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Data-Driven Distributed Combined Primary and
Secondary Control in Microgrids

Seyed Sohail Madani, Christoph Kammer, Alireza Karimi

Abstract—This paper presents a comprehensive data-driven
distributed combined primary/secondary controller design
method for microgrids. This method provides transient and
steady-state performance including power-sharing and voltage
and frequency restoration while guaranteeing stability for fixed
communication delay. The measured data is directly used for
controller design with no need for knowledge about the order or
structure of the system and grid physical parameters. Moreover,
no assumption is made on X/R-ratio of feeders. All the control
specifications are formulated as frequency-domain constraints
on the 2-norm of weighted sensitivity functions. Then, using
a recently developed frequency-domain robust control design
method, a distributed fixed-structure controller is synthesized in
one step. The performance of the obtained controller is validated
using Hardware-In-the-Loop (HIL) experiments. The results
show considerable improvement in transient performance, while
providing power-sharing and voltage and frequency restoration
using distributed implementation.

Index Terms—Data-driven controller design, frequency con-
trol, voltage control, power-sharing, microgrid control, dis-
tributed control.

I. INTRODUCTION

GLOBAL warming and imposing limitation on green-
house gas emission have led to the increase of renew-

able generation penetration in electrical grids. In order to
facilitate the integration of renewable Distributed Generation
units (DGs) and Energy Storage Systems (ESSs), the idea
of microgrid has been proposed. A microgrid is a small
distribution power system that includes its own DGs, ESSs and
loads. It has the capability to operate autonomously (islanded
mode) or in grid-connected mode. As a consequence of the
penetration of renewable energy resources, microgrids suffer
from low inertia and high fluctuation of generation. The micro-
grid control is known as a challenging problem and has been
widely studied in the literature [1]. The main expected features
of an efficient microgrid control system include providing
power-sharing, voltage and frequency steady-state disturbance
rejection, voltage and frequency transient performance while
guaranteeing stability.

Droop control [2] is the most well-known method for power-
sharing in microgrids with dominant inductive or resistive
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feeders. This method shares power proportionally among DGs
based on the frequency deviation and has been popular because
of being model-free, very simple and decentralized. However,
the major drawbacks are the steady-state errors in voltage and
frequency as well as poor transient performance. Moreover,
even power-sharing is not achieved for most of distribu-
tion grids where the feeders are not dominantly resistive
or inductive [1], [3]. Hierarchical control structure [3], [4]
is proposed mainly to improve the steady-state voltage and
frequency response by adding a secondary control layer, which
should be implemented in a centralized [5] or distributed
way [6]. However, conventional secondary layer deteriorates
the power-sharing and requires time scale separation between
different layers. The low bandwidth of higher layers leads to
slow voltage and frequency restoration which may trigger the
corresponding protection relays. A solution to this problem is
proposed in [7] using a distributed averaging control system.
The small-signal stability of these systems is studied in [8],
[9]. The nonlinear stability is assessed rigorously for lossy
systems in [10] and for lossless systems in [7], [11], [12].

Apart from power-sharing and steady-state voltage and
frequency performance, designing controllers to improve the
transient performance in microgrids is a major challenge.
Having mixed resistive/inductive lines, lack of inertia, and
poor transient modeling are main factors affecting the transient
performance of the microgrids. Different solutions have been
proposed in the literature in this regard. In order to improve
the transient performance, one idea is to mimic Synchronous
Generator (SG) behavior and provide virtual inertia to the
system [13]–[15]. While providing inertia, these methods do
not use the capability of inverters as high bandwidth actuators.
Another idea is to add an H∞ robust controller to the primary
droop controller [16]. However, when combined with droop
controllers, both approaches are based on the questionable
assumption on the dominantly resistive or inductive feeders.
The use of quadratic droop control, proposed in [17], can
improve the performance of the control system for the dis-
tribution grids with uniform X/R-ratio of the feeders. Some
advanced model-based control techniques combine the primary
and secondary control without considering the power-sharing
performance [18]–[21].

