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Abstract—A multi-unmanned surface vessel (USV) formation
control system is established on a novel platform composed of
three 1.2 meter-long hydraulic jet propulsion surface vessels,
a differential GPS reference station, and inter-vessel Zigbee
communication modules. The system is also equipped with an
upper level collective multi-USV protocol and a lower level
vessel dynamics controller. The system is capable of chasing
and surrounding a target vessel. The results are supported by
rigorous theoretical analysis in terms of asymptotical surrounding
behavior and trajectory regulation. Extensive experiments are
conducted to demonstrate the effectiveness and efficiency of the
proposed hardware and software architectures.

Index Terms—Multi-agent systems, unmanned surface vessels,
collective control, regulation, underactuated control.

I. INTRODUCTION

Unmanned surface vessels (USVs) have extensive applica-

tions in marine resource exploration, water pollution clearance,

disaster searching and rescue, marine patrol and prospection,

for their low-cost, high efficiency, agility and flexibility. Most

existing research on USVs focuses on a single vessel. As rep-

resentative works, recurrent neural network-based predictive

controllers were designed in [1], [2] to address the nonlin-

earity of the USV dynamics. Trajectory tracking controllers

were proposed for path planning of USVs subject to input

saturation, system uncertainties, and wind/wave disturbances

in [3]–[7].

With the tremendous development over the past years, multi-

USV systems have become indispensable tools for develop-

ing marine economic, protecting marine environment, and

preserving marine rights. In particular, a single USV is far

less capable than a multi-USV formation, especially in fulfill-

ing complex tasks of patrol, rescue, smuggle seizing, water
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pollution clearance, and material delivery. For example, in

harsh marine environments with severe external disturbances,

a single USV is more vulnerable than a multi-USV setting

where one malfunctioned USV can be replaced and/or rescued

by another.

In the field of formation control of multiple unmanned

vehicle/robot/vessel, called a multi-agent system (MAS) in

general, these years have witnessed many research outcomes,

including α-lattice flocking in [8], a second-order Cucker-

Smale model in [9] and its prediction version in [10], [11],

homogeneous and heterogeneous collective circular motion

control protocols in [12]–[14], an arbitrary collective closed

envelope motion control scheme in [15], and formation control

protocols for Euler-Lagrangian systems in [16]. More results

can be referred to in the survey papers, e.g., [17], [18].

Especially on formation control of multi-USVs, the rep-

resentative works are discussed as follows. A sliding-mode

formation control scheme was designed in [19] for USVs

to form arbitrary formations. A coordinative control protocol

governing a multi-USV system was developed in [20] to

a desirable stationary formation with identical orientations.

Formation control of USVs in the presence of uncertainties

and ocean disturbances was studied in [21]. Based on a fuzzy

estimator, a distributed constrained control law was proposed

in [22] for multiple USVs guided by a virtual leader moving

along a parameterized path. A smooth time-varying distributed

control law was proposed in [23] that assures that a multiple

USV can globally exponentially converge to a desirable ge-

ometric formation. The objective of this paper is to drive a

team of vessels to surround a target vessel within their convex

hull, which is different from the aforementioned formation

control. A relevant theoretical work can found in [24] where

the vehicles are initially placed within a circle and/or using

a predefined stand-off distance between the vehicles and the

target. A novel kinematic control scheme is proposed in this

paper that does not require such an initial setup.

Most of the aforementioned works focus on formation con-

trol protocols of kinematic models, but not taking complicated

surface vessel dynamics into consideration. It is of great

theoretical challenge to consider the complicated interaction of

an upper level collective multi-USV protocol and a lower level

vessel dynamics controller. Specifically, this paper answers

how to achieve the upper level collective behavior subject to

the regulation error from the lower level controller, as well as

how to drive the regulation error to zero exponentially for a

specified trajectory from the upper level.

Also, theoretical research has rarely been tested in real
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environment due to the challenging practical issues in es-

tablishment of a real experimental platform. Rare relevant

results can be found in [25]–[28] where experiments were

conducted on real water surfaces including rivers, lakes and

seas. These works however focus on a single USV. In this

paper, we aim to test the design in a real lake-based multi-

USV formation control platform that is composed of three

1.2 meter-long jet-propelling vessels equipped with onboard

differential GPS receivers and imaging processing modules,

located at Songshan Lake, Guangdong, China.

