
1

Model-Predictive Control with Inverse Statics
Optimization for Tensegrity Spine Robots

Andrew P. Sabelhaus, Huajing Zhao, Edward L. Zhu,
Adrian K. Agogino, Alice M. Agogino,

Abstract—Robots with flexible spines based on tensegrity
structures have potential advantages over traditional designs with
rigid torsos. However, these robots can be difficult to control due
to their high-dimensional nonlinear dynamics and actuator con-
straints. This work presents two controllers for tensegrity spine
robots, using model-predictive control (MPC) and inverse statics
optimization. The controllers introduce two different approaches
to making the control problem computationally tractable. The
first utilizes smoothing terms in the MPC problem. The second
uses a new inverse statics optimization algorithm, which gives
the first feasible solutions to the problem for certain tensegrity
robots, to generate reference input trajectories in combination
with MPC. Tracking the inverse statics reference input trajectory
significantly reduces the number of tuning parameters. The
controllers are validated against simulations of two-dimensional
and three-dimensional tensegrity spines. Both approaches show
noise insensitivity and low tracking error, and can be used for
different control goals. The results here demonstrate the first
closed-loop control of such structures.

Index Terms—Predictive control, robot control, robot motion,
soft robotics, inverse statics, tensegrity robotics

I. INTRODUCTION

Quadruped (four-legged) robots that are designed with rigid
torsos can be limited in the types of terrain they are able
to safely traverse [1], [2], [3]. Alternatively, when quadruped
robots are constructed with spine-like flexible bodies that
include actuation, significant control challenges are often
encountered [4]. Few dynamics-based closed-loop control ap-
proaches have been developed for robots like these. Instead,
authors commonly use kinematics-only models [5], [6], model-
free control using machine learning [7], [8], [9], decoupled
controllers for different parts of the robot [4], or the replaying
of open-loop inputs [10] among other approaches.

The Laika project, named for the first dog in space, is an
ongoing research effort to develop a quadruped robot with a
flexible, actuated spine [11]. Laika’s spine is developed as a
form of the previously-investigated ULTRA Spine (Underac-
tuated Lightweight Tensegrity Robot Spine) [12], [13].

This work was supported by NASA Space Technology Research Fellowship
no. NNX15AQ55H. (Corresponding author: Andrew P. Sabelhaus.)

A.P. Sabelhaus and A.M. Agogino are with the Department of Mechanical
Engineering, University of California Berkeley, Berkeley CA 94720 USA
(email: apsabelhaus@berkeley.edu, agogino@berkeley.edu).

H. Zhao is with the Department of Mechanical Engineering, University of
Michigan, Ann Arbor MI 48109 USA (email: hjzhao@umich.edu).

E. Zhu is with the US Army Research Lab, Vehicle Technology Directorate,
Aberdeen MD 21005 USA (email: edward.l.zhu.civ@mail.mil).

A.K. Agogino is with the Intelligent Systems Divison, NASA
Ames Research Center, Moffet Field CA 94035 USA (email:
adrian.k.agogino@nasa.gov).

-0.2 0 0.2

X (m)

-0.1

0

0.1

0.2

0.3

Z
 (

m
)

Spine Model, 2D

(a) MPC with inverse statics
optimization, 2D model,
single moving vertebra.

(b) MPC with smoothing
terms, 3D model,

three moving vertebrae.

Fig. 1: Control results for the example tensegrity spine model,
for a uniaxial bending trajectory. The rigid bodies (vertebrae)
of the spine are in black, cables in red, and the tracked result
of the vertebra(e) center-of-mass is in light blue. The bottom-
most vertebra is anchored to the ground and does not move,
so is not part of the dynamics.

This work presents two controllers for Laika’s spine, both of
which track state-space trajectories using the spine’s dynamics
model. These controllers use combinations of model-predictive
control (MPC) with a new inverse statics (IS) algorithm.
Both frameworks are motivated by the practical challenges
with computational complexity of nonlinear, optimization-
based control. The first controller, presented in the conference
version of this work [13], demonstrated proof-of-concept by
employing a variety of smoothing and tuning terms in the MPC
optimization problem.

The second controller incorporates an inverse statics op-
timization problem to generate reference input trajectories
that are then used with MPC. The new approach is signif-
icantly more general, with less tuning than the smoothing
approach (Table I), and with more favorable computational
characteristics since the inverse statics are solved offline.
Along the way, a new algorithm is derived for the inverse
statics of tensegrity structures with internal bending moments.
This approach contributes a new architecture for addressing
computationally-complex state tracking problems in robots
such as these spines. The controller’s novelty arises from both
this new solution to the inverse statics problem as well as its
interconnection with MPC, forming a new approach to control
of such systems (Sec. V-C and Fig. 4b).

ar
X

iv
:1

80
6.

08
86

8v
2 

 [
cs

.S
Y

] 
 1

5 
O

ct
 2

01
9



2

TABLE I: Controller formulations: MPC with smoothing vs. MPC with tracking of inverse statics (IS) input trajectories

Controller formulation # Tuning constants Time discr. Simulation setup Max. Error Refs.
Smoothing terms 14 1e−3 sec. 3 vertebra, 3D < 0.5 cm [13]
IS input traj. tracking 5 1e−5 sec. 1 vertebra, 2D See Sec. VI-C -

The two controller formulations presented in this paper have different benefits with respect to tuning and performance. The five
tuning constants (column two) of the more general controller with the inverse statics optimization algorithm are straightforward
to chose. All have physical interpretations (e.g., minimum cable tension, vertebra anti-collision distance) or are common to
many optimal control problems (e.g., the Q and R weighting matrices in eqns. (56)-(57), and MPC horizon length.)

This work uses a three-dimensional model of the spine, with
multiple vertebrae, for evaluating the smoothing controller
(from [13].) Meanwhile, a reduced-order two-dimensional
model, with only a single moving vertebra, is used for the
controller with the IS optimization for input trajectory gener-
ation. Although the controller with the IS optimization is tested
on a lower-dimensional system than the smoothing controller,
the tracked states of the vertebrae are the same. Therefore,
the results are compared quantitatively in Sec. VI, and the
limitations of this comparison are discussed in Sec. VIII.

II. BACKGROUND

The spine robot studied in this work (Fig. 1) is a tensegrity,
or “tension-integrity”, structure. Tensegrity structures consist
of rigid bodies suspended in a network of cables in tension
such the bodies do not contact each other [14]. This definition
is sometimes restricted further to structures without internal
bending moments, i.e., where the bodies are single bars and
cables only connect at bar ends [15], [16], [17]. However,
both historical examples (Snelson’s ‘X-Cross’, [14]) and many
modern robots [18], [19], [20], [21], [22] use the broader
definition, having more complicated bodies suspended in the
network, as with the vertebrae of these spines.

Tensegrity structures are inherently flexible, and many types
of tensegrity robots have been designed that leverage this
flexibility. These robots are able to adjust the lengths of their
cables to roll [23], [24], [25], [26], [27], [28], crawl [29],
[30], [31], [18], [32], swim [33], [22], hop and jump [34],
[35], and climb [36], [19]. Tensegrity spine robots have been
previously investigated [37], [38], [18], but the ULTRA Spine
and its recent adaptation for Laika are one of the first uses of
a tensegrity spine on a quadruped robot [12], [9].

A. Control of Tensegrity Structures and Robots

Although there are a variety of benefits to using tensegrity
structures as robots, control of such structures has proven
challenging. This is commonly due to dynamics which are
inherently nonlinear and often high-dimensional. Various sat-
uration issues also exist, as cables within the structure exert
no force in compression, and the controller cannot retract
the spine’s flexible cables to a negative ‘rest length’ (defined
in Sec. III-B.) Consequently, state-space control for tracking
or regulation has been mostly limited to low-dimensional
structures, particularly those with only bars [39], [40], [41],
[14], [16], which assume, a-priori, that all cables are initially
tensioned. Open-loop methods have also been used for this
purpose [42], [43], [44], [36], but cannot reject disturbances.

However, successful control strategies have been developed
for tensegrity robots for other control goals. In particular, when
the robots are intended to roll or crawl, model-free controllers
have used evolutionary algorithms [29], [45], [46], [47], central
pattern generators [38], [18], Bayesian optimization [27], [48],
deep reinforcement learning [49], kinodynamic motion plan-
ning [50], or hand-tuned algorithms [51]. Model-predictive
control has been used for generating locomotion primitives for
imitation learning [52]. Tensegrity structures which oscillate,
such as fish tails, have used resonance entrainment [17], [33].
Though these approaches are promising in their domains, they
do not necessarily apply to state tracking, as is needed here.

B. Inverse Statics and Form-Finding for Robotics Control
Though control of tensegrity robots is challenging, the

related problem of form-finding has a variety of well-known
solutions [53]. Form-finding simultaneously solves for a pose
of the tensegrity structure’s bodies alongside the cable forces
that keep it in equilibrium. In the context of control, these
solutions correspond to equilibrium setpoints for both states
and inputs. A subset of this problem is solving for the cable
forces in static equilibrium for a given pose, i.e., solving for
inputs given a desired state. For related parallel robots, the
former problem is termed inverse kinetostatics analysis [54],
[55], and the latter subset is inverse statics analysis [56], [57].

Solutions to the inverse statics problem have been used as
part of open-loop controllers [36], [58], [57], or more rarely
closed-loop controllers [59], of a variety of robots. Inverse
statics is simpler to formulate than inverse dynamics, has com-
putational benefits since optimization problems can be solved
offline [36], [58], and provides a reasonable approximation
to dynamic trajectories under pseudo-static movements. For
tensegrity robots like these spines, no kinematic constraints ex-
ist between the bodies. Since the robot’s statics and kinematics
are therefore decoupled, kinetostatic approaches such as [60],
[56], [55] are not required. This allows for the easier-to-solve
force-density method [61], [53], [62] to be applied. However,
solutions have yet to exist in the literature for tensegrity robots
with internal bending moments, of the type considered here.

C. Model-Predictive Control for High-Dimensional Nonlinear
Robots and Systems

This work proposes controllers based on model-predictive
control (MPC) for three primary reasons. First, using an
optimization program for control can address constraints on
the system (actuator saturation and tensioned cables). Sec-
ond, computational tractability can be addressed by using a



3

receding horizon. These two features define an MPC problem.
Finally, an MPC formulation allows straightforward intro-
duction of smoothing weights and constraints for hard-to-
control systems [63], [64]. These motivated the original MPC
formulation in the conference version of this work [13].

