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Abstract—By utilizing tools from game theory, we develop a
novel multi-period-multi-company demand response framework
considering the interactions between companies (sellers of energy)
and their consumers (buyers of energy). We model the interac-
tions in terms of a Stackelberg game, where companies set their
prices and consumers respond by choosing their demands. We
show that the underlying game has a unique equilibrium at which
the companies maximize their revenues while the consumers
maximize their utilities subject to their local constraints. Closed-
form expressions are provided for the optimal strategies of all
players. Based on these solutions, a power allocation game has
been formulated, which is shown to admit a unique pure-strategy
Nash equilibrium, for which closed-form expressions are also
provided. This equilibrium is found under the assumption that
companies can freely allocate their power across the time horizon,
but we also demonstrate that it is possible to relax this assump-
tion. We further provide a fast distributed algorithm for the
computation of all optimal strategies using only local information.
We also study the effect of variations in the number of periods
(subdivisions of the time horizon) and the number of consumers.
As a consequence, we are able to find an appropriate company-
to-consumer ratio when the number of consumers participating
in demand response exceeds some threshold. Furthermore, we
show, both analytically and numerically, that the multi-period
scheme provides incentives for energy consumers to participate
in demand response, compared to the single-period framework
studied in the literature [1]. In our framework, we provide a
condition for the minimum budgets consumers need, and carry
out case studies using real life data to demonstrate the benefits
of the approach, which show potential savings of up to 30% and
equilibrium prices that have low volatility.

I. INTRODUCTION

One critical aspect of demand-side management (DSM)
in the smart grid is demand response, which is defined as
the response of consumers’ demands to price signals from
the utility companies (see [2]–[4] for tutorial discussions).
Demand response allows companies to manage the consumers’
demands, either directly (through direct load control) or indi-
rectly (through pricing mechanisms). Demand response comes
with great benefits, including -but not limited to- improving the
electricity market efficiency [5]. It also comes with challenges,
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particularly in its deployment [6]. For an overview of the
methodologies and the challenges of load/price forecasting and
managing demand response in the smart grid, see [7]. A com-
prehensive survey on the pricing methods and optimization
algorithms for demand response programs can be found in [8].
An overview of integrated demand response, where consumers
participate in multiple energy systems is provided in [9].

Using the framework of game theory, load adaptive pricing
has been introduced decades ago [10]. In this paper, we use
game theory to design a multi-period-multi-company demand
response management program at which companies and their
consumers reach a unique equilibrium. At the equilibrium
point, prices and demands are optimally chosen such that
companies maximize their revenues and consumers maximize
their utility functions. For the purpose of this paper, one can
think of “company” as a utility company serving households,
businesses, and industrial consumers. It is of critical interest to
capture competition between companies, and hence we utilize
the framework of, and tools from noncooperative game theory.
We remark that such tools can be useful for the smart grid in
various contexts [11].

A considerable number of contributions have used game
theory to analyze what happens in a smart grid where there
are multiple sellers/utilities/retailers [1], [12]–[22] serving the
same set of consumers. For example, analysis of how plug-
in hybrid electric vehicles can sell back to the grid has been
explored in [12]–[14]. A similar analysis has also been carried
out for electric bicycles [15]. A two-level game has been
proposed in [16]. The authors in [17] introduce a Stackelberg
game to capture the interactions between electricity generator
owners and a demand response aggregator. In [18], a dis-
tributed game between energy consumers of different types
has been designed while emphasizing individual preferences.
Furthermore, in [19], analysis of three-party energy man-
agement scheme between residential users, a shared facility
controller, and the main power grid, has been conducted via
a Stackelberg game. Among the contributions in the literature
the ones most relevant to this paper are [1] and [20]. A single-
period Stackelberg game for demand response management
with multiple utility companies has been proposed in [1],
where consumers choose their optimal demands in response
to prices announced by different utility companies. In [20],
an extension to the large population regime was carried out.
Variations of [1] to user-centric approaches were discussed
in [21], [22]. These works [1], [12]–[22] have demonstrated
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the usefulness and the power of game theory in capturing the
interplay between buyers and sellers in the smart grid, but they
are limited to single period setups.

In the smart grid, temporal variations play a critical role on
both the supply side and the demand side. There are several
papers in the literature that have addressed inter-temporal
considerations in DSM and demand response [23]–[32], such
as scheduling of appliances and/or storage [23]–[26], peak-
to-average ratio reduction [27]–[29], procurement issues [30],
and wholesale market price fluctuations [31], [32]. While
the contributions in [23]–[32] are important and reveal the
importance of game theory for multi-period considerations
in demand-side management, they are all limited to a single
seller/utility/retailer case.