II. MODELING

Consider a multi-USV system consisting of N ≥ 3 ves-

sels. Let N = {1, 2, · · · , N}. Denote the complete position

distribution of the system as x = [xT

1, . . . , x
T

N ]T, where

xi = [x1,i, x2,i]
T ∈ R

2, i ∈ N, represents the Cartesian

coordinates of the i-th vessel. Denote co(x) be the convex

hull of x1, · · · , xN , that is,

co(x) :=

{
N∑

i=1

λixi : λi ≥ 0, ∀i and
N∑

i=1

λi = 1

}
.

Also, let

Pxo
(x) := min

s∈co(x)
‖xo − s‖ (1)

be the distance between a point xo and co(x). Obviously, xo ∈
co(x) if and only if Pxo

(x) = 0.

The kinematics model for each vessel is given as follow

ẋi = S(ψi)

[
wi

vi

]
, i ∈ N (2)

for a rotation matrix

S(a) :=

[
cos a − sina
sina cos a

]
, a ∈ R. (3)

In the model, wi, ψi and vi represent the forward (surge)

velocity, the orientational (yaw) angle and the transverse

(sway) velocity, respectively, as illustrated in Fig. 1. Denote

the orientational (yaw) angular velocity ri, i ∈ N.

Fig. 1. Illustration of kinematics model of a vessel.

A complete but complicated nonlinear dynamics model has

been proposed in literature based on physical principles with

the simplified hydrodynamic effects; see, e.g., Eqs. (4-6) of

[29]. The model was identified with the nominal forward speed

up to 20 knots. Therein, several simplified linear variants of

the dynamic equations and some control design approaches are

also discussed for trajectory tracking including cascaded PD

and backstepping control. With the same objective “to obtain a

model that is rich enough to enable effective motion planning

and control, simple enough for experimental identification, and

general enough to describe a variety of vehicles operating over

a large range of speeds,” we use the following equations for

the dynamics of vessels used in the paper, for i ∈ N,

ψ̇i = ri,
ẇi = k1wi + k2viri + k3τi,1,
ṙi = k4ri + k5τi,2,
v̇i = k6vi + k7wiri,

(4)

where the two control variables are the propeller speed τi,1 and

the steering angle τi,2. Denote τi = [τi,1, τi,2]
T. In particular,

this model is given for the vessels working in a medium

speed mode (1-3m/s). In this model, we ignore the high-order

nonlinearities except the cross nonlinearity viri and wiri in

the second and fourth equations of (4). This simplification is

based on extensive experiments and data matching.

III. PROBLEM FORMULATION AND CONTROLLER

FRAMEWORK

The main technical challenge in multi-USV system con-

trol is to propose a decentralized protocol that achieves the

specified collaborative behavior through the control to each

vessel’s dynamics model. Some preliminary manipulation is

first introduced in this section.

Let wr
i , vri , and ψr

i be the desired signals for wi, vi, and

ψi, respectively, in the kinematics model (2). Denote

w̃i := wi − wr
i ,

ṽi := vi − vri ,

ψ̃i := ψi − ψr
i .

(5)

Direct calculation shows that

ẋi = S(ψr
i )

[
wr

i

vri

]
+ ei (6)

with

ei = [S(ψr
i + ψ̃i)− S(ψr

i )]

[
wr

i

vri

]
+ S(ψ)

[
w̃i

ṽi

]
. (7)

The control design framework of this paper consists of the

following two steps.

(i) (Upper level collective protocol) To design the desired

wr
i , vri , and ψr

i , for the kinematics model (6) such that the

multi-USV achieves a desired collective behavior, subject

to the perturbation ei(t) approaching zero.

(ii) (Lower level vessel dynamics control) To design the

actuator input τi for the dynamics model (4) such that

wi, vi, and ψi achieve the desired wr
i , vri , and ψr

i given

in (i), in particular, with ei(t) approaching zero.

The technical objective of this paper is to propose solutions

to the two steps. A direct conclusion is as follows, with the

two steps in the aforementioned framework solved, the closed-

loop system composed of (4), (6) and the actuator input τi,
achieves the desired collective behavior specified in step (i).

To be more specific, two collective behaviors, i.e., surrounding
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control and equally surrounding control, are studied in this

paper, The rigorous definitions are given below.

