
1

Analysis and Control of Power-Temperature
Dynamics in Heterogeneous Multiprocessors

Ganapati Bhat, Suat Gumussoy, Umit Y. Ogras

Abstract—Virtually all electronic systems try to optimize a
fundamental trade-off between higher performance and lower
power consumption. The latter becomes critical in mobile com-
puting systems, such as smartphones, which rely on passive
cooling. Otherwise, the heat concentrated in a small area drives
both the junction and skin temperatures up. High junction
temperatures degrade the reliability, while skin temperature
deteriorates the user experience. Therefore, there is a strong
need for a formal analysis of power consumption-temperature
dynamics and predictive thermal management algorithms. This
paper presents a theoretical power-temperature analysis of multi-
processor systems, which are modeled as multi-input multi-output
dynamic systems. We analyze the conditions under which the
system converges to a stable steady-state temperature. Then, we
use these models to design a control algorithm that manages the
temperature of the system without affecting the performance of
the application. Experiments on the Odroid-XU3 board show that
the control algorithm is able to regulate the temperature with
a minimal loss in performance when compared to the default
thermal governors.

Index Terms—Dynamic power management, thermal man-
agement, heterogeneous computing, multi-processor systems-on-
chip, multicore architectures.

I. INTRODUCTION

The performance and capabilities of state-of-the-art mobile
processors are severely limited by heat dissipation and re-
sulting chip temperature [1, 2]. Competitive performance and
functionality are enabled by increasing the operating frequency
and the number of processing cores [3]. These choices lead to
higher device temperature, thus affecting both user experience
and reliability [1, 2, 4]. Therefore, maximum temperature
constrains the power consumption, which limits the maximum
operating frequency and number of active cores [5]. Commer-
cial mobile platforms typically have hard-coded maximum safe
temperature limits [6, 7]. If the temperature exceeds this limit
at runtime, the system throttles the operating frequencies or
reduces the number of active cores to decrease the temper-
ature. In extreme cases, the system performs an emergency
shutdown, which further cripples the performance and user
experience [4].

Ganapati Bhat and Umit Y. Ogras are with the School of Electrical,
Computer and Energy Engineering, Arizona State University, Tempe, AZ.
E-mail: {gmbhat, umit}@asu.edu

Suat Gumussoy is an IEEE Member. E-mail: suat@gumussoy.net
This article has been accepted for publication in IEEE Transactions on

Control Systems Technology. DOI: 10.1109/TCST.2020.2974421
c©2020 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Power consumption and temperature form a well-known
positive feedback system [8, 9]. An increase in power con-
sumption leads to an increase in temperature due to thermal
resistance and capacitance networks [10]. As a result of the
increase in temperature, there is an exponential rise in the
leakage power [11]. If the system dynamics is stable, there
exists a fixed-point temperature to which all the temperature
trajectories converge within the region of convergence. That
is, the temperature and power consumption rise until they
eventually reach a fixed-point temperature. In contrast, an
unstable system leads to a thermal runaway [8, 9, 12].

The stability of the system and existence of a fixed point do
not necessarily ensure a thermally safe operation [9, 12]. The
stable fixed point may lie beyond the temperature at which
the system starts to throttle the frequencies or it may be
greater than the operating limit of the device. Moreover, in
a multiprocessor system, each core can converge to a different
fixed-point temperature due to interactions between the core
and workload running on each core [13]. For instance, if
the graphics processing unit (GPU) is not heavily utilized, it
converges to a lower temperature than heavily utilized cores.
Therefore, the stable fixed point for each temperature hotspot
has to be evaluated at runtime as the workload changes, so that
necessary actions can be taken when violations are detected.

This paper presents a theoretical analysis of power-
temperature dynamics in mobile multiprocessor systems. We
start with an overview of power and thermal models used in
the analysis. Then, we present an efficient method to evaluate
the stability of the system and compute its fixed points. This
is followed by a detailed analysis of the region of conver-
gence of the thermal dynamics in a mobile multiprocessor
system. Finally, we present a control algorithm to illustrate
how we can avoid thermal violations. The control algorithm
uses the fixed-point predictions to determine if the power-
temperature dynamics is within a safe region of operation.
If any violations are detected, it reduces the frequency for
the application that is causing thermal violation. The selective
control ensures that other applications in the system are not
penalized. We evaluate the control algorithm on the Odroid-
XU3 [14] platform. The platform includes the Exynos-5422
big.Little System-on-a-Chip (SoC). We use this platform for
our experimental evaluations since it is used on smartphones
like Samsung Galaxy S5 and is representative of the processors
used in mobile systems. Our experiments on the Odroid-XU3
platform show that the proposed algorithm is able to isolate the
power-hungry application, while maintaining the performance
requirements of active applications. In summary, the major
contributions of this paper are:

ar
X

iv
:2

00
3.

11
08

1v
1 

 [
ee

ss
.S

Y
] 

 2
4 

M
ar

 2
02

0



2

• An efficient solution to find the region of convergence
of the power-temperature dynamics in a multiprocessor
system,

• An optimization technique that speeds up the computation
of the fixed point by up to 1.8× when compared to a
baseline approach used in [12],

• A low-overhead control algorithm that uses fixed-point
analysis to prevent thermal violations and lower the power
consumption. Implementation on a commercial device
shows that the algorithm is effective in preventing thermal
violations while also lowering the power consumption of
the device.

Application domains of proposed analysis: The primary ap-
plication area of the proposed analysis is low-power handheld
and wearable devices where the skin temperature of the device
is critical for user comfort. This is especially important in
wearable devices where the device is in constant contact with
the user’s body. We can use the proposed analysis to predict the
steady-state temperature of the device when a user is running
an application over long periods of time (such as playing a
game). Then, we can use the predictions and the time to reach
the steady state to determine if the current trajectory leads
to high skin-temperature and user discomfort. We also note
that the proposed analysis and the control algorithm are not
directly applicable to high-performance server units where the
power consumption may change in the order of milliseconds.

The rest of the paper is organized as follows. We review the
related work in Section II. Section III presents an overview
of the temperature and power models used in the fixed-point
analysis. Section IV first presents an overview of the fixed-
point prediction for a single-input-single-output (SISO) model.
This is followed by our analysis of the general multiple-input-
multiple-output (MIMO) model. The lightweight control algo-
rithm using fixed-point predictions is presented in Section V.
Finally, we present the experimental evaluations in Section VI
and the conclusions in Section VII.

II. RELATED WORK

Higher power densities in modern multiprocessors has led to
increasing thermal stress on these devices. Higher temperature
has an adverse impact on reliability [8, 15]. Therefore, a
significant amount of research has focused on accurate, yet
complex, offline models and lightweight runtime models.
Design-time studies focus on analyzing the full-chip thermal
behavior under different application workloads such that ther-
mal policies for the chip can be determined [1, 16]. Since
they simulate traces from common workloads to model the
static and transient thermal behavior, they are not amenable
to runtime analysis. In contrast, runtime approaches develop
computationally efficient thermal and power models, which
can be used for runtime analysis of the system [12, 17]. For
instance, a grey-box system identification is used in [17] to
develop the thermal model of a multicore system. A recent
approach proposed in [12] performs an analysis of the stability
of power-temperature dynamics in multiprocessor systems.
However, it uses a simplified SISO model for evaluating the
region of convergence of the power-temperature dynamics.

In contrast, this paper presents an efficient solution to find
the region of convergence of the power-temperature dynamics
using a MIMO model.

MIMO system identification techniques have also been used
in dynamic power management of multiprocessor systems [18,
19]. For instance, the work in [18] uses a MIMO formulation
to model the queue utilizations in a multiprocessor system with
multiple voltage-frequency islands. Then, it uses a feedback
control algorithm to determine the operating frequency and
voltage of each island while maintaining a reference utilization
for each queue. Similarly, the approach in [19] first models
the workload characteristics in a multiprocessor system using
a multi-fractal master equation. Then, it uses the equation in a
model predictive control algorithm to perform dynamic voltage
and frequency scaling. Complementary to these approaches,
the MIMO system identification used in this paper models
the temperature of the device as a function of the power
consumption of the different components in the system while
not considering the specific workload characteristics. There-
fore, we can potentially combine our models with the MIMO
approaches of prior work [18, 19] to enable workload-aware
thermal and power management.

