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PDE Traffic Observer Validated on Freeway Data
Huan Yu∗, Qijian Gan†, Alexandre Bayen†, Miroslav Krstic∗

Abstract—This paper develops boundary observer for estima-
tion of congested freeway traffic states based on Aw-Rascle-
Zhang (ARZ) partial differential equations (PDE) model. Traffic
state estimation refers to acquisition of traffic state information
from partially observed traffic data. This problem is relevant
for freeway due to its limited accessibility to real-time traffic
information. We propose a model-driven approach in which
estimation of aggregated traffic states in a freeway segment
are obtained simply from boundary measurement of flow and
velocity without knowledge of the initial states. The macroscopic
traffic dynamics is represented by the ARZ model, consisting of
2× 2 coupled nonlinear hyperbolic PDEs for traffic density and
velocity. Analysis of the linearized ARZ model leads to the study
of a hetero-directional hyperbolic PDE model for congested traffic
regime. Using spatial transformation and PDE backstepping
method, we construct a boundary observer consisting of a copy
of the nonlinear plant with output injections from boundary
measurement errors. The output injection gains are designed for
the estimation error system so that the exponential stability of the
error system in the L2 norm and finite-time convergence to zero
are guaranteed. Numerical simulations are conducted to validate
the boundary observer design for estimation of the nonlinear
ARZ model. In data validation, we calibrate model parameters
of the ARZ model and then use vehicle trajectory data to test
the performance of the observer design.

Index Terms—Aw-Rascle-Zhang model, boundary observer,
traffic estimation, backstepping method, data validation.

I. INTRODUCTION

Traffic state estimation plays an important role in traffic
management. In order to mitigate freeway traffic congestion,
various control algorithms [4] [17] [23] [31] [33] [34] [38] [39]
are developed for ramp metering or variable speed limit. How-
ever, their performance heavily relies on accurate measurement
of traffic states on mainline freeways. Due to financial and
technical limitations, it is difficult to measure traffic states on
mainline freeways everywhere at all times. Therefore, it is
important to estimate traffic states at places where detection
is missing.

The topic of traffic state estimation refers to foreseeing
traffc states with partially observed traffic data and some
prior knowledge of traffic. Such a topic has been extensively
studied and attracted a lot of attentions in recent decades.
According to the comprehensive review in [27], approaches on
traffic estimation fall into the following three categories: model
driven, data driven, and streaming data driven. Among them,
the model driven approach is the most popular one and has
been widely used to solve various traffic estimation problems.

∗Huan Yu and Miroslav Krstic are with the Department of Mechanical and
Aerospace Engineering, University of California, San Diego, 9500 Gilman
Dr, La Jolla, CA 92093 (email: huy015@ucsd.edu; krstic@ucsd.edu)
†Qijian Gan and Alexandre Bayen are with the Department of Civil and En-

vironmental Engineering, University of California, Berkeley, CA 94720(email:
qgan@berkeley.edu; bayen@berkeley.edu)

As a first step in the model driven approach, traffic flow models
are often used to describe traffic dynamics and are calibrated
with historical data. Then state estimates are obtained based
on the calibrated model and real-time data inputs. Therefore,
it is crucial for traffic estimation to have a physical model that
can describe freeway traffic dynamics accurately.

Freeway traffic dynamics in spatial and temporal domains
are usually described using macroscopic models with aggre-
gated variables of traffic density, velocity and flux. These
aggregated variables average out small-scale noises of freeway
traffic and can be directly measured by stationary/point-based
sensors like loop detectors. Among the macroscopic models,
the Lighthill-Whitham-Richards (LWR) model by [20] and
[25] is one of the most applied models. This model is a first-
order scalar hyperbolic PDE of density, and can predict the
propagation and dissipation of traffic shockwaves and repre-
sent fundamental phenomena of free and congested regime
of traffic. Several studies in [5] [6] [7] [19] have used such
a model for traffic states estimation due to its simplicity
and efficiency in model calibration and numerical simulation.
However, the LWR model fails to describe stop-and-go traffic,
which is the oscillatory behavior of congested traffic. The
main reason is because the static equilibrium density-velocity
relation of the LWR model is unable to reproduce the non-
equilibrium relation appearing in the stop-and-go traffic.

In order to address this limitation, second-order models are
proposed to employ additional nonlinear hyperbolic PDE for
traffic velocity, in addition to the density conservation equa-
tion. Therefore, deviations from the equilibrium traffic relation
are allowed in the second-order model since dynamics of the
velocity PDE is captured. The first well-known second-order
model is the Payne-Whitham (PW) model by [24] [28]. But it
predicts negative traffic velocity and information propagation
faster than traffic which is physically unrealistic. Later in [2]
and [36], the Aw-Rascle-Zhang model was proposed which
successfully addresses the anisotropic behavior of traffic and
corrects the PW models prediction of traffic waves. For this
reason, ARZ model has been studied intensively for the stop-
and-go traffic over the recent years [3] [12] [14] [15] [18] [26].

In the literature, there have been studies applying second-
order models as physical models for traffic state estimation, for
example, the second-order extended cell-transmission model
in [22] and the second-order PW model in [29]. However,
to the best of our knowledge, the nonlinear ARZ PDE model
has never been used for state estimation. In order to accurately
estimate the non-equilibrium traffic states for congested traffic,
this paper applies the second-order ARZ model for observer
design and data validation.