In the literature, there is a lack of a comprehensive sys-
tematic microgrid control synthesis method to provide power-
sharing in addition to voltage and frequency restoration and at
the same time, improving transient performance for arbitrary
X/R-ratio. For filling the mentioned gap, this paper proposes
a non-droop based primary/secondary control design method
formulated as a convex optimization problem in a data-driven



2

framework. Only measurement data of the power grid is used
in controller synthesis and there is no need for parametric
system identification, and no knowledge about the physical
parameters of the power system is required. The closed-loop
stability is guaranteed for the fixed communication delay using
specific fixed terms in the controller structure of distributed
controllers.

The performance of the proposed method has been validated
through HIL experiment on an islanded microgrid including
SG, batteries and PV units interfaced with switching inverters.
The distributed controllers are implemented on embedded real-
time systems and the microgrid is simulated in a real-time
simulator.

The rest of the paper is organized as follows: In Section
II, the controller design method is reviewed. Section III
shows how the performance specifications for the control of
a microgrid can be transformed to frequency-domain convex
constraints and integrated into the proposed method. The case
study and HIL setup results are given in Section IV followed
by some concluding remarks.

II. CONTROL DESIGN BY CONVEX OPTIMIZATION

A recently developed control design method which is based
on the frequency response of multivariable systems and con-
vex optimization is used in this paper. The method can be
employed to design fixed-structure controllers for infinite-
dimensional systems, which allows the use of frequency re-
sponse data for controller design. A full theoretical exposition
of the method can be found in [22], which is summarized in
the sequel.

1) Frequency Response Data: The system to be controlled
is a Linear Time-Invariant multivariable (LTI-MIMO) system
represented by its frequency response G(jω) ∈ Cn×m, with
m inputs and n outputs. G(jω) is assumed to be bounded in
all frequencies except for a finite set of frequencies Bg , which
correspond to the poles of G on the imaginary axis. Further,
define ω ∈ Ω with:

Ω =

{
ω

∣∣∣∣− π

Ts
≤ ω ≤ π

Ts

}
\Bg (1)

where Ts is the sampling time of the control system. In this
paper, frequency ω represents the points in the frequency
domain on which Fourier transform is calculated, while the
frequency shown by f is the derivative of the electrical angle.
For the sake of simplicity, in the rest of the paper, arguments of
transfer functions are omitted whenever clear from the context.

2) Controller Structure: Since the design is based on
frequency-domain data, it is possible to directly design a
discrete-time controller using the frequency response of a
continuous-time plant. The controller is defined as K(z) =
X(z)Y (z)−1, where:

X(z) = (Xδz
δ +Xδ−1z

δ−1 + · · ·+X1z +X0) ◦ FX(z)

Y (z) = (Izδ + Y δ−1z
δ−1 + · · ·+ Y 1z + Y 0) ◦ FY (z) (2)

X(z) and FX(z) are m × n and Y (z) and FY (z) are n × n
polynomial matrices in z and ◦ denotes the element-wise
matrix multiplication. Xi ∈ Rm×n for i ∈ {1, 2, · · · , δ} and

Y r ∈ Rn×n for r ∈ {1, 2, · · · , δ − 1} contain controller
parameters. FX(z) and FY (z) are the fixed terms of controller.

3) Control Performance: It can be defined as the mini-
mization of the weighted norm of any closed-loop sensitivity
function. For example, consider the following performance
objective on the output sensitivity function S = (I +GK)−1:

min
K
‖WLSWR‖2 (3)

where WL and WR are the left and right weighting filters
and WR is invertible. This objective function, for a stable
closed-loop system, can be approximated by a semi-definite
programming using a frequency grid ΩN = {ω1, . . . , ωN},
where ω1 ≥ 0 and ωN = π/Ts:

min

N∑
k=1

tr(Γk) (4)