Commercial products come with a mechanism to control the
temperature of the system. It is achieved either by throttling the
performance or shutting down the system. Reactive approaches
continuously monitor the temperature and respond to avoid
thermal violations, resulting in a larger penalty on perfor-
mance [13, 20]. To mitigate the performance penalty, recent re-
search has focused on developing predictive approaches for dy-
namic thermal and power management (DTPM). Predictive ap-
proaches develop computationally efficient thermal and power
models [17, 21]. These models are used at runtime to estimate
the short-term behavior of the power-temperature dynamics
and take actions if violations are predicted [21, 22, 23]. These
approaches are effective in predicting the short-term behavior
of the power-temperature dynamics; however, the prediction
error increases when long-term predictions are made [23]. A
number of studies have also used control-theoretic approaches
to regulate the temperature of the system [24, 25, 26, 27].
For instance, the work in [24] uses an integral controller to
regulate the temperature of the system. The authors consider
a nonlinear thermal model that captures the exponential de-
pendence on leakage power. Similarly, the authors in [26] use
an event-based proportional integral controller to maintain the
temperature of the system below a desired set point. These
approaches implement control algorithms around a desired set
point. If the temperature reaches this set point, they throttle
the whole system to decrease the power consumption and
regulate the temperature. This, however, can cripple the whole
system performance and penalize all active applications. In
contrast, our stability analysis technique predicts the steady-
state temperature before a thermal violation occurs. Hence, it
can assist thermal management by predicting the steady-state
temperature and enabling proactive decisions.

Positive feedback between the power consumption and tem-
perature has been analyzed by a number of studies [9, 12, 28].
For instance, Liao et al. [9] show that a positive second-
order derivative of the temperature leads to a thermal runaway.



3

This criterion can be easily used for design-time analysis of
the chip. However, it is not practical to use it at runtime,
since the condition is true only after a thermal runaway has
started. Temperature dependence of leakage current is used
in [28] to increase the thermally sustainable power of the
chip. The work in [12] proposes an approach to analyze the
existence of fixed points by first reducing the system to a
SISO model. However, none of these techniques can analyze
the existence and stability of fixed points at runtime while
considering the coupling between different cores. This paper
presents a theoretical methodology to overcome this limitation
and provides an efficient algorithm to calculate the fixed points
and their stability. The fixed points are then used in a simple
control algorithm that can avoid thermal violations without
excessive performance penalties. The fixed-point analysis can
also be used as an effective guard against power attacks,
which cause damage by increasing the temperature of the
device [29, 30, 31].

III. BACKGROUND AND OVERVIEW

This section presents the power consumption and temper-
ature models required for the proposed thermal fixed-point
analysis. We provide an overview here for completeness, while
additional details are presented in [12, 21].

A. Power and Temperature Models

Let us assume that there are M processors in the system,
as summarized in Table I. The power consumption of pro-
cessors in the target system is given by the M × 1 vector
P = [P1, P2, . . . , PM ]T, where Pi is given by:

Pi = Csw,iV
2
i fi + ViIg,i + Viκ1,iT

2
i e

κ2,i
Ti , 1 ≤ i ≤M. (1)

where Csw,i is the switching capacitance, Vi is the supply
voltage and fi is the operating frequency, Ig,i is the gate
leakage, κ1,i > 0 and κ2,i < 0 are technology-dependent
parameters, and Ti is the temperature. Since our focus is to
analyze the dependence of power on the temperature, we can
isolate the impact of the temperature as

Pi = PC,i + Viκ1,iT
2
i e

κ2,i
Ti , 1 ≤ i ≤M, (2)

where PC,i = Csw,iV
2
i fi + ViIg,i represents the temperature-

independent component.
Assume that are N thermal hotspots in the system. The

temperature of each thermal hotspot can be written as a
function of the power consumption vector P and thermal
capacitance and conductance matrices [1, 10]. Therefore, the
temperature dynamics is defined by the state-space system

T[k + 1] = AT[k] + BP[k] (3)

where A matrix is symmetric due to symmetricity of the heat
transfer. A discrete-time system is used because temperature
measurements and control decisions are sampled at equal
discrete time intervals. Equation (3) expresses the temperature
of each hotspot in the next time step as a function of the
current temperature and the power consumption of M sources.
The A matrix describes the effect of temperature in time

TABLE I
SUMMARY OF MAJOR PARAMETERS

Symbol Description

N,M
The number of thermal hotspots and processing
elements (resources) in the SoC, respectively.

T[k]
N × 1 vector where Ti[k], 1 ≤ j ≤ N
denotes the temperature of the ith hotspot
at time instant k.

T
The maximum (scalar) steady-state temperature
over all thermal hotspots.

P[k]
M × 1 vector where Pi[k], 1 ≤ i ≤M denotes
the power consumption of the ith resource
at time instant k.

κ1,i, κ2,i

Technology-dependent parameters of the
leakage power for the ith resource
where κ1,i > 0 and κ2,i < 0.

a, b
Parameters of the single input single output
model which describes the thermal dynamics.

A,B
Parameters of the multiple input multiple output
model which describes the thermal dynamics.

T̃ , α, β Auxiliary parameters introduced in Equation 8.

step k on the temperature in the next time step. That is,
it describes the coupling between the temperature hotspots.
Similarly, the N ×M matrix B describes the relation between
the temperature in the next time step and each of the power
sources. Substituting (1) in (3) leads to a system of nonlinear
equations,

T[k + 1] = AT[k] + B
[
P1[k], P2[k], . . . , PM [k]

]T
, where

(4)

Pi[k] = Csw,iV
2
i fi + Ig,iVi + Viκ1,iTi[k]2e

κ2,i
Ti[k] , 1≤ i≤M.

The nonlinear system of equations in (4) captures the positive
feedback between power consumption and temperature. The
steady-state solution of this system gives the fixed points of the
thermal hotspots in the system. The steady-state temperature
and power consumption are functions of dynamic changes in
the power consumption, operating frequency of the cores, and
the ambient temperature. Therefore, the steady-state solution
of (4) has to be evaluated at runtime. Evaluating the steady-
state solution of (4) at runtime is difficult due to the following
reasons:

1) The system may not be stable due to the positive feedback
between power and temperature,

2) The power consumption and temperature at any time in-
stance depend on their previous values. This necessitates
an iterative approach, which is not suitable for runtime
systems [12],

3) The region of convergence of the system in terms of
temperature and power consumption of each resource has
to be found to ensure thermally safe operation.

In order to address these challenges, we first reduce the
MIMO system in (4) to a SISO system and then find the
steady-state solution for the SISO system. Using the SISO



4

solution of each temperature hotspot we obtain the steady-
state solution of (4) using Newton’s method, as described in
the rest of this section.

B. Background on Fixed-Point Analysis of the SISO System

In this section, we summarize our fixed-point analysis for
the reduced-order SISO system since it provides the necessary
background for the MIMO analysis. The details of the reduced
order SISO analysis can be found in [12]. The MIMO power-
temperature dynamics can be reduced to a SISO model for
each of the temperature hotspots. We start with a reduced-
order SISO system because it allows us to do an in-depth
theoretical analysis of the system. To this end, we identify
the parameters of the reduced-order system through system
identification. Since the thermal safety is determined by the
maximum temperature, the following analysis is performed for
the maximum temperature.

The maximum steady-state temperature across all the
hotspots can be denoted by a scalar T as:

T = max
1≤i≤N

lim
k→∞

Ti[k]

At steady state (k →∞), the temperature of each hotspot can
be modeled as,

T = aT + bP, (5)

where T is the steady-state temperature, P is the steady-state
power consumption and 0 < a < 1, b > 0 are the parameters
of the reduced-order SISO system. Using (2) in (5) gives

(1− a)T − bPC = bV κ1T
2e

κ2
T . (6)

The power-temperature dynamics has fixed points if this
equation has solutions. This means that if the dynamic power
consumption of the device is maintained at PC , the device
will attain a steady state that is given by the solution of (6).
Conversely, the dynamics does not have fixed points either
when (6) does not have a solution or continuous variations
in the power consumption prevent the system from reaching a
steady state. Since we use (6) to perform the stability analysis,
the following change of variables is introduced to simplify the
notation.