In dealing with the second-order coupled nonlinear
hyperbolic system, PDE control of the ARZ model
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has been studied through many recent efforts includ-
ing [3] [16] [17] [31] [32] [37] [38]. The previous work by
authors [31] [32] firstly consider adopts the PDE backstepping
methodology for control of the ARZ model. Boundary control
and observer design using PDE backstepping method have
been developed for 2× 2 coupled hyperbolic systems [9] [30]
and the theoretical result for the general hetero-directional
hyperbolic systems developed in [1] [10] [21]. The applica-
tions of the theoretical results include open-channel flow, oil
drilling, heat exchangers and multi-phase flow problems, but
have never been considered in traffic problems.

In [31], an observer design is proposed for the linearized
ARZ model in an effort to construct an output feedback
controller. In [35], we generalize the previous observer design
to address the freeway traffic estimation problem from a more
practical perspective. In specific, the observer design is pro-
posed for the nonlinear ARZ model with certain assumptions
of boundary conditions are removed. The observer design
accepts a general functional form of the equilibrium density-
velocity relation, rather than the Greenshield’s model. The data
validation results in this paper are obtained on the basis of the
theoretical result in [35].

In validation of the observer, vehicle trajectory data is
used to obtain the aggregated values of traffic states. The
ARZ model is calibrated with the historical field data. The
model parameters are mostly obtained from historical data.
The rest is determined from part of the dataset. Then the
observer is constructed using the model parameters and real-
time sensing of the data at boundaries. The performance of
the PDE boundary observer is then evaluated with the field
data in the temporal and spatial domain.

The contribution of this work: a systematic model-driven
approach is developed for traffic state estimation. The PDE
boundary observer based on the macroscopic ARZ traffic
model is designed and validated. The theoretical observer
design by backstepping method is generalized and adapted for
the field-data validation. Vehicle trajectories data [13] is used
to construct and to test the performance of the observer design.
This result paves the way for implementing the PDE observer
design in practice and give rise to a variety of opportunities
to incorporate the PDE backstepping techniques in traffic
estimation problem.

The outline of this paper is as follows: in section II,
we firstly introduce the nonlinear ARZ model, and analyze
the linearized ARZ model for distinguishing the free and
congested traffic. Section III designs the boundary observer for
the linearized ARZ model using the backstepping method and
the nonlinear boundary observer is developed using the output
injections obtained from the linearized model. In section
IV, numerical simulations of the nonlinear ARZ PDE model
and state estimation by the nonlinear boundary observer are
conducted firstly from an ad-hoc choice of model parameters.
In section V, we calibrate the ARZ model with some field data
and test the observer. The estimation errors are then analyzed.

II. PROBLEM STATEMENT

We consider the traffic estimation problem for a stretch of
freeway whose length is L. The macroscopic traffic dynamics

is described by the ARZ model. We study the linearized ARZ
model and discuss the characteristic speeds under the free and
congested traffic regime.

A. Aw-Rascle-Zhang Model

The ARZ model for (x, t) ∈ [0, L]× [0,+∞) is given

∂tρ+ ∂x(ρv) =0, (1)

∂tv + (v − ρp′(ρ))∂xv =
V (ρ)− v

τ
. (2)

The state variable ρ(x, t) denotes the traffic density and v(x, t)
denotes the traffic speed. The equilibrium velocity-density
relationship V (ρ) is a decreasing function of density. The
equilibrium flux function Q(ρ), also known as fundamental
diagram, is defined as

Q(ρ) = ρV (ρ). (3)

For ARZ model, the choice of V (ρ) needs to satisfy that the
flux function Q(ρ) is smooth, strictly concave Q(ρ)′′ < 0 and
a strictly decreasing velocity functional form V ′(ρ) < 0. The
second-order ARZ model is valid when the hyperbolicity is
ensured for Q(ρ). One of the basic choice of V (ρ) is in the
form of the Greenshield’s model,

V (ρ) = vf

(
1−

(
ρ

ρm

)γ)
. (4)

The observer design proposed in the following section is not
limited by this choice. Later on, a more realistic functional
form of V (ρ) is proposed for the data validation which has a
better fitting with traffic field data.

The inhomogeneous ARZ including a relaxation term on the
right hand side of the velocity PDE is considered. The constant
parameter τ is the relaxation time which describes drivers’
driving behavior adapting to equilibrium density-velocity rela-
tion over time. Note that the homogeneous ARZ model without
the relaxation term cannot address this phenomenon and poses
an easier estimation problem.

The increasing function of density p(ρ) is defined as the
traffic pressure

p(ρ) = C0ρ
γ , (5)

where C0, γ ∈ R+, p′(ρ) > 0 and p(0) = 0 are assumed.
The pressure function p(ρ) is chosen so that it is related to
equilibrium velocity-density function V (ρ) as

p(ρ) = V (0)− V (ρ). (6)

Given V (ρ) in (4), we have density pressure as

p(ρ) = vf

(
ρ

ρm

)γ
. (7)

Note that this choice of model parameter shows a marginal
stability and a very slow damping effect of stop-and-go traffic.
The following boundary observer design can be applied to the
model when the above relation does not hold.
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B. Linearized ARZ model in traffic flux and velocity

The traffic density is defined as the number of vehicles
per unit length while the traffic flux represents the number
of vehicles per unit time which cross a given point on the
road. The traffic flow flux q is defined as

q = ρv. (8)