Definition 1: A target vessel position xo ∈ R
2 is asymptot-

ically surrounded by the N vessels of the complete position

distribution x if

limt→∞ Pxo
(x(t)) = 0. (8)

Definition 2: A target vessel position xo ∈ R
2 is asymptot-

ically equally surrounded by the N vessels of the complete

position distribution x if it is asymptotically surrounded by

them with

limt→∞ ‖xi(t)− xo‖ = ρo, i ∈ N

limt→∞ ‖xi(t)− xj(t)‖ ≥ d, i 6= j ∈ N
(9)

for ρo > 0 and d = 2ρo sin(π/N).
Remark 1: For every two adjacent vessels, say ~ and ℓ, the

property (9), together with the geometric constraints, implies

limt→∞ ‖x~(t)− xℓ(t)‖ = d.

We propose two approaches in Cartesian coordinate and

polar coordinate, respectively, to achieve different collective

behaviors with different features.

Approach 1: For any signal uri ∈ R
2 to be designed and

an arbitrary vri < ‖uri ‖, let1

wr
i =

√
‖uri ‖

2 − (vri )
2,

ψr
i = 2κπ + ∠uri − atan(vri /w

r
i ),

(10)

where atan(vri /w
r
i ) is the drift angle, κ is an integer-valued

signal such that κ(0) = 0, i.e., ψr
i (0) = ∠uri (0) and a

continuous ∠uri (t) implies a continuous ψr
i (t) in time t.

Accordingly, one has that

uri =

[
cos∠uri
sin∠uri

]
‖uri ‖ = S(ψr

i )

[
wr

i

vri

]
.

Then, the model (6) becomes

ẋi = uri + ei. (11)

Obviously, the aforementioned step (i) is solvable with an

arbitrary vri < ‖uri ‖ and the desired wr
i and ψr

i given by (10)

if the following step is solvable.

(i′) To design a desired uri for the kinematics model (11) such

that the multi-USV achieves asymptotically surrounding

formation, subject to the perturbation ei(t) approaching

zero.

Approach 2: For a specified target vessel position xo ∈ R
2,

let

ρi := ‖xi − xo‖,
θi := 2κπ + ∠(xi − xo)

be the polar coordinate of the i-th vessel where κ is an integer-

valued signal such that κ(0) = 0, i.e., θi(0) = ∠xi(0) and a

continuous ∠xi(t) implies a continuous θi(t) in time t.
For any signals ηri , ω

r
i ∈ R, let

uri = S(θi)

[
ηri
ρiω

r
i

]
(12)

1For a vector x = [x1, x2]T ∈ R
2, let ∠x ∈ [0, 2π) be the angle of the

complex number x1 + ix2 in the complex plan.

and hence wr
i , vri , and ψr

i given in Approach 1. Define
[
η̃ri
ω̃r
i

]
:=

[
1 0
0 1/ρi

]
S−1(θi)ei,

i.e.,

ei = S(θi)

[
η̃ri
ρiω̃

r
i

]
.

Note the following calculation

ẋi = uri + ei = S(θi)

[
ηri
ρiω

r
i

]
+ S(θi)

[
η̃ri
ρiω̃

r
i

]

= S(θi)

[
ηri + η̃ri

ρi(ω
r
i + ω̃r

i )

]
,

and

ẋi = ρ̇i

[
cos θi
sin θi

]
+ ρi

[
− sin θi
cos θi

]
θ̇i = S(θi)

[
ρ̇i
ρiθi

]
.

Then, the model (6) becomes

ρ̇i = ηri + η̃ri , θ̇i = ωr
i + ω̃r

i . (13)

Also, it is noted that η̃ri (t) approaches zero if ei(t) approaches

zero; ω̃r
i (t) approaches zero if ei(t) approaches zero and ρi(t)

is asymptotically lower bounded by a positive constant.

Obviously, the aforementioned step (i) is solvable with the

desired wr
i , vri , and ψr

i given by (10) and (12) if the following

step is solvable.

(i′′) To design desired ηri and ωr
i for the kinematics model

(13) such that ρi(t) is asymptotically lower bounded

by a positive constant subject to the perturbation η̃ri (t)
approaching zero; and the multi-USV achieves equally

asymptotically surrounding formation subject to the per-

turbation η̃ri (t) and ω̃r
i (t) approaching zero.

In what follows, we aim to propose solutions to the steps

(i′) and (i′′) in Section IV, and afterwards the step (ii) in

Section V.

IV. COLLECTIVE CONTROL DESIGN

This section aims to propose a controller for each vessel

so that the multi-USV achieves the desired asymptotically

surrounding formation in the sense given in (i′) or (i′′).

