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Homography estimation of a moving planar scene from direct point
correspondence

S. de Marco, M-D. Hua, R. Mahony and T. Hamel

Abstract— Homographies provide a robust and reliable cue
for visual servo control of robots. Some nonlinear observers
have been recently developed for the estimation of temporal
sequences of homographies associated with rigid-body motion
of a camera observing a stationary planar scene. However,
these algorithms do not model well time-varying changes in
the homography velocity and tend to perform poorly when the
camera or the scene moves fast. In this paper, an internal model-
based observer posed on SL(3) for homography estimation is
proposed allowing for dealing with complex camera-scene tra-
jectories such as circular and sinusoidal motions of the camera
and/or the scene. Rigorous proof of local asymptotic stability is
established and excellent performance of the proposed observer
is justified by experiments using an IMU-Camera prototype
observing an oscillating planar target.

I. INTRODUCTION

The civil and commercial usage of robotic vehicles has
become very popular thanks to the availability of low-cost
MEMS sensor systems, the high computational power of
modern embedded micro-controllers/autopilots and also to
the utility of robots to replace human beings in undertaking
dull, dangerous and dirty tasks. Modern unmanned vehicles
are used in a wide range of scenarios including infrastruc-
ture/architectural inspections, surveillance, crop supervision,
seafloor mapping, environmental sensing, and search and
rescue missions. When unmanned vehicles approach and
interact actively with the environment, the precision and
reliability of Global Position System (GPS) measurements
are no longer sufficient for position control. Therefore,
there has been a growing interest on developing alternative
localization systems and due to their low cost, light weight,
small size and high resolution, vision systems remain the
most promising technology. Control algorithms based on
visual data are known as visual servo control [3], [4], [11].

One of the most popular visual cues used in visual servo
control is the relative homography between an observed
scene and a reference image of the scene. This approach
is effective when the scene is planar or roughly planar with
respect to the camera motions. The resulting homography
matrix can be decomposed to recover position and orientation
of the camera [6], [13] and classical state-space servo control
can be used for position regulation of the vehicle. Estimating
homography from pairs of images has been extensively
studied in the computer vision literature [1], [9]. For robotic
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vehicles, the rigid-body motion of the camera generates a
temporal correlated sequence of images and it is possible
to derive nonlinear observers for homography estimation
[12], [8]. These observers are expressed on the Special
Linear group SL(3), a Lie-group isomorphic to the group
of homographies [2], and they have very good robustness
and convergence properties. As opposed to the observer
proposed in [12] that requires to compute individual image
homographies (using algebraic approaches for instance) for
the computation of the observer innovation term, the observer
proposed in [8] takes image point-feature correspondences
directly as input, making it simpler and more efficient
for real-time applications. However, a weakness of these
observers lies in the fact that they require an estimate of
the homography velocity input, which is an element of the
Lie algebra sl(3) and encodes the rigid-body velocity of
the camera with respect to the scene. This homography
velocity, however, cannot be fully measured from an Inertial
Measurement Unit (IMU) or other non-vision based sensors.
In the absence of direct measures, these works [12], [8]
use an integral correction term to estimate the unknown
part of the homography velocity that is assumed to be
constant. However, this restrictive assumption is only valid
for some very specific trajectories of the camera. Internal
Model principles [7], [10] are ideally suited to controlling a
wide class of systems with unmeasured inputs. For internal
model-based control, the unknown input is modelled as
belonging to a family of trajectories generated as solutions
of an autonomous system (referred to as exo-system). In a
recent work, the authors applied these techniques to control
of systems defined on the Special Euclidean group SE(3)
[5]. To the authors knowledge there is presently no other
work using internal model principles for nonlinear observer
design for homography estimation.

In this paper we derive an internal model-based ob-
server for the homography estimation problem. We base
our approach on the direct point correspondence formulation
proposed in [8] and replace the simple integral velocity
estimation term with an internal model construction. The
exo-system considered is a collection of linear oscillators
defined on the Lie algebra sl(3) of the homography group
SL(3). This design is of significant practical interest since
it covers many possible camera/target trajectories such as
circular and sinusoidal motion of the camera. A key aspect
of the approach is the estimation of the homography velocity.
Thus, the proposed approach applies to scenarios where both
camera and target are moving, for example estimation of
homography between two moving rigid-bodies such as the



situation encountered in landing of an aerial vehicle on a
marine platform in high-seas.