The vast majority of demand response contributions are
either limited to a single seller case, or a single period one.
Furthermore, they primarily focus on either the utility-side
or the consumer-side. Our goal here is to alleviate these
limitations by developing a multi-period-multi-company de-
mand response framework in which we address the interests
and incentives for both utilities and their consumers in the
smart grid. We achieve our goal by formulating and solving a
Stackelberg game, which is a hierarchical game consisting of
two kinds of players, leaders who act first, and these are utility
companies in our framework, and followers who respond to
leaders’ decisions, and these are price-responsive consumers.
We prove that the proposed game admits a unique equilibrium
at which companies find their revenue-maximizing prices and
consumers choose their optimal demands that maximize their
utility functions while taking into account their budget limi-
tations and energy needs across the time horizon. We further
propose a distributed algorithm to compute the equilibrium
using only local information. The unique equilibrium is com-
puted for the case in which the power available to sell for each
company at each period is fixed. Nevertheless, by exploiting
the closed-form solutions we derive, we are able to formulate
a new power allocation game at which companies solve for
allocations that further maximize their revenues, and also
prove that it admits a unique equilibrium, and find its analytical
expression. The equilibrium of the power allocation game
reveals that companies find it optimal to sell the same amount
of power at each period. This affirms that our game-theoretic
framework aligns with the incentives of utility companies that
prefer to minimize the Peak-to-Average ratio. Furthermore, we
study what happens in the large population regime where the
number of demand-responsive consumers becomes very large,
and reveal that the number of companies needs to change
appropriately, leading to an appropriate company-to-consumer
ratio. We also study what happens as the number of periods
(subdivisions of the time horizon) grows, and show both the-
oretically and numerically, that consumers’ utility increase as
the number of periods increases, making multi-period demand
response desirable for them. Since we also address revenue-
maximization for companies, this leads to a win-win situation.
Furthermore, we provide a theoretical benchmark to measure
whether or not consumers are spending more than what is
necessary. We validate the applicability of our game to real
life data. Numerical studies show that our benchmark leads

to billing savings in excess of 10 − 30%, demonstrate the
fast convergence of our distributed algorithm, and quantify
the effect of the number of periods. Our work captures the
competition between companies, budget limitations at the
consumer-level, and energy need for the entire time-horizon. 1

We stress that we make some simplifying assumptions to keep
our analysis tractable, which makes it possible to reveal the
main insights and gain deep understanding into the interplay
between companies and their consumers. We also demonstrate
that our framework has desirable mathematical properties
that make generalizations at both the consumers-level and
companies-level possible, which we discuss in Section IX.

The remainder of the paper is organized as follows. Pre-
liminaries from game theory are provided in Section II. The
problem is formulated in Section III, and optimal prices and
demands are obtained via a Stackelberg game in Section IV.
In Section V, a power allocation game at the companies side
is formulated based on the closed-form solutions of the Stack-
elberg game. Next, we provide a distributed algorithm for the
computation of all optimal strategies using local information
in Section VI. The asymptotic regimes are studied, in which
the number of periods or the number of consumers grows in
Section VII. Next, we present results on case studies using
real demand response data in Section VIII. Generalizations
are discussed in Section IX. Finally, we conclude the paper in
Section X with a recap of its main points and identification of
future directions. An appendix at the end provides details of
proofs of the five theorems and some auxiliary results.

II. PRELIMINARIES FROM GAME THEORY

A static N -person noncooperative game is comprised of
players set, action sets, and utility functions. Let the play-
ers set be denoted by N := {1, . . . , N}, where N is
the number of players. Each player has an action set Ai,
and the decision of player i is denoted by ai ∈ Ai. The
vector of decisions taken by other players is denoted by
a−i := (a1, . . . ,ai−1,ai+1, . . . ,aN ). Each player i aims to
maximize his/her utility function ui(ai,a−i). One key point is
that the utility function of player i depends not only on his/her
actions, but also on the decisions made by other players. An
equilibrium concept that is suitable for such games is the Nash
Equilibrium (NE), which is defined below.

Definition 1: The action vector a∗ ∈ A1 × · · · × AN

constitutes a Nash equilibrium for the N -person static non-
cooperative game in pure-strategies if

ui(a
∗
i ,a
∗
−i) ≥ ui(ai,a∗−i) ∀ai ∈ Ai, i ∈ N . (1)

Sometimes it would be beneficial to allow for hierarchy in the
decision process. In such a case, there are two types of players,
leaders and followers. The leaders’ decisions are dominant,
and the followers respond to the decisions taken by the
leaders. This kind of hierarchical games is called Stackelberg
games, and the corresponding solution concept is called the

1Some of the results in this paper were presented earlier in the conference
paper [33], but this paper provides a much more comprehensive treatment of
the work, such as the inclusion of the power allocation, asymptotic analysis,
distributed algorithm, generalizations, and proofs.
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Fig. 1: The interaction between companies and their
consumers. Companies play a price-selection Nash game.
Then, consumers respond by choosing their demands
independently of each other (the entire two-level interaction
is a Stackelberg game).