A. Asymptotically Surrounding Control

The main objective of this subsection is described in step

(i′). More specifically, it aims to design the desired uri for

the kinematics model (11) such that a specified target vessel

position xo (may be an enemy vessel) is asymptotically

surrounded by the USV team, subject to the perturbation ei(t)
approaching zero.

To give the desired uri in a distributed manner, we define

the set of neighbors of vessel i as

Ni := {j ∈ N : j 6= i, |‖xi − xj‖ < µ} , i ∈ N

with a specified distance µ > 0. First, assume that xo is

available for all vessels, then the control law for each follower
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is designed as follows, with xij := xi−xj and xoi := xo−xi
throughout the paper,

uri = γ1
∑

j∈Ni

(µ2 − ‖xij‖
2)xij + γ2xoi. (14)

Now, the main technical result is stated in the following

theorem.

Theorem 1: For the system (11) with limt→∞ ei(t) = 0
exponentially and the controller (14) with γ1, γ2 > 0, the

states of the closed-loop system are bounded. Moreover, the

target vessel position xo is asymptotically surrounded by the

N vessels in the sense of (8).

Proof: The closed-loop system composed of (11) and (14)

can be put in the following form

ẋi = uri + ei
= γ1

∑
j∈Ni

(µ2 − ‖xij‖2)xij + γ2xoi + ei.
(15)

Let

Vo(xij) =

{
(‖xij‖2 − µ2)2 ‖xij‖ < µ
0 ‖xij‖ ≥ µ

that is continuously differentiable and whose derivative is 0

for ‖xij‖ ≥ µ and

V̇o(xij) =
∂Vo(xij)

∂xij

[
∂xij
∂xi

ẋi +
∂xij
∂xj

ẋj

]

= 4(‖xij‖
2 − µ2)xT

ij ẋij

for ‖xij‖ < µ. Let

V1(x) =
γ1
4

∑

i,j∈N,j 6=i

Vo(xij)

whose derivative is, due to the symmetric property of the

undirected graph,

V̇1(x) = 2γ1
∑

i∈N,j∈Ni

(‖xij‖
2 − µ2)xT

ij ẋi.

Let

V2(x) = γ2
∑

i∈N

‖xoi‖
2.

Analogously, one has

V̇2(x) = 2γ2
∑

i∈N

xT

oiẋi.

The derivative of V (x) = V1(x) +V2(x), along the trajectory

of (15), is

V̇ (x) = 2
∑

i∈N


γ1

∑

j∈Ni

(‖xij‖
2 − µ2)xT

ij + 2γ2x
T

oi




T

ẋi

= −2
∑

i∈N

(uri )
T(uri + ei) ≤ −

∑

i∈N

‖uri ‖
2 +

∑

i∈N

‖ei‖
2.

Denote

U(t) = −
∑

i∈N

∫ t

0

‖uri (s)‖
2ds ≤ 0.

Direct calculation gives

0 ≤ V (x(t)) ≤ U(t) +
∑

i∈N

∫ t

0

‖ei(s)‖
2ds+ V (x(0)).

As a result, V (x) is upper bounded, so is the state ‖x(t)‖.

To prove the moreover part, let x̄ =
∑N

i=1 xi/N , and ē =∑N

i=1 ei/N . Then,

˙̄x =
γ1
N

N∑

i=1

∑

j∈Ni

(µ2 − ‖xij‖
2)xij

+
γ2
N

N∑

i=1

(xoi) +
1

N

N∑

i=1

ei

= −γ2x̄+ γ2xo + ē,

that implies limt→∞ x̄(t)− xo = 0 and hence (8). The proof

is thus completed.

Next, we will investigate the decentralized scenario that

xo is not available for all the vessels. In such a situation,

a decentralized estimator is required for each follower vessel

to estimate xo. Define N1 as the set of vessels that can detect

the target (i.e., leaders) and N2 as the set of vessels that

cannot (i.e., followers). Let Mi be the set of communication

neighbors of vessel i, ∀i ∈ N. The estimator is designed as

follows:

ẏi =

{
γ3[

∑
j∈Mi

(yj − yi) + (xo − yi)], i ∈ N1

γ3
∑

j∈Mi
(yj − yi), i ∈ N2

(16)

where yi is the estimate of xo for vessel i. As a result, the

controller (14) is modified as follows

uri = γ1
∑

j∈Ni

(µ2 − ‖xij‖
2)xij + γ2(yi − xi). (17)

A similar statement still holds as in the following theorem.