The paper is organized into four sections including the
present introduction. Section II introduces the notation and
formulation. Section III derives the observer and provides
a rigorous analysis of the local asymptotic stability of the
proposed observer. Section IV provides experimental results
that demonstrate the performance of the observer.

II. PROBLEM FORMULATION

A. Notation and mathematical identities

The Special Orthogonal group is denoted SO(3). The Lie
algebra associated to the Special Orthogonal group, denoted
by s0(3), is the set of 3 x 3 skew symmetric matrices

50(3) == {Qx e R¥3Qy + Q) =0} .

The Lie algebra so(3) with the matrix commutator (Lie
bracket) [-,-] is isomorphic to R® with the cross product.
Let Q = [Q,9,Q3]T € R?, then the matrix

0 —Q3 Qo
Qy = | Q3 0 -
—Qs O 0

is the skew symmetric matrix associated to the cross product
Quv=Q x v, for any v € R3.

The Special Linear group, denoted by SL(3), is the set of
3 x 3 real valued matrices with unit determinant

SL(3) := {H € R**®|det(H) =1} .

The Lie algebra associated to the Lie-group SL(3), denoted
by s[(3), is the set of 3 x 3 traceless matrices

sl(3) := {U e R¥?|tr(U) = 0} .

For H € SL(3) and U € sl(3) the mapping Ad : SL(3) x
51(3) — sl(3) is defined by

AdgU := HUH™ .

Let P, i3 denotes the orthogonal projection of R3*3 onto
5[(3) with respect to the trace inner product, one has

Py3(A) = (A - ;w(A)I) €sl(3), AecR¥3,

Let A denotes the mapping A : RS — s[(3) that maps the
vector v € R® in an element of the Lie algebra sl(3)

8
Up = E Uij
Jj=1

where B = {Bj, ..., Bs} is a basis for the Lie algebra s[(3).
The operator vec : s[(3) — R® denotes the inverse of the
(-)A operator, namely

vec” (vp) = v, v € RS,

For A € R™*™, we denote by vect(A) € R™ the column
vector obtained by the concatenation of columns of the
matrix A as follows

VECt(A) = [A11, oy U1, @1.2, oy G2y ooy ALy ey Q) |
The matrix representation of the composition of the linear
maps (vectoA) : R® — s1(3) — R? is denoted by the full
columns rank matrix [A] € R9*®, namely

vect(va) = (vectoA)(v) = [A]v, veRS

Let Q.3 € R3%® denotes the symmetric positive matrix
Qs13 = [[/\]]T[[/\]]'

For any A, B € R"™*", ((A, B)) = tr(AT B) defines an
inner product on R"*". We denote by || Al|, with A € R"*"™,
the Frobenius norm defined by

[A[] == ({4, 4)).

For any p € S?, we denote by m, the projection T, =
(I —pp") onto the tangent space of the unit sphere S? at
point p.

B. Modeling the target plane and the camera frame

Let ¢ € R? denote the position of the body-fixed frame
{B} with respect to the inertial frame {I} expressed in {I}.
The orientation of the vehicle { B} with respect to the inertial
frame {I} is given by the rotation matrix R € SO(3). Let
(&7, Rr) € R3 x SO(3) denote the configuration of a frame
{T}, integral with the target plane, with respect to the inertial
frame {I}. The coordinate of a point in the target plane can

Fig. 1. Representation of a point of the planar surface in the inertial frame
{I}, body-fixed frame {B} and target frame {7}

be expressed in the inertial frame as follow

Pr=RpP +¢r (1a)
Pr=RPp+¢. (1b)
Denoting by
R:=R}R (2)
§:=—Ry(ér —9), 3)
and substituting (1a) into (1b) one gets
Pp=R"P-R'E )

We denote by p; (resp. p;) the image of the point i-th, in
homogeneous coordinate, when the camera is aligned with



the frame {T'} (resp. {B}) as depicted in figure 2. Using the
classical pinhole camera model one has
pi = KP, p;=KPg,

where K is the upper triangular camera matrix which de-
pends on intrinsic parameters of the camera such as the focal
length and skew. If the camera is calibrated then all quantities
can be appropriately scaled and the equation above can be
written in the following form:

pi =P

i = Pp;. @)

Fig. 2. Image of the point i-th when the camera is aligned with respect to
the frame {7'} and with respect to the frame {B}.