Model-predictive control for nonlinear systems (NMPC) is
a well-studied topic with many implementations [65], partic-
ularly in low dimensions where nonconvex optimization is
computationally feasible [63]. For high-dimensional nonlin-
ear systems, practical options include modifying the NMPC
problem or using more efficient solvers [66]. Alternatively,
linearized dynamics can be used at later points in the horizon
[67], or linearizations can be performed at each timestep in the
problem to create a linear time-varying MPC [64]. A time-
varying linearization is used in this work for computational
tractability purposes. As opposed to attempting to solve an
NMPC problem in real time for this high-dimensional sys-
tem, the proposed control architecture addresses linearization
error via two other methods. In particular, one approach
here includes smoothing terms, while the other tracks an
approximated input reference trajectory generated by inverse
statics.

D. Simulation-Based Controller Validation

This work employs a set of simulations that demonstrate
the performance of the proposed controllers and show proof-
of-concept. There are fewer traditional sources of modeling
error in this problem than in other tensegrity robotics control
problems, which commonly involve locomotion on the ground
[29], [49]. Locomotion requires modeling complex interactions
with the ambient environment [33]. This spine instead moves
freely in space without surface contact, therefore simulation
inaccuracies due to contact friction modeling are not present.
Here, the most significant sources of error are anticipated
to arise from unmodeled actuator dynamics and manufactur-
ing differences of hardware prototypes versus the nonlinear
dynamics model. Prior work has confirmed that rigid body
models of free-standing tensegrity robots match hardware
results reasonably well under similar conditions [68], [69].

Though the simulation setup captures the core dynamics
phenomena of the system, a future physical prototype would
confirm the magnitude of the ‘reality gap’ between simulation
and hardware. There remain numerous technical challenges
to doing so. In particular, there are significant actuation and
sensing challenges for a prototype of this complexity, and
in addition, the controllers presented here are not yet real-
time. Future work seeks to contribute new hardware designs
as well as even more computationally-efficient controllers so
that validation and verification experiments can be performed.

III. SPINE MODEL AND MOVEMENT GOALS

The geometry of the spine and its equations of motion
are adapted from earlier work [13]. The following section
briefly describes the state-space model used for both the
two-dimensional and three-dimensional spine, as well as the
desired state trajectory to be tracked. Full knowledge of the
system states at each timestep is assumed; the controllers in
this work are state-feedback.

A. Vertebra Geometry and State Space

Each spine vertebra is a rigid body, approximated by a
system of point masses (Fig. 2), as has been justified in past
literature [69], [36]. The local frame of one vertebra contains
point mass k at position ak, k = 1 . . .K (Fig. 2.)

The robot’s state space is parameterized by the coordinates
of the center of mass and a set of Euler angles (3-2-1) for
each vertebra, in addition to their respective time-derivatives.
The continuous-time equations of motion have the form

ξ̇ = g(ξ,u), (1)

where ξ ∈ R36 in 3D (for three moving vertebrae) or R6

in 2D (for one moving vertebra) is the state vector, and
u ∈ R24 in 3D or R4 in 2D is the input vector, which has the
same dimension as number of cables. Eqn. (1) is expressed us-
ing Lagrange’s equations, and a symbolically-solved solution
is discussed in Appendix Sec. A.

(a) A single 3D spine vertebra in its local coordinate system.

(b) A single 2D spine vertebra in its local coordinate system.

Fig. 2: Geometry of spine vertebrae in both 3D and 2D. Point
mass locations {a1...a4,a5} shown in red. Certain coordinates
(X-axis and θ, γ rotations) are flipped from the right-hand
convention in order to match a simulation environment used
in prior research [36], [12], [11].

B. Cable Model as System Inputs

The cables suspending the vertebrae provide the control
input to the system. Unlike work such as [40], [41], [39],
it is not assumed that the controller specifies forces in the
robot’s cables, since this becomes challenging to implement
on physical hardware. Instead, the control inputs are the rest
lengths of a virtual spring-damper. Specifically, let the vector
between the two connection points of cable i be `i, with scalar



4

length `i = ||`i||. Then the applied force due to a cable,
directed away from its attachment point, is

Fi = Fi(`i, ˙̀
i) ˆ̀

i,

so that tension forces are positive. Here ˆ̀
i is a normalized

direction vector. The scalar tension force on cable i is a
rectified spring-damper, so the cables apply no compression
forces:

Fi =

{
k(`i − ui)− c ˙̀

i, if k(`i − ui)− c ˙̀
i ≥ 0

0, if k(`i − ui)− c ˙̀
i < 0,

(2)

where the input ui is the rest length of cable i. In addition,
the controller cannot command a negative ui, since retracting
a cable to a negative length is not physically possible.

C. Reference State Trajectory

In this work, the desired trajectory ξ̄ for the spine robot is
a bending motion in the X-Z plane, consisting of translations
and rotations for each moving vertebra (Fig. 3.) As no a-
priori dynamic trajectories were available for this model, the
controllers in Sec. V do not include the tracking of vertebrae
velocities. Consequently, this trajectory is not guaranteed to
be dynamically feasible. However, this sequence of states has
been observed as the output of prior qualitative simulation
studies in [12], and is therefore judged as a reasonable control
goal.

Fig. 3: Bending trajectory for the j-th vertebra of the spine in
the X-Z plane. The vertebra rotates counterclockwise around
the origin at a constant radius rj (dashed blue line), swept out
by angle βj (solid gray line). Solid blue line shows the center
of mass of the vertebra. Details given in Appendix Sec. C.

IV. INVERSE STATICS OPTIMIZATION FOR INPUT
REFERENCE TRAJECTORY GENERATION

The second of the two controllers presented in this work
includes an algorithm to calculate a reference input trajectory
for the spine. In general, model-based controller formulations
for trajectory tracking require both state and input trajecto-
ries, i.e. ξ̄(t) and ū(t), at each timestep in discrete time

([70], ch. 7.5). Generation of such a ū is challenging for
nonlinear systems. The proposed controller therefore uses an
approximation: an inverse statics solver is used to find a ū
from ξ̄, as opposed to a more computationally and practically
challenging-to-implement inverse dynamics solver. Though the
resulting combination of these ξ̄ and ū is not dynamically
feasible, it is close to the feasible solution for slow or pseudo-
static movements of the spine.

The following section presents the inverse statics opti-
mization algorithm, and shows that the trajectory generation
solution can be obtained offline via a quadratic program.
The algorithm is adapted from the well known force-density
method [61] to allow its application to this spine model. This
reformulation introduces the first feasible inverse statics solu-
tions for tensegrity structures with internal bending moments,
such as this spine.

A. Force Density Method for Tensegrity Networks

The force density method calculates the static equilibrium
condition for cable networks [61]. It has, by extension, been
used for tensegrity systems as networks of force-carrying
structural members in tension or compression [62]. This
section briefly derives the static equilibrium condition for a
structure using force density, as it is required for the proposed
algorithm in later subsections.

The equilibrium condition is constructed using the force
density method via a force balance at each node in the net-
work. It therefore assumes that the structure can be represented
by a graph of nodes and connections between those nodes, that
forces are only present at nodes, and that members do not have
mass nor deform. This implicitly assumes that no moments are
present at nodes, which is not appropriate for this spine, and
which motivates the reformulation in Sec. IV-C.

To calculate the equilibrium condition, assume the tenseg-
rity structure has n nodes. Let the tensegrity exist in either
a d = 2 or d = 3 -dimensional physical space. In two
dimensions, denote the coordinates of the nodes, and the
external applied forces (not due to cables) at the nodes, as

x, z, px, pz ∈ Rn. (3)

For the spine, x and z are the coordinates of the point
masses in the global frame, obtained by transforming each
vertebra’s node ak from Fig. 2b according to ξ̄(t). External
forces pz are due to gravity, −mg, at each node. The later
reformulation removes the nodal force balance at the fixed
vertebra, eliminating the need to calculate its reaction forces
nor add those forces to px and pz .

Next, let the structure have s members in tension (cables)
and r members in compression (bars, or parts of a rigid body).
A connectivity matrix C ∈ R(s+r)×n can be written that
describes how nodes are connected by cable and bar members,
where the first s rows of C are assumed to correspond to cable
members and the last r rows correspond to bar members. This
matrix C is defined using a graph structure, where if member
i ∈ {1, ..., (s+ r)} connects nodes k and j, then the k-th and
j-th columns in C are set to 1 and -1 respectively for row i,
as in



5

C(i,k) = 1, C(i,j) = −1. (4)

All other entries in C are 0.
One of the proposed controllers considers the two-

dimensional (d = 2), single-moving-vertebra version of the
spine (Fig. 1a). Its connectivity matrix is the following,
highlighted according to its block structure,

C =



0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 −1 0 0
0 0 0 1 0 0 −1 0
1 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 1 0 0 −1


, (5)

where the red rows represent the s = 4 cables and blue rows
are the r = 6 bars within the vertebrae. Columns 1-4 (lighter)
correspond to the nodes for the bottom vertebra which is fixed
to the ground, and 5-8 (darker) correspond to the moving
vertebra.

Finally, define the force density vector q as

q = [ q1, q2, q3, ... qs+r ]> ∈ R(s+r), (6)

such that if member i experiences a force Fi along its length
of `i,

qi = Fi/`i. (7)

As seen in [36], [61], [53], [62] the force balance condition
for static equilibrium of the structure can then be stated as

C>diag(q)Cx = px,

C>diag(q)Cz = pz.
(8)

As also discussed in [36], [61], [62], eqn. (8) can be reorga-
nized as

Aq = p, (9)

A =

[
C>diag(Cx)
C>diag(Cz)

]
∈ R(nd)×(s+r), (10)

p =

[
px
pz

]
∈ R(nd). (11)

Here, A and p are constants at timestep t, since x and z are
only a function of ξ̄(t) at that timestep. Therefore, eqn. (9) is
a set of linear equations in q. A value for q that satisfies (9)
can then be obtained in a variety of ways, e.g. by a quadratic
program [36], which produces a set of equilibrium cable forces
for a desired pose. If solutions exist, then ū can be calculated
from eqns. (2) and (7) as

ūi = `i −
`iq
∗
i

ki
. (12)

B. Existence of Solutions to the Inverse Statics Problem

For the tensegrity spine robots in this research, no solutions
exist to eqn. (9). For the 2D spine with C from eqn. (5), the A
matrix is taller than it is wide, with (s+ r) = 10 and (nd) =
16, so has an empty null space in almost all poses. In works
which have previously used the force density method, such as
[36], [12], [19], the tensegrity structure has many more cables
and bars than nodes, such that (s + r) > (nd). In addition
to this rank issue, the spine in this work intuitively requires
internal bending moments to be present in static equilibrium.
Consider, for example, the center node of the moving vertebra.
Therefore, even if A had a nonzero null space, eqn. (9) would
likely be inconsistent.