T̃ = −κ2
T
, (7)

α =
b

a− 1

PC
κ2

> 0, β =
a− 1

b

1

V κ1κ2
> 0 . (8)

With this change of variables, (6) becomes

βT̃ (1− αT̃ ) = e−T̃ , (9)

where α > 0, β > 0. Next, we present the conditions on the
auxiliary temperature T̃ , α, and β to ensure that (9) has a
solution.

0 0.5 1 1.5
Auxiliary Temperature

-2

-1

0

1

Fi
xe

d-
po

in
t F

un
ct

io
n

0 0.5 1 1.5
Auxiliary Temperature

-2

-1

0

1

Fi
xe

d-
po

in
t F

un
ct

io
n

(a) (b)

Critically stable

No fixed points Two fixed points

Fig. 1. Illustration of fixed point function when there is (a) no fixed point
and (b) when there are two fixed points, respectively. The figure is adapted
from [12].

1) Necessary and Sufficient Conditions for the Existence of
Fixed Point(s): The domain of the auxiliary temperature in (7)
is given by T̃ ∈ (0,∞), since T̃ = −κ2/T where κ2 < 0.
Hence, the right-hand side of (9) lies in the interval (0, 1). That
is, 0 < βT̃ (1−αT̃ ) = e−T̃ < 1 and T̃ < 1/α. Therefore, the
logarithm of both sides can be taken while maintaining the
equality, that is,

lnβ + ln T̃ + ln(1− αT̃ ) = −T̃ .

Therefore, (9) has the same fixed points as,

F (T̃ ) = lnβ + ln T̃ + ln(1− αT̃ ) + T̃ = 0. (10)

The following lemma from [12] summarizes the properties of
F(T̃ ).

Lemma 1: F(T̃ ) given in Equation 10 satisfies the following
properties:

1) F(T̃ ) is a concave function in the interval T̃ ∈ (0, 1/α).
2) F(T̃ ) has a unique maxima at T̃m, which is given by:

T̃m =
1

2α
− 1 +

√
1

4α2
+ 1 (11)

3) F(T̃ ) is an increasing function in the interval (0, T̃m)
and a decreasing function in (T̃m, 1/α).

An illustration of F(T̃ ) is plotted in Figure 1. It can be
seen that the function is concave in (0, 1/α). The concavity
also leads to F(T̃ ) increasing in (0, T̃m) and decreasing in
(T̃m, 1/α). The maxima of F(T̃ ) can be evaluated using the
maxima T̃m defined in Lemma 1. This is summarized in
Corollary 1 below.

Corollary 1: The maxima of F(T̃ ) is given by:

F(T̃m) = lnβ − ln

(
2

T̃m
+ 1

)
e−T̃m

Moreover, equation (9) has two fixed points if the maxima of
F(T̃ ) is greater than zero. Consequently, (9) has two fixed
points if and only if

β ≥
(

2

T̃m
+ 1

)
e−T̃m (12)

where T̃m depends only on the parameter α and it is defined
in (11). Otherwise, it has no solution.
At runtime, the value of T̃m is computed using (11). Then, the
condition for existence of fixed points given in Corollary 1 (Eq.



5

12) is evaluated. If it is not satisfied, there will be a thermal
runaway as presented in Theorem 1 below. In practice, this
means that the system will either throttle cores aggressively
or perform an emergency shutdown.

2) Stability of the Fixed Points: The behavior of T̃ as a
function of F(T̃ ) determines the stability of the fixed points.
This behavior is summarized using the following lemma in
[12].

Lemma 2: The value of T̃ in the temperature iteration
increases when F(T̃ ) < 0, and decreases when F(T̃ ) > 0.
This lemma can be used to determine the stability using the
sign of F(T̃ ). The following theorem in [12] gives the stability
of the fixed points using this lemma.

Theorem 1: The stability of the fixed points is as follows:
1) When (10) has no solution, the temperature iteration

diverges, i.e., T̃ → 0 (T →∞), as illustrated in Figure 1.
Hence, there is a thermal runaway.

2) When there are two fixed points, T̃u ∈ (0, T̃m) is unstable
and T̃s ∈ (T̃m,

1
α ) is stable.

3) In the latter case, any temperature iteration starting
(0, T̃u) diverges, i.e., T̃ → 0 and T → ∞ leading to
a thermal runaway. However, any temperature iteration
starting in (T̃u,

1
α ) converges to the stable fixed point T̃s.

Theorem 1 states that the temperature proceeds along the
arrows shown in Figure 1. When F(T̃m) < 0, i.e., no fixed
point exists, T̃ decreases at each temperature iteration no
matter where it starts. This means that T increases in each
temperature iteration due to (7). Therefore, there is a thermal
runaway as illustrated in Figure 1(a). When F(T̃m) > 0,
there are two fixed points denoted by T̃u and T̃s. Iterations
that start in the interval (0, T̃u) diverge to T̃ → 0, since
F(T̃ ) < 0 in (0, T̃u). Conversely, temperature iterations with
initial points in the interval (T̃u, T̃s) will converge to T̃s,
since F(T̃ ) > 0. That is, temperature iterations starting in
the interval (T̃u,

1
α ) will also converge to T̃s, as illustrated

in Figure 1(b). Therefore, iterations starting in T̃u ∈ (0, T̃m)
are divergent, while iterations starting in T̃s ∈ (T̃m,

1
α ) are

convergent.

IV. FIXED-POINT ANALYSIS FOR MIMO SYSTEM

The SISO model in the previous sections allows us to ana-
lyze the behavior of thermal hotspots individually. However, in
a multiprocessor system there is a close interaction of different
resources in the system. As a result of this, activity in one
part of the system affects the fixed-point temperatures in other
parts of the system. Therefore, it is important to solve the
MIMO system in (4) to calculate the fixed-point temperatures.
The steady-state equation of the temperature dynamics can be
modeled as

T∗ = AT∗ + BP∗ (13)

where T∗ and P∗ are the steady-state temperatures and power
consumptions, respectively. Define the following function,

f(T∗) = (A− I)T∗ + BP∗. (14)

where f(T∗) is obtained by grouping the temperature terms
in (13). f(T∗) is a vector-valued function that depends on

T∗ = [T1, . . . , TN ]T and P∗ = [P1, . . . , PM ]T satisfying a
set of nonlinear equations in terms of T∗. This is a nonlinear
system of equations due to the exponential temperature terms
in Pi. The standard approach to solving this problem is to find
a good initial point and use a root-finding algorithm to solve
the nonlinear equations. In this work, we use the Newton’s
method [32] to solve the system of equations in (14). The
number of iterations required for Newton’s method depends
on the initial points. An effective method to find good initial
points is to use a reduced-order SISO system as described
in [12]. The SISO solution provides fixed points with high
accuracy and very low computational cost. Therefore, the
SISO model of each hotspot can be used as the initial
point in the Newton iterations. The convergence of Newton
iterations, i.e., the existence of fixed points, will depend on
the system parameters and the power consumption of each of
the components. Next, we analyze the region of convergence
of the power-temperature dynamics on the Odroid-XU3 board.

A. Region of Convergence for Power-Temperature Dynamics

The fixed-point function is given in (14) as

f(T∗) = (A− I)T∗ + BP∗. (15)

We can write the Jacobian matrix of f(T∗) as

Jf (T
∗) = (A− I) + BP∗′, (16)

where P∗′ is the derivative of the power consumption values
with respect to the temperatures. In each iteration of Newton’s
method, the temperature vector step is given by,

∆T∗k = −J−1f (T∗k)f(T∗k) (17)

where k denotes the current iteration of Newton’s method.
Using ∆T∗k, the temperature vector is updated as,

T∗k+1 = T∗k − J−1f (T∗k)f(T∗k), (18)

where subscripts k and k + 1 are used to denote temperature
in the current iteration and the next iteration, respectively.
Using (18), we can define the Newton function g(T∗k) as

g(T∗k) = T∗k + ∆T∗k. (19)

The Newton function gives all the temperatures that will be en-
countered during the evaluations of Newton’s method. We use
this definition of the Newton function to analyze the stability
and region of convergence of the power-temperature dynamics
of the system. Specifically, the system has a guaranteed
convergence to the unique fixed point by Contraction Mapping
Theorem (see p.220 in [33]) if the following conditions are
satisfied:
• Range of the Newton function is contained in the domain

of the function. If the domain of the function is defined
as the safe operating limits of the device, this condition
ensures that all the temperature vectors given by Newton’s
method lie within safe operating limits of the device.