(WLkSkWRk)
∗

(WLkSkWRk) ≤ Γk , ∀{k|ωk ∈ ΩN}

where a frequency function with subscript k shows the value
of the function at ωk (e.g. Sk = S(ejωk)). The optimiza-
tion variables are the controller parameters (the parameters
of X(z) and Y (z) i.e. Xi for i ∈ {1, 2, · · · , δ} and Y r
for r ∈ {1, 2, · · · , δ − 1}) and dummy matrix variables
(Γk > 0 ∈ Cn×n for k = 1, . . . , N ). Finally, (·)∗ denotes
the conjugate transpose. Replacing S with (I +GXY −1)−1,
the constraint is reformulated as:

WLkYk
(
(WR

−1
k Mk)∗(WR

−1
k Mk)

)−1
(WLkYk)∗ ≤ Γk (5)

where Mk = Yk + GkXk. Taking the Schur complement
yields: [

Γk WLkYk
(WLkYk)∗ (WR

−1
k Mk)∗(WR

−1
k Mk)

]
≥ 0

for k = 1, . . . , N . In [22], it is shown that the quadratic part in
the lower right can be linearized around Mck = Yck+GkXck

where Kc = XcY
−1
c is a stabilizing initial controller. This

leads to a convex optimization problem with Linear Matrix
Inequality (LMI) constraint as follows:

min

N∑
k=1

tr(Γk) (6)[
Γk WLkYk

(WLkYk)∗ MWk

]
≥ 0 , ∀{k|ωk ∈ Ωk}

where

MWk
= MWk

∗MWck
+MWck

∗MWck
−MWck

∗MWck

MWk = WR
−1
k Mk ; MWck

= WR
−1
k Mck

If the following conditions are satisfied, the final controller K
will be a stabilizing controller:

1) det(Y ) 6= 0,∀ω ∈ Ω.
2) The initial controller Kc and the final controller K share

the same poles on the stability boundary.
3) The order of det(Y ) is equal to the order of det(Yc).
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Fig. 1. Single line diagram of a two-node power system

III. PRIMARY-SECONDARY CONTROL DESIGN PROBLEM

In this paper, the frequency response of the Dynamic Phasor
Model (DPM) of the microgrid is used for the controller
design. For the first time, DPM was proposed in [23] and
is used in different areas in power systems and power elec-
tronics [24]–[27]. The important difference of DPM with
conventional phasor analysis is in considering the time deriva-
tive of the phasors. Therefore, DPM can represent the fast
electromagnetic dynamics of a network more precisely. In the
following section, DPM for a simple two-node power system
is presented.

A. Dynamic Phasor Model of a Two-Node System

Consider a simple two-node system shown in Fig. 1. Active
and reactive powers injected from the first bus of this system
can be defined as [26]:

P =
Ls+R

|Ze|2
(V 2

1 − V1V2 cos ΦV1
) +

XL

|Ze|2
(V1V2 sin ΦV1

)

Q =
XL

|Ze|2
(V 2

1 − V1V2 cos ΦV1
)− Ls+R

|Ze|2
(V1V2 sin ΦV1

)

(7)

where XL := L(2πfn), |Ze| :=
√

(Ls+R)2 +X2
L. It is

assumed that bus number 2 is considered as the reference for
angle, which means ΦV2 = 0. By linearizing (7) around the
equilibrium voltage V1e , the transfer function between active
and reactive power deviations and local frequency and voltage
deviations, can be written as:[

P
Q

]
=

 XLV
2
1e

s|Ze|2
(Ls+R)V1e

|Ze|2

− (Ls+R)V 2
1e

s|Ze|2
XLV1e

|Ze|2

[ f
V

]
(8)

In conventional power system analysis, the impact of Ls is
usually ignored, which leads to inaccurate electromagnetic
transient dynamics. Furthermore, in distribution grids, the
value of R is not negligible, thus the system is coupled.