This rank deficiency issue for static equilibrium is discussed
in the literature on tensegrity structures in the context of
geometry [71] and energy methods [72]. Algorithms exist
for determining if a structure would have static equilibrium
solutions [73], [16]. However, addressing this issue usually
consists of adding cables or changing the geometry of the
tensegrity structure itself (via form-finding, e.g. [62]), which
is not possible given the problem statement in this work.

No force-density formulations of static equilibrium for
tensegrity structures with internal bending moments are
present in the literature. The following section contributes the
first formulation for this case, which produces the first inverse
statics solutions for tensegrity robots such as these.

C. Rigid Body Reformulation of the Force Density Method

This work adapts the node-graph formulation of the force
density method into a force balance per rigid body, adds
a moment balance for the system, and produces a new set
of linear equations for static equilibrium. Doing so neglects
the internal stresses within the vertebrae, consistent with the
assumption of rigid-body equations of motion. The process
below is therefore described as a “rigid body reformulation”,
although prior statics work uses the term ‘rigid’ in different
contexts [71].

The following derivation, specific to the two-body, two-
dimensional tensegrity robot in this work, requires the fol-
lowing two assumptions:

1) The tensegrity robot consists of b rigid bodies each with
the same number of nodes, η = n/b.

2) The columns of C are block-ordered according to rigid
body: nodes are assigned an ordering in blocks of η.

These assumptions are demonstrated in the highlighted C in
eqn. (5). The robot has b = 2 bodies, with η = 4 nodes each,
so that columns 1-4 and 5-8 correspond to each body. This
is similar to the repeated ‘cells’ of a larger tensegrity, as the
term is used in [74].

1) Force balance per rigid body: The nodal force balance,
eqn. (9), can be converted into a force balance per-body via the
following. First, consider eliminating the constraints associated
with the stationary body: this allows for arbitrary reaction
forces at the body’s nodes, adding degrees of freedom to the
problem. Such an assumption is consistent with the body being



6

rigidly fixed to the ground, and takes advantage of the static
indeterminacy of the structure. Eliminating those nodes can
be done by left-multiplying a matrix Wf to eqn. (9), which
removes the corresponding rows from A:

W = [0η×η Iη], Wf =

[
W 0
0 W

]
. (13)

The shape of Wf arises from the force balance in both the x
and z directions: compare to the block structure in eqn. (10).

Next, the rows corresponding to the remaining body can be
collapsed with another left-multiplication by

K = Id ⊗ 1>η , (14)

which combines the per-node balance (each row) for the
moving vertebra in both the x and z directions. Finally, a
right-multiplication of A by the following matrix H eliminates
the constraints associated with the bars, which no longer have
physical meaning. Specifically,

H =

[
Is

0r×s

]
∈ R(s+r)×s, Hqs =

[
qs
0r

]
. (15)

The identity block in H is sized according to the number of
cables in the structure, s, and corresponds to the rows of eqn.
(5) that are highlighted in red. Combining these operations
produces

Af = KWfAH. (16)

Similarly, the external forces at each node are combined
per-body, removing the stationary vertebra and collapsing the
constraints in both directions:

pf = KWfp. (17)

The final result is a per-body force balance for the moving
vertebra alone. Since the bar members have been removed,
the free variable only consists of the cable force densities,
which are the first s elements of q, i.e. qs. The constraint is
then

Afqs = pf . (18)

2) Moment balance per rigid body: A moment balance
for the moving vertebra is now required. Moments due to
all forces can be summed around any point in the structure
(not necessarily the centers of mass) in static equilibrium. A
convenient point is therefore the origin, so that the moment
arms are simply the nodal coordinates. Moments can then be
expressed using matrix multiplication as the following.

First, note that in two dimensions, the moment applied by
member i acting on one of its anchors at node k is a scalar
quantity:

Mk
i = −zkF xi + xkF

z
i .

From the previous sections, Aq ∈ R(nd) are the forces applied
by each member at each node, expressed component-wise in
each direction. So, by defining the moment arm matrix

B = [−Z X], (19)

where X and Z are diag(x) and diag(z), the sum of the
moments due to all members on each node is

M = BAq ∈ Rn.

By removing the moment contributions at the stationary nodes,
and removing the contributions of the bar members, the
moments on the moving vertebra from the cables acting on
its nodes are

Mc = WBAHqs ∈ Rη. (20)

As with the nodal forces, the moments can be collapsed per
body. Since there is only one body remaining, the constraint
matrix here becomes

Am = 1>η WBAH. (21)

The moments from the external forces on the moving body
are calculated in the same way,

pm = 1>η WBp, (22)

and so the moment balance for the moving vertebra is

Amqs = pm. (23)

3) Combined static equilibrium constraint: The force and
moment balance conditions, eqns. (18) and (23), can then be
combined by stacking the systems of equations, as in

Ab =

[
Af

Am

]
, pb =

[
pf
pm

]
, (24)

so that the full static equilibrium condition is

Abqs = pb. (25)

Though the static equilibrium constraint has been fundamen-
tally transformed from a per-node force balance into a per-
body force and moment balance, the constraint is still linear.
This allows the application of the same approaches to solving
eqn. (25) as are done in prior literature for eqn. (9).

For the spine robot in this research, eqn. (25) has solutions.
The matrix Ab ∈ R6×4 has rank 3 in all poses described by
the specified ξ̄, thus a null space of dimension 4 − 3 = 1.
Simulations below also show that eqn. (25) is consistent.

D. Inverse Statics Optimization

With the static equilibrium condition in hand, an inverse
statics optimization problem can be posed to find the optimal
cable tensions that satisfy eqn. (25). The term ‘inverse statics’
is used here to emphasize that a control system chooses a qs.
For comparison, the forward statics problem would specify the
cable model by fixing ū, and solving for the q that evolves
naturally due to the applied load p. Here, instead, the trajectory
generation problem solves for an optimal qs for a given p, and
back-calculates the corresponding inputs ū.

Since eqn. (25) is a linear system, and therefore a linear
equality constraint, solving for an optimal q∗s can be made
convex. In particular, with a quadratic cost on qs, the following
quadratic program can be used:



7

q∗s = arg min
qs

q>s qs (26)

s.t. Abqs = pb (27)
− qs ≤ −c. (28)

The inequality constraint (28) is used here to enforce positive
cable tensions, where c is a constant vector specifying the
minimum force density in each cable. Similar optimization
problems have been termed “inverse kinematics” in the lit-
erature [36], [19], and this work is differentiated by the
fundamental modification of eqn. (27).

The inverse statics procedure first calculates the constraint
eqn. (27) for each ξ̄(t) in the reference state trajectory, via
eqns. (10)-(11) and (13)-(25). Then (26-28) is solved for each
q∗s(t) via an optimization solver, and ū(t) is calculated using
eqn. (12). The procedure follows Algorithm (1).

Algorithm 1 Reference Input Trajectory Generation

procedure INVSTAT(ξ̄)
for t← 1, T do

Ab ← Ab(x(ξ̄(t)), z(ξ̄(t)))

pb ← pb(x(ξ̄(t)), z(ξ̄(t)))

q∗s(t)← OptForceDens(Ab, pb) . solve (26-28)
for i← 1, s do

ūi(t)← `i(t)−
`i(t)q

∗
i (t)

ki
return ū

Algorithm (1) was implemented with MATLAB’s quadprog
solver in the software supplied by the authors1.

V. CONTROLLER FORMULATIONS

This work introduces two controllers for the tensegrity spine
robots under consideration. The first uses a model-predictive
control (MPC) law, and incorporates smoothing terms into the
optimization problem (Fig. 4a.) The second uses the inverse
statics routine, Algorithm (1), for reference input trajectory
generation, and a simplified version of the model-predictive
control law to close the control loop (Fig. 4b.) Both controllers
incorporate a linearization of the equations of motion, eqn. (1),
in the control calculations; however, all are simulated against
the ground-truth nonlinear system.

As discussed in Sec. II-C, this work prioritizes practicality
over theoretical guarantees. For this reason, neither formula-
tion contains terminal constraints, and thus stability can only
be shown experimentally, not proven.

The following sections use subscripts (e.g., ut) to represent
predicted values of vectors at a time instance, and parentheses
(e.g., u(t)) to represent a measured or applied value at that
time instance. Note that these are the same for the reference
trajectory (ū(t) = ūt) and so the notation is used interchange-
ably. Superscripts (e.g., ξ(i)) index into a vector.

1https://github.com/BerkeleyExpertSystemTechnologiesLab/ultra-spine-
simulations

(a) Block diagram for the model-predictive controller with smoothing
terms, no input trajectory generation.

(b) Block diagram of the proposed controller that combines inverse
statics (IS) for input trajectory generation with model-predictive
control (MPC) to close the loop.

Fig. 4: Block diagrams of the two controllers considered in this
work. Both controllers are simulated against the ground-truth
nonlinear dynamics g(ξ,u).

A. Model-Predictive Controller Formulation

For both controllers, the MPC block generates a control
input u(t) via the following. At each timestep t, a constrained
finite-time optimal control problem (CFTOC) is solved, gen-
erating the sequence of optimal control inputs U∗t→t+N |t =
{u∗t|t, ...,u

∗
t+N |t}, over a horizon of N timesteps ahead. The

notation t + k|t represents a value at the timestep t + k, as
predicted at timestep t (from [75], Ch. 4.) The first input
u∗t|t is applied, as in u(t) = u∗t|t, closing the loop. The
following sections define this CFTOC problem for each case,
fully specifying the controllers.