Let 7 denote the unit normal to the target plane expressed
in {T'}, and let d denote the orthogonal distance of the plane
to the origin of {7T'}.

Due to the fact that all target points ]—D’i lie on a planar
surface one has

TP,
nh_ g
d
it follows from (4) that
T
P&—Of—R%j>R, (6)

thus using image points (5) it yields

Y 7777T_£ o -
pi (R Rfj pi, 1={1,...,n} @)

-1

oT
The projective mapping H = ( RT — RTEL- is called

homography matrix and it relates the images points on the
target plane when viewed from two different poses. The
homography matrix contains the relative pose information
of the camera fixed-body frame {B} with respect to the
target frame {7'}. Let 7y denote the unit normal to the plane
expressed in the inertial frame {I} and let d; denote the
orthogonal distance of the planar surface to the origin of the
inertial frame {I}, one has

nr = Rpn (8)
dr =nj &r +d. 9)

Let 1 denote the normal to the target plane expressed in the

body-fixed frame { B}, and d the orthogonal distance of the

target plane to the origin of {B}, one verifies
n=R"n =R"j
d=di—nfe=d—i'¢

(10)
(1)

it follows that the homography matrix can be written as

(5, &'
e (re 80,

Due to the fact that the homography matrix H is defined up
to a scale factor we can represent uniquely the homography
matrix as an element of the special linear group SL(3) by
re-scaling

12)

_ 1
H = Hdet(H) 3 € SL(3).
From now on we assume that the homography matrix H is
an element of SL(3)

HC(R+%§)ESM$. (13)

C. Homography Kinematics

Let Q) denote the angular velocity of the target frame
expressed in {T'} and Vp the linear velocity of the frame
{T'} with respect to the inertial frame {I} expressed in {7'}.
Then, the kinematics of the target plane can be written as

Ry = RrQry, €7 = RrVr. (14)

Denote the angular velocity and the linear velocity of the
body-fixed frame {B} with respect to the inertial frame {1}
expressed in the body-fixed frame {B}, respectively, by 2
and V. The rigid body kinematics are given by

R=RQ,, £=RV. (15)
The times derivatives of (2) and (3) are given by
R=ROy, &=RV (16)
where
O =0y — (RTQr) (17a)
V=R'Qr.{+V —-R"Vr. (17b)

Lemma 1: Consider a camera attached to the rigid-body
with kinematics (15) viewing a moving planar scene whose
kinematics is defined by (14). Let H : {B} — {T'} denote
the calibrated homography matrix. The group velocity U €
sl(3) induced by the relative motion between the camera and
the target plane is such that

H=HU, with U =Q, + — — 1. (18)

Proof: The proof is based on the time derivative of the
homography (13), and here omitted due to lack of space. B
Note that the group velocity U in (18) is defined with
respect to the camera body-fixed frame. Induced from the
relative motion between the camera and the target plane,



it depends usually on unmeasurable variables such as the
angular velocity of the target plane ), the orthogonal
distance d, the normal to_the surface 1 and the linear velocity

V. The group velocity U can be rewritten as

U .= QX +F/\ (19)

where ) is the known part that can be obtained from the

- VnT
set of embedded gyros and I'n = —(R'Qp)x + 4
o

V. . .
1715 typically unknown. In this work, we assume that

the velocity part I' 5 is a periodic matrix generated as solution
of an autonomous linear system so that we can write I' in
the form

A= (Cy)a =57 (20)
where C' € R®*™ is a full row rank matrix with m > 8, v €
R™ and S = —ST € R™*™, The considered assumption on

T is of course not valid for all types of relative motions
between the camera and the target plane, it however allows
us to cover many possible camera/target trajectories encoun-
tered in practice such as circular or sinusoidal motions.