B. Input/Output Definition for Microgrid

As a general case, assume a power system including κ DGs
and ` loads. The vector of desired active power of all DGs can
be defined as P̄DG := [p̄1, . . . , p̄κ]T. The vector of measured
active power of DGs (i.e. PDG) is defined similarly. The active
power error vector can be defined as Pe = P̄DG − PDG.
With similar convention, vector of desired reactive power (i.e.

TABLE I
DESCRIPTION OF THE TRANSFER FUNCTIONS USED IN FIG. 2
KPID SG internal speed controller
GS,m from mechanical reference of

SG to its mechanical angular frequency
GS,e from SG output

electrical power to its mechanical angular frequency
GI,f from inverter frequency reference to its frequency
GI,V from inverter voltage reference to its output voltage
GS,V equivalent closed-loop response of SG AVR
Ggrid from the power grid nodal voltage and

frequency to injected active active and reactive power
Gd from load power to power drawn at DG nodes
K MIMO controller

Q̄DG), vector of measured reactive power (i.e. QDG), vector
of reactive power error (i.e. Qe), vector of desired frequency
(i.e. f̄DG) and vector of desired voltage (i.e. V̄DG) of DGs can
be defined. The vector of active power of loads is defined as
PL := [pL1

, . . . , pL` ]
T and similarly the vector of load reactive

power (i.e. Q̄L) can be defined. Accordingly, the input/output
relation of the MIMO plant corresponding to the power system
(Gcomp in Fig. 2) can be written as:

[PT
DG, Q

T
DG]T − [PT

d , Q
T
d ]T = Gcomp[f̄TDG, V̄

T
DG]T (9)

where [PT
d , Q

T
d ]T is output power disturbance vector. Using

DPM, the complete model of the grid including line power
flow and the elements in the grid such as VSI and the SG is
proposed in [28]. The block diagram of a general microgrid
is depicted in Fig. 2 and its parameters are explained in Table
I.

C. Proposed Controller Design Method

The design method includes the following steps:
1) Performance in Disturbance Rejection: To reduce the

impact of disturbances, the weighted 2-norm of the output
sensitivity function S = (I +GcompK)−1 can be minimized:

min
K
‖W1S‖2 (10)

where W1 is the output sensitivity weighting filter. Since the
disturbances in power systems are mostly in the form of
connection or disconnection of the loads, the step response of
sensitivity function has high importance. Consequently, con-
sidering the relation of 2-norm in time-domain and frequency-
domain, the 2-norm of low-pass filtered sensitivity function
is minimized in order to reduce the time-domain oscillation
generated by low-frequency disturbances.

2) Active Power-Sharing: Proportional active power-
sharing can be achieved by investigating the sub-matrix of
sensitivity function which relates the active power error to
active power disturbance. This disturbance is the impact of
the changes in active power loads on the drawn power at the
DG bus. The sensitivity function S is split into 4 parts:[

Pe
Qe

]
=

[
S11 S12

S21 S22

] [
Pd
Qd

]
(11)

S11 defined above is the transfer function of active power dis-
turbance to active power tracking error. For example, assume
an active power disturbance pdi is applied to DG node i:

Pe = S11

[
. . . , pdi , . . .

]T
(12)
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[
Pe

Qe

]

[
P̄DG
Q̄DG

] [
f̄DG
V̄DG

]
diag(GI,f , GI,f )

KPIDGS,m
1+KPIDGS,m

diag(GI,V , GI,V , GS,V )

+

[fS ]

fI

[ ]

[VDG]

Ggrid
+

GS,e
KPIDGS,m

1+KPIDGS,m

[PS ]

[
PDG
QDG

]

[
Pd

Qd

]

Gd

PL

QL

 

Gcomp

Fig. 2. Block diagram of complete model of the power system

Then, if power is shared proportionally, the following steady-
state tracking errors should be obtained:

pej =
pnj
ptot

pdi for j = 1, . . . , κ (13)

where pnj is the nominal power of the j-th DG unit and ptot =
pn1 + · · · + pnκ . The same relation should also hold for the
other disturbances, which means S11(jω)|ω=0 should take the
following value:

S0
11 =

1

ptot

 pn1
. . . pn1

...
. . .