Theorem 2: For the system (11) with limt→∞ ei(t) = 0 ex-

ponentially and the controller (16) and (17) with γ1, γ2, γ3 >
0, the states of the closed-loop system are bounded if the

network determined by Mi, ∀i ∈ N, is connected and the

target can be detected by at least one vessel (i.e., N1 6= ∅).

Moreover, the target vessel position xo is asymptotically

surrounded by the N vessels in the sense of (8).

Proof: The network (16) is able to achieve limt→∞ ‖yi−
xo‖ = 0, ∀i ∈ N, exponentially, if the network determined by

Mi, ∀i ∈ N, is connected and the target can be detected by at

least one vessel. Let ǫi = yi−xo. One has limt→∞ ǫi(t) = 0,

exponentially.

The closed-loop system composed of (11) and (17) can be

rewritten as

ẋi = γ1
∑

j∈Ni

(µ2 − ‖xij‖
2)xij + γ2xoi + ēi (18)

for ēi = γ2ǫi + ei. Clearly, limt→∞ ēi(t) = 0 exponentially.

So, the system (18) takes the same form of (15). The proof

follows that of Theorem 1.
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B. Asymptotically Equally Surrounding Control

The main objective of this subsection is described in steps

(i′′). More specifically, it aims to design the desired ηri and

ωr
i for the kinematics model (13) such that a specified target

vessel position xo is asymptotically equally surrounded by

the multi-USV, subject to the perturbation η̃ri (t) and ω̃r
i (t)

approaching zero. In (13), ρi and θi are the radius and the

moving angle of vessel i, respectively, relative to the target

xo. Define θij := θi − θj + 2κπ ∈ [−π, π) where κ is an

integer-valued signal.

The main purpose of ηri is to drive all vessels to a circle

of a specified radius ρ > 0. The controller for ηri takes the

following linear structure

ηri := β1(ρo − ρi). (19)

To put the desired ωr
i in a distributed manner, we define the

set of neighbors of vessel i as

Θi =

{
j ∈ N : j 6= i, |θij | <

2π

N

}
, i ∈ N.

Then, ωr
i is designed such that the angles of the vessels change

along the negative gradient of an energy function Po(θij) to

be specified later, that is,

ωr
i = β2

∑

j∈Θi

(
2π

N
− |θij |

)
θij
|θij |

. (20)

Theorem 3: Consider the system (13) and the controller

(19) and (20) with β1, β2 > 0. Then,

lim
t→∞

ρi(t) = ρo, i ∈ N (21)

if limt→∞ η̃ri (t) = 0 exponentially. Moreover, the target vessel

position xo is asymptotically equally surrounded by the N
vessels in the sense of (9), or equivalently, (21). Furthermore,

lim
t→∞

|θij(t)| ≥ 2π/N, i 6= j ∈ N, (22)

if limt→∞ ω̃i(t) = 0 exponentially.

Proof: The closed-loop system can be rewritten as

ρ̇i = β1(ρo − ρi) + η̃ri ,

θ̇i = β2
∑

j∈Θi
(2π
N

− |θij |)
θij
|θij|

+ ω̃r
i .

(23)

The proof of (21) is straightforward from the linear system

property. To prove the phase distribution property (22), we

define a potential function Po(θij) as follows

Po(θij) :=

{
β2

2 (|θij | −
2π
N
)2, |θij | <

2π
N

0, |θij | ≥
2π
N

(24)

that is continuously differentiable and whose derivative is 0

for |θij | ≥
2π
N

and

Ṗo(θij) =
∂Po(θij)

∂θij

[
∂θij
∂θi

θ̇i +
∂θij
∂θj

θ̇j

]

= β2

(
|θij | −

2π

N

)
θij
|θij |

θ̇ij

for |θij | <
2π
N

. Let

P (θ) =
∑

i,j∈N,j 6=i

Po(θij)

whose derivative is, due to symmetric property of the undi-

rected graph,

Ṗ (θ) =
∑

i,j∈N,j 6=i β2(|θij | −
2π
N
)

θij
|θij|

θ̇ij

= 2
∑

i∈N,j∈Θi
β2(|θij | −

2π
N
)

θij
|θij |

θ̇i

= −2
∑

i∈N
ωr
i θ̇i

= −2
∑

i∈N
ωr
i (β2

∑
j∈Θi

(2π
N

− |θij |)
θij
|θij |

+ ω̃i)

≤ −
∑

i∈N
‖ωr

i ‖
2 +

∑
i∈N

‖ω̃i‖2.