III. NON LINEAR OBSERVER ON SL(3)

We assume to have a collection of n measurements p; € S?
associated to a group action of SL(3) onto the projective
space P? of the form

H'p;
pi =7, t=1{1,...,n}. (21)
iy e
The goal of the homography estimator is to provide an
estimate H € SL(3) given a collection of n measurements
p; to drive the error H := HH ™! to the identity element of
the group. To this purpose, we define the estimates p; € S?

of p;

Di = , ={1,...,n}. (22)
‘Hflpz
The estimates e; of p;, then can be written as
= P TP n). (23)
fpi|  |itp:

Definition 1: A set M,, of n > 4 vector directions p; €
S? is called consistent, if it contains a subset My C M,, of
4 constant vector directions such that all its vector triplets
are linearly independent.

Theorem 1: Let H denote the calibrated homography (13)
and consider the kinematic system in (18) along with (19)
and (20). Consider the following nonlinear filter

H=A(Qy + 1)+ kyBH (24a)
Dr = (CA)a (24b)
4 =59+ kiCTQs3Y i (240)

=1

with k, and k; some positive gains, where

B = Ympie] esi(3)
=1
0i = vec” (Pslg ((ﬁTﬁi)(ﬁflei)T)) +

—e, pi vec” (IP’5[3 ((H‘Tei)(ﬁ_lei)—r)) :
(25)
Assume that the measured angular velocity ) of the planar
target, the group velocity I' (equivalently ) in (20) and
homography matrix H are bounded.

Then, if the set M,, of measured directions p; is consis-
tent, the equilibrium (H,T») = (I,0) is locally asymptoti-
cally stable.

Proof: By considering the calibrated homography (18),
with kinematics (19), (20) along with the filter (24), the error
system can be written as follows

H = —[Ady(CA)\JH + k,pH

S’N}/ — k[C’TQg[SZ VCCV(AdI:I-rB).
i=1

. (26)
’Y =

Consider the following Lyapunov candidate

n

Sy T Loispe
£@7) =3 (1= elp) + 517l

i=1

———
£1 £2

where 7 := v—4, which using the consistency of the set M,,
is a locally positive definite function of H and £(0,0) = 0,
the proof here is omitted due to lack of space.
Differentiating £, and bearing in mind (26), it yields
£ = —3p mei [kpB — Ady Ta] e
i=1

whqre fA =I5 — fA. Introducing the expression of 5 (25)
in £, one obtains

. n ~ n
Ll = —kp” Zeiﬁ;l—ﬂeiHQ—l— tr (FI Z Adﬁj— 7'('81'}32'6;>
i=1 =1

Let us focus on the last term of the equation above, recalling
the orthogonal projection onto s(3) with respect to the inner
product one has

Adgmeipie; = Pgs ((ﬁTﬁi)(ﬁ_lei)T> +
76?]0)7; P5[3 ((IA{Tei)(ﬁflei)T> .

Introducing the above expression in the £; derivative, it
follows:

[:1 = *kaZ@iﬁiTWei”QJr

+tr (FT > Pas ((HTﬁi)(Hlei)T)> +
i=1

—tr (szejﬁi)PsB ((ﬁTei)(ﬁ_lei)T)> .
i=1

Consider the time derivatives of the second term of the
Lyapunov candidate



and recalling the expression of 4 (24) one obtains
~ n
—ur (FT(Sen).
i=1

Introducing the expression of the innovation term ; (24)
one has

Ly =

Ly =

=1

+tr (f‘TZelTﬁiPsIg ((fITei)(ﬁ_lei)T)> .
i=1

—tr (f‘T Zn:]P’sm ((ﬁTﬁi)(H_lei)T>>

Finally, collecting all the terms of the Lyapunov candidate
we get:

n
L=kl eipi meill*.
i=1

The derivative of the Lyapunov function is negative semi-
definite, and equal to zero when 3 = 0. Since the Lyapunov
function is locally positive definite and (H,~) is bounded

is straightforward to verify that (H,7) is bounded and a
solution exists for all time. One then verifies that H is

bounded by the boundedness of (H,5) and of H, which
in turn ensures the boundedness of £ and, subsequently, the
uniform continuity of L. Then by application of Barbalat’s
lemma one deduces that lim;_, £=0.