...
pnκ . . . pnκ

 (14)

This leads to the following constraint:

S11(jω)|ω=0 = S0
11 (15)

According to (11) and (15), S11 is needed for power-sharing.
To formulate the constraints in form of (3), the following
transformation can be applied to S:

[S11 σS12] =
[
I 0

]︸ ︷︷ ︸
WL

S diag (I, σI)︸ ︷︷ ︸
WR

(16)

where σ ∈ R is a small number to make WR invertible. Using
this transformation

‖WLSWR‖22 = ‖S11‖22 + σ2‖S12‖ ≈ ‖S11‖22 (17)

As the power-sharing problem is focused on steady-state, the
first frequency is the most important point. Consequently, the
problem of power-sharing can be written as:

min
K

∥∥WL1S1WR1 −
[
S0

11 0
]∥∥

2
(18)

3) Frequency and Voltage Performance: Usually when the
loads or the references for DG power change, voltage and
frequency of the system deviate from the nominal values. To
minimize the deviation in frequency and voltage as well as
the frequency steady-state error, weighted 2-norm of the input
sensitivity function U = K(I+GcompK)−1 can be minimized.

min
K
‖W2 U‖2 (19)

where W2 is the input sensitivity weighting filter and the
following relation holds for U :

[f̄TDG, V̄
T

DG]T = U(jω)[PT
d , Q

T
d ]T (20)

In general, at each frequency point, a higher weight will
result in a lower deviation. Particularly, in order to reduce the
frequency steady-state error W2 should have high gain at low
frequencies.

4) Complete Design Problem: Combining the mentioned
specifications leads to the following multi-objective optimiza-
tion problem:

min
K

‖W1S‖2︸ ︷︷ ︸
Disturbance Rejection

+ ‖W2U‖2︸ ︷︷ ︸
Freq./Volt. Performance

s.t. S11(jωk)|k=1 = S0
11 (Power-Sharing) (21)

Then, using the convex formulation from (6), the robust control
design problem in (21) can be written as a convex optimization
problem with LMI constraints:

min α tr(ΓP 1)︸ ︷︷ ︸
Power-Sharing

+

N∑
k=1

tr(ΓSk)︸ ︷︷ ︸
Dist. Rej.

+ tr(ΓUk)︸ ︷︷ ︸
Freq./Volt. Perf.


[

ΓSk W1kY
(W1kYk)∗ M∗kMck +Mc

∗
kMk −Mc

∗
kMck

]
> 0,[

ΓUk W2kXk

(W2kXk)∗ M∗kMck +Mc
∗
kMk −Mc

∗
kMck

]
> 0,[

ΓP 1 B
B∗ MW 1

]
> 0

Y ∗k Yck + Yc
∗
kYk − Yc

∗
kYck > 0, (22)

for all k = 1, . . . , N , where B = WL1Y1−[S0
11 0]WR

−1
1 M1.

The scalar α is a weighting factor that denotes the importance
of the power-sharing, and ΓSk > 0, ΓUk > 0 are auxiliary
positive definite matrix variables as defined for the output
and input sensitivity functions corresponding to kth frequency
point, respectively. In the same way, ΓP 1 > 0 is the auxiliary
positive definite matrix variable defined for the power-sharing
at steady-state (ω1). The necessary and sufficient condition
for the first stability constraint (i.e. det(Y ) 6= 0, ∀ω ∈ Ω)
is Y ∗Y > 0. Since this constraint is not convex, it can be
linearized around the initial controller as Y ∗c Y + Y ∗Yc −
Y ∗c Yc > 0. The last constraint in (22) is added to satisfy
this constraint for all frequencies. Since the problem is an
approximation of the original non-convex problem, the ob-
tained solution depends on the initial controller. Therefore, an
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iterative approach is used, where the optimization problem is
solved multiple times using the calculated controller K of the
previous step as the new initial controller Kc. This choice
always guarantees closed-loop stability (assuming the initial
choice of Kc is stabilizing). Since the objective function is
non-negative and non-increasing, the iteration converges to a
locally optimal solution of the original non-convex problem.