• Norm of the Jacobian of the Newton function g(T∗k) is
less than 1.

These conditions will be satisfied for a range of power
consumption and system parameters. These bounds can be



6

found by analyzing the properties of J−1f (T∗) and f(T∗),
which is challenging due to the non-linearity. Therefore, in
order to evaluate the region of convergence of the system,
we analyze whether the previous conditions are satisfied for a
range of power consumption values.

In order to evaluate the region of convergence of the power-
temperature dynamics, we recursively evaluate the MIMO
model equations (15) to (19). The system parameters that
affect the region of convergence include A, B matrices and
the leakage power parameter of each resource. For a given
set of system parameters, the power-temperature dynamics
has a guaranteed convergence to a stable and safe fixed
point for a range of power consumption and temperature
values. The range of temperature for which the processor can
operate safely is typically determined by the manufacturer.
Therefore, the analysis performed in this section focuses on
the range of power consumption for which convergence is
guaranteed. As a first step, the nominal values of the system
parameters determined from system identification are used to
perform the simulations. Then, power consumption of the big
cluster and GPU, which are the resources with temperature
hotspots in the system, are swept from 0.0024 W to 4 W.
We chose this range of power consumption values, since it
is the typical power consumption range observed in a wide
range of benchmarks. For each power consumption pair, the
range of the Newton function g(T∗) and derivative of the
Newton function are evaluated over the allowable temperature
range of 37◦C to 120◦C. Using these results, the range of
power consumption values for which the power-temperature
dynamics in the system converges to a safe temperature is
determined.

In order to have guaranteed convergence, the norm of the
derivative must be less than 1 and range of the Newton
function must be contained in the domain. As we can see
in Figure 2, the maximum norm of the Jacobian is less than
1 for the entire range of power consumption values. However,
when the CPU power is greater 3.5 W, the range of the Newton

0.1
4

0.2

0.3

3 4

M
a
x
. 
N

o
rm

 o
f 

J
a
c
o

b
ia

n

0.4

3

GPU Dyn. Power (W)

0.5

2

CPU Dyn. Power (W
)2

0.6

1 1
0 0

Fig. 2. Maximum norm of the derivative of the Newton function when varying
the CPU and GPU power consumption.

0 1 2 3 4
0

1

2

3

4

 CPU Dyn. Power (W)

 

 

G
PU

 D
yn

. P
ow

er
 (W

)

Fig. 3. The region of power consumption values for which the range of
the Newton function is contained in the domain. The proposed technique
guarantees convergence when the total dynamic power consumption of the
CPU and GPU is less than about 3.5 W. This result is aligned with our
experiments on the Odroid-XU3 board where sustained operation at power
consumption higher than 3.5 W lead to thermal throttling of the system.

function g(T∗k) is no longer contained in the domain. This
means that there exists a temperature trajectory exceeding the
maximum safe temperature of the board. Similarly, if the GPU
power consumption is greater than 3.5 W, the range of the
Newton function is not contained in the domain, as shown
in Figure 3. Therefore, we can conclude that the system has
guaranteed convergence when the power consumption of the
CPU and GPU are in the shaded region shown in Figure 3. We
see that the system has guaranteed convergence when the total
dynamic power consumption of the CPU and GPU is less than
about 3.5 W. This agrees with our experiments on the Odroid-
XU3 board where sustained operation at power consumption
higher than 3.5 W lead to thermal throttling of the system.

B. Accelerating Newton Iterations

Newton’s method involves the calculation of J−1f (T∗k) in
each iteration. This can be computationally expensive since we
have to perform the inversion for multiple Newton iterations
every time the fixed points are evaluated. Therefore, we exploit
the structure of the temperature dynamics of the experimental
platform to speed up the Newton’s method. The Odroid XU3
board consists of a little CPU cluster, a big CPU cluster,
main memory and a GPU. Each CPU cluster contains four
physical cores. The temperature hotspots in this system include
the big cores and the GPU. Using this structure, the fixed-
point function can be simplified by separating the temperature-
dependent and temperature-independent terms as,

f(T∗) = (A− I)T∗ + B


plittle

pbig,1 + pbig,2sbig
pmem

pgpu,1 + pgpu,2sgpu

 , (20)

where pbig,1 and pgpu,1 are temperature-independent compo-
nents of the big cluster and GPU, respectively. Temperature-
dependent components of only the big cluster and GPU are
considered as they have the largest effect on the temperature



7

hotspots. The temperature-dependent components of power are
defined as,

pbig,2 = Vbigκ1,big, sbig = T 2
big exp

(−κ2,big
Tbig

)
,

pgpu,2 = Vgpuκ1,gpu, sgpu = T 2
gpu exp

(−κ2,gpu
Tgpu

)
.

Similarly, the Jacobian Jf (T
∗) can be written as,

Jf (T
∗) = (A− I) + pbig,2s̃bigb1

[
0 0 1 0 0

]
+ pgpu,2s̃gpub4

[
0 0 0 0 1

]
(21)

where bi denotes the ith column of the B matrix and

s̃cpu = exp
(−κ2,big

Tbig

)
(2Tbig + κ2,big),

s̃gpu = exp
(−κ2,gpu

Tgpu

)
(2Tgpu + κ2,gpu). (22)

Since s̃cpu and s̃cpu are scalars, (21) can be written as,

Jf (T
∗) = (A− I) + pbig,2b1s̃big

[
0 0 1 0 0

]
+ pgpu,2b4s̃gpu

[
0 0 0 0 1

]
,

= (A− I) +
[
pbig,2b1 pgpu,2b4

]
5×2

[
s̃big 0
0 s̃gpu

]
2×2[

0 0 1 0 0
0 0 0 0 1

]
2×5

,

= (A− I)

+
[
pbig,2b1 pgpu,2b4

]
5×2

[
s̃big 0
0 s̃gpu

]
2×2

V2×5,

where V =

[
0 0 1 0 0
0 0 0 0 1

]
2×5

.

When Newton’s method is used to solve the fixed-point
function, the temperature step in each iteration is given by

∆T∗ = −J−1f (T∗)f(T∗). (23)

Without changing the value of ∆T∗, we can write

∆T∗ = −((A− I)−1Jf (T
∗))−1(A− I)−1f(T∗). (24)

Now, let f1(T∗) = (A − I)−1f and f̃1(T∗) = (A −
I)−1Jf (T

∗). Using (20), f1(T∗) is written as,

f1(T∗) = T∗ + (A− I)−1B


plittle

pbig,1 + pbig,2sbig
pmem

pgpu,1 + pgpu,2sgpu

 . (25)

Similarly, f̃1(T∗) = (A− I)−1Jf (T
∗) is written as,

f̃1(T∗) = I + (A− I)−1
[
pbig,2b1 pgpu,2b4

]
5×2[

s̃big 0
0 s̃gpu

]
2×2

V2×5. (26)

In order to simplify the notation, we can define matrices U
and C as,

U = (A− I)−1
[
pbig,2b1 pgpu,2b4

]
,

C = (A− I)−1B


plittle 0 0
pbig,1 pbig,2 0
pmem 0 0
pgpu,1 0 pgpu,2

 . (27)

Using this notation, (25) can be rewritten as,

f1(T∗) = T∗ + c1 +
[
c2 c3

] [sbig
sgpu

]
. (28)

where ci denotes the ith column of C. Similarly, (26) can be
rewritten as,

f̃1(T∗) = I + U

[
s̃big 0
0 s̃gpu

]
V. (29)

In order to calculate the step size ∆T∗, the inverse of f̃1 has to
be evaluated at each step. The inverse can be easily calculated
using the matrix inversion lemma [34] on (29). Consequently,
the inverse of f̃1(T∗) in (29) is written as

f̃−11 (T∗) = I−U

([
1/s̃big 0

0 1/s̃gpu

]
+ VU

)−1
V. (30)

This simplification reduces to an inversion of a 2× 2 matrix,
which can be achieved with simple algebraic operations. The
evaluation of U requires computing (A− I)−1, which can be
computed offline and stored in the system.
Using (25) and (29), the temperature step can be written as,

∆T∗ = −f̃−11 (T∗) ∗ f1(T∗). (31)

It can be seen that the calculation of ∆T∗ consists of only a
matrix multiplication and the matrix inversion is eliminated.
This translates to a signification reduction in the computational
overhead of the Newton iterations. A detailed analysis of the
execution time savings is presented in Section VI-F.