Denote

Ω(t) := −
∑

i∈N

∫ t

0

‖ωr
i (s)‖

2ds ≤ 0.

Direct calculation gives

0 ≤ P (θ(t)) ≤ Ω(t) +
∑

i∈N

∫
t
0‖ω̃i(s)‖

2ds+ P (θ(0)).

It is noted that Ω(t) is lower bounded and monotonic, so

Ω(t) has a finite limit as t → ∞. Together with the fact

that Ω̈(t) is bounded, it implies limt→∞ Ω̇(t) = 0 and hence

limt→∞ ωr
i (t) = 0, by Barbalat’s lemma [30]. From (20),

one has either limt→∞ |θij(t)| = 2π/N for j ∈ Θi or

limt→∞ |θij(t)| ≥ 2π/N for j /∈ Θi and j 6= i. The property

(22) thus holds, and the proof is thus completed.

Remark 2: In the controller (14) or (17), the term (µ2 −
‖xij‖2)xij gives the repulsive velocity between two vessels.

In (20), the term (2π/N − |θij |) θij/|θij | gives the repulsive

angular velocity between two vessels. In particular, the closer

are the two vessels, the larger is the repulsive velocity. It pro-

vides a mechanism for collision avoidance among the follower

vessels. However, rigorous collision avoidance analysis is an

interesting topic for future research.

V. TRAJECTORY REGULATION

In this section, we will solve the problem formulated in

step (ii), that is, to design the actuator input τi for the dynamics

model (4) such that wi, vi, and ψi achieve the desired wr
i , vri ,

and ψr
i , respectively. Note that (4) is an under-actuated system.

The states wi and ψi can be controlled through τi to achieve

the desired wr
i and ψr

i as elaborated in Theorem 4, while

vi cannot be directly controlled. Fortunately, the desired vri
can be arbitrarily selected as explained in Section III as long

as vri < ‖uri ‖. Therefore, we can trivially set vri = vi that

automatically includes regulation of vi to vri . In the scenario

investigated in this paper, the sway velocity vi is typically

small, which makes vri < ‖uri ‖ hold in general. In practice, if a

large vi occurs in a rare situation, the vessel can be intervened

to reduce its sway velocity.

Theorem 4: For sufficiently smooth desired signals wr
i (t)

and ψr
i (t), pick a sufficiently smooth signal

̟i(t) ≥ max{1, |wr
i (t)|}. (25)

Define a lumped reference signal

ζi := [̟i, ˙̟ i, ¨̟ i, ψ
r
i , ψ̇

r
i , ψ̈

r
i ]

T.

For the system (4), consider the actuator input τi,1 as follows

η̇i = −κ1w̃i + ẅr
i ,

τi,1 = (−k1wi − k2viri + ηi − κ2w̃i)/k3,
(26)
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for w̃i := wi − wr
i and some positive control parameters κ1

and κ2 satisfying κ1 >
1
4κ

2
2; consider the actuator input τi,2

as follows

τi,2 = g(ri, ψi, ζi)

= [k4ri̟i + 2ri ˙̟ i − ψ̈r
i̟i − 2ψ̇r

i ˙̟ i + ψ̃i ¨̟ i

−κ23ψ̃i̟i + (κ3 + κ4)r̃i]/(−k5̟i)

(27)

for

ψ̃i = ψi − ψr
i ,

r̃i = ri̟i − ψ̇r
i̟i + ψ̃i ˙̟ i + κ3ψ̃i̟i

and some positive control parameters κ3 and κ4. Then, the

states wi and ψi achieve the desired wr
i and ψr

i , in particular,

with ei(t) in (7) approaching zero exponentially if vri = vi is

bounded.

Proof: The wi-dynamics and the controller (26) can be

put in the following form, with w̃i = wi−wr
i and η̃i = ηi−ẇr

i ,

˙̃η = −κ1w̃i,
˙̃wi = −κ2w̃i + η̃i,

(28)

which is exponentially stable when κ1 >
1
4κ

2
2.

For ψ̃i = ψi − ψr
i , one has

˙̃
ψi = ri − ψ̇r

i .

Let ϕi = ψ̃i̟i. Then,

ϕ̇i = (ri − ψ̇r
i )̟i + ψ̃i ˙̟ i,

= −κ3ϕi + r̃i
(29)

where

r̃i = ri̟i − ψ̇r
i̟i + ψ̃i ˙̟ i + κ3ψ̃i̟i

= (ri − ψ̇r
i )̟i + ψ̃i ˙̟ i + κ3ϕi.