B. Controller with MPC and Smoothing Terms

The first controller (presented in the conference version
of this work, [13]) adapts the standard linear time-varying
MPC formulation by adding a variety of hand-tuned weights
and constraints. This is a common approach to establishing
proof-of-concept control [64], which was the goal in [13].

1) Constrained Finite-Time Optimal Control Problem For-
mulation: The following CFTOC problem is solved at each
timestep t using a quadratic programming solver. Here, N =
10 is the horizon length and w1...w7 are constant scalar
weights. The functions p and q represent the terminal cost
and stage cost of the objective function, not to be confused
with the inverse statics force balance of Sec. IV. The objective
function, and the use and purpose of the constraints, are given
in subsections V-B2 to V-B4.



8

min
Ut→t+N|t

p(ξt+N |t,∆ξt+N |t) . . .

+

N−1∑
k=0

q(ξt+k|t,∆ξt+k|t,∆ut+k|t) (29)

s.t. ξt+k+1|t = Atξt+k|t + Btut+k|t + ct (30)
∆ξt+k|t = ξt+k|t − ξt+k−1|t (31)
∆ut+k|t = ut+k|t − ut+k−1|t (32)
ξt|t = ξ(t) (33)

umin ≤ ut+k ≤ umax (34)
‖ut|t − ut−1‖∞ ≤ w1 (35)
‖ut+k|t − ut|t‖∞ ≤ w2, k = 1..(N − 1) (36)
‖ut+N |t − ut|t‖∞ ≤ w3 (37)

‖∆ξ(1:6)t+k|t‖∞ ≤ w4 (38)

‖∆ξ(13:18)t+k|t ‖∞ ≤ w5 (39)

‖∆ξ(25:30)t+k|t ‖∞ ≤ w6 (40)

ξ
(3)
t+k|t + w7 ≤ ξ(15)t+k|t (41)

ξ
(15)
t+k|t + w7 ≤ ξ(27)t+k|t. (42)

2) Dynamics Constraint: The dynamics constraint (30)
consists of a time-varying linearization of the system, as in:

At =
∂g(ξ,u)

∂ξ

∣∣∣ξ=ξt−1
u=ut−1

(43)

Bt =
∂g(ξ,u)

∂u

∣∣∣ξ=ξt−1
u=ut−1

(44)

ct = g(ξt−1,ut−1)−Atξt−1 −Btut−1. (45)

This linearization (43-45) is implemented as a finite differ-
ence approximation. This approach is chosen due to computa-
tional issues with calculating additional analytical derivatives
of the dynamics. The calculated At,Bt, ct are used over the
entire horizon. For the start of the simulation, u0 = 0 is used.
Since these linearizations are not at equilibrium points, the
linear system is affine, with ct being a constant vector offset.

Here, the continuous-time linearized dynamics are used as
a constraint, and are not discretized. Since the timesteps in the
simulations below are small (dt = 0.001 sec.), a discretization
does not significantly alter the values of At,Bt, ct.

3) Other Constraints: The remaining constraints are either
smoothing terms, constraints motivated by the physical robot,
or miscellaneous housekeeping terms.

Constraints (31) and (32) define the ∆u and ∆ξ variables,
which are used for the smoothing constraints on the inputs and
states. Constraint (33) assigns the state variable at the start of
the optimization horizon, ξt|t, to the actual observed value of
the state from the previous simulation timestep, ξ(t).

Constraint (34) is a bound on the inputs, limiting the length
of the cable rest lengths, with umin,umax ∈ R24 but having
the same value for all inputs (Table II).

Constraints (35-40) are smoothing terms to compensate for
the lack of an reference input trajectory. Of these, (35-37) are
for the inputs, where ut−1 is the most recent input at the start
of the CFTOC problem. Constraints (38-40) are smoothing
terms on the states, limiting the deviation between successive
states in the trajectory. These reduce linearization error, and
are split so that the positions and angles of each vertebra could
be weighted differently. No velocity terms are constrained.

Finally, since states {ξ(3), ξ(15), ξ(27)} are the vertebra
z-positions, constraints (41-42) prevent vertebra collisions.

4) Objective Function: The objective function has a termi-
nal cost p and a stage cost q defined as the following. Here,
shortened notation such as ‖∆ξt+k|t‖2Sk denotes a weighted
quadratic term, as in (∆ξt+k|t)

>Sk(∆ξt+k|t).

p(ξt+N |t,∆ξt+N |t) = ‖ξt+N |t − ξ̄t+N |t‖2QN

+ ‖∆ξt+N |t‖2SN , (46)

q(ξt+k|t,∆ξt+k|t,∆ut+k|t) = ‖ξt+k|t − ξ̄t+k|t‖2Qk

+ ‖∆ξt+k|t‖2Sk

+ w8‖∆ut+k|t‖∞. (47)

As before, w8 is a scalar, while Q and S are constant
diagonal weighting matrices which are exponentiated by the
timestep in the optimization horizon. Here, Q penalizes the
tracking error in the states, S penalizes the deviation in
the states at one timestep to the next, and w8 penalizes
the deviations in the inputs from one timestep to the next.
These matrices are diagonal, with blocks corresponding to
the Cartesian and Euler angle coordinates, with zeros for all
velocity states, according to vertebra.

Raising each diagonal element of Q or S to the power of
k or N puts a heavier penalty on terms farther away on the
horizon. These are defined as:

Q̄k = diag(wk9 , w
k
9 , w

k
9 | wk10, wk10, wk10 | 0...0) ∈ R12×12

S̄k = diag(wk11, w
k
11, w

k
11 | wk11, wk11, wk11 |0...0) ∈ R12×12

Qk = I3 ⊗ Q̄k, Sk = I3 ⊗ S̄k. (48)

Table II lists all the constants for this controller, including the
constraints and the objective function, with units.

TABLE II: Smoothing controller weights and constants.

Constant: Value: Interpretation:
N 10 no units Horizon Length
umin 0.0 meters (cable) Min. Cable Length
umax 0.20 meters (cable) Max. Cable Length
w1 0.01 meters (cable) Input Smooth., Horiz. Start
w2 0.01 meters (cable) Input Smooth., Horiz. Middle
w3 0.10 meters (cable) Input Smooth., Horiz. End
w4 0.02 meters and radians State Smooth., Bottom Vert.
w5 0.03 meters and radians State Smooth., Mid. Vert.
w6 0.04 meters and radians State Smooth., Top Vertebra
w7 0.02 meters Vertebra Anti-Collision
w8 1 no units Input Smoothing
w9 25 no units State Tracking, Vertebra Pos.
w10 30 no units State Tracking, Vert. Angle
w11 3 no units Input Difference Penalty



9

C. Controller with MPC and Inverse Statics Optimization

A primary contribution of this work (in comparison to
[13]) is a controller that combines the inverse statics (IS)
optimization, via Algorithm (1), with an MPC block. As
shown in Fig. 4b, the IS block generates a reference input
trajectory ū that is tracked alongside ξ̄ as part of the MPC
problem. This approach contributes a new method to address
computational complexity and tuning. The IS solutions can
be solved offline, reducing the load on the MPC optimization
problem. This approach also significantly reduces hand-tuning.
As discussed in this section, the controller is formulated for
the 2D, single-vertebra spine model.

1) Constrained Finite-Time Optimal Control Problem For-
mulation: The following CFTOC problem is solved at each
timestep t using a quadratic programming solver.

min
Ut→t+N|t

p(ξt+N |t) +

N−1∑
k=0

q(ξt+k|t,ut+k|t) (49)

s.t. ξt+k+1|t = Atξt+k|t + Btut+k|t + ct (50)
ξt|t = ξ(t) (51)

ut+k|t ≥ umin (52)

ξ
(2)
t+k|t ≥ w1. (53)

This formulation (49-53) is significantly simpler than the
smoothing formulation (29-42), with only one scalar tuning
weight w1, and a much smaller horizon length (Table III).
As above, p and q represent the terminal cost and stage
cost of the objective function. The following sections define
the objective function, and use and purposes of the constraints.

2) Dynamics Constraint: Constraint (50) enforces the
time-varying linearized system dynamics, just as with the
smoothing controller, via eqns. (43-45). The two-dimensional
controller also applies a zero-order hold to (50) for increased
prediction fidelity. However, due to the small timesteps
involved, the values of At, Bt, and ct remained mostly
unchanged after this operation, with no noticeable effect on
simulation results.

3) Other Constraints: The remaining constraints have the
same interpretations as their counterparts in the smoothing
controller formulation. Constraint (51) assigns the initial
condition at the starting time of the CFTOC problem.
Constraint (52) is a linear constraint on the inputs so that the
cables cannot have negative rest lengths. Finally, constraint
(53) denotes a minimum bound on the second element in the
state, the z-position, which prevents collision between the
moving vertebra and the static vertebra.

4) Objective Function: The objective function for this
formulation is comprised of quadratic weights on the state
and input tracking errors. As opposed to the smoothing for-
mulation, which included non-traditional terms, the objective

function here is exactly the same as with standard MPC. Using
similar notation as in equations (46) and (47),

p(ξt+N |t) =‖ξt+N |t − ξ̄t+N |t‖2Q, (54)

q(ξt+k|t,ut+k|t) =‖ξt+k|t − ξ̄t+k|t‖2Q
+ ‖ut+k|t − ūt+k|t‖2R. (55)

Here, Q and R are constant diagonal weighing matrices
which penalize state and input tracking errors respectively,
defined similarly to the smoothing formulation, but do not
vary with the horizon step as with the Qk terms in eqn. (47).
Specifically, these weights are

Q = diag(w2, w2, w2 | 0...0) ∈ R6×6, (56)

R = diag(w3, w3, w3, w3) ∈ R4×4. (57)

As with eqn. (48), the Q matrix does not penalize velocity
states. Table III lists all the constants for this controller,
including the constraints and the objective function, with units.

TABLE III: Input tracking controller weights and constants.