Stackelberg equilibrium. The leaders have the privilege of
choosing how to take their actions at the beginning of the
game. However, they have to take into account how the fol-
lowers would respond to these actions and how each leader’s
decision is influenced by the decisions of the other leaders.
To be more precise, suppose that we have K leaders and N
followers. Denote the followers set by N := {1, . . . , N}, and
the leaders set by K := {1, . . . ,K}, with action sets (Fi)i∈N
and (Lj)j∈K, respectively. Denote a generic action of leader j
by aj ∈ Lj , and that of follower i by bi ∈ Fi. The vector of
actions taken by all leaders is denoted by a := (a1, . . . ,aK).
The utility of leader j is denoted by uj(aj ,a−j,b(a)), where
a−j denotes the decisions of the other leaders, and b(a) =
(b1(a), . . . ,bN (a)) ∈ F1 × · · · × FN .

Definition 2: The action vector a∗ ∈ L1 × · · · × LK is
a Stackelberg Equilibrium strategy for all the K leaders in
pure-strategies if, for each j ∈ K,

uj(a
∗
j ,a
∗
−j,b

∗(a∗)) ≥ uj(aj ,a∗−j,b∗(aj ;a∗−j)) ∀aj ∈ Lj (2)

where b∗(a) ∈ F is the optimal response by all followers to
the leaders’ decisions, under the adopted equilibrium solution
concept at the followers level. This solution concept is gener-
ally the Nash equilibrium, where followers play a Nash game.
When there is no direct coupling between different followers,
that is, other followers’ decisions do not directly appear in
the problem follower i solves, they become independent,
individual utility maximizers, which is the case we have in this
work. For a Stackelberg game, the pair (a∗,b∗(a∗)) constitutes
the equilibrium strategy.

III. FORMULATION OF A MATHEMATICAL MODEL

Let K = {1, 2, . . . ,K} be the set of companies, N =
{1, 2, . . . , N} be the set of consumers, and T = {1, 2, . . . , T}
be the finite set of time slots 2. We formulate a static Stack-
elberg game between utility companies (the leaders) and their

2In this paper, we interchangeably use “time slot” and “period” to refer to
a subdivision of the time horizon.

consumers (the followers) to find revenue maximizing prices
and optimal demands. In Stackelberg games, the leader(s)
first announce their decisions to the follower(s), and then
the followers respond. In our game, the leaders send price
signals to the consumers, who respond optimally by choosing
their demands. To capture the market competition between
the utility companies, we let them play a price-selection Nash
game. The equilibrium point of the price-selection game is
what utility companies announce to their consumers. The
consumers, on the other hand, do not face a game among
themselves as they are individual utility maximizers. Figure 1
illustrates the hierarchical interaction between companies and
consumers. In the parlance of dynamic game theory [34], we
are dealing here with open-loop information structures, with
the corresponding equilibrium at the companies level being
open-loop Nash equilibrium. Therefore, this is a one-shot
game at which all the prices for all the periods are announced
at the beginning of the game, and the followers respond to
these prices by solving their local optimization problems.

A. Consumer-Side

Because of energy scheduling and storage, consumers may
have some flexibility on when to receive a certain amount of
energy. We are concerned about the total amount of shiftable
energy. Period-specific constraints can be added to include
non-shiftable energy demand in the problem formulation, as
discussed later in Section IX. Each energy consumer n ∈ N
receives all price signals from each company k ∈ K at each
time slot t ∈ T and aims to select his corresponding utility-
maximizing demand dn,k(t) ≥ 0 for each time slot from
each company, subject to budget and energy need constraints.
Denote the price of company k at time t by pk(t). Let Bn ≥ 0
and Emin

n ≥ 0 denote, respectively, the budget of consumer
n and minimum energy need for the entire time-horizon. The
utility of consumer n is defined as

un(dn) = γn
∑
k∈K

∑
t∈T

ln(ζn + dn,k(t)) (3)

where γn > 0 and ζn ≥ 1 are preference parameters. Note
that if 0 ≤ ζn < 1 or γn < 0, the utility of the consumer
becomes negative, which is not realistic for demand response
applications, and hence we take γn > 0 and ζn ≥ 1. A typical
value for ζn is 1, but we still solve the problem for arbitrary
ζn ≥ 1 to keep it general. The logarithmic function (3) is
known to provide proportional fairness and is widely used to
model consumer behavior in economics [15], [35]–[38], and it
has been validated for demand response applications [1], [15],
[22], [39], [40]. Our analysis in this paper is quite general and
can be used in any market arrangement with multiple sellers
and buyers under budget limitations and capacity constraints.
Consumer n aims to achieve the highest payoff while meeting
the threshold of minimum amount of energy and not exceeding
a certain budget. To be more precise, given Bn ≥ 0, Emin

n ≥ 0,
and pk(t) > 0, the consumer-side optimization problem is



formulated as follows:

maximize
dn

un(dn)

subject to
∑
k∈K

∑
t∈T

pk(t)dn,k(t) ≤ Bn (4)∑
k∈K

∑
t∈T

dn,k(t) ≥ Emin
n (5)

dn,k(t) ≥ 0, ∀k ∈ K, ∀t ∈ T (6)

Note that, as indicated earlier, there is no game played
among the consumers. Each consumer responds to the price
signals using only her local information.We indirectly handle
consumers’ cost minimization via our analysis in later sections.