V. TEMPERATURE CONTROL USING FIXED POINTS

One of the primary applications of the fixed-point prediction
is to enable better dynamic thermal and power manage-
ment (DTPM) algorithms. State-of-the-art DTPM algorithms
typically throttle the entire system when a thermal violation is
detected. This causes a performance loss for all the applica-
tions running in the system. Moreover, DTPM algorithms start
throttling only after the temperature violates a threshold, which
is not desirable. In contrast to these approaches, the fixed-point
prediction can be used to make better DTPM decisions. It
provides an estimate of the long-term thermal behavior of the
system. This estimate can be used to determine the possibility
of a thermal violation in the future. In addition to the fixed-
point prediction, the time to reach the fixed-point estimate [12]
gives a lower bound on the time at which the fixed point is
attained.

Estimates of the fixed point and the time to reach can
be used to design a simple control algorithm, as shown in
Figure 4. The algorithm starts by computing the fixed point
Tfp, followed by the time to reach the fixed point tfp. A
thermal violation is imminent if Tfp is greater than a specified
thermal limit T ∗ and tfp is less than a specified time limit
t∗. In these cases, the algorithm finds the process with the
highest power consumption. This is achieved by monitoring
the utilization of active processes over a one-second window
and choosing the process with the highest utilization.1 We use

1We can also use tools such as Powertop (https://01.org/powertop) to obtain
precise estimates of the power consumption of each process.

https://01.org/powertop


8

Every 100 ms

Compute the fixed point 
prediction 𝑇"#

Compute the time to reach 
the fixed point 𝑡"#

𝑇"# ≥ 𝑇∗	AND	
𝑡"# ≤ 𝑡∗

Yes

No

Find process with highest 
power consumption

Migrate the process to
little cluster

Fig. 4. Overview of the proposed control algorithm.

a one-second window to ensure that momentary peaks in the
power consumption are filtered out. Then, it moves the process
to the low-power processors in the system. Once the process
is moved to the low-power processor it is kept there for a fixed
period (one control interval in our implementation). After the
period is over, the default scheduling algorithms on the device
are free to move the process back to the big core as a function
of its processing requirements. This ensures that the process is
not starved of computing resources once the temperature of the
device is within safe limits. In addition to moving the process
to low-power processors, we can also reduce the frequency of
the core it is running on such that processes running on other
cores are not penalized. However, the Odroid XU3 board used
in our experimental evaluations allows control of frequency at
the granularity of clusters (A15 or A7). Due to this limitation
of the hardware platform, the control algorithm migrates the
process with the highest power consumption to the low-power
processors.

We invoke the control algorithm every 100 ms at runtime.
We choose a 100 ms interval since the frequency management
governors in typical smartphone operating systems, e. g.
Android, apply frequency control decisions with this period.
That is, the frequency governors present in the system evaluate
the utilization of resources and the workload every 100 ms.
Based on this evaluation, new frequencies for each resource
are set. Therefore, the 100 ms interval for the invocation of the
control algorithm allows us to capture these dynamic changes
in the system (e.g. a new task starts to consume high power
and raises the temperature). We note that the execution interval
of the control algorithm can be changed dynamically as a
function of the rate at which new processes are launched.
For example, if new applications are being launched more

frequently than every 100 ms we can decrease the execution
interval of the control algorithm at the expense of increased
runtime overhead.

The main benefit of our algorithm is that it only penalizes
the processes that lead to thermal violations. All other pro-
cesses running in the system are not penalized; hence, they can
continue to operate with maximum performance. Furthermore,
processes with real-time requirements can register themselves,
so that they are not penalized by the algorithm. An illustration
of the proposed algorithm is presented in the experiments.

One of the most important components of the control algo-
rithm is the accurate prediction of the time to reach the fixed
point. The approach proposed in [12] uses two temperature
readings separated by a fixed amount of time to predict the
time to reach the fixed point. While this approach provides a
prediction with a very low computational overhead, the error in
the prediction can be high. Therefore, in this paper, we use an
improved approach that utilizes a larger number of samples to
determine tfp. Specifically, we maintain a vector that contains
the envelope of the temperature measurements. The envelope
of the temperature at any time step k can be expressed as:

Tu[kTs] = max{T [(k−M)Ts], T [(k−M+1)Ts], . . . , T [kTs]}
(32)

where Tu[k] is the envelope temperature at time kTs using
a sampling period of Ts, M is the size of the window over
which we take the maximum, T [(k−M)Ts] is the temperature
at time (k − M)Ts and T [kTs] is the temperature at time
kTs. We take the maximum over a window to ensure that
momentary spikes in the temperature are filtered out. An
example of the temperature envelope is provided in Figure 7 in
the experimental evaluations. The envelope data is then used
to fit a first-order exponential model given by:

T [kTs] = Tu,init + (Tfix − Tu,init)(1− e−
kTs
τ ) (33)

where Tu,init is the initial upper envelope temperature, Tfix
is the fixed-point prediction and τ is the time constant for
the first-order model. We use a nonlinear curve fitting tool to
fit the upper envelope temperature data to the model in (33).
The quality of the fit depends on the number of data points
used in the curve fitting. A larger number of data points
ensures a fit with lower error. However, the system needs to
wait for a longer period of time to allow the accumulation of
upper envelope temperature. In contrast, fewer data points can
provide a faster estimation of the time to fixed point, albeit
with a higher error. We explore this trade-off to determine the
optimal number of data points, as shown in Section VI-D. In
addition to the first-order exponential model, we evaluated a
second-order model to estimate the time to the fixed point.
However, we observed that the first time constant dominates
the second time constant, implying that the model is strongly
first order. Therefore, we use a first-order model in our
experimental evaluations.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We perform evaluations of the proposed fixed-point predic-
tion scheme using the Odroid-XU3 board. The Odroid-XU3



9

board uses the Samsung Exynos 5422 system-on-chip [14] that
integrates four Cortex-A15 (big) cores, four Cortex-A7 (little)
cores, and a Mali T628 GPU. It also includes thermal sensors
to measure the temperature of each big core and the GPU.
Furthermore, the platform provides current sensors that allow
us to obtain the power consumption of the little cluster, big
cluster, main memory, and the GPU at runtime. The board is
installed with Android 7.1 running Linux kernel 3.10.9. We
invoke the fixed-point framework and the control algorithm
every 100 ms, along with the default frequency governors.
The proposed approach is evaluated on Android benchmarks,
such as 3DMark and Nenamark3. We choose 3DMark and
Nenamark3 benchmarks because they are able to give standard
metrics to measure the performance of various devices and
algorithms. Both benchmarks run a series of tests on the device
and report a metric at the end. Hence, we can compare the
performance of the Odroid-XU3 board with and without our
proposed approach.

B. Parameter Estimation and Accuracy Evaluation

The thermal fixed-point analysis presented in this paper
does not assume any specific values for the system param-
eters. However, in order to validate the fixed-point analysis,
system parameters have to be characterized. Specifically, we
characterize the system parameters (e.g., matrices A, B, and
the leakage power) for the experimental platform. We use the
ssest function in the system identification of MATLAB [35]
to the thermal model matrices A and B. From the system
identification, we observe that both A and B matrices are full
rank. Similarly, nonlinear curve fitting is used to estimate the
leakage power parameters for the big cluster and GPU. Further
details on the methodology used to characterize the parameters
are presented in [12] and [21].
Accuracy of Fixed-Point Predictions: The effectiveness of
the proposed control algorithm depends on the accuracy of
the fixed-point predictions. Therefore, we perform a detailed
accuracy evaluation with ten compute-intensive benchmarks.
Across the ten benchmarks, the highest error observed is 5.8◦C
which translates to a 6% error. On average, the proposed
analysis predicts the fixed point with about 3◦C (5%) error.
For more details of the accuracy, such as the error for each
benchmark, please refer to [12].