Traffic flux q and velocity v are the most accessible phys-
ical variables to measure in freeway traffic. q is commonly
measured by loop detectors and v can be obtained by GPS or
high-speed cameras. Therefore, we rewrite the ARZ model in
traffic flux q and traffic velocity v as follows,

qt + vqx =
q

v

(
v +

q

v
V ′
( q
v

))
vx

+
Q
(
q
v

)
− q

τ
, (9)

vt +
(
v +

q

v
V ′
( q
v

))
vx =

V
(
q
v

)
− v

τ
, (10)

There is no explicit solution to the above nonlinear coupled
hyperbolic system. To further understand the dynamics of the
ARZ traffic model in (q, v)-system, we linearize the model
around steady states (q?, v?) which are chosen as spatial and
temporal nominal values of state variables. Small deviations
from the nominal profile are defined as

q̃(x, t) =q(x, t)− q?, (11)
ṽ(x, t) =v(x, t)− v?. (12)

The steady density is given as ρ? = q?/v? and setpoint
density-velocity relation satisfy the equilibrium relation V (ρ),

v? = V (ρ?). (13)

The linearized ARZ model in (q̃, ṽ) around the reference
system (q?, v?) with boundary conditions is given by

q̃t + λ1q̃x =− q?

v?

(
v? +

q?

v?
V ′
(
q?

v?

))
ṽx

− q?
(v?)2 + q?V ′

(
q?

v?

)
τ(v?)3

ṽ +
q?V ′

(
q?

v?

)
τ(v?)2

q̃,

(14)

ṽt + λ2ṽx =−
(v?)2 + q?V ′

(
q?

v?

)
τ(v?)2

ṽ +
V ′
(
q?

v?

)
τv?

q̃, (15)

where the two characteristic speeds of the above linearized
PDE model are

λ1 =v?, (16)

λ2 =v? +
q?

v?
V ′
(
q?

v?

)
. (17)

• Free-flow regime : λ1 > 0, λ2 > 0
In the free-flow regime, both the disturbances of traffic
flux and velocity travel downstream, at respective
characteristic speeds λ1 and λ2. The linearized ARZ
model in free-regime is a homo-directional hyperbolic
system.

• Congested regime : λ1 > 0, λ2 < 0
In the congested regime, the traffic density is greater
than the critical value ρc that satisfies Q(ρ)′|ρc = 0 and
the second characteristic speed λ2 becomes the negative
value. Therefore, disturbances of the traffic speed travel
upstream with λ2 while the disturbances of the traffic flow
flux are carried downstream with the characteristic speed
λ1. The hetero-directional propagations of disturbances
force vehicles into the stop-and-go traffic.

In the free-flow regime, the linearized homo-directional
hyperbolic PDEs can be solved explicitly by the inlet boundary
values and therefore state estimates can be obtained by solving
the hyperbolic PDEs. In this work, we focus on the congested
regime with two hetero-directional hyperbolic PDEs. It is
a more relevant and challenging problem for traffic states
estimation.

III. BOUNDARY OBSERVER DESIGN

In this section, boundary sensing is employed for the
observer design. The state estimation of the nonlinear ARZ
model is achieved using backstepping method. The output
injection gains are designed for the linearized ARZ model and
then adding to a copy of the nonlinear plant.

Boundary values of state variations from the steady states
are defined as

Yq,in(t) =q̃(0, t), (18)
Yq,out(t) =q̃(L, t), (19)

Yv(t) =ṽ(L, t). (20)

where the values of q̃(0, t), q̃(L, t) and ṽ(L, t) are obtained
by subtracting setpoint values (q?, v?) from the sensing of in-
coming traffic flux q(0, t), outgoing flux q(L, t) and outgoing
velocity v(L, t),

yq(t) =q(0, t), (21)
yout(t) =q(L, t), (22)
yv(t) =v(L, t). (23)

Sensing of the aggregated values of the traffic flux and velocity
can be obtained by high-speed camera or induction loop
detectors. The induction loops are coils of wire embedded
in the surface of the road to detect changes of inductance
when vehicles pass. The high-speed cameras record the vehicle
trajectories for a freeway segment.

A. Output injection for linearized ARZ model

We diagonalize the linearized equations and therefore write
(q̃, ṽ)-system in the Riemann coordinates. The Riemann vari-
ables are defined as

ξ1 =
ρ?λ2
λ1 − λ2

ṽ + q̃, (24)

ξ2 =
q?

λ1 − λ2
ṽ. (25)

The inverse transformation is given by

ṽ =
λ1 − λ2
q?

ξ2, (26)
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q̃ =ξ1 −
λ2
λ1
ξ2. (27)

The measurements are taken at boundaries lead to the follow-
ing boundary conditions

ξ1(0, t) =
λ2
λ1
ξ2(0, t) + Yq(t), (28)

ξ2(L, t) =
q?

λ1 − λ2
Yv(t). (29)

Therefore the linearized ARZ model in Riemann coordinates
is obtained

∂tξ1 + λ1∂xξ1 =− 1

τ
ξ1, (30)

∂tξ2 + λ2∂xξ2 =− 1

τ
ξ1, (31)

ξ1(0, t) =
λ2
λ1
ξ2(0, t), (32)

ξ2(L, t) =ξ1(L, t). (33)

In order to diagonalize the right hand side to implement the
backstepping method, we introduce a scaled state as follows:

w̄(x, t) = exp

(
x

τλ1

)
ξ1(x, t), (34)

v̄(x, t) =ξ2(x, t). (35)

The (ξ1, ξ2)-system is then transformed to a first-order 2×2
hyperbolic system

w̄t(x, t) + λ1w̄x(x, t) =0, (36)
v̄t(x, t) + λ2v̄x(x, t) =c(x)w̄(x, t), (37)

w̄(0, t) =
λ2
λ1
v̄(0, t) + Yq,in(t), (38)

v̄(L, t) =
q?