From the definition of the “injection” term (5 (25) and e;
(23), and exploiting the consistency of the set is possible to

show, in a similar way of Theorem 3.2 in [8], that L=0
implies H = 1. To prove that H tends to zero using
Barbalat’s lemma, one needs to prove that H is bounded,
which can be verified using the boundedness of H, €2 and
I". From this combining (24a) with (18), (19), (20) it yields

0= Jim A = ~[Ad; (C9)\}

which implies lim; ,~, 7 = 0, and this completes the proof.
|

IV. EXPERIMENTAL RESULTS
A. Experimental setup

We present an application of the proposed approach for
the tracking of an oscillating platform in presence of specular
reflections, partial target occlusions and severe changing in
light conditions. The oscillating platform used for experimen-
tal validation, depicted in figure 3, is composed of a simple
cardboard box whose upper flap is actuated by a servo motor.
The servo motor is controlled by an Arduino Mega 2560 only
in position without relying on a velocity feedback loop. The
experiments have been performed with a Basler acA 1300-
200uc camera, that provides 50 frames per second with a
resolution of 1280 x 1024 pixels. For comparison purposes,
the OptiTrack motion capture system has been used to obtain
the homography ground truth starting from the full pose of
the target and the camera.

The observer proposed in this paper has been implemented
in C++ with OpenCV library. In particular, the detection of
images features and descriptor extraction is carried out using
the FAST Feature Detector and ORB Descriptor Extractor

respectively. Then, the matching of descriptors is carried out
using OpenCV’s brute-force matcher routine.

Fig. 3.

Oscillating Target Platform.

B. Experimental results

The experiment has been carried out keeping the camera
still while looking at the oscillating platform. The oscillating
platform is tracking a sinusoidal signal with a frequency of
0.83H z, however due to the handmade design and due to
the servo motor limitations the platform trajectory exhibit a
much richer frequency spectrum. The observer parameters
are chosen to be k£, = 80 and k; = 80. Regarding the bank
of oscillators in the lie algebra sl(3) of the filter, it has been
taken into account only the nominal frequency f,, = 0.83H z
of the oscillating platform, namely

S = diag(Sl,51751,51751,51751,51) S R16X167
c = diag(C1,01,01701,01,01,01701) S ]R8><16’
where
0 =27 fy
Sp = , Cp:= {0 1}.
27 [ 0

In Figure 4 some screenshot of the experiment are depicted.

The experiment, whose full video is available at https:
//goo.gl/AbRyHs, has been conducted as follow:

- From 0-25 seconds (Figure 4 frames 35) the conditions

are ideal, some reflection from the room neons appears.

- From 25-32 seconds (Figure 4 frame 1470) the target is

partially occluded by hands.

- From 34-36 seconds (Figure 4 frame 1775) the period-

ical assumption is violated.

- From 32-50 seconds (Figure 4 frame 2517) we turned

off the room lights.

Figure 5 shows the time behavior of the Frobenious norm
|I — H||r for the implemented observer. Figures 5-4 show
a very fast convergence of the estimated homography to the
real one, robustness with respect to lighting conditions and
target occlusion and quick recover after the violation of the
periodical assumption.

V. CONCLUSIONS

A nonlinear observer designed on the Special Linear group
SL(3) for the estimation of a sequence of homographies has
been proposed. It extends our prior works on this topic by
replacing the simple integral velocity estimation term with



Fig. 4.
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Fig. 5. Time behaviour of the Frobenious norm || — H || = of the proposed
observer.

an internal model construction. Experimental results have
been provided as a complement to the theoretical approach
showing the robustness of the observer proposed in this
paper. The proposed approach is well suited for scenarios in
which both the camera and target are moving simultaneously.
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