B. Company-Side

Let the prices chosen by other companies be p−k. The
revenue for company k is then given by

πk(pk,p−k) :=
∑
t∈T

pk(t)
∑
n∈N

dn,k(pk,p−k, t). (7)

Given the power availability of company k at period t, denoted
by Gk(t), and for a fixed p−k, company k solves the following
problem:

maximize
pk

πk(pk,p−k)

subject to
∑
n∈N

dn,k(pk,p−k, t) ≤ Gk(t), ∀ t ∈ T (8)

pk(t) > 0, ∀ t ∈ T (9)

The goal of each company is to maximize its revenue3.
Additionally, because of the market competition, the prices
announced by other companies also affect the determination
of the price at company k. Thus, company k selects its price
in response to what other competitors in the market have
announced; this response is also constrained by the availability
of power. Thus, what we have is a Nash game among the
companies. We emphasize that while each company’s problem
is affected by what its competitors decide, we can still achieve
the equilibrium strategies using only local information, via our
distributed algorithm discussed later in Section VI. Finally,
while at this point we have Gk fixed for each company k,
we will later formulate a power allocation game to optimally
choose them.

IV. DEMAND SELECTION AND REVENUE MAXIMIZATION
(STACKELBERG GAME)

In this section, we solve the above optimization problems
in closed form and show that the solutions are unique.

3In later sections we show how companies can alter their problems to profit-
maximization instead

A. Consumer-Side Analysis

We start by relaxing the minimum energy constraint (5).
For each consumer n ∈ N , the associated Lagrange function
is given as follows:

Ln = γn
∑
k∈K

∑
t∈T

ln(ζn + dn,k(t))

−λn,1
(∑

k∈K

∑
t∈T

pk(t)dn,k(t)−Bn

)
+
∑
k∈K

∑
t∈T

λn,2(k, t)dn,k(t)

where λn are the Lagrange multipliers. The KKT conditions
of optimality in this case are sufficient because the objective
function is strictly concave and the constraints are linear [41],
and solving for them leads to

d∗n,k(t) =
Bn +

∑
j∈K

∑
h∈T pj(h)ζn

KTpk(t)
−ζn, ∀ t ∈ T , k ∈ K,

(10)
which is a generalization of the single-period case in [1]. A
detailed derivation of (10) can be found in [33]. We remark
that d∗n,k(t) ≥ 0 because the objective function is strictly
increasing.

The following theorem, whose proof can be found in the
Appendix, states the necessary and sufficient condition for
Bn so that the above demands meet the minimum energy
constraint (5).

Theorem 1: For each consumer n ∈ N , the demands d∗n,k(t)
given by (10) satisfy (5) if, and only if,

Bn ≥
Emin

n + ζnKT∑
k∈K

∑
t∈T

1
KTpk(t)

− ζn
∑
k∈K

∑
t∈T

pk(t). (11)

Remark 1: The above theorem can be interpreted as billing
costs minimization. At the equality of (11), Bn corresponds
to the minimum budget needed for consumer n to satisfy
his energy need constraint, given the set of prices chosen
by utility companies. Such a minimum Bn can serve as a
theoretical benchmark in which one can measure whether or
not consumers are paying more than what is necessary. We
later demonstrate that with real data from demand response
experiments, using the equality in (11) leads to savings in the
range of 10%− 30%. �

Assumption 1: For each consumer n, the budget Bn satisfies
the condition (11).

B. Company-Side Analysis

We apply the demands derived in the consumers-side anal-
ysis (which were functions of the prices) and show that
optimality is achieved at the equality of the constraint (8). We
start by solving for prices that satisfy the equality at (8) and
then prove that they are revenue-maximizing, strictly positive,
and unique. Consider the equality in (8), and by the optimal
demands (10), there holds∑

n∈N Bn +
∑

n∈N ζn
∑

j∈K
∑

h∈T pj(h)

KTpk(t)
=
∑
n∈N

ζn+Gk(t),



for all t ∈ T . Let Z =
∑

n∈N ζn and B =
∑

n∈N Bn. Then,
for each company k ∈ K,

B + Z
∑
j∈K

∑
h∈T

pj(h) = KTpk(t)(Gk(t) + Z), ∀ t ∈ T .

(12)
The above equation (12) can be presented as the following
system of linear equations

AP = Y, (13)

where A is a KT × KT matrix whose diagonal entries are
KT (Gk(t) + Z)− Z, k ∈ K, t ∈ T , and off-diagonal entries
all equal to −Z, P is a vector in RKT stacking pk(t), k ∈ K,
t ∈ T , and Y a vector in RKT whose entries all equal to B.