λ1 − λ2
Yv(t), (39)

where the spatially varying parameter c(x) is defined as

c(x) = −1

τ
exp

(
− x

τλ1

)
, (40)

Parameter c(x) is a strictly increasing function and bounded
by

−1

τ
≤ c(x) ≤ −1

τ
exp

(
− L

τλ1

)
. (41)

Then we design a boundary observer for the linearized
ARZ model to estimate w̄(x, t) and v̄(x, t) by constructing
the following system

ŵt(x, t) + λ1ŵx(x, t) =r(x)(w̄(L, t)− ŵ(L, t)), (42)
v̂t(x, t) + λ2v̂x(x, t) =c(x)ŵ(x, t)

+ s(x)(w̄(L, t)− ŵ(L, t)), (43)

ŵ(0, t) =
λ2
λ1
v̂(0, t) + Yq,in(t), (44)

v̂(L, t) =
q?

λ1 − λ2
Yv(t), (45)

where ŵ(x, t) and v̂(x, t) are the estimates of the state
variables w̄(x, t) and v̄(x, t). The value w̄(L, t) is obtained

by plugging in the measured outgoing flow flux Yq,out(t) and
velocity Yv(t) into (34),

w̄(L, t) = exp

(
L

τλ1

)(
ρ?λ2
λ1 − λ2

Yv(t) + Yq,out(t)

)
. (46)

The term r(x) and s(x) are output injection gains to be
designed. We denote estimation errors as

w̌(x, t) =w̄(x, t)− ŵ(x, t), (47)
v̌(x, t) =v̄(x, t)− v̂(x, t). (48)

The error system is obtained by subtracting the estimates (42)-
(45) from (36)-(39),

w̌t(x, t) + λ1w̌x(x, t) =r(x)w̌(L, t), (49)
v̌t(x, t) + λ2v̌x(x, t) =c(x)w̌(x, t) + s(x)w̌(L, t),

w̌(0, t) =
λ2
λ1
v̌(0, t), (50)

v̌(L, t) =0. (51)

The design of output injection gains r(x) and s(x) needs to
guarantee that the error system (w̌, v̌) decays to zero. Using the
backstepping transformation, we transform the error system
(49)-(51) into the following target system

αt(x, t) + λ1αx(x, t) =0, (52)
βt(x, t) + λ2βx(x, t) =0, (53)

α(0, t) =
λ2
λ1
β(0, t), (54)

β(L, t) =0. (55)

The explicit solution to the target system (52)-(55) is easily
found

α(x, t) =α

(
0, t− x

λ1

)
, t >

L

|λ1|
, (56)

β(x, t) =β

(
L, t+

L− x
λ2

)
, t >

L

|λ2|
. (57)

Thus we have

α(x, t) ≡ β(x, t) ≡ 0, (58)

after a finite time t = tf where

tf =
L

|λ1|
+

L

|λ2|
. (59)

It is straightforward to prove that the α, β system is L2

exponentially stable.
The backstepping transformation is given in the form of

spatial Volterra integral

α(x, t) =w̌(x, t)−
∫ L

x

K(L+ x− ξ)w̌(ξ, t)dξ, (60)

β(x, t) =v̌(x, t)−
∫ L

x

M(λ1x− λ2ξ)w̌(ξ, t)dξ, (61)

where the kernel variables K(x) and M(x) map the error
system into the target system where the coupling term on
the right hand-side is eliminated by the output injections. The
kernel M(x) is defined as

M(x) = − 1

λ1 − λ2
c

(
x

λ1 − λ2

)
. (62)
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For boundary condition (54) to hold, the kernels K(x) and
M̌(x) satisfy the relation

K(L− ξ) =M((λ2 − λ1)ξ). (63)

The kernel K is then obtained

K(x) = − 1

λ1 − λ2
c

(
−λ2

λ1 − λ2
(L− x)

)
. (64)

According to the boundedness of c(x) in (41), the kernels are
bounded by

|K(x)| ≤ 1

(λ1 − λ2)τ
, (65)

and therefore M(x) is bounded. The output injection gain r(x)
and s(x) are given by

r(x) =λ1K(x) = − λ1
λ1 − λ2

c

(
− λ2
λ1 − λ2

(L− x)

)
, (66)

s(x) =− λ1M(λ1x− λ2L)

=
λ1

λ1 − λ2
c

(
x− λ2

λ1 − λ2
(L− x)

)
. (67)

The backstepping transformation in (60) and (61) is invertible.
Therefore, we study the stability of the error system through
the target system (52)-(55). We arrive at the following theorem.

Theorem 1. Consider system (49)-(51) with inital conditions
w̌0, v̌0 ∈ L2([0, L]). The equilibrium w̌ ≡ v̌ ≡ 0 is exponen-
tially stable in the L2 sense. It holds that

||w̄(·, t)− ŵ(·, t)|| → 0 (68)
||v̄(·, t)− v̂(·, t)|| → 0 (69)

and the convergence to the equilibrium is reached in the finite
time t = tf given in (59).