C. Power-Temperature Trajectory for MIMO Iterations

In this section, the fixed-point prediction is compared
against the measured power-temperature trajectory for the
GPU. In order to get an accurate experimental fixed point, the
total power consumption of the device is kept at a constant
level of about 1.18 W. Then, the fixed point of the GPU is
calculated using the measured power consumption values, as
shown using a red diamond in Figure 5. It is seen that the
experimental fixed-point value closely matches the predicted
fixed point. In addition to the prediction, simulations using
different initial values of temperature and power consumption
are performed. The simulations use the thermal and leakage
power models to update the temperature and leakage power
iteratively. We see that all the simulated trajectories converge

to the predicted fixed point. Moreover, the measured power-
temperature trajectory closely follows the simulated trajectory.
This demonstrates that the thermal and power models identi-
fied closely match the dynamics of the device.

The temperature trajectory in Figure 5 can also be used to
estimate CPU to environment thermal resistance of the device.
The thermal resistance is defined as:

θ =
∆T

P
(34)

where θ is the thermal resistance, ∆T is the temperature
differential, and P is the power consumption. From the figure,
we see that ∆T is 23◦C while the power consumption P is set
as 1.18 W. Using this the thermal resistance θ is obtained as
19.48◦C/W. We can also obtain the thermal resistance using
the SISO model in (5). Specifically, we can write the thermal
resistance as:

θ =
b

1− a
. (35)

Using the parameters obtained using system identification for
a = 0.9994 and b = 0.0121, we can calculate the thermal
resistance as 20.1◦C/W, which is in close agreement to the
value obtained experimentally. This shows that the proposed
system identification methodology is able to accurately capture
the thermal dynamics of the system. We note that more
detailed models for the thermal resistance can be obtained if
the details about the location of temperature sensors and chip
packaging are publicly available. However, in the absence of
these details we use system identification to gain insights into
the thermal dynamics of the system.

0 0.5 1 1.5

Power Consumption (W)

40

50

60

70

80

90

T
e

m
p

e
ra

tu
re

 (
o
C

)

Fig. 5. Power trajectory of the GPU when the total power consumption of
the device is held constant at about 1.18 W

D. Time to Reach the Fixed Point

Accurate estimation of the time to reach the fixed point is
an important component of the proposed control algorithm.
Underestimation of the time to fixed point can lead to thermal
issues, while overestimation leads to performance loss due to
aggressive throttling. As explained in Section V, the accuracy
of the time to fixed-point estimation depends on the number
of data points used to fit the first-order model. Therefore, we



10

2 4 6 8 10

Sampling rate (Hz)

400

600

800

1000

1200

1400

1600

1800

S
e

c
o

n
d

s
 o

f 
D

a
ta

 u
s

e
d

2

4

6

8

10

12

14

A
b

s
. 
P

e
rc

e
n

ta
g

e
 E

rr
o

r

Fig. 6. Comparison of prediction of time to the fixed point.

evaluate the accuracy of the time to fixed-point estimation as a
function of the number of data points used for the estimation.
We can vary the number of samples used in the fitting by
controlling the delay in fitting or by controlling the sampling
rate of the temperature measurements. Figure 6 shows the error
in the time to the fixed point as we vary the sampling rate
and the delay in fitting. We observe that using temperature
measurements in a shorter window and a lower sampling rate
results in a higher error. As we increase the length of the
window and the sampling rate, the error progressively reduces.
We also observe that length of the window is more important
than the sampling rate of the temperature measurements. For
instance, using a 200 s window at a sampling rate of 10 Hz
results in an error of only 5%, while shorter windows result
in a higher error. A 200 s window is acceptable to obtain an
accurate estimation of the time to fixed point as it takes more
than 500 s for the system to attain steady state.

Figure 7 shows the comparison of the measured tempera-
ture, upper envelope temperature, and the first-order fit, for
the Vortex workload in the SPEC benchmark suite, using the
temperature measurements in the first 200 s. We see that the
first-order fit closely follows the upper envelope temperature.
Moreover, the time at which the first-order fit reaches the
steady state differs from the actual time by about 10%. This
error is acceptable since the fit is repeated every second.
Therefore, as more data becomes available, the error decreases
continuously. As a result of this, the control algorithm has the
most up-to-date estimation of the time to the fixed point.

E. Application Control Using Fixed-Point predictions

This section presents an illustration of the control algorithm
using fixed-point predictions. We run a real-time GPU bench-
mark along with a computationally intensive task in the back-
ground to evaluate the effectiveness of the control algorithm.
The default policy is to use the thermal management algorithm
in the Linux kernel version 3.10.9. Specifically, it uses fixed
temperature thresholds and the ARM intelligent power allo-
cation (IPA) algorithm to control the temperature [36]. ARM
IPA uses a proportional-integral-derivative feedback controller
(PID) to manage the temperature of the device. The IPA policy

0 500 1000 1500 2000
40

50

60

70

80

 Measurement
 Upper envelope
 First order fit

 Time (s)

 

 

Te
m

pe
ra

tu
re

 (
°C

)

Fig. 7. Comparison of temperature measurement, upper envelope of the
temperature, and our first-order fit.

TABLE II
MAXIMUM TEMPERATURE OF THE SYSTEM WHEN USING THE DEFAULT

POLICY, DTPM, AND THE PROPOSED CONTROL ALGORITHM,
RESPECTIVELY. A TEMPERATURE VIOLATION OCCURS WHEN THE

MAXIMUM TEMPERATURE IS HIGHER THAN 85◦C

Scenario Number of thermal violations

3DMark (Baseline) 19
3DMark + BML (Baseline) 1294
3DMark + BML (Proposed approach) 176

has a control temperature set at the time of its initialization. At
runtime, it compares the control temperature to the maximum
temperature observed in the system. Then, it finds the error
between the control temperature and measured maximum
temperature. Based on this error term, the IPA algorithm sets
the frequency of each computing resource. We use the IPA
algorithm as the baseline in our comparisons. The on-board
fan is disabled during these evaluations since it is not a viable
option for mobile platforms.
3D Mark alone: We start by running the 3DMark bench-
mark alone without introducing any background applications.
Specifically, we run graphics test 1 (GT1) and graphics test
2 (GT2) benchmarks in the 3DMark application. We obtain an
upper bound on the performance with this experiment. This
experiment also gives us the baseline temperature profile, as
shown in Table II. A thermal violation occurs whenever the
maximum temperature is greater than 85◦C, the temperature
at which the default governor starts throttling the system.
The first row of Table II shows that there are 19 thermal
violations when running 3DMark alone. We also analyze the
power consumption of each SoC component when running the
3DMark application in Figure 8. The GPU consumes about
42% of the total power since 3DMark is a GPU-intensive
application. This is followed by the big cluster that consumes

TABLE III
COMPARISON OF PERFORMANCE OF THREE APPLICATIONS WITH

PROPOSED CONTROL

Test App. Alone App. + BML App. + BML with
Proposed Control

3DMark GT1 97 fps 86 fps 93 fps

3DMark GT2 51 fps 49 fps 52 fps

Nenamark3 3.5 levels 3.4 levels 3.5 levels



11

 GPU
2.3 W

Fig. 8. Power consumption distribution of 3DMark.

38% of the power to perform computational parts of 3DMark.
3D Mark + BML (IPA): In the second part of the evaluation,
we re-run the 3DMark benchmark along with the Basicmath
Large (BML) application [37] in the background. BML is a
CPU-intensive application that performs mathematical com-
putations. As a result, it leads to an increase in the big core
power consumption, which causes the total power consumption
to increase to 3.65 W. The increase in the big core power
consumption also increases its contribution to the total power
from 38% to 60%, as shown in Figure 8. The higher power
consumption causes the temperature to increase quickly be-
yond 85◦C. Indeed, the number of thermal violations increases
to 1294. As a result of this increase, the default IPA thermal
governor starts to reduce the frequency of all the resources in
the system. This leads to an undesirable drop in performance
of GT1 and GT2, as shown in the third column of Table III.
Specifically, the frame rate of GT1 decreases from 97 to 86
frames per second (fps), while the frame rate of GT2 decreases
from 51 fps to 49 fps.