We have the following results (proofs are in the Appendix).
Lemma 1: The matrix A is invertible.
Lemma 2: The prices that solve (13) are strictly positive

and are unique. For each t ∈ T , k ∈ K, the price is given by

p∗k(t) =
B

Gk(t) + Z

(
1

KT −∑j∈K
∑

h∈T
Z

Gj(h)+Z

)
,

(14)
where B =

∑
n∈N Bn and Z =

∑
n∈N ζn.

Remark 2: Letting ζn = 1 for each consumer, the value of
Z coincides with N . In this case, by (14), we observe that for
any given Gk, the price p∗k(t)(Gk(t) + N) is a constant for
all t ∈ T and k ∈ K. Thus, the power availability is inversely
proportional to the prices. �

Remark 3: Lemma 2 provides a computationally cheap
expression for the prices. Since p∗k(t) can be directly computed
using (14), there is no need to numerically compute A−1

or |A| to solve (13). This enables us to deal with a large
number of periods or utility companies, without worrying
about computational complexity. �

Due to production costs and market regulations, p∗k(t)
cannot be outside the range of some lower and upper bounds
[pmin

k (t), pmax
k (t)] for all t ∈ T and k ∈ K, as in [1]. If

p∗k(t) < pmin
k (t), then p∗k(t) is set to pmin

k (t), and simi-
larly for the upper-bound, if p∗k(t) > pmax

k (t), then we set
p∗k(t) = pmax

k (t). Accordingly, denote the strategy space of
utility company k (a leader in the game) at t by Lk,t :=
[pmin

k (t), pmax
k (t)]. The strategy space of k for the entire time

horizon is Lk = Lk,1 × · · · × Lk,T . The strategy space
of all companies is L = L1 × · · · × LK . For given price
selections p := (p1, . . . ,pK) ∈ L, the optimal response from
all consumers is

d∗(p) = {d∗1(p),d∗2(p), . . . ,d∗N (p)}

where for each n ∈ N , d∗n(p) is the unique maximizer for
un(dn,p) and is given by (10). We now have the following
theorem, whose proof can be found in the Appendix.

Theorem 2 (Existence and Uniqueness of the Stackelberg
Equilibrium): Under Assumption 1, the following statements
hold:
(i) There exists a unique (open-loop) Nash equilibrium for

the price-selection game and it is given by (14).

(ii) There exists a unique (open-loop) Stackelberg equilib-
rium, and it is given by the demands in (10) and the
prices in (14).

At the Stackelberg equilibrium, it can easily be verified that∑
k∈K

πk(p∗k,p
∗
−k) =

∑
n∈N

Bn. (15)

One observation is that when a company gains in terms of
revenue, the same amount must be lost by other companies
because the sum of revenues is a constant, which demonstrates
a conflict of objectives between utility companies. However,
by the definition of the equilibrium strategy, this is the best
each company can do, for fixed power availabilities Gk. But,
given a total amount of available power, Gtotal

k , a company has
across the time horizon, it is possible that it gains in terms of
revenue by an efficient power allocation. This motivates us to
formulate a power allocation game and analytically answer the
following question: How can company k allocate its power so
that it maximizes its revenue? Furthermore, for now, for ease
of exposition, we neglect network and other company-specific
constraints. Such considerations are later discussed in Section
IX. For the remaining part of this paper, unless otherwise
stated, we also have the following simplifying assumption.

Assumption 2: For each consumer n, we have

γn = ζn = 1.

The above assumption implies that Z is equal to the number
of consumers N .

V. POWER ALLOCATION (NASH GAME)

In this section, we exploit the closed-form solutions for
consumer demands and companies’ prices to formulate and
solve a power allocation game for companies. We note that
while we use the closed-form solutions to define the power
allocation game, it is to be played before the Stackelberg
game, and its outcomes define the fixed power availabilities
in the constraints of the companies in the Stackelberg game.
Given the power availabilities from other companies, G−k,
and since the equality in (8) is satisfied at equilibrium, the
revenue function of company k can be represented as

πk(Gk,G−k) =
∑
t∈T

p∗k(t)Gk(t). (16)

The optimal prices (14) are functions of Gk and G−k, leading
to the revenue function being equal to

B
∑
t∈T

Gk(t)

(Gk(t) +N)(KT −∑j∈K
∑

h∈T
N

Gj(h)+N )
, (17)

where B =
∑

n∈N Bn. Note that company k receives a
fraction of the total budgets. This fraction depends on what
company k offers in the multi-period-multi-company demand
response framework, and what other companies also offer.
Thus, when company k can change what it offers, it can
potentially increase the fraction it receives, and the power
allocation game becomes natural, since the revenue function
depends on other players’ decisions. For this game, which can
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Fig. 2: The interaction between companies and their consumers, along with power allocation. First, companies play a Nash
power allocation game. Once power availabilities are allocated across all periods, companies and consumers play the
Stackelberg game which dictates optimal prices and demand selection.

be played before the Stackelberg game, which we have already
solved, companies allocate their powers across all periods,
and the outcome dictates the fixed power availabilities for the
Stackelberg game. Figure 2 provides an illustration.

