
of T(jw) and S(jw).

of p (increasing nonlinearity in system). In addition, there
is better attenuation of high frequencies. Both contribute to
attaining better reference tracking performance.

In Fig. 10(a) and (c), the S(jw) is shown for the same
controller parameters. Here, it is evident that there is a gain
reduction of both the peak value and sensitivity at higher
frequencies. The low-frequency sensitivity functions are not
shown for reasons of inevitable low coherence. The results
presented above indicate an improvement in the robustness-
performance tradeoff as decrease of both gain peak values and
gain at low frequencies is observed.

B. Time-Domain Results: Reference Tracking

The fourth-order trajectory planning as in [32] is used
to compute a triangular wave reference signal. This refer-
ence signal is representative of scanning motions in preci-
sion wafer stages. In addition, the second-order feedforward
as formulated by the same authors has been implemented.
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Measured frequency responses for CRONE-1 lag reset (a) sensitivity function, (b) complementary sensitivity function and CRONE-2 lag reset,

(c) sensitivity function, and (d) complementary sensitivity function for y = 0.5 and different p-values.

+
r () ——

O P(s) y

Fig. 11. Block diagram of the controlled system.

The feedforward controller provides a feedforward force F
that is computed as

F =ma+co 43)

in which m is the stage mass, ¢ is the damping coefficient,
and a and v are the acceleration and velocity of the stage,
respectively. In Fig. 11, a common feedforward controller F'(s)
is used with linear CRONE and CRONE reset controllers as
feedback controllers C(s) for performance comparison.

The tracking errors for the CRONE lag reset controllers are
compared to linear CRONE controllers for the same phase
margin shown in Fig. 12. According to theory, as has been
explained in Section III, the CRONE reset system will perform
better than the linear CRONE reset system with similar phase
margin. This is confirmed by the measurements and is evident

from the error plots shown in Fig. 12. For CRONE-1 lag reset,
the rms error reduces from 22.1 to 19.6 nm compared to the
linear CRONE-1 controller. For CRONE-2 lag reset, rms error
is reduced from 70.7 to 52.8 nm. Hence, better performance
in terms of reference tracking has been achieved in CRONE
reset control compared to linear CRONE. This improvement
in tracking performance is also in line with the S(jw) graphs
shown in Fig. 10(a) and (c), which is basically an estimate of
the error with respect to reference.

It has to be noted that the maximum control effort peaks are
larger in the nonlinear system. Nevertheless, if the system does
not suffer from control saturation, this increase is no problem.

C. Time-Domain Results: Noise Attenuation

The noise-attenuation performance of the CRONE lag reset
and linear CRONE reset controllers is evaluated using the
system response to a sine noise input signal. Noise power
is calculated for sine signal of different frequencies above the
bandwidth for a duration of 5s. The decrease in average power
in decibels for p = y = 0.5 with respect to linear case is
shown in Tables III and IV. In the literature, one of the most
noted advantages of reset is its improved performance in noise
attenuation. This property of reset is validated again in the
case of CRONE reset with these results. These results provide
further validation of T'(jw) plotted in Fig. 10(b) and (d),
which is an estimate of error due to the noise at a range of
frequencies.
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Fig. 12. Reference tracking of a fourth-order input-shaped triangular wave signal for (a) CRONE-1 lag reset and (b) CRONE-2 lag reset compared to linear

CRONE for the same phase margin.

TABLE III

REDUCTION OF AVERAGE POWER OF NOISE RESPONSEFOR y = 0.5,
p = 0.5 WITH RESPECT TO LINEAR CASE FOR CRONE-1

Frequency (Hz) noise reduction (dB)

300 2.46
400 2.74
500 2.72
600 2.98
700 2.66
800 2.57
900 1.79
1000 2.59
TABLE IV

REDUCTION OF AVERAGE POWER OF NOISE RESPONSEFOR y = 0.5,
p = 0.5 WITH RESPECT TO LINEAR CASE FOR CRONE-2

Frequency (Hz)  noise reduction (dB)

300 2.94
400 3.14
500 3.55
600 3.14
700 3.30
800 3.10
900 3.93
1000 2.92

D. Time-Domain Results: Disturbance Rejection

A large percentage of the high precision achieved in the
high-tech industry is due to the accurate design of the feed-
forward controller. In several cases, the feedforward controller
and the reference itself are designed so well that the feedback
controller does not see any error due to the change in refer-
ence. In such a scenario, the feedback controller is mainly
responsible for noise attenuation and disturbance rejection.
The improved noise attenuation performance of CRONE reset
controllers has already been validated in the previous section.