B. Boundary observer design for Nonlinear ARZ model
For nonlinear boundary observer, we construct the system

by keeping the output injections that are designed for the
linearized ARZ model, then add them to the copy of the
original nonlinear ARZ model.

We summarize the transformation from the linearized ARZ
model in (q̃, ṽ)-system to (w̄, v̄)-system,

w̄(x, t) = exp

(
x

τλ1

)(
ρ?λ2
λ1 − λ2

ṽ(x, t) + q̃(x, t)

)
, (70)

v̄(x, t) =
q?

λ1 − λ2
ṽ(x, t). (71)

And the inverse transformation is given by

q̃(x, t) = exp

(
− x

τλ1

)
w̄(x, t)− λ2

λ1
v̄(x, t), (72)

ṽ(x, t) =
λ1 − λ2
q?

v̄(ξ, t). (73)

Due to the equivalence of (w̌, v̌) and (q̃, ṽ)-system, we arrive
at the following theorem for the linearized ARZ model.

Theorem 2. Consider system (14)-(15) with inital conditions
q̃0, ṽ0 ∈ L2([0, L]). The equilibrium q̃ ≡ ṽ ≡ 0 is exponen-
tially stable in the L2 sense. It holds that

||q(·, t)− q?|| → 0 (74)

Table I
PARAMETER TABLE

Parameter Name Value
Maximum traffic density ρm 160 vehicles/km
Traffic pressure and coefficient γ 1
Maximum traffic velocity vf 40 m/s
Relaxation time τ 60 s
Reference density ρ? 120 vehicles/km
Reference velocity v? 10 m/s
Freeway segment length L 400 m

||v(·, t)− v?|| → 0 (75)

and the convergence to set points is reached in finite time
t = tf .

We denote the error injections designed for the linearized
ARZ model (42)-(45) as

Ew(t) =r(x)(w̄(L, t)− ŵ(L, t)), (76)
Ev(t) =s(x)(w̄(L, t)− ŵ(L, t)). (77)

The output injection gains r(x), s(x) are designed in (66) and
(67). According to (46), w̄(L, t) is obtained from the real-
time measurement of the traffic boundary data in (18)-(20).
Therefore, the values of output injections Ew(t) and Ev(t)
are known.

The nonlinear observer for state estimation of density and
velocity (ρ̂(x, t), v̂(x, t)) is obtained by combining the copy
of the nonlinear ARZ model (ρ, v) given by (1), (2) and the
above linear injection errors in original state variables density
and velocity,

∂tρ̂+ ∂x(ρ̂v̂) =
1

v?

(
exp

(
− L

τλ1

)
Ew − Ev

)
,

(78)

∂tv̂ + (v̂ + ρ̂V ′(ρ̂))∂xv̂ =
V (ρ̂)− v̂

τ
+
λ1 − λ2
q?

Ev, (79)

where the linear injection on the right hand side are obtained
by transforming (ŵ, v̂) to (ρ, v) given in (72),(73). The bound-
ary conditions are

ρ̂(0, t) =
yq(t)

v̂(0, t)
, (80)

v̂(L, t) = yv(t). (81)

When the initial states of the system is close to the set
points, the linearized part dominates the nonlinear estimation
error system. Therefore L2 exponential stability and finite-time
convergence are achieved for the linearized ARZ model. The
local H2 exponential stability can be derived for the estimation
error system of the nonlinear ARZ model, following approach
in [9]. The estimation result is firstly validated in the following
numerical simulation with an ad-hoc choice of parameters.

IV. NUMERICAL SIMULATION

For simulation of the nonlinear ARZ PDE model, we
assume that the initial conditions are sinusoidal oscillations
around the steady states (ρ?, v?) which are in the congested
regime. The initial conditions are assumed to be

ρ(x, 0) =0.1 sin

(
3πx

L

)
ρ? + ρ?, (82)
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v(x, 0) =− 0.1 sin

(
3πx

L

)
v? + v?. (83)

Model parameters of a one-lane traffic in the congested regime
is considered and chosen as shown in the table 1.

We consider a constant incoming flow and constant outgoing
density for boundary conditions,

q̃(0, t) =0, (84)

ṽ(L, t) =
1

ρ?
q̃(L, t). (85)

In the next section, we validate the observer design with the
traffic filed data, we do not prescribe any boundary conditions
beforehand but directly take the measurement of the boundary
data.

We use the finite volume method which is common in traffic
flow applications. The numerical approach divides the freeway
segment into cells and then approximates the cell values
considering the balance of fluxes through the boundaries of the
adjacent cells. In order to obtain the numerical fluxes, we write
the ARZ model in the conservative variables, then apply two-
stage Lax-Wendroff scheme to discretize the ARZ model in
spatio-temporal domain. The scheme is second-order accurate
in space and first-order in time. The spatial grid resolution is
chosen to be smaller than the average vehicle size so that the
numerical errors are smaller than the model errors. Therefore
the numerical simulation is valid for this continuum model.

The inhomogeneous nonlinear ARZ model written in the
conservative form is given by

ρt + (ρv)x =0, (86)

yt + (yv)x =− y

τ
, (87)

where ρ and y are conservative variables, and y is defined as

y = ρ(v − V (ρ)). (88)

The numerical fluxes are then obtained by

Fρ =y + ρV (ρ), (89)

Fy =
y2

ρ
+ yV (ρ). (90)

The Lax-wendroff numerical scheme is performed through
two-stage update from

(
ρnj , y

n
j

)
to
(
ρn+1
j , yn+1

j

)
.