It can be shown that for each stable plant one choice for
stabilizing initial controller is Kc = εI provided that ε is
sufficiently small. In order to satisfy the third condition of
stability, the initial controller matrices can be selected as:

Xc = εzδ , Yc = Izδ

It should be mentioned that for selecting the order (i.e. δ) in
designing the controller, the order of the controller is set to a
very low value (say 2 or 3) initially. If the performance using
this order is not satisfactory, the order is increased by one and
the design procedure is reiterated.

5) Communication Graph: The controller design method
proposed in this paper is capable of handling different structure
of communication systems by choosing centralized, distributed
or decentralized controller structure. If there is no data com-
munication between two nodes, the corresponding elements
will be substituted by zero in X matrix. As an illustrative
example, consider a microgrid with three DGs (DG1, DG2,
DG3). Controller of each DG calculates its command signals
based on the local measurements and measurements transmit-
ted from other DGs. Assume that the available infrastructure
provides communication links DG1-DG2 and DG2-DG3 but
no communication link between DG1 and DG3. Therefore
the following structure should be considered for Xi for
i ∈ {1, 2, · · · , δ}:

Xi =

x1,1
i x1,2

i x1,3
i x1,4

i 0 0

x2,1
i x2,2

i x2,3
i x2,4

i 0 0

x3,1
i x3,2

i x3,3
i x3,4

i x3,5
i x3,6

i

x4,1
i x4,2

i x4,3
i x4,4

i x4,5
i x4,6

i

0 0 x5,3
i x5,4

i x5,5
i x5,6

i

0 0 x6,3
i x6,4

i x6,5
i x6,6

i





Local Distributed

(23)

6) Communication Delay: The proposed method is capable
of considering communication delay in controller design by
defining it as a fixed term in the controller. Assume that there
is d-sampling time delay for data transmission from node i
to node j. Then, by multiplying both (i, j)-th and (j, i)-th
element of FX by z−d, the impact of communication delay
can be considered in the controller design. In order to clarify
the idea, in the above-mentioned illustrative example, assume
that each communication link has d samples delay. This delay
can be included in the fixed term of the controller as follows:

FX(z) =

 12×2 z−d12×2 02×2

z−d12×2 12×2 z−d12×2

02×2 z−d12×2 12×2

 (24)

TABLE II
LINE PARAMETERS

Line R [Ω] X [Ω] Line R [Ω] X [Ω]
1 - 2 0.018 0.0034 4 - 8 0.09 0.017
1 - 3 0.018 0.0034 8 - 9 0.045 0.0085
2 - 7 0.15 0.11 5 - 6 0.09 0.017
2 - 10 0.3 0.22 6 - 7 0.3 0.22
3 - 4 0.45 0.085 9 - 10 0.3 0.22
3 - 5 0.3 0.22

TABLE III
DG UNITS PARAMETERS

BESS
Bus: [8, 10]
Output filter Parameters: Rt = 10mΩ, Lt = 450 µH

Rg = 58mΩ, Lg = 420 µH, Cf = 50 µF
Time Constants: τω = 5 · 10−4, τU = 5 · 10−4

Nom. apparent power: [70, 40] KVA
Synchronous Generator
Bus: [5]
Inertia Constant: H = 1.5
Internal Impedance: Ro = 19mΩ, Lo = 2.7 mH
Time Constants: τm = 0.1, τU = 0.05
Speed Controller: kp = 3.18, ki = 4.77, kd=0.8, Tf = 0.05
Nom. apparent power: 70 KVA
Inverter
Bus: [1,2,7,8,10]
parameters: Switching Freq.: 6.25 KHz, DC Voltage: 500 V
PV
Bus: [1, 2, 7]
Output filter Parameters: Rt = 10mΩ, Lt = 450 µH