Let the total capacity for company k for the entire time
horizon be Gtotal

k . Denote the action set of company k at time
t by Pk,t := [0, Gtotal

k ]. Thus, given G−k, the company k
solves the following problem:

maximize
Gk

πk(Gk,G−k)

subject to
∑
t∈T

Gk(t) ≤ Gtotal
k , (18)

Gk(t) ≥ 0, ∀t ∈ T .

The above problem is only applicable for the case when gen-
eration is fully controllable. For the smart grid, because of the
availability of various generation sources, full-controllability
does not always hold, and in fact, for renewable resources it
could be completely gone. We demonstrate the possibility of
relaxing this assumption later in Section IX.

A. Existence and Uniqueness of Nash Equilibrium

The following theorem, whose proof can be found in
the Appendix, states the existence and uniqueness of Nash
equilibrium in the power allocation game, and provides an
expression for it.

Theorem 3: Under Assumptions 1-2, if Gk is fully control-
lable, there exists a unique pure-strategy Nash equilibrium for
the power allocation game, and it is given by

G∗k(t) =
Gtotal

k

T
, ∀ t ∈ T ,∀ k ∈ K. (19)

Interestingly, the optimal strategy for each company is
to equally allocate its power across all time periods. The
proof of Theorem 3 reveals that (17) is strictly concave and
increasing in each Gk(t). This is an important property that
allows accommodating further company-specific operational
constraints and relaxing the full-controllability assumption. To

illustrate, suppose that company k has a mix of generation
sources for which generation is controllable for some periods
and only partially controllable for others. Then, it can add
linear constraints to problem (19) reflecting inter-temporal
considerations at the generation-side (such as ramping limits).
Existence and uniqueness of a pure-strategy Nash equilibrium
are still guaranteed due to the strict concavity of the objective
[34]. Since generation costs are typically assumed to be convex
[42] (denote it by ck for each company k), company k can also
allocate its generation to maximize its profit, by subtracting
the cost from (17). One can alter the objective function of the
power allocation game to

B
∑
t∈T

Gk(t)

(Gk(t) +N)(KT −∑j∈K
∑

h∈T
N

Gj(h)+N )

−
∑
t∈T

ck(Gk(t)), (20)

and the problem reflects profit-maximization in this case.
Using (20) and following our analysis, we conclude that
each company maximizes a strictly concave function, and one
can easily conclude the existence of a pure-strategy Nash
equilibrium in this case.

VI. DISTRIBUTED ALGORITHM

The Nash equilibrium (NE) for the power allocation game
given by (19) can easily be computed by each company k using
its local information. Moreover, for consumers, it can be seen
from (10) that in the computation of optimal demand selec-
tion for consumer n, no information from other consumers
is needed, and consumer n only needs local information
for optimal response. However, the closed-form solution for
optimal prices given by (14) requires each company k to
know consumers’ budgets and the power availability of all
the other companies. Companies might not want to share
such information with each other. To circumvent such a
privacy concern, we propose a distributed algorithm that allows
companies to compute their optimal prices using only local
information, and show that this algorithm converges to the
optimal prices given by (14). The algorithm, combined with



utility-maximizing demands given by (10) and the NE given
by (19), leads to the computation of all the optimal strategies
with only local information at both the company level and the
consumer level.

Algorithm 1 Distributed algorithm for computing the prices
with local information

1: Arbitrarily choose p(0)k (t), ∀t ∈ T , ∀k ∈ K
2: Repeat for i = 1, 2, 3, . . .

3: For each consumer n ∈ N , compute d
(i)
n,k(t) from k ∈

K at t ∈ T by (10), then update utility companies with
demand signals

4: Pick a company k ∈ K at time t ∈ T such that p(i+1)
k (t)

is not yet computed, and compute it using (21)
5: If p(i+1)

k (t) 6= p
(i)
k (t), update consumers and go to 3

6: Else, send a no-change signal to consumers and go to 4
7: If p(i+1)

k (t) = p
(i)
k (t) ∀t ∈ T , ∀k ∈ K, stop

8: Else, go to 2

For each iteration i ∈ {0, 1, 2, . . .}, denote the demand from
consumer n at time t from company k by d

(i)
n,k(t), and the

price announced by company k and time t by p(i)k (t). In our
algorithm, p(0)k (t) is chosen arbitrarily for each company k ∈
K and time t ∈ T . Based on the initial price selection, d(0)n,k is
computed using (10). Then, the prices are sequentially updated
using the following update rule:

p
(i+1)
k (t) = p

(i)
k (t) +

∑
n∈N d

(i)
n,k(t)−Gk(t)

ε
(i)
k,t

, (21)

where ε(i)k,t > 0 is appropriately selected for company k at time
t in iteration i, and we present an expression for it as a function
of p(i)k (t) in Theorem 4. Whenever a company k updates its
price at time t, it transmits the price to each consumer n ∈
N , and they modify their demands accordingly. Once prices
converge to their optimal values, consumers optimally respond
by (10) and the algorithm terminates. We have the following
theorem for the convergence of the algorithm; its proof can be
found in the Appendix.