At the first stage, the update law of
(
ρnj , y

n
j

)
to(

ρ
n+ 1

2

j+ 1
2

, y
n+ 1

2

j+ 1
2

)
is given by

ρ
n+ 1

2

j+ 1
2

=
1

2

(
ρnj + ρnj+1

)
− ∆t

2∆x

(
(Fρ)

n
j+1 − (Fρ)

n
j

)
, (91)

y
n+ 1

2

j+ 1
2

=
1

2

(
ynj + ynj+1

)
− ∆t

2∆x

(
(Fy)nj+1 − (Fy)nj

)
− ∆t

4τ

(
ynj + ynj+1

)
, (92)

Then we calculate the numerical flux at the intermediate points
of state variables and the obtain the final stage as

ρn+1
j =ρnj −

∆t

∆x

(
(Fρ)

n+ 1
2

j+ 1
2

− (Fρ)
n+ 1

2

j− 1
2

)
, (93)

yn+1
j =ynj −

∆t

∆x

(
(Fy)

n+ 1
2

j+ 1
2

− (Fy)
n+ 1

2

j− 1
2

)

− ∆t

2τ

(
y
n+ 1

2

j+ 1
2

+ y
n+ 1

2

j− 1
2

)
. (94)

For the numerical stability of the Lax-Wendroff scheme, the
spatial grid size ∆x and time step ∆t is chosen so that CFL
condition is satisfied:

max |λ1,2| ≤
∆x

∆t
, (95)

We specify state values at both x = 0 and x = L
boundaries. ARZ model will pick up some combination of ρ
and v at each of the two boundaries, depending on the direction
of characteristics at the boundary cells. We implement the
boundary conditions in (84) and (85).

The numerical simulation result of the nonlinear ARZ, the
nonlinear boundary observer estimation and the estimation
errors are plotted in Fig. 1-3. Blue lines represent the initial
conditions while the red lines represent the evolution of
outlet state values in the temporal domain. The simulation
is performed for a 500 m length of freeway segment and
evolution of traffic states density and velocity are plotted for
4 min.

In Fig. 1, traffic density and velocity are slightly damped
and keeps oscillating in the domain. It takes the initial
disturbance-generated vehicles to leave the domain in 50 s
but the oscillations sustain for more than 4 min which means
the following incoming vehicles entering the acceleration-
deceleration cycles under the influence of stop-and-go waves.
The traffic states are chosen to be in the congested regime
and the stop-and-go phenomenon is demonstrated in the sim-
ulation.

State estimation of traffic density and velocity by the nonlin-
ear observer is shown in Fig. 2. The measurement is taken for
the outgoing velocity and outgoing flow. The incoming flow is
assumed to be at setpoint traffic flux. We do not assume any
prior knowledge of the initial conditions and set the initial
conditions to be at the setpoint density and velocity. We can
see that state estimates converges to the values of plant after
75 s.

In Fig. 3, the evolution of estimation errors are shown. After
75 s, the estimation errors for density and velocity converge
to value less than 1% of the setpoint value. There are still
relatively very small estimation errors remain in the domain
for two reasons. Our result only guarantees the convergence
of estimates in the spatial L2 norm. In addition, there could
be nonlinearities of the error system not driven to zero by the
linear output injections of the nonlinear boundary observer
design.

V. DATA VALIDATION

In this section, we validate our boundary observer design
with Next Generation Simulation (NGSIM) traffic data [13]
which provides vehicle trajectories with great details and accu-
racy. The NGSIM trajectory data set is collected on April 13,
2005 by the Federal Highway Administration’s project. The
study area is a segment of Intestate 80 located at Emeryville,
California. The dataset gathers trajectories of vehicles over
a total of 45 minutes during rush hour: 4:00pm - 4:15pm,
5:00pm - 5:15pm, 5:15pm - 5:30pm.
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Figure 1. Density ρ(x, t) and velocity v(x, t) of nonlinear ARZ model.

Figure 2. States estimates ρ̂(x, t) and v̂(x, t) of nonlinear boundary observer.

Figure 3. Estimation errors ρ̌(x, t) and v̌(x, t).

Firstly, we calibrate the nonlinear ARZ model with part
of the NGSIM data to obtain calibrated model parameters
including the steady state values, the equilibrium velocity-
density function V (ρ) and the relaxation time τ . Then the rest
datasets are used to test the observer design for the calibrated
ARZ model. The estimation results of traffic states are com-
pared with the NGSIM data. The boundary data is measured
directly from the NGSIM data and traffic states are estimated
for the considered domain. The result of reconstructed traffic
data and boundary observer estimation of the traffic states are
compared.

A. Model calibration with NGSIM data

1) Reconstruction from Data: We aim to calibrate the ARZ
model which is a macroscopic model describing aggregated

values. However, the NGSIM data set consists of micro-
scopic measurements. The data was recorded with high-speed
cameras for every 0.1 seconds. We need to process NGSIM
trajectory data into macroscopic scale so that it can be used
to calibrate the ARZ model.

The data was recorded on a 537-meter long freeway segment
with six lanes for a time period of 15-minutes. Due to
insufficient data collection at boundaries of segment, onset
and offset of recording, the viable domain we choose to use
in calibration and validation is 400-meter during a time period
around 10-minutes. When we calibrate the parameters in ARZ
model and fundamental diagram, we consider the freeway
segment as a macroscopic general one-lane problem. That
being said, six-lane densities need to be taken into account.