Rg = 58mΩ, Lg = 420 µH, Cf = 50 µF
Active Power: 10 kW
Loads
Bus: [3, 4, 6, 9]
Active/Reactive Power: [30, 20, 25, 45] kW / [0, 0, 0, 0] VAr

IV. CASE STUDY

The proposed method is applied to a microgrid illustrated
in Fig. 3, which is a 50 Hz/230 V islanded grid including
two VSI-interfaced Battery Energy Storage Systems (BESSs),
one SG, three PV units in current-controlled mode and four
constant-power loads. The lines are either resistive with X/R-
ratio of 0.18 or mixed with X/R-ratio close to 1. Furthermore,
each VSI is filtered with an LCL-type output filter. The SG
is operated in speed control mode and is equipped with an
internal speed controller. The parameters of lines and DGs are
given in Table II and Table III, respectively.

A. Frequency Response Function
In this paper, the measurement data is provided through nu-

merical real-time simulation of the grid including the switch-
ing inverters. To simplify the design, all controller inputs
and outputs are assumed to be normalized to per unit with
Vbase = 325 V (= 230

√
2), fbase = 50 Hz, Sbase = 100 kVA.

In the operating point, DGs are working in 50 percent of their
nominal powers. A Pseudo-Random Binary Sequence (PRBS)
signal with small magnitude is added to the closed-loop sys-
tem references (i.e. [P̄DG, Q̄DG]T) while operating in normal
condition and the output of the plant (i.e. [PDG, QDG]T) are
measured. Ten periods of an 8-order PRBS with a sampling
time of 5 ms and a magnitude of 0.05 p.u. is applied. The last
three periods of the excitation signal added to the reference of
the active power of SG and the actual power injected to the
grid at bus No. 5 are shown in Fig. 4.

The frequency response of the closed-loop transfer function
T = GcompK(I +GcompK)−1 can be computed using Fourier
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Fig. 5. Frequency response of the active power at bus No. 5 to the frequency
reference of the SG at bus No. 5 with linear inverters (red), switching inverters
(green) and the linearized parametric model using DPM (blue)

transform of input and output data. Then Gcomp can be
calculated as

Gcomp(jωk) = T (jωk)(K(jωk)(I − T (jωk)))−1

The results of frequency response calculated using the mea-
surement data are compared with parametric DPM. As an
example, the response of active power injected to bus number
5 to the frequency reference of the SG is shown in Fig. 5

B. Controller Design

An 8-th order controller is designed for the grid in Fig. 3
by solving the convex optimization problem given in (22).
For this example, ε = 0.01 is sufficiently small to achieve

the desired performance while avoiding numerical problems.
The weighting factor α is chosen to be 1000. The weighting
filters are chosen as W−1

1 = 1.3s/(250 + s)I and W−1
2 = βI

where β = 0.01 for ω < 100 rad/s and β = 0.1 for
ω > 100 rad/s. Two sampling delays are considered for
data transmission between K8 and K10. The optimization
problem is then formulated in Matlab using Yalmip [29] and
solved using Mosek [30]. The whole procedure of experiment
(using power system measurement of the real-time simulation),
frequency response calculation and controller design (using a
desktop computer) take less than 3 minutes for this example.

C. Hardware-In-the-Loop validation

To validate the performance of the obtained controller,
the grid shown in Fig. 3 is simulated in HIL setup includ-
ing an Opal-rt real-time simulator and MyRIO controllers
provided by National Instruments. In contrast with most of
validations in the literature, which use simplified average
models, the inverters of the batteries are simulated as the
switching elements which inject harmonics to the system.
The controller for inverters in bus No. 8 (K8) and bus No.
10 (K10) are separately implemented on two MyRIOs coded
by LABVIEW as distributed controllers. Two communication
types are employed in this HIL setup:

1) Sharing the data between K8 and K10 using User
Datagram Protocol (UDP) on WiFi with no guarantee
for safe transmission of the data, which is the case when
the available communication resources are limited in the
actual implementation.