Constant: Value: Interpretation:
N 4 no units Horizon Length
umin 0.0 meters (cable) Min. Cable Length
w1 0.075 meters (vertebra position) Vertebra Anti-Collision
w2 1 no units State Tracking Penalty
w3 10 no units Input Tracking Penalty

D. Controller Comparison

The differences between the two controller formulations
(Sec. V-B and V-C) are summarized in Table I. In addition to
the inherent difference between the tracking of one vertebra
versus 3 vertebrae, and the difference between the 2D and 3D
models that are tracked, three major considerations are present.

First, the controller with the IS optimization is much more
general, and does away with the smoothing terms. This re-
duces the complexity of the CFTOC problem, thus removing
most of the need for tuning optimization weights (compare
Table II versus Table III). Second, the controller with the
IS optimization moves some computational load offline, since
the MPC problem now has fewer terms. Third, in contrast to
those benefits, the MPC plus IS controller required a faster
simulation rate as tested here, with the discretization timestep
of dt = 1e−5 versus 1e−3 for the smoothing controller. These
three changes represent the tradeoffs between tuning require-
ments and performance implications of either controller.

VI. SIMULATION RESULTS

Two sets of simulations are presented in this work, one for
the controller with MPC and smoothing terms, and one for
the controller with MPC and inverse statics reference input
generation/tracking. All simulation work used the YALMIP
toolbox in MATLAB [76], with Gurobi as the solver. All code
is available online2.

2https://github.com/BerkeleyExpertSystemTechnologiesLab/ultra-spine-
simulations



10

For both models and controllers, simulations are also per-
formed with noise, in order to test closed-loop performance.
Appendix Sec. D gives the noise model in detail.

A. Computational Performance

The optimization problem for the MPC plus smoothing
controller, applied to the 3D model (from Sec. V-B) took
0.5 − 1 sec. to solve at each timestep, using the Gurobi
solver. The optimization problem for the MPC plus inverse
statics reference input tracking controller, applied to the 2D
model (from sec. V-C), took 0.15 − 0.2 sec. to solve at each
timestep. The inverse statics optimization procedure (Alg. 1)
is performed offline before the closed-loop tests begin, so is
not timed; however, it solves rapidly enough for practical use.

B. Controller with MPC and Smoothing Terms

Fig. 5 shows the paths of the vertebrae in the 3D, three-
vertebra simulation, using the smoothing constraint controller,
in the X-Z plane as they sweep through their counterclock-
wise bending motion. Fig. 5 includes the reference trajectory
(blue), the resulting trajectory with the smoothing MPC con-
troller and no noise (green), and a representative result of
controller with added noise (magenta). Fig. 6 shows a larger
view of the top vertebra center of mass, which had the largest
tracking errors of the three vertebrae, and which is used for
comparison with the 2D single-vertebra model below.

The tracking errors for each state, for each vertebra, for
both simulations (with and without noise) are shown in Fig.
8. In both simulations, an initial transient is observed in the
X-position and γ-angle states. This is possibly due to a zero
initial velocity of the vertebrae, requiring the spine to rapidly
move at the start of its simulation to “catch up” with the
trajectory. After that, all errors trend to zero, with the expected
oscillations in the simulation with noise.

C. Controller with MPC and Inverse Statics Optimization

Fig. 7 shows the path of the single vertebra in the 2D
simulation, using the controller with MPC plus inverse statics
reference input tracking, as it sweeps through its counterclock-
wise bending motion. As with Fig. 5 and 6, the reference
state trajectory is included (in blue) alongside results from
the controller with no noise (green) and from a representative
simulation with noise (magenta.) The vertebra follows the
path of the of the kinematic states, but experiences some
accumulation of lag. The results show that the closed-loop
controller is noise-insensitive, alongside accurate tracking, but
that the lag occurs in all circumstances.

The tracking errors for each state are shown in Fig. 9, using
the same convention as Fig. 8. The controller accumulates lag
throughout the simulation, and the errors do not converge.
This is expected, since the tracked inputs are inverse statics
and not dynamics, and this simulation setup violates the as-
sumption of quasi-static movement. Since the results presented
here are used to compare with the smoothing controller, the
simulations use the same setup with only dynamic movement.
It is expected that given a setup where the controller has the
opportunity to settle, the errors would converge.

-12 -10 -8 -6 -4 -2 0

Position in X (cm)

10

15

20

25

30

P
o

s
it
io

n
 i
n

 Z
 (

c
m

)

Position of vertebrae during tracking control

Reference Traj.

Result, No Noise

Result, With Noise

Fig. 5: Positions in the X-Z plane of all vertebrae, for
the 3D, three-vertebra model with the smoothing controller.
Plot includes the state reference and the two simulations
(with/without noise), as the robot performs the counterclock-
wise bend described in Fig. 3.

-12 -10 -8 -6 -4 -2 0

Position in X (cm)

28

28.5

29

29.5

30

P
o

s
it
io

n
 i
n

 Z
 (

c
m

)

Position of Top Vertebra, Smoothing Controller

Reference

Result, No Noise

Result, With Noise

Fig. 6: Positions in the X-Z plane of the top vertebra,
for the 3D, three-vertebra model with the smoothing con-
troller, including the state reference and the two simulations
(with/without noise), as the robot performs a counterclockwise
bend. The vertebra tracks the trajectory with small error.

-2 -1.5 -1 -0.5 0

Position in X (cm)

9.8

9.85

9.9

9.95

10

P
o
s
it
io

n
 i
n
 Z

 (
c
m

)

Position of Vertebra, Input Ref. Tracking

Reference

Result, No Noise

Result, With Noise

Fig. 7: Positions in the X-Z plane of the single vertebra for the
2D model, using the controller with MPC plus inverse statics
reference input trajectory generation/tracking, including the
state reference and the two simulations (with/without noise),
as the robot performs a counterclockwise bend. The vertebra
tracks the trajectory, but accumulates more lag in comparison
to the smoothing controller (Fig. 6.)



11

0 20 40 60 80
-1

0

1

e
X
 (

c
m

)

                       Position Errors, Smoothing (No Noise)

0 20 40 60 80
-1

0

1

e
Y
 (

c
m

)

0 20 40 60 80

Time (msec)

-1

0

1

e
Z
 (

c
m

)

0 20 40 60 80
-1
0
1
2
3

e
 (

d
e

g
)

                  Angle Errors, Smoothing (No Noise)

0 20 40 60 80
-1
0
1
2
3

e
 (

d
e

g
)

0 20 40 60 80

Time (msec)

-1
0
1
2
3

e
 (

d
e

g
)

Vertebra 1 

 (Bottom)

Vertebra 2 

 (Middle)

Vertebra 3 

 (Top)

0 20 40 60 80
-1

0

1

e
X
 (

c
m

)

                       Position Errors, Smoothing (With Noise)

0 20 40 60 80
-1

0

1

e
Y
 (

c
m

)

0 20 40 60 80

Time (msec)

-1

0

1

e
Z
 (

c
m

)

0 20 40 60 80
-1
0
1
2
3

e
 (

d
e

g
)

                  Angle Errors, Smoothing (With Noise)

0 20 40 60 80
-1
0
1
2
3

e
 (

d
e

g
)

0 20 40 60 80

Time (msec)

-1
0
1
2
3

e
 (

d
e

g
)

Vertebra 1 

 (Bottom)

Vertebra 2 

 (Middle)

Vertebra 3 

 (Top)

Fig. 8: Tracking errors in system states for the 3D, three-vertebra model using the smoothing controller, with and without
noise. Position states (x, y, z) on the left with units of cm, Euler angles (θ, γ, ψ) on the right with units of degrees.

0 1 2 3 4

0

0.2

0.4

e
X
 (

c
m

)

   State Errors, Input Reference Tracking

No Noise With Noise

0 1 2 3 4

0

0.2

0.4

e
Z
 (

c
m

)

0 1 2 3 4

Time (msec)

-4

-2

0

e
 (

d
e
g
)

Fig. 9: Tracking errors in system states for the 2D, single-
vertebra model using the controller with MPC plus inverse
statics reference input trajectory generation/tracking, with and
without noise. Position errors are in cm, rotation errors are in
degrees. The drift shown here arises from controller lag.

VII. CONTROL OF DIFFERENT SPINES

The proposed controller that combines MPC with inverse
statics for reference input tracking has significantly fewer
tuning parameters. It is thus easily extendable to different sizes
and shapes of spines, whereas a large amount of tuning may
have otherwise been required.

In order to illustrate this, the controller was tested on a
different 2D spine, with a different size and shape of vertebra.

-6 -5 -4 -3 -2 -1 0

Position in X (cm)

29.4

29.5

29.6

29.7

29.8

29.9

30

P
o
s
it
io

n
 i
n
 Z

 (
c
m

)

Position of Vertebra, Input Ref. Tracking

Reference

Result, No Noise

Result, With Noise

Fig. 10: Additional test of MPC plus IS controller with the
larger, differently-shaped vertebra. This controller tracks this
vertebra in the same way as Fig. 7 with no need to change
any tuning constants.

Control results (Fig. 10) show equivalent performance to the
original vertebrae of Sec. VI, despite the size and geometry
change. For these tests, no changes were made to the inverse
statics algorithm, nor to any of the constants in Table III.

This differently-shaped spine still retained the same number
of point masses (to satisfy the assumptions of the inverse
statics algorithm), but is now larger and heavier, with different
angles between its bars. These changes are motivated by ongo-
ing designs of hardware prototypes. The geometry, constants,
and simulation setup are discussed in Appendix Sec. A.



12

VIII. DISCUSSION

Both controllers exhibit state tracking characteristics which
could be used in different environments for effective closed-
loop control. The smoothing controller tracked with lower er-
ror, after an initial transient response, but had higher computa-
tional complexity and tuning requirements. The controller with
inverse statics tracking, which is more general, exhibited lag
and thus larger tracking errors, but with lower computational
overhead and with significantly less hand-tuning. This is the
first work (with [13]) that tracks a state-space trajectory of a
tensegrity spine robot in closed-loop, and the first which shows
noise insensitivity.

A. Computational Performance

The lengths of time taken to solve the optimization problem
for each controller (0.5-1 sec. and 0.15-0.2 sec.) were longer
than the timesteps of each respective simulation (1e−3 and
1e−5 sec.). Thus, the optimization procedure will need to be
made more efficient before using this controller in hardware.
One approach that may reduce solver time is the calculation
of a symbolic Jacobian for the At and Bt matrices, reducing
the computational load in the linearization.