We will use the Edie’s formula [8] to calculate aggregated
traffic states ρ(x, t), v(x, t), q(x, t) from the trajectory data of
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Table II
AVERAGED AGGREGATE TRAFFIC DATA

Data Set Density
(veh/km)

Velocity
(km/h)

Flow
(veh/h)

4:00 - 4:15pm 267 28.27 7548
5:00 - 5:15pm 353 20.23 7141
5:15 - 5:30pm 375 19.35 7256

vehicles x(t) with a resolution 0.1 s. At each time instance,
positions of the multiple vehicles are collected. Consider a
time-space domain [0, T ] × [0, L], we divide it into N ×M
grids

[i∆t, (i+ 1)∆t] × [j∆x, (j + 1)∆x],

where i ∈ 1, 2, .., N and j ∈ 1, 2, ..,M . Within each cell, we
consider ρi,j , qi,j , vi,j to be constant. We use the following
Edie’s formula to map a set of vehicles’ traces to speed, flow
and density over the space-time grid. For each cells, suppose
there are Nij vehicle traces passing through the cell [i∆t, (i+
1)∆t] × [j∆x, (j + 1)∆x],

ρi,j =
Σ
Nij

k=1tk
∆x∆t

, (96)

qi,j =
Σ
Nij

k=1xk
∆x∆t

, (97)

vi,j =
qi,j
ρi,j

. (98)

After obtaining the cell values ρi,j , qi,j , vi,j , they can be later
on compared with the observer estimates ρ̂i,j , q̂i,j , v̂i,j with
same griding. The number of cells are chosen such that in
each cell, there are enough trajectory data. Otherwise, there
could be cells that no trajectory has crossed. On the other
hand, noises appear if a very fine discretization of grids is
chosen. The following simulation is performed in a 41 × 41
grid.

We reconstruct the aggregated traffic states from all the three
dataset. In Fig. 4 and Fig. 5, we show the surface plot of the
density and velocity states for the dataset of 4:00pm - 4:15pm
and the dataset of 5:00pm - 5:15pm. The initial conditions
are highlighted with color red and the boundary conditions at
outlet are highlighted with color blue. The congestion forms
up as time goes by and propagates from the downstream to
upstream. The most congested traffic appears at the inlet where
the traffic density is relatively high and velocity is low.

We are mostly interested in the congested traffic where
estimation of the traffic states becomes more relevant. The lin-
earized ARZ model around the uniform reference is analyzed
and employed for the observer design. By taking average of
traffic aggregated values, we obtain the reference system ρ?,
v? and q? of each dataset. Therefore, the average density,
average velocity and average flow of each time period is
calculated and shown in the Table II. We observe that among
the three data set, the traffic is most congested during 5:15pm
- 5:30pm with largest averaged density and smallest velocity.
Whether the traffic states are in congested or free regime need
to be determined after we introduce the calibrated fundamental
diagram.

2) Calibration of model parameters: For the ARZ model,

∂tρ+ ∂x(ρv) =0, (99)

∂tv + (v + ρV ′(ρ))∂xv =
V (ρ)− v

τ
, (100)

the model parameters to be calibrated from the dataset is the
equilibrium density-velocity relation V (ρ) and relaxation time
τ . The fundamental diagram defined as

Q(ρ) = ρV (ρ) (101)

describing the equilibrium density and flow rate relation is usu-
ally obtained by long-term measurements via loop-detectors.
The loop-detector data set provides macroscopic density and
flow rate data and its recording resolution is 30 s. In the
previous section, we use Greenshield’s model (4) for V (ρ)
as a simple choice for the boundary observer design. The
Greenshield’s fundamental diagram Q(ρ) is given by

Q(ρ) = ρvf

(
1−

(
ρ

ρm

)γ)
. (102)

But Greenshield’s model cannot accurately represent the
fundamental diagram data. The critical density ρc satisfies
Q′(ρ)|ρc = 0 and thus segregates the free and congested
regimes. The critical density ρc of the Greenshield’s model
(γ = 1) occurs at ρc = 1

2ρm. However, the critical density
obtained from empirical traffic data usually shows up at
ρc = 1

4ρm. Hence, we need to consider a more realistic
functional form for Q(ρ). Here we employ a three-parameter
fundamental diagram proposed by [11].

In [11], the following three-parameter (λ, p, α) fundamental
diagram is calibrated with the NGSIM detector data set of the
same freeway segement,

Q(ρ) = α

a+ (b− a)
ρ

ρm
−

√
1 + λ2

(
ρ

ρm
− p
)2
 ,

(103)

where a and b are denoted by

a =
√

1 + (λp)2, (104)

b =
√

1 + (λ(1− p))2. (105)

The parameters (λ, p, α) do not have physical meaning but
represent the shape of the functional form where λ represents
the roundness, p tunes the critical density, α determines the
maximum flow rate. The hyperbolicity Q′′(ρ) < 0, V ′(ρ) < 0
is guaranteed. The three parameters (λ, p, α) are determined
using Least Square fitting with historical loop detector data.

Due to the lack of data near the maximum density, the value
of ρm is prescribed according to the following equation

ρm =
number of lanes

typical vehicle length× safety distance factor
.