Theorem 4: Under Assumptions 1-2, for each company k ∈
K at time t ∈ T in iteration i ∈ {0, 1, 2, . . .}, if the prices are
sequentially updated using (21) such that

ε
(i)
k,t =

Gk(t) +N

p
(i)
k (t)

+ δ,

where δ ≥ 0, then Algorithm 1 converges to optimal prices.

VII. ASYMPTOTIC REGIMES

In this section, we study the asymptotic (limiting) behavior
as T → ∞ or N → ∞. While neither T or N can be
arbitrarily large in practice, analyzing the asymptotic behavior
brings in deep insights. For example, it reveals that consumers
benefit as T grows. As N grows, our asymptotic analysis
allows us to compute an appropriate company-to-consumer
ratio K

N . We show these insights by studying how the utility
functions, revenues, prices, and demands are affected as T

or N grows. For the rest of this section, in addition to
Assumptions 1-2, we assume the following.

Assumption 3: The total power available for the entire time
horizon Gtotal

k is the same for each company k ∈ K.

A. When the Number of Periods Grows

Under Assumptions 1-3, at equilibrium, it follows that
optimal prices and demands are given by

p∗k(t) =

∑
m∈N Bm

KTG∗k(t)
=

∑
m∈N Bm

KGtotal
k

, (22)

d∗n,k(t) =
Bn +KTp∗k(t)

KTp∗k(t)
− 1 =

Gtotal
k Bn

T
∑

m∈N Bm
, (23)

and the utility of consumer n becomes

un = KT ln

(
1 +

Gtotal
k Bn/

∑
m∈N Bm

T

)
, (24)

in which Gtotal
k Bn/

∑
m∈N Bm is positive. Thus, as T

increases, the multiplicative term KT of the logarithmic
function increases at a faster rate than the decrease of
ln
(
1 +BnG

total
k /B/T

)
. Hence, as T increases, the utility of

each consumer n ∈ N monotonically increases. Taking the
limit, it can be verified that

lim
T→∞

un(T ) =
KGtotal

k Bn∑
m∈N Bm

. (25)

Furthermore, note that the demand d∗n,k(t) from consumer n ∈
N from company k ∈ K at time t ∈ T converges to zero as
T →∞. We claim that the revenues are constants. To see this,
recall that

πk(p∗k,p
∗
−k) = p∗k(t)Gtotal

k =

∑
m∈N Bm

K
,

which is a constant since both the number of companies and
the budgets of the consumers are fixed.

Remark 4: At the equilibrium, the monotonicity of the
utilities of the consumers shows that increasing the number of
periods leads to more incentives for consumers’ participation
in demand response. However, it might not be very beneficial
to increase the number of periods to a very high value.
First, the rate of increase in terms of consumers’ utilities
gets progressively smaller. Second, having a high number
of periods leads to smaller demands for each period and
that might violate some minimum energy need for particular
periods at the consumers’ level. So, it is beneficial to increase
the number of periods up to a certain point (compared to
having T = 1), but it might not be beneficial to let T become
arbitrarily large. �

Remark 5: Note that the limit point of the utility function of
consumer n is the proportion of his budget to the total budgets
times the total power availability. So if a particular consumer
has 1% of the sum of all the budgets, he gets 1% of the
available power. Furthermore, the revenue for each company
is the proportion of the sum of the budgets to the number
of companies. In addition, the demand by consumer n from
company k at time t is the proportion of his budget to the
total budgets times the total power availability at t from k. �



B. When the Number of Consumers Grows

When the number of consumers increases, each additional
consumer has some budget Bn. With the total power avail-
ability from companies being fixed, they will increase their
prices. We have the following simplifying assumption.

Assumption 4: The budget for each consumer n ∈ N is the
same.

Under Assumptions 1-4, we increase the number of con-
sumers N and see what happens as N →∞. In this case, the
optimal prices and demands become

p∗k(t) =
NBn

KTG∗k(t)
(26)

d∗n,k(t) =
Gtotal

k

TN
(27)

Clearly, p∗k(t)→∞ as N →∞ and d∗n,k(t)→ 0 as N →∞.
When the population is large and the power availability is
fixed, it is not surprising that d∗n,k(t)→ 0 because the portion
each consumer can get from the available power gets smaller
and smaller as N increases. Furthermore, it can be easily
verified that limN→∞ πk(N) =∞ and limN→∞ un(N) = 0.
Thus, with the limit points resulting in unrealistic outcomes, a
balance between the supply and demand needs to be achieved,
which we do by finding an appropriate company-to-consumer
ratio.