B. Tracking Performance Comparison

The controller with MPC and the inverse statics optimiza-
tion removed the need for hand-tuned smoothing terms, but
exhibited lag in tracking a highly-dynamic state trajectory.
This motivates the use of either controller in different settings.
The MPC plus smoothing controller may be appropriate for
high-performance dynamic tracking, when the control system
designer is able to tune the weights and constraints. In contrast,
the MPC plus inverse statics optimization controller may be
appropriate for more pseudo-static movements, but can be
implemented more reliably and on more systems without the
tuned smoothing terms.

Both approaches demonstrated noise insensitivity as well
as some robustness to model mismatch (since both controllers
utilize a time-varying linearization.) However, these controllers
have yet to be tested with unknown external loads or dis-
turbances. It is anticipated that such settings may have more
impact on the controller with MPC plus inverse statics, since
it relies more heavily on open-loop behavior. In this case,
approaches may exist for tuning disturbance rejection, such
as increasing pretension in the reference input trajectory via
eqn. (28).

C. Limitations Of Comparison

The results provided here compare the top vertebra of
the 3D model to the single vertebra in the 2D model. This
comparison is chosen to demonstrate the largest errors of each
simulation. Thus, Fig. 6 and 7 represent the same geometry
of state trajectory, but do not represent the exact same system
model.

Though the controller with inverse statics optimization
is prototyped in a reduced-order version of the spine, the

formulation is general enough to be applied to a multiple-
vertebra, 3D spine. However, such simulations have not been
implemented, and as such, it is unknown if some combination
of both optimization problems in Sec. V-B and V-C may still
be required for the higher-dimensional system.

IX. CONCLUSION

This work contributes two controller formulations and one
inverse statics re-formulation for tensegrity robots, as well as
simulations showing their efficacy on two models of tenseg-
rity spines. The second controller, which combines model-
predictive control and an inverse statics optimization problem,
proposes a new architecture for addressing computational
tractability and tuning requirements in tensegrity robots such
as these. The two controllers have different benefits, with
higher performance of the MPC plus smoothing formulation
compared against the the lower tuning complexity of the MPC
plus inverse statics formulation. The MPC plus inverse statics
controller shows tracking performance and noise insensitivity
appropriate for use in quasi-static motions of these robots,
and is shown to be sufficiently general to apply to different
tensegrity spines with no tuning required.

Future work will focus in two areas. First, performance
improvements are needed. In addition to the computational
aspects mentioned above, better tracking may be achieved
using inverse dynamics instead of inverse statics solutions.
Using higher-fidelity models, or more sophisticated numerical
techniques, may allow for a lower-frequency controller to show
good tracking performance.

In addition, hardware experiments using such a lower-
frequency controller will be conducted in future work. Sig-
nificant mechanical design challenges remain before an ap-
propriate physical prototype can be constructed, particularly
with actuation (the dimension of u) and sensing (since this
work uses state feedback.) Work is ongoing in each area.

APPENDIX

A. Spine Geometry

For the vertebra models in Sec. III, the local frames of each
node from Fig. 2a and 2b are, in centimeters,

[
a1 a2 a3 a4 a5

]
=

0 13 −13 0 0

0 0 0 13 −13

0 −7.5 −7.5 7.5 7.5

 (58)

[
a1 a2 a3 a4

]
=

[
0 13 −13 0

0 −7.5 −7.5 7.5

]
. (59)

The mass at each node is assigned to evenly distribute the
m = 0.13 kg mass of each vertebra.

The larger, differently-shaped 2D vertebra considered in
Sec. VII had m = 0.2 kg and nodes at

[
a1 a2 a3 a4

]
=

[
0 20 −20 0

0 −20 −20 20

]
. (60)



13

B. Spine Kinematics and Dynamics

The system state ξ parameterizes the position of each point
mass within a vertebra. For a local frame of particle positions
ak in vertebra j, the particle’s position in the global frame is
bkj as in

bkj(ξ) = Rφ
j (ξ)Rγ

j (ξ)Rθ
j (ξ)ak + rj(ξ),

with the vertebra’s center of mass rj and rotation matrices
Rj a function of the generalized coordinates. The 2D model
removes the y, θ, φ coordinates, but is otherwise expressed in
the same manner.

The continuous-time function g(ξ,u) can be symbolically
solved by considering bkj as a system of particles. These
models have J vertebrae and K point masses per vertebra.
Lagrange’s equations were used to express the dynamics of the
system. With the particles’ total kinetic energy T , gravitational
potential energy U , and Lagrangian L = T − U ,

d

dt

∂L

∂ξ̇i
− ∂L

∂ξi
=

J∑
j=1

K∑
k=1

Fkj ·
∂bkj
∂ξi

, i = 1...6J, (61)

The cable force Fkj uses the spring constant k = 2000Nm and
damping constant c = 100Nsm for eqn. (2). The right-hand
side and left-hand side of (61) are solved symbolically, then
equated to solve for g(ξ,u), noting that ξ̇i = ξi+6J . Results
provided in the accompanying software3.

C. Spine State Trajectory

The state trajectory ξ̄ for the spine models discussed in Sec.
III separates the vertebrae by 10cm vertically in their starting
positions, as per [12], [13]. For vertebra j = 1 . . . J ,

z̄j(0) = 0.1j . (62)

These initial heights also define the radius of the rotation: rj =
z̄j(0). Consequently, the reference positions of each vertebra
over time, x̄j(t) and z̄j(t), are:

x̄j(t) = rj sin(βj(t)), z̄j(t) = rj cos(βj(t)). (63)

In addition, the desired rotation γ̄j(t) of each vertebra about
its inertial Y -axis is defined to be the same as the sweep angle
βj(t) for that vertebra,

γ̄j(t) = βj(t). (64)

The maximum sweep angles for each vertebra are the follow-
ing. The 2D model with one vertebra only uses βmax1 .

[βmax1 , βmax2 , βmax3 ] =

[
π

16
,

π

12
,

π

8

]
. (65)

For the larger, different spine in Sec. VII, the adjusted ξ̄
uses the same βmax1 but a height of z̄1(0) = 0.3 m.

D. Simulation Noise Model

Process noise is implemented by adding a sample from a
normally-distributed random variable to the system dynamics
during the simulation. For example,

ξt+1 = ξt|t + g(ξt|t,u
∗
t|t)(∆t) + Eεt, (66)

where εt is a sample drawn from ε ∼ N (0, I) at time t. The
weighting matrix E scales the variance of the random variable,
and is given in the accompanying software3.

ACKNOWLEDGMENT

Many thanks to those who contributed to earlier versions of
this work. In particular, thanks to Mallory Nation and Ellande
Tang for early work on the inverse statics formulation, as well
as Abishek K. Akella, Zeerek A. Ahmad, and Vytas SunSpiral
for their contributions to the earlier conference version of
this paper. Many thanks to Jeffrey Friesen, Kyunam Kim,
Francesco Borrelli, and Andy Packard for feedback on this
research.

REFERENCES

[1] Y. Fukuoka, H. Kimura, and A. H. Cohen, “Adaptive Dynamic Walking
of a Quadruped Robot on Irregular Terrain Based on Biological Con-
cepts,” The International Journal of Robotics Research, vol. 22, no. 3-4,
pp. 187–202, mar 2003.

[2] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “BigDog, the
Rough-Terrain Quadruped Robot,” IFAC Proceedings Volumes, vol. 41,
no. 2, pp. 10 822–10 825, 2008.

[3] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal, “Com-
pliant quadruped locomotion over rough terrain,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
oct 2009, pp. 814–820.

[4] S. Seok, A. Wang, M. Y. Michael Chuah, D. J. Hyun, J. Lee, D. M.
Otten, J. H. Lang, and S. Kim, “Design Principles for Energy-Efficient
Legged Locomotion and Implementation on the MIT Cheetah Robot,”
IEEE/ASME Transactions on Mechatronics, vol. 20, no. 3, pp. 1117–
1129, jun 2015.

[5] S. Maleki, A. Parsa, and M. N. Ahmadabadi, “Modeling, control and gait
design of a quadruped robot with active spine towards energy efficiency,”
in 2015 3rd RSI International Conference on Robotics and Mechatronics
(ICROM). IEEE, oct 2015, pp. 271–276.

[6] T. Horvat, K. Karakasiliotis, K. Melo, L. Fleury, R. Thandiackal, and
A. J. Ijspeert, “Inverse kinematics and reflex based controller for body-
limb coordination of a salamander-like robot walking on uneven terrain,”
in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, sep 2015, pp. 195–201.

[7] K. Weinmeister, P. Eckert, H. Witte, and A.-J. Ijspeert, “Cheetah-
cub-S: Steering of a quadruped robot using trunk motion,” in 2015
IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR). IEEE, oct 2015, pp. 1–6.

[8] P. Eckert, A. Sprowitz, H. Witte, and A. J. Ijspeert, “Comparing
the effect of different spine and leg designs for a small bounding
quadruped robot,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, may 2015, pp. 3128–3133.

[9] D. Hustig-Schultz, V. SunSpiral, and M. Teodorescu, “Morphological de-
sign for controlled tensegrity quadruped locomotion,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, oct 2016, pp. 4714–4719.

[10] K. Miki and K. Tsujita, “A study of the effect of structural damping on
gait stability in quadrupedal locomotion using a musculoskeletal robot,”
in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, oct 2012, pp. 1976–1981.

3https://github.com/BerkeleyExpertSystemTechnologiesLab/ultra-spine-
simulations



14

[11] A. P. Sabelhaus, L. Janse van Vuuren, A. Joshi, E. Zhu, H. J. Garnier,
K. A. Sover, J. Navarro, A. K. Agogino, and A. M. Agogino, “Design,
Simulation, and Testing of a Flexible Actuated Spine for Quadruped
Robots,” in arXiv:1804.06527v2, 2018.

[12] A. P. Sabelhaus, H. Ji, P. Hylton, Y. Madaan, C. Yang, A. M. Agogino,
J. Friesen, and V. SunSpiral, “Mechanism Design and Simulation of
the ULTRA Spine: A Tensegrity Robot,” in ASME International De-
sign Engineering Technical Conference (IDETC) 39th Mechanisms and
Robotics Conference. ASME, aug 2015.