Direct calculation gives

˙̃ri = k4ri̟i + k5τi,2̟i + ri ˙̟ i − ψ̈r
i̟i − ψ̇r

i ˙̟ i

+
˙̃
ψi ˙̟ i + ψ̃i ¨̟ i + κ3ϕ̇i.

Noting that

τi,2 = g(ri, ψi, ζi) = [k4ri̟i + ri ˙̟ i − ψ̈r
i̟i − ψ̇r

i ˙̟ i

+
˙̃
ψi ˙̟ i + ψ̃i ¨̟ i + κ3ϕ̇i + κ4r̃i]/(−k5̟i),

one has

˙̃ri = −κ4r̃i. (30)

From (28), (29), and (30), one has

lim
t→∞

w̃i(t) = 0, lim
t→∞

ϕi(t) = 0, lim
t→∞

r̃i(t) = 0

exponentially. Furthermore, it follows from (25) and (29) that

limt→∞ ψ̃i(t) = 0 exponentially. It can be verified that

‖ei‖ ≤

∥∥∥∥
∂S(s)

∂s

∥∥∥∥

∥∥∥∥∥

[
|ψ̃i||wr

i |

|ψ̃i||vri |

]∥∥∥∥∥+ ‖S(ψ)‖ |w̃i|

≤

∥∥∥∥
∂S(s)

∂s

∥∥∥∥
∥∥∥∥
[

|ϕi|

|ψ̃i||vri |

]∥∥∥∥+ ‖S(ψ)‖ |w̃i|

for some s between ψr
i and ψr

i + ψ̃i, noting ṽi = 0. Since the

norms of the rotation matrix S and its derivative, i.e., ‖S(ψ)‖
and ‖∂S(s)/∂s‖, are always bounded, |vri | is bounded, and

limt→∞ |ϕi(t)| = 0, limt→∞ |ψ̃i(t)| = 0, limt→∞ |ω̃i(t)| =
0, one has limt→∞ ei(t) = 0, exponentially. The proof is thus

completed.

Remark 3: When the vessels work in a low frequency

motion scenario with the desired state trajectories wr
i (t) and

ψr
i (t) varying slowly and wr

i (t) bounded by a constant ̟i =
̟o, one can simplify the controllers by approximately using

ẇr
i = 0, ẅr

i = 0, ˙̟ i = 0, ¨̟ i = 0, ψ̇r
i = 0, ψ̈r

i = 0. Then, the

controller (26) reduces to

τi,1 = −(k1/k3)wi − (k2/k3)viri
−(κ1/k3)

∫
w̃i(s)ds− (κ2/k3)w̃i,

(31)

and the controller (27) to

τi,2 = −
k4 + κ3 + κ4

k5
ψ̇i +

κ23 − (κ3 + κ4)κ3
k5

ψ̃i. (32)

Obviously, the simplified controller τi,1 is of the Proportional-

Integral (PI) form with proper feedforward compensation and

τi,2 is of the Proportional-Derivative (PD) form.

VI. EXPERIMENTS

The multi-USV experimental platform is composed of three

HUST-12 vessels, a target vessel, a differential NovAtel-

OEM615-typed GPS station, and a wireless LAN hub as

shown in Fig. 2. A HUST-12 USV has a plastic hull, an

onboard differential GPS receiver, a wireless sensor, an em-

bedded controller, a motor driver, a waterjet propellor, and

a rudder. In particular, the waterjet propellor is composed of

a propellor body, a reversing bucket, a jetting nozzle, and a

motor. The USV parameters are listed in Table I.

Fig. 2. Illustration of the multi-USV chasing system.

The waterjet propeller is actuated by the thrust of the

motor, which is regulated by its rotating speed of the range

[600, 11000] RPM. The engine is a brushless DC motor driven

by a 44.4V electrical battery. The angle of the jetting nozzle

within [−20◦, 20◦] is controlled by the steering engine.

The navigation system consists of a differential GPS nav-

igator, an accelerometer, and a gyro. Specifically, the dif-

ferential GPS navigator is composed of a receiving board

and two antennas with 5Hz frequency bandwidth. It detects

the velocities and positions of all the USVs as well as the

target vessel with positioning accuracy ±2cm. The merits of a
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TABLE I
THE PHYSICAL CHARACTERISTICS PARAMETERS OF HUST-12

Parameters Value

Overall length 1.40m
Length on the waterline 1.26m
Overall beam 0.45m
Beam on the waterline 0.39m
Depth in water 0.1m

Area of the waterplane 0.44m2

Longitudinal center of gravity to bow 0.8m
Mass 25kg
Maximal forward speed 10m/s
Maximal astern speed 0.3m/s
Minimal turning radius 1.1m
Cornering speed 65deg/s

differential GPS lie in its zero offset and low measuring noise.