Proposed Control: Finally, we apply the proposed control
algorithm when both 3D Mark and BML are running on the
board. As expected, BML causes the power consumption and
the temperature to rise. The proposed algorithm keeps track
of the increase in the power consumption and updates its
estimates of the fixed point continuously. As soon as it detects
that the thermal limit will be breached in the near future,
it migrates BML to the little cluster to reduce the number
of thermal violations. The migration successfully reduces the
number violations to 176, as shown in the third row of
Table II. The migration also leads to a reduction of the big core
power contribution from 60% to 42%, as shown in Figure 8.
Moreover, the migration of BML to the little cluster causes its
power consumption to increase from 7% to 16% of the total
power. The migration effectively throttles BML with minimal
performance loss for the 3DMark application, as seen in last
column of Table III.

We repeat the same with the Nenamark3 benchmark in
order to evaluate the control algorithm on a benchmark with
different characteristics. The Nenamark3 benchmark measures
the number of levels the platform can run at a given frame
rate. Once the frame rate drops below the reference level,
the benchmark terminates and reports the number of levels
completed. The last row of Table III summarizes the perfor-
mance obtained for the Nenamark3 benchmark under the three

 GPU
1.4 W

Fig. 9. Power consumption distribution for the Nenamark3 benchmark.

1 2 3 4 5 6
20
30
40
50
60
70
80
90

100
110
120

Optimized

 Iterations

 

 

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Default [12]

Fig. 10. Comparison of the execution time of Newton’s method using the
default implementation [12] and the proposed optimized implementation.

scenarios. As expected, the performance drops when we run
BML along with Nenamark3. In contrast, the proposed control
algorithm recovers the performance back to the baseline level.
Furthermore, the power consumption follows a trend similar
to that of 3DMark, as shown in Figure 9. In summary, the
control algorithm effectively detects and migrates the power-
hungry applications without affecting the performance of the
foreground application.

Implementation Overhead of Proposed Control: The im-
plementation overhead of the proposed algorithm consists of
two parts. The first part involves the evaluation of the fixed
points by performing Newton’s method iterations. With our
accelerated approach, the computation of the fixed points with
six Newton iterations takes about 63 µs, as detailed in the next
section. This computation has to be performed every 100 ms
i.e. with every invocation of the control algorithm. The second
part of the overhead is incurred when we find the process with
the highest power consumption. This part takes about 1 s since
we profile the utilization of all processes in the system in a 1 s
window. A 1 s window is needed to ensure that momentary
peaks in the power consumption can be filtered out. This
overhead is not significant since it is invoked infrequently,
i.e. only when a thermal violation is predicted. Furthermore,



12

we can reduce the 1 s overhead by running a background
task that keeps track of the process with the highest power
consumption. In summary, the control algorithm takes only
about 63 µs during normal course of execution, which is less
than 0.1% of the 100 ms interval.

F. Effect of Accelerated Fixed-Point Computation

The runtime nature of the fixed-point computation neces-
sitates fast and efficient implementation of the fixed-point
iterations. Therefore, this section compares the implementation
overheads of Newton’s method with and without the proposed
optimization. The default implementation of Newton’s method
takes about 27 µs for a single iteration and increases linearly
with increasing iterations, as shown in Figure 10. The opti-
mized method, on the other hand, takes about 24 µs for one
iteration and increases at a much lower rate than the default
implementation. Overall, we achieve speed up of about 1.8×
when compared to the default implementation.

VII. CONCLUSION

This paper presented a theoretical analysis of the temper-
ature dynamics in multiprocessor systems. We first solved
the system of MIMO equations to find the temperature fixed
points in the system. Then, we experimentally derived the
region of convergence of the CPU-GPU dynamics. Finally, we
utilized a control algorithm to manage the temperature of the
system without sacrificing the performance. We demonstrated
the control algorithm on the Exynos 5422 system on a chip.

Even though we focused our analysis on mobile systems, it
can be applied to other low-power devices such as wearables.
This can be achieved by modeling the dynamics of these sys-
tems and then using the MIMO solution presented in this work.
The analysis can be used to improve the thermal behavior in
future processors. In particular, the fixed-point analysis can
be used to detect power attacks in the system by detecting
processes that lead to a high steady-state temperature.

Acknowledgements: This work was supported partially by
Semiconductor Research Corporation (SRC) task 2721.001
and National Science Foundation grant CNS-1526562.

REFERENCES
[1] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,

and M. R. Stan, “HotSpot: A Compact Thermal Modeling Methodology
for Early-Stage VLSI Design,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 14, no. 5, pp. 501–513, 2006.

[2] B. Egilmez, G. Memik, S. Ogrenci-Memik, and O. Ergin, “User-Specific
Skin Temperature-Aware DVFS for Smartphones,” in Proc. 2015 Design,
Autom. & Test in Europe Conf. & Exhibition, 2015, pp. 1217–1220.

[3] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Hetero-
geneous Chip Multiprocessors,” Computer, vol. 38, no. 11, pp. 32–38,
2005.

[4] Samsung Electronics Co. (2016) Samsung Expands Recall to All
Galaxy Note7 Devices. http://www.samsung.com/us/note7recall/ Ac-
cessed 07/14/2017.

[5] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha, “System-Level Dynamic
Thermal Management for High-Performance Microprocessors,” IEEE
Trans. Comput.-Aided Design of Integr. Circuits Syst., vol. 27, no. 1,
pp. 96–108, 2008.

[6] V. Pallipadi and A. Starikovskiy, “The Ondemand Governor,” in Proc.
of the Linux Symp., vol. 2, 2006, pp. 215–230.

[7] S. Pagani, H. Khdr, J.-J. Chen, M. Shafique, M. Li, and J. Henkel, “Ther-
mal Safe Power (TSP): Efficient Power Budgeting for Heterogeneous

Manycore Systems in Dark Silicon,” IEEE Trans. Comput., vol. 66,
no. 1, pp. 147–162, 2017.

[8] A. Vassighi and M. Sachdev, “Thermal Runaway in Integrated Circuits,”
IEEE Trans. Device Mater. Rel., vol. 6, no. 2, pp. 300–305, 2006.

[9] W. Liao and L. He, “Coupled Power and Thermal Simulation with Active
Cooling,” in Int. Workshop on Power-Aware Comput. Syst., 2003, pp.
148–163.

[10] S. Sharifi, D. Krishnaswamy, and T. S. Rosing, “PROMETHEUS: A
Proactive Method for Thermal Management of Heterogeneous MP-
SoCs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., pp.
1110–1123, 2013.

[11] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage
Current Mechanisms and Leakage Reduction Techniques in Deep-
Submicrometer CMOS Circuits,” Proc. of the IEEE, vol. 91, no. 2, pp.
305–327, 2003.

[12] G. Bhat, S. Gumussoy, and U. Y. Ogras, “Power-Temperature Stability
and Safety Analysis for Multiprocessor Systems,” ACM Trans. Embed.
Comput. Syst., vol. 16, no. 5s, pp. 145:1–145:19, 2017.

[13] O. Sahin and A. K. Coskun, “QScale: Thermally-Efficient QoS Man-
agement on Heterogeneous Mobile Platforms,” in Proc. Int. Conf. on
Comput.-Aided Design, 2016, pp. 125:1–125:8.

[14] Hardkernel, “ODROID-XU3,” https://wiki.odroid.com/old product/
odroid-xu3/odroid-xu3 Accessed 24 Nov. 2018, 2014.

[15] P. Li, L. T. Pileggi, M. Asheghi, and R. Chandra, “Efficient Full-Chip
Thermal Modeling and Analysis,” in Proc. Int. Conf. on Comput.-Aided
Design, 2004, pp. 319–326.

[16] Y. Zhan and S. S. Sapatnekar, “A High Efficiency Full-Chip Thermal
Simulation Algorithm,” in Proc. Int. Conf. on Comput.-Aided Design,
2005, pp. 635–638.

[17] F. Beneventi, A. Bartolini, A. Tilli, and L. Benini, “An Effective Gray-
Box Identification Procedure for Multicore Thermal Modeling,” IEEE
Trans. Comput., vol. 63, no. 5, pp. 1097–1110, 2014.