(106)

The freeway segment in the dataset consists of 6 lanes and
we consider the typical vehicle length to be 5-meter and the
safety distance factor is 50% of vehicle length. Therefore, we
have ρm for all lanes in our simulation

ρm = 800 veh/km. (107)
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Figure 4. Density and velocity reconstructed from data of 4:00pm-4:15pm.

Figure 5. Density and velocity reconstructed from data of 5:00pm-5:15pm.
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Figure 6. Density and flow from data of 4:00pm-4:15pm, 5:00pm-5:15pm and 5:15pm-5:30pm.

The calibrated fundamental diagram is plotted in Fig. 6.
The traffic density and flow rate of the three dataset are
plotted on the calibrated fundamental diagram. We can see
that 4:00pm-4:15pm are in the transition region where the
data points are partially in the free regime and partially in
the congested regime. The traffic data of 5:00pm-5:15pm and
5:15pm-5:30pm are scattered in the congested regime of the
fundamental diagram.

With the calibrated fundamental diagram V (ρ), we choose
the relaxation time τ from a range from 10s to 100s and
calibrate it with the dataset of 5:00pm-5:15pm. The optimal
relaxation time is τ = 30s where the total error between the
calibrated model and data is the lowest. In the next step, we use
the calibrated fundamental diagram V (ρ) and the relaxation

time τ to construct the boundary observer.

B. Simulation for the nonlinear observer with calibrated pa-
rameters

We use the data of 5:15pm-5:30pm to test the boundary
observer design. The reference system (ρ?, v?, q?) is obtained
from Table II. Along with the calibrated parameters V (ρ)
and τ , the nonlinear observer is constructed with a copy of
the nonlinear ARZ model with the output injection gains that
drive the estimation errors to zero. The numerical solution of
the nonlinear PDEs are approximated with the Lax-Wendroff
method. The boundary data is implemented with the ghost
cell. The ARZ model collects the boundary values based both
on flux of the computational domain and the boundary data
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Figure 7. Density and velocity reconstructed from the data of 5:15pm-5:30pm.

Figure 8. Estimates of density and velocity from the data of 5:15pm-5:30pm.

of the ghost cells. Using the boundary measurements of the
inlet and outlet of the freeway segment, the state estimation
(ρ̂(x, t), v̂(x, t)) is generated without the knowledge of the
initial condition. In Fig. 7, (ρ(x, t), v(x, t)) is obtained from
the reconstruction of the data set of 5:15pm-5:30pm. In Fig. 8,
it shows the evolution of the state estimates (ρ̂(x, t), v̂(x, t)).
The initial condition, highlighted with color blue, is assumed
to be the uniform reference system (ρ?, v?, q?) which rep-
resents the averaged values of the dataset. The boundary
conditions at outlet are highlighted with right color which
gives the output injections in the observer. We notice that when
density value is higher than 600 veh/km at inlet around 7 min,
the estimation result is not satisfying at inlet. This could be
related to the ARZ model’s inaccuracy in predicting traffic
states near maximum density since non-unique maximum
densities exist for the ARZ model.

For the error analysis of the observer estimation, the esti-
mation errors are considered in the L2-norm, defined as

Eρ(t) =

[
1

L

∫ L

0

(
ρ(x, t)− ρ̂(x, t)

ρ?

)2

dx

]1/2
, (108)

Ev(t) =

[
1

L

∫ L

0

(
v(x, t)− v̂(x, t)

v?

)2

dx

]1/2
, (109)

where ρ? and v? are the averaged state values of the data.
We choose the L2 of the estimation errors and average it over
space. The convergence of the local stability in the L2-sense
for estimation errors to zero is guaranteed in Theorem 2. In
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Figure 9. Density and velocity estimation errors for the data of 5:15pm-
5:30pm.

addition, the spatial averaged errors can remove the influence
of noises and outliers of the traffic data.

The temporal evolution of the space-averaged errors of
density and velocity estimates in the L2-sense is shown in
Fig. 9. It reveals that at the initial time, density and velocity
estimation errors start from 20% and 40% respectively. The
finite convergence time is around tf = 3 min. The estimation
errors in the end converge at 10%. The linearization of output
injections design, the data noise, the reconstruction errors and
the numerical approximation errors could contribute to the
remaining spatial averaged errors between the estimation and
NGSIM traffic data after the convergence time.
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VI. CONCLUSION

In conclusion, we develop a nonlinear boundary observer
for the second-order nonlinear hyperbolic PDEs, estimating
traffic states of ARZ model and then validate the design with
traffic field data. Analysis of the linearized ARZ model leads
our main focus to the congested regime where stop-and-go
happens. Using spatial transformation and PDE backstepping
method, we construct a boundary observer with a copy of the
nonlinear plant and output injection of measurement errors
so that the exponential stability of estimation errors in the
L2 norm and finite-time convergence to zero are guaranteed.
Simulations are performed for traffic estimation on a stretch
of freeway. The nonlinear observer is tested with a calibrated
ARZ model obtained from the NGSIM data.

For future work, observer design may be considered for a
generalized ARZ model proposed by [12] to address the non-
unique maximum density associated with ARZ model. The
estimation accuracy in predicting the heterogeneous behaviors
of drivers and spread of data for the congested regime could
be improved. On the other hand, defining the fundamental
diagram requires the calibration with the historical data. This
assumption of using the historical data to determine model
parameters may not hold when traffic becomes unpredictable
in case of accidents. It is practically preferable if the model
parameters could be estimated real-time. Therefore, it is of
authors’ interest to consider adaptive observer design for this
problem.
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