Meanwhile, the accelerometer and gyro are used to improve

the gesture detection response of the GPS navigator. Each USV

can obtain the information of its neighbors and/or the target

by 433M wireless communication within the range of 125m.

The control algorithm is executed by STM32F4 series CPUs

of STMicroelectronics.

First, the coefficients of the model (4) are identified by

zigzag tracking experiments, which are

k1 = −0.098, k2 = 0.003, k3 = 0.005, k4 = −0.1055,

k5 = 0.019, k6 = −0.091, k7 = −0.0175.

The data were collected on the present platform shown in

Fig. 2 with the sampling period of 0.2 s, which is compatible

to the differential GPS updating frequency. The surge, sway

and yaw speed identification performances of the model (4)

are shown in Fig. 3, with root-mean-square errors less than

5%. The feasibility of the identified model (4) is thus verified.
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Fig. 3. Model identification for surge velocity wi (a), sway velocity vi (b),
and yaw angular velocity ri (c).

The PID controllers (31) and (32) were first tested for a

single vessel with the parameters κ1 = 0.02, κ2 = 0.001,

κ3 = 0.076, and κ4 = 0.418. The corresponding control per-

formance in terms of orientation and speed is shown in Fig. 4.

Therein, the set points are ωr
i = 200cm/s and ψr

i = 300◦, re-

spectively. The overshoots/settling times (±0.5% threshold) of

the speed and orientation are 2%/10s and 1%/15s, respectively,

which satisfies the technical requirements of the collective

surrounding control.
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Fig. 4. The control performances of the single USV speed (subfigure (a))
and orientation (subfigure (b)) with the simplified control law (31) and (32).
The profiles of the control signals, i.e., the propellor rotational speed τi,1 and
the nozzle angle τi,2 are plotted in subfigures (c) and (d), respectively. The
red straight lines represent the set-points ωr

i
and φr

i
.

Upon the lower level controllers, we also conducted collec-

tive surround control for the multi-USV system. The results

are shown in Fig. 5. Initially, all the USVs were randomly

distributed on a [40× 40] m2 water surface area and began to

chase the target vessel. Within 50 seconds, the USVs caught

up the target and began to collectively move around it, using

the asymptotically equally surrounding control law (19) and

(20) with the parameters β1 = 0.13, β2 = 0.06, ρ0 = 10 m.

In the 160th second, the equally surrounding control mission

was fulfilled, that is, the multi-USVs captured the target

and collectively surround it with fixed distances and evenly-

distributed phases.

The collective surrounding procedure is also shown in

Fig. 6(a) and (b), in terms of the USV-target and inter-USV

distances, respectively. It is observed that the three USV-target

distances asymptotically converges to ρ0, and the three inter-

USV phases asymptotically converge to 120◦. The feasibility

of the proposed two-level controller, i.e., the upper level

equally surrounding controller (19) and (20) and the lower

level single vessel controller (26) and (27), is thus verified.

VII. CONCLUSIONS

In this paper, a two-level onboard distributed surrounding

controller has been developed, which has also been tested

on a real multi-USV experimental platform. The research has

verified the success of the developed hardware and software

architectures. The proposed theoretical framework does not

accommodate external disturbance, which is sufficiently sat-

isfactory in the current scenario, as assessed by experiments.

However, a more complete theoretical framework for external

disturbance rejection has to be considered in severer environ-

ments, which will be the future work. The current platform
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Fig. 5. The collective surrounding control procedures of the multi-USV sys-
tem, where the black and red points represent the USVs and the target vessel,
respectively; and the blue and red lines represent the moving trajectories of the
USVs and the target vessel, respectively. The procedures include (a): initial
positions; (b): the target vessel is chased by USVs; (c): the target vessel is
caught up; (d): the target vessel is captured and surrounded.
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The sudden turns of the curves are due to the phase range of [−180◦, 180◦).
Finally, the three inter-USV phases converge to 120◦ .

was developed in the medium speed mode (1-3m/s) while the

issues for high speed mode (8-10m/s) will also be the future

work, such as significant communication package loss.
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