2) Sending the local measurement values calculated in
Opal-rt real-time simulator to the controller using the
analog noisy signals.

Moreover, to have a realistic experimental result, no synchro-
nization signal between opal and two controllers are employed.
This results in asynchronous operation of two controllers,
which is the case in actual power systems.

The results of the proposed Data-driven Distributed Primary
Secondary (DDPS) controller, the classical droop controller
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disturbance (red: droop with a central integrator, blue: DAPI, green: DDPS)

TABLE IV
FREQUENCY CONTROL COMPARISON

Method Frequency nadir [mHz] Settling time*[ms]
Droop 106 690
DAPI 100 181
DDPS 34 17

* The settling time is defined as the time that the frequency has less than
20 mHz frequency drop after addition of load and stays in that condition.

with centralized secondary control, and droop controller with
a Distributed Averaging PI (DAPI) [7] are compared. In this
experiment, a load with double size of L4 has been connected
at t=15 s for 0.01s at bus number 4 to show the impact of
impulsive loads and L6 is stepped up from 25 kW to 45 kW
at t = 25 s to show steady-state disturbance damping. In Fig. 6,
the instantaneous frequency at SG bus after the impulsive and
step load is shown. It can be seen that with droop and DAPI
controllers, the SG frequency experiences significant oscilla-
tions and it takes a long time until the nominal frequency is
recovered. The results have been summarized in Table IV. The
controller designed in this paper is able to reduce the frequency
nadir and its settling time considerably.

The frequency at bus No. 8 and 10, where the BESSs are
located, achieved by droop controller, DAPI controller, and
controller designed by the proposed method have been shown
in Fig. 7 and Fig. 8, respectively. It can be observed that
the frequency with the proposed controller has a very low
sensitivity to disturbances in comparison to other methods.
Since there is no decoupling, both frequency and voltage con-
tribute to disturbance rejection which results in less frequency
oscillation at VSI nodes. The superiority of considering the
couplings in controller design and also taking advantage of
the independence of VSI frequency from physical states can
be seen obviously by applying the proposed method.

Fig. 9 shows the active output power of the DGs and
proportional power-sharing.

The voltage magnitude at a PV, Battery and SG buses using
different methods are compared in Fig. 10 and their normalized
two-norm are compared in Table V, which shows improvement

TABLE V
2-NORM OF VOLTAGE DEVIATION AT DIFFERENT BUSES

bus #2 bus #5 bus #8
Droop 6.60 6.62 4.69
DAPI 6.64 6.61 4.69
DDPS 5.60 5.84 3.92
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Fig. 7. VSI8 frequency applying different methods in a) impulse and b) step
disturbance (red: droop with central integrator, blue: DAPI, green: DDPS)
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Fig. 8. VSI10 frequency applying different methods in a) impulse and b) step
disturbance (red: droop with central integrator, blue: DAPI, green: DDPS)
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Fig. 11. HIL setup

in voltage recovery.

V. CONCLUSION

It has been shown how the problem of primary and sec-
ondary control design for islanded microgrids including both
VSI and SG can be expressed in a H2 framework. The
proposed method directly uses the measurement data with no
need for a parametric model of the system. Expressing desired
performance specifications as convex constraints on sensitivity
functions makes it possible to apply a convex optimization
method to design the controller parameters. This results in
a systematic design approach that guarantees robust stability
and allows the realization of different performance objectives
such as good transient performance and proportional power
sharing. HIL results show that significant superior performance
can be achieved as compared to classical hierarchical droop
approaches. As a future work, non-linearities of the system
can be considered as either frequency domain or multi-model
uncertainty, which can be extracted using the measurement
data in different operating points.
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