[18] U. Y. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung, “Design
and Management of Voltage-Frequency Island Partitioned Networks-on-
Chip,” IEEE Trans. on Very Large Scale Integration Systems, vol. 17,
no. 3, pp. 330–341, 2009.

[19] P. Bogdan, S. Garg, and U. Y. Ogras, “Energy-efficient computing from
systems-on-chip to micro-server and data centers,” in Intl. Green and
Sustainable Computing Conference (IGSC), 2015, pp. 1–6.

[20] G. Bhat, S. Gumussoy, and U. Y. Ogras, “Power and thermal analysis of
commercial mobile platforms: Experiments and case studies,” in 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2019, pp. 144–149.

[21] G. Bhat, G. Singla, A. K. Unver, and U. Y. Ogras, “Algorithmic
Optimization of Thermal and Power Management for Heterogeneous
Mobile Platforms,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 26, no. 3, pp. 544–557, 2018.

[22] R. Cochran and S. Reda, “Thermal Prediction and Adaptive Control
Through Workload Phase Detection,” ACM Trans. Des. Autom. of
Electron. Syst., vol. 18, no. 1, pp. 7:1–7:19, 2013.

[23] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras, “Predictive Dynamic
Thermal and Power Management for Heterogeneous Mobile Platforms,”
in Proc. 2015 Design, Autom. & Test in Europe Conf. & Exhibition,
2015, pp. 960–965.

[24] K. Rao, W. Song, S. Yalamanchili, and Y. Wardi, “Temperature Reg-
ulation in Multicore Processors Using Adjustable-Gain Integral Con-
trollers,” in Proc. IEEE Conf. on Control Appl. (CCA), 2015, pp. 810–
815.

[25] F. Zanini, D. Atienza, and G. De Micheli, “A Control Theory Approach
for Thermal Balancing of MPSoC,” in Proc. Asia and South Pacific
Design Autom. Conf., 2009, pp. 37–42.

[26] A. Leva, F. Terraneo, I. Giacomello, and W. Fornaciari, “Event-Based
Power/Performance-Aware Thermal Management for High-Density Mi-
croprocessors,” IEEE Trans. Control Syst. Tech., vol. 26, no. 2, pp. 535–
550, 2018.

[27] A. Mutapcic, S. Boyd, S. Murali, D. Atienza, G. De Micheli, and
R. Gupta, “Processor Speed Control With Thermal Constraints,” IEEE
Trans. Circuits and Syst. I: Regular Papers, vol. 56, no. 9, pp. 1994–
2008, 2009.

[28] S. Heo, K. Barr, and K. Asanović, “Reducing Power Density through
Activity Migration,” in Proc. 2003 Int. Symp. on Low Power Electron.
and Design, 2003, pp. 217–222.

[29] P. Dadvar and K. Skadron, “Potential Thermal Security Risks,” in 21st
IEEE Semicond. Thermal Meas. & Management Symp., 2005, pp. 229–
234.

[30] J. Hasan, A. Jalote, T. Vijaykumar, and C. E. Brodley, “Heat Stroke:
Power-Density-Based Denial of Service in SMT,” in 11th Int. Symp. on

http://www.samsung.com/us/note7recall/
https://wiki.odroid.com/old_product/odroid-xu3/odroid-xu3
https://wiki.odroid.com/old_product/odroid-xu3/odroid-xu3


13

High-Performance Computer Arch., 2005, pp. 166–177.
[31] J. Kong, J. K. John, E.-Y. Chung, S. W. Chung, and J. Hu, “On the

Thermal Attack in Instruction Caches,” IEEE Trans. Depend. and Sec.
Comput., vol. 7, no. 2, pp. 217–223, 2010.

[32] K. E. Atkinson, An Introduction to Numerical Analysis. John Wiley &
Sons, 2008.

[33] W. Rudin, Principles of Mathematical Analysis, 3rd ed. McGraw-Hill,
New York, 1976.

[34] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. SIAM,
2000, vol. 71.

[35] Mathworks. (2018) System Identification Toolbox. https://www.
mathworks.com/products/sysid.html Accessed 25 Jan. 2019.

[36] X. Wang. (2015) Intelligent Power Allocation. http://infocenter.arm.
com/help/topic/com.arm.doc.dto0052a/DTO0052A intelligent power
allocation white paper.pdf, Accessed 4 Dec. 2018.

[37] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A Free, Commercially Representative
Embedded Benchmark Suite,” in Proc. Int. Workshop on Workload Char.,
2001, pp. 3–14.

Ganapati Bhat received his B.Tech degree in Elec-
tronics and Communication from Indian Institute of
Technology (ISM), Dhanbad, India in 2012. From
2012-2014, he worked as a software engineer at
Samsung Research and Development Institute, Ban-
galore, India. He is currently a PhD candidate in
Computer Engineering at the School of Electrical,
Computer and Energy Engineering, Arizona State
University. His research interests include energy
optimization in computing systems, dynamic thermal
and power management, and energy management for

wearable systems.

Dr. Gumussoy is a research scientist at Autonomous
Systems & Control group at Siemens Corporate
Technology in Princeton, NJ. His general research
interests are learning, control, identification, opti-
mization and scientific computing with particular fo-
cus on reinforcement learning, optimal-adaptive con-
trol, frequency domain system identification, time-
delay systems and their numerical implementations.

He serves as an Associate Editor in IEEE Trans-
actions on Control Systems Technology and IEEE
Conference Editorial Board.

Dr. Gumussoy received his B.S. degrees in Electrical & Electronics Engi-
neering and Mathematics from Middle East Technical University at Turkey in
1999 and M.S., Ph.D. degrees in Electrical and Computer Engineering from
The Ohio State University at USA in 2001 and 2004. He worked as a system
engineer in defense industry (2005-2007) and he was a postdoctoral associate
in Computer Science Department at University of Leuven (2008-2011). He
was a principal control system engineer in Controls & Identification Team at
MathWorks where his contributions ranges from state-of-the-art numerical
algorithms to comprehensive analysis & design tools in Control System,
Robust Control, System Identification and Reinforcement Learning Toolboxes.

Umit Y. Ogras received his Ph.D. degree in Elec-
trical and Computer Engineering from Carnegie
Mellon University, Pittsburgh, PA, in 2007. From
2008 to 2013, he worked as a Research Scientist
at the Strategic CAD Laboratories, Intel Corpora-
tion. He is currently an Associate Professor at the
School of Electrical, Computer and Energy Engi-
neering. Recognitions Dr. Ogras has received include
Strategic CAD Labs Research Award, 2012 IEEE
Donald O. Pederson Transactions on CAD Best
Paper Award, 2011 IEEE VLSI Transactions Best

Paper Award and 2008 EDAA Outstanding PhD. Dissertation Award. His
research interests include digital system design, embedded systems, multicore
architecture and electronic design automation with particular emphasis on
multiprocessor systems-on-chip (MPSoC).

https://www.mathworks.com/products/sysid.html
https://www.mathworks.com/products/sysid.html
http://infocenter.arm.com/help/topic/com.arm.doc.dto0052a/DTO0052A_intelligent_power_allocation_white_paper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dto0052a/DTO0052A_intelligent_power_allocation_white_paper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dto0052a/DTO0052A_intelligent_power_allocation_white_paper.pdf

	I Introduction
	II Related Work
	III Background and Overview
	III-A Power and Temperature Models
	III-B Background on Fixed-Point Analysis of the SISO System
	III-B1 Necessary and Sufficient Conditions for the Existence of Fixed Point(s)
	III-B2 Stability of the Fixed Points


	IV Fixed-Point Analysis for MIMO System
	IV-A Region of Convergence for Power-Temperature Dynamics
	IV-B Accelerating Newton Iterations

	V Temperature Control using Fixed Points
	VI Experimental Evaluation
	VI-A Experimental Setup
	VI-B Parameter Estimation and Accuracy Evaluation
	VI-C Power-Temperature Trajectory for MIMO Iterations
	VI-D Time to Reach the Fixed Point
	VI-E Application Control Using Fixed-Point predictions
	VI-F Effect of Accelerated Fixed-Point Computation

	VII Conclusion
	Biographies
	Ganapati Bhat
	Dr. Gumussoy
	Umit Y. Ogras