[13] A. P. Sabelhaus, A. K. Akella, Z. A. Ahmad, and V. SunSpiral, “Model-
Predictive Control of a Flexible Spine Robot,” in 2017 American Control
Conference (ACC). IEEE, may 2017.

[14] R. E. Skelton and M. C. de Oliveira, Tensegrity systems. Springer,
2009.

[15] K. W. Moored, S. A. Taylor, T. K. Bliss, and H. Bart-Smith, “Optimiza-
tion of a tensegrity wing for biomimetic applications,” in Proceedings
of the 45th IEEE Conference on Decision and Control, Y. Matsuzaki,
Ed., vol. 6173, no. 434. IEEE, dec 2006, pp. 2288–2293.

[16] J. M. Mirats Tur and S. H. Juan, “Tensegrity frameworks: Dynamic
analysis review and open problems,” Mechanism and Machine Theory,
vol. 44, no. 1, pp. 1–18, jan 2009.

[17] T. K. Bliss, T. Iwasaki, and H. Bart-Smith, “Resonance entrainment of
tensegrity structures via CPG control,” Automatica, vol. 48, no. 11, pp.
2791–2800, nov 2012.

[18] B. T. Mirletz, P. Bhandal, R. D. Adams, A. K. Agogino, R. D. Quinn,
and V. SunSpiral, “Goal-Directed CPG-Based Control for Tensegrity
Spines with Many Degrees of Freedom Traversing Irregular Terrain,”
Soft Robotics, vol. 2, no. 4, pp. 165–176, dec 2015.

[19] J. M. Friesen, P. Glick, M. Fanton, P. Manovi, A. Xydes, T. Bewley,
and V. Sunspiral, “The second generation prototype of a Duct Climbing
Tensegrity robot, DuCTTv2,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, may 2016, pp. 2123–2128.

[20] V. Bohm, T. Kaufhold, F. Schale, and K. Zimmermann, “Spherical
mobile robot based on a tensegrity structure with curved compressed
members,” in 2016 IEEE International Conference on Advanced Intel-
ligent Mechatronics (AIM). IEEE, jul 2016, pp. 1509–1514.

[21] J. M. Friesen, J. L. Dean, T. Bewley, and V. Sunspiral, “A Tensegrity-
Inspired Compliant 3-DOF Compliant Joint,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, may 2018, pp.
1–9.

[22] B. Chen and H. Jiang, “Swimming Performance of a Tensegrity Robotic
Fish,” Soft Robotics, vol. 00, no. 00, apr 2019.

[23] Y. Koizumi, M. Shibata, and S. Hirai, “Rolling tensegrity driven by
pneumatic soft actuators,” in ICRA, 2012, pp. 1988–1993.

[24] A. P. Sabelhaus, J. Bruce, K. Caluwaerts, P. Manovi, R. F. Firoozi,
S. Dobi, A. M. Agogino, and V. SunSpiral, “System design and
locomotion of SUPERball, an untethered tensegrity robot,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
may 2015.

[25] K. Kim, A. K. Agogino, A. Toghyan, D. Moon, L. Taneja, and A. M.
Agogino, “Robust learning of tensegrity robot control for locomotion
through form-finding,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, sep 2015, pp. 5824–5831.

[26] L.-h. Chen, K. Kim, E. Tang, K. Li, R. House, E. Jung, A. M. Agogino,
A. Agogino, and V. SunSpiral, “Soft Spherical Tensegrity Robot Design
Using Rod-Centered Actuation and Control,” in ASME International
Design Engineering Technical Conference (IDETC) Mechanisms and
Robotics Conference. Charlotte, NC: American Society of Mechanical
Engineers, 2016.

[27] J. Rieffel and J.-b. Mouret, “Adaptive and Resilient Soft Tensegrity
Robots,” Soft Robotics, vol. 5, no. 3, pp. 318–329, jun 2018.

[28] M. Vespignani, J. M. Friesen, V. SunSpiral, and J. Bruce, “Design of
SUPERball v2, a Compliant Tensegrity Robot for Absorbing Large
Impacts,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, oct 2018, pp. 2865–2871.

[29] C. Paul, F. Valero-Cuevas, and H. Lipson, “Design and control of
tensegrity robots for locomotion,” IEEE Transactions on Robotics,
vol. 22, no. 5, pp. 944–957, oct 2006.

[30] M. Shibata, F. Saijyo, and S. Hirai, “Crawling by body deformation of
tensegrity structure robots,” in 2009 IEEE International Conference on
Robotics and Automation, ser. ICRA’09. Piscataway, NJ, USA: IEEE,
may 2009, pp. 4375–4380.

[31] B. R. Tietz, R. W. Carnahan, R. J. Bachmann, R. D. Quinn, and
V. SunSpiral, “Tetraspine: Robust terrain handling on a tensegrity robot
using central pattern generators,” in 2013 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics. IEEE, jul 2013,
pp. 261–267.

[32] D. Zappetti, S. Mintchev, J. Shintake, and D. Floreano, “Bio-inspired
Tensegrity Soft Modular Robots,” in Biomimetic and Biohybrid Systems.
Living Machines, 2017, pp. 497–508.

[33] T. Bliss, T. Iwasaki, and H. Bart-Smith, “Central Pattern Generator
Control of a Tensegrity Swimmer,” IEEE/ASME Transactions on Mecha-
tronics, vol. 18, no. 2, pp. 586–597, apr 2013.

[34] K. Kim, L.-H. Chen, B. Cera, M. Daly, E. Zhu, J. Despois, A. K.
Agogino, V. SunSpiral, and A. M. Agogino, “Hopping and rolling loco-
motion with spherical tensegrity robots,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 2016-Novem,
no. 2. IEEE, oct 2016, pp. 4369–4376.

[35] S. Mintchev, D. Zappetti, J. Willemin, and D. Floreano, “A Soft Robot
for Random Exploration of Terrestrial Environments,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
may 2018, pp. 7492–7497.

[36] J. Friesen, A. Pogue, T. Bewley, M. de Oliveira, R. Skelton, and
V. Sunspiral, “DuCTT: A tensegrity robot for exploring duct systems,”
in 2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, may 2014, pp. 4222–4228.

[37] B. Mirletz, I.-W. Park, T. E. Flemons, A. K. Agogino, R. D. Quinn, and
V. SunSpiral, “Design and Control of Modular Spine-Like Tensegrity
Structures,” in The 6th World Conference of the International Associa-
tion for Structural Control and Monitoring (6WCSCM), 2014.

[38] B. T. Mirletz, I.-W. Park, R. D. Quinn, and V. SunSpiral, “Towards
bridging the reality gap between tensegrity simulation and robotic
hardware,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, sep 2015, pp. 5357–5363.

[39] J. Aldrich, R. Skelton, and K. Kreutz-Delgado, “Control synthesis for
a class of light and agile robotic tensegrity structures,” in Proceedings
of the 2003 American Control Conference, 2003., vol. 6. IEEE, 2003,
pp. 5245–5251.

[40] A. Wroldsen, M. de Oliveira, and R. Skelton, “Modelling and control of
non-minimal non-linear realisations of tensegrity systems,” International
Journal of Control, vol. 82, no. 3, pp. 389–407, mar 2009.

[41] R. Skelton and J. Mirats-Tur, “Nonlinear control of non-minimal tenseg-
rity models,” in Proceedings of the 48h IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese Control Con-
ference. IEEE, dec 2009, pp. 6662–6667.

[42] C. Sultan, M. Corless, and R. E. Skelton, “Symmetrical reconfiguration
of tensegrity structures,” International Journal of Solids and Structures,
vol. 39, no. 8, pp. 2215–2234, apr 2002.

[43] C. Sultan and R. Skelton, “Deployment of tensegrity structures,” Interna-
tional Journal of Solids and Structures, vol. 40, no. 18, pp. 4637–4657,
2003.

[44] K. Caluwaerts and J. P. Carbajal, “Energy conserving constant shape
optimization of tensegrity structures,” International Journal of Solids
and Structures, vol. 58, pp. 117–127, apr 2015.

[45] A. Iscen, A. Agogino, V. SunSpiral, and K. Tumer, “Flop and roll:
Learning robust goal-directed locomotion for a Tensegrity Robot,” in
2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, sep 2014, pp. 2236–2243.

[46] A. Iscen, K. Caluwaerts, J. Bruce, A. Agogino, V. SunSpiral, and
K. Tumer, “Learning Tensegrity Locomotion Using Open-Loop Control
Signals and Coevolutionary Algorithms,” Artificial Life, vol. 21, no. 2,
pp. 119–140, may 2015.

[47] M. Khazanov, J. Jocque, and J. Rieffel, “Evolution of Locomotion on
a Physical Tensegrity Robot,” in Artificial Life 14: Proceedings of the
Fourteenth International Conference on the Synthesis and Simulation of
Living Systems. The MIT Press, jul 2014, pp. 232–238.

[48] J. Kimber, Z. Ji, A. Petridou, T. Sipple, K. Barhydt, J. Boggs, L. Dosiek,
and J. Rieffel, “Low-Cost Wireless Modular Soft Tensegrity Robots,” in
2019 2nd IEEE International Conference on Soft Robotics (RoboSoft).
IEEE, apr 2019, pp. 88–93.

[49] M. Zhang, X. Geng, J. Bruce, K. Caluwaerts, M. Vespignani, V. Sun-
Spiral, P. Abbeel, and S. Levine, “Deep reinforcement learning for
tensegrity robot locomotion,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, may 2017, pp. 634–641.

[50] Z. Littlefield, D. Surovik, M. Vespignani, J. Bruce, W. Wang, and
K. E. Bekris, “Kinodynamic planning for spherical tensegrity locomotion
with effective gait primitives,” The International Journal of Robotics
Research, may 2019.

[51] M. Vespignani, C. Ercolani, J. M. Friesen, and J. Bruce, “Steerable
Locomotion Controller for Six-strut Icosahedral Tensegrity Robots,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, oct 2018, pp. 2886–2892.

[52] B. Cera and A. M. Agogino, “Multi-Cable Rolling Locomotion with
Spherical Tensegrities Using Model Predictive Control and Deep Learn-



15

ing,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, oct 2018, pp. 1–9.