TABLE V

SETTLING TIME (TIME TO REACH 15% OF PEAK VALUE )Efs) FOR
CRONE-1 RESET CONTROLLERS WITH VALUE
OF y FIXED TO 0.5

p Z5s Onm)  settling time (ms)
1 530 55.8
0.75 540 65.5
0.5 540 65.5
0.25 550 66.0
0 560 76.8
TABLE VI

SETTLING TIME (TIME TO REACH 15% OF PEAK VALUE fcfs) FOR
CRONE-2 RESET CONTROLLERS WITH VALUE
OF y FIXED TO 0.5

P 2¢s Onm)  settling time (ms)
1 570 146.0

0.75 570 135.7

0.5 570 128.1

025 590 125.1

0 600 68.3

The response of CRONE reset controllers for a step distur-
bance is shown in Fig. 13. While the maximum error due to
this disturbance is not significantly different in the responses
of CRONE reset and linear CRONE, significant difference is
seen in the settling time. The settling time is defined and
calculated as the time required to decrease to 15% of the
maximum peak value. The computed settling times are given
in Tables V and VI for CRONE-1 reset and CRONE-2 reset,
respectively.

In the case of disturbance rejection, it is seen that the
performance of the controllers does not match the expectation
from describing function. While in the case of CRONE-2 reset
controllers, a reduction in settling time is seen, there is a
slight increase in maximum displacement due to disturbance.
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Fig. 13.

However, in the case of CRONE-1, significant rise in settling
time is also seen. This could possibly be explained as effect of
higher order harmonics introduced by reset. These results also
show that while describing functions are reliable in estimating
performance improvement in some cases, they are not reli-
able under all circumstances. This discrepancy is even more
evident when we consider that process sensitivity which is the
estimate of error with respect to disturbance can be obtained in
linear systems by multiplying sensitivity with the plant being
controlled. The sensitivity S(jy) for the designed controllers
is plotted in Fig. 10(b) and (d). Since the plant is constant
for all the designed controllers, the disturbance rejection
performance should follow the describing function estimation.
However, this is not the case as seen from the practical
results. Hence, new frequency-domain tools capable of accu-
rately estimating closed-loop performance of reset systems are
required.

VI. CONCLUSION

The first part of this paper has a theoretical focus: novel
and general design rules are developed in the synthesis of
the proposed CRONE reset controller. These general rules are
applicable to a broad range of reset strategies that can be taken
for both first generation CRONE reset and second generation
CRONE reset. The developed theory was used in the design
of a CRONE-1 lag reset and CRONE-2 lag reset controller.
For these controllers, it was shown that for similar phase
margin, better open-loop shape can be achieved compared
to linear CRONE control, thus providing relief from Bode’s
fundamental gain-phase relation and fundamental robustness-
performance tradeoffs.

In the second part of this paper, the designed CRONE
reset controllers have been validated on a Lorentz-actuated
precision stage. First, it was shown that the sensitivity function
and complementary sensitivity function, which were identified
from the measurement data, improve in the frequency range of
interest. Both sensitivity and complementary sensitivity peaks
reduced as well as gain at high frequencies. Using time-domain

Response to a pulse disturbance for lag reset with y = 0.5 for (a) CRONE-1 lag reset and (b) CRONE-2 lag reset.

reference-tracking results for a fourth-order input-shaped trian-
gular reference signal, it was shown that the better open-loop
shape of CRONE-reset, indeed, improves reference-tracking
performance. For both CRONE-1 lag reset and CRONE-2 lag
reset, reduction in rms tracking error was observed. The use
of reset for improved noise rejection performance is also
validated on the practical setup.

The reliability of describing function, however, is ques-
tionable in the case of disturbance rejection. While in the
case of CRONE-2, reset improvement is seen in settling
time, performance deteriorates both in terms of maximum
displacement and settling time for CRONE-1 reset.

Several challenges of reset control are not addressed in
this paper but will be considered in future work. These
include limit cycles, low-frequency disturbances, and higher
order harmonic behavior amongst others. As seen with the
results of disturbance rejection, existing analysis of open-loop
and closed-loop behavior of reset systems using describing
function is insufficient under certain conditions. This requires
new tools and methodologies for frequency-domain analysis
of reset systems. However, the results shown in this paper
are already promising: for the designed CRONE reset con-
trollers with partial reset and reset percentage already improve
tracking performance and noise attenuation with respect to
linear CRONE. This means that with the future study into
the effect of higher order harmonics, performance of CRONE
reset can be further improved. Also, such a study of higher
order harmonics will provide more insight into the choice
of values of p and y. While 0.5 has been chosen as the
value for comparison and validation in this paper, the best
value to achieve required specifications for any system can
be accurately chosen when the complete closed-loop perfor-
mance including the effect of higher order harmonics can be
predicted.
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