[53] A. Tibert and S. Pellegrino, “Review of Form-Finding Methods
for Tensegrity Structures,” International Journal of Space Structures,
vol. 18, no. 4, pp. 209–223, dec 2003.

[54] L. Birglen and C. M. Gosselin, “Kinetostatic analysis of underactuated
fingers,” IEEE Transactions on Robotics and Automation, vol. 20, no. 2,
pp. 211–221, 2004.

[55] N. P. Belfiore and P. Simeone, “Inverse kinetostatic analysis of compliant
four-bar linkages,” Mechanism and Machine Theory, vol. 69, pp. 350–
372, nov 2013.

[56] M. Arsenault and C. M. Gosselin, “Kinematic, Static, and Dynamic
Analysis of a Spatial Three-Degree-of-Freedom Tensegrity Mechanism,”
Journal of Mechanical Design, vol. 128, no. 5, p. 1061, sep 2006.

[57] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi,
“Neural Network and Jacobian Method for Solving the Inverse Statics
of a Cable-Driven Soft Arm with Nonconstant Curvature,” IEEE Trans-
actions on Robotics, vol. 31, no. 4, pp. 823–834, 2015.

[58] D. Camarillo, C. Carlson, and J. Salisbury, “Configuration Tracking for
Continuum Manipulators With Coupled Tendon Drive,” IEEE Transac-
tions on Robotics, vol. 25, no. 4, pp. 798–808, aug 2009.

[59] J. C. L. Barreto S., A. G. S. Conceicao, C. E. T. Dorea, L. Martinez,
and E. R. de Pieri, “Design and Implementation of Model-Predictive
Control With Friction Compensation on an Omnidirectional Mobile
Robot,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pp.
467–476, apr 2014.

[60] B. Gao, H. Song, J. Zhao, S. Guo, L. Sun, and Y. Tang, “Inverse
kinematics and workspace analysis of a cable-driven parallel robot with
a spring spine,” Mechanism and Machine Theory, vol. 76, pp. 56–69,
jun 2014.

[61] H. J. Schek, “The force density method for form finding and computation
of general networks,” Computer Methods in Applied Mechanics and
Engineering, vol. 3, no. 1, pp. 115–134, jan 1974.

[62] H. C. Tran and J. Lee, “Advanced form-finding of tensegrity structures,”
Computers & Structures, vol. 88, no. 3-4, pp. 237–246, feb 2010.

[63] K. Worthmann, M. W. Mehrez, M. Zanon, G. K. I. Mann, R. G. Gosine,
and M. Diehl, “Model Predictive Control of Nonholonomic Mobile
Robots Without Stabilizing Constraints and Costs,” IEEE Transactions
on Control Systems Technology, vol. 24, no. 4, pp. 1394–1406, jul 2016.

[64] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. Tseng, “A linear
time varying model predictive control approach to the integrated vehicle
dynamics control problem in autonomous systems,” 2007 46th IEEE
Conference on Decision and Control, pp. 2980–2985, 2007.

[65] F. Allgöwer and A. Zheng, Nonlinear Model Predictive Control,
F. Allgöwer and A. Zheng, Eds. Basel: Birkhäuser Basel, 2000, vol. 26.

[66] M. Cannon, “Efficient nonlinear model predictive control algorithms,”
Annual Reviews in Control, vol. 28, no. 2, pp. 229–237, jan 2004.

[67] A. Zheng, “A computationally efficient nonlinear MPC algorithm,” in
American Control Conference, vol. 97, no. 9. IEEE, 1997, pp. 1623–
1627 vol.3.

[68] T. Bliss, J. Werly, T. Iwasaki, and H. Bart-Smith, “Experimental Valida-
tion of Robust Resonance Entrainment for CPG-Controlled Tensegrity
Structures,” IEEE Transactions on Control Systems Technology, vol. 21,
no. 3, pp. 666–678, may 2013.

[69] K. Caluwaerts, J. Despraz, A. Iscen, A. P. Sabelhaus, J. Bruce,
B. Schrauwen, and V. SunSpiral, “Design and control of compliant
tensegrity robots through simulation and hardware validation,” Jour-
nal of The Royal Society Interface, vol. 11, no. 98, pp. 20 140 520–
20 140 520, jul 2014.

[70] K. J. Astrom and R. M. Murray, Feedback systems: an introduction for
scientists and engineers. Princeton university press, 2008.

[71] C. Calladine, “Buckminster Fuller’s Tensegrity structures and Clerk
Maxwell’s rules for the construction of stiff frames,” International
Journal of Solids and Structures, vol. 14, no. 2, pp. 161–172, jan 1978.

[72] R. Connelly and W. Whiteley, “The Stability of Tensegrity Frameworks,”
International Journal of Space Structures, vol. 7, no. 2, pp. 153–163,
1992.

[73] S. Pellegrino and C. Calladine, “Matrix analysis of statically and kine-
matically indeterminate frameworks,” International Journal of Solids
and Structures, vol. 22, no. 4, pp. 409–428, jan 1986.

[74] R. Motro, Tensegrity: Structural systems for the future. Butterworth-
Heinemann, 2003.

[75] F. Borrelli, Constrained Optimal Control of Linear and Hybrid Systems,
ser. Lecture Notes in Control and Information Sciences. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, vol. 290.

[76] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in
MATLAB,” in 2004 IEEE International Conference on Robotics and
Automation. IEEE, 2004, pp. 284–289.

Andrew P. Sabelhaus received the B.S. degree
in mechanical engineering from the University of
Maryland, College Park, MD, USA in 2012 and
the M.S. degree in mechanical engineering from the
University of California Berkeley, CA, USA in 2014,
where he is currently pursing a Ph.D. degree.

He has been a National Science Foundation Grad-
uate Research Fellow while at UC Berkeley, and
is currently a NASA Space Technology Research
Fellow with NASA Ames Research Center, Moffett
Field, CA, USA.

Huajing Zhao received the B.E. degree in mechan-
ical engineering and automatic manufacturing from
Harbin Institute of Technology, China in 2016, and
the M.Eng degree in mechanical engineering from
the University of California Berkeley, USA in 2017.

She is currently pursuing an M.S. degree in the
department of robotics at the University of Michi-
gan, Ann Arbor, MI, USA. She is a member of
Automotive Research Center (ARC), and received
Best Student Poster Finalist Award at the 2018 ARC
Annual Program Review.

Edward L. Zhu received his B.S. degree in me-
chanical engineering from Villanova University, PA,
USA in 2015 and his M.S. degree in mechanical en-
gineering from the University of California Berkeley,
CA, USA in 2017.

He was a DoD SMART fellow at Berkeley,
where his research involved uncertainty estimation
and planning for tensegrity robot locomotion. He
is currently a Research Scientist at the U.S. Army
Research Lab, Vehicle Technology Directorate, Ab-
erdeen, MD, USA.

Adrian K. Agogino received the B.S. degree in
computer engineering from the University of Cal-
ifornia San Diego, La Jolla, CA, USA in 1996,
and the M.S. and Ph.D. degrees in electrical and
computer engineering from the University of Texas
at Austin, TX, USA in 1999 and 2003 respectively.

He is a research scientist at NASA Ames Research
Center, Moffett Field, CA, where he has been since
2004. He has over 70 publications in the fields
of machine learning, soft robotics, rocket analysis,
multiagent systems, reinforcement learning, evolu-

tionary systems and visualization of complex systems. He has received awards
for publications in both learning and in visualization.

Alice M. Agogino (SM’14) received her PhD in
Management Science & Engineering from Stanford
University, MS in Mechanical Engineering from UC
Berkeley and BS in Mechanical Engineering from
the University of New Mexico.

She is currently the Roscoe and Elizabeth Hughes
Professor of Mechanical Engineering at UC Berke-
ley, and serves as Chair of the Graduate Group
in Development Engineering as well as Educa-
tion Director of the Blum Center for Developing
Economies.

Prof. Agogino has authored over 300 peer-reviewed publications, is a
member of the National Academy of Engineering (NAE) and has won
numerous teaching, mentoring, best paper, and research awards. She has
supervised 53 PhD dissertations and 193 MS theses/reports.


	I Introduction
	II Background
	II-A Control of Tensegrity Structures and Robots
	II-B Inverse Statics and Form-Finding for Robotics Control
	II-C Model-Predictive Control for High-Dimensional Nonlinear Robots and Systems
	II-D Simulation-Based Controller Validation

	III Spine Model and Movement Goals
	III-A Vertebra Geometry and State Space
	III-B Cable Model as System Inputs
	III-C Reference State Trajectory

	IV Inverse Statics Optimization for Input Reference Trajectory Generation
	IV-A Force Density Method for Tensegrity Networks
	IV-B Existence of Solutions to the Inverse Statics Problem
	IV-C Rigid Body Reformulation of the Force Density Method
	IV-C1 Force balance per rigid body
	IV-C2 Moment balance per rigid body
	IV-C3 Combined static equilibrium constraint

	IV-D Inverse Statics Optimization

	V Controller Formulations
	V-A Model-Predictive Controller Formulation
	V-B Controller with MPC and Smoothing Terms
	V-B1 Constrained Finite-Time Optimal Control Problem Formulation
	V-B2 Dynamics Constraint
	V-B3 Other Constraints
	V-B4 Objective Function

	V-C Controller with MPC and Inverse Statics Optimization
	V-C1 Constrained Finite-Time Optimal Control Problem Formulation
	V-C2 Dynamics Constraint
	V-C3 Other Constraints
	V-C4 Objective Function

	V-D Controller Comparison

	VI Simulation Results
	VI-A Computational Performance
	VI-B Controller with MPC and Smoothing Terms
	VI-C Controller with MPC and Inverse Statics Optimization

	VII Control of Different Spines
	VIII Discussion
	VIII-A Computational Performance
	VIII-B Tracking Performance Comparison
	VIII-C Limitations Of Comparison

	IX Conclusion
	Appendix
	A Spine Geometry
	B Spine Kinematics and Dynamics
	C Spine State Trajectory
	D Simulation Noise Model

	References
	Biographies
	Andrew P. Sabelhaus
	Huajing Zhao
	Edward L. Zhu
	Adrian K. Agogino
	Alice M. Agogino