Now, the question we ask is: For a given maximum allow-
able market price pmax

k (t), call it pmax, what is the appropriate
company-to-consumer ratio K

N ? If there are more companies
than necessary in the market, there will be losses in terms of
revenues. On the other hand, if there are fewer companies than
necessary, the prices can exceed pmax, leading to undesirable
outcomes. The following theorem, whose proof can be found
in the Appendix, provides an optimal ratio at which prices
do not exceed pmax and the revenues being maximized while
satisfying the equality in (15).

Theorem 5: Under Assumptions 1-4, at the NE of the power
allocation game, and at the Stackelberg equilibrium of the
price and demand selection game, the optimal prices given
by (14) satisfy

p∗k(t) ≤ pmax,∑
k∈K

πk(p∗k,p
∗
−k) =

∑
n∈N

Bn,

if, and only if,
K

N
≥ Bn

pmaxTG∗k(t)
,

for each t ∈ T and k ∈ K.

VIII. CASE STUDIES

In this section, we present results on some case studies
on representative days from a Dutch smart grid pilot [43]
and the EcoGrid EU project [44]. We numerically study
optimal prices and demands, and their corresponding payments
and utility functions. We show how our approach results in
monetary savings for consumers. Furthermore, we show that
increasing the number of periods provides more incentives
for consumers’ participation in demand response management.

Additionally, we demonstrate the fast convergence of our
distributed algorithm to optimal prices. We also release an
open-source interactive tool containing the simulations in [45].
For both the Dutch smart pilot and the EcoGrid EU projects,
the data are unavailable in raw format. Thus, whenever it is
needed, we estimate some data points from figures available
in the corresponding references [43], [44].

Recall that at the Stackelberg equilibrium, the total power
availabilities G match the aggregate demands. That is,∑

n∈N
d∗n,k(t) = Gk(t), ∀t ∈ T , k ∈ K.

Here, we use the experimental hourly variation of the total
demands to choose values for G and the minimum energy need
Emin. This allows us to establish a common aspect between
our results and the experimental results, so that we can
appropriately explore how our framework compares to real-
life experiments. We also use the lower-bound on the minimum
budget condition (11), so that we can also quantify potential
savings. From the consumers’ perspective, the prices are given
parameters in both our model and the experimental setups. The
optimal demands are functions of the prices, and the optimal
prices naturally depend on the parameters of the consumers
and companies. To bring deep insights, we make the differen-
tiating aspect between our model and the experimental results
an economic one. And hence, we pick the parameters such that
the equilibrium demands and experimental ones are similar,
but the prices, and essentially what consumers pay, are differ-
ent. Utilizing Theorem 1, we conclude that the equilibrium
prices bring savings to consumers, and by definition, they
automatically consider the incentives of companies as they
are revenue-maximizing. A main conclusion of this paper is
that this quantifies the economic gap, in terms of consumer
savings, between our game-theoretic benchmark and existing
experimental results. On the other hand, in our analysis, we
have relaxed some constraints for tractability, such as power
flow and demand inelasticity considerations, and it remains
open to explore the underlying tradeoffs, since adding these
considerations might reduce the potential monetary savings
for consumers. Such considerations were not directly included
in the models studied in [43], [44], as their focus was to
experimentally explore the consumers’ behavior in response to
changing prices. It is worth mentioning that the results in [43]
revealed that consumers are mainly flexible about adjusting the
consumption of white goods (washing machine, dishwasher,
etc). It was also concluded in [44] that demand response
did not result in distribution feeder congestion relief, and
consumers with automatic equipment were the most responsive
ones. Nevertheless, later in Section IX, we demonstrate how
our framework can be utilized to include additional network
and consumer-specific and/or company-specific constraints,
which make it possible to add constraints for congestion relief.
Including such constraints will likely make it necessary to
compute the equilibrium prices and demands algorithmically,
which we relegate to future endeavors, as we emphasize here
more on revealing deep insights via having tractable analysis.
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Fig. 3: Total power offered by company (left), Stackelberg game and EcoGrid EU experimental prices (middle), and the
cumulative payments and billing savings for all consumers (right).

A. EcoGrid EU Project

This demand response project was conducted from March
2011 to August 2015 in Bornholm, Denmark. The number of
consumers in this experiment was approximately 2000. For a
representative day (December 5th, 2014), we apply our method
to hourly prices and shiftable demand consumption from this
experiment. The experimental prices are in DKK/MWh and
we scale them to DKK/kWh. We start by assuming that there
is only one company (K = 1) and letting the consumers to be
homogeneous (they have the same budgets and energy need)
with N = 2000, and then generalize the results to K > 1 and
heterogeneous consumers. Since we are taking hourly prices
for a day, we have T = 24.

1) Finding the necessary parameters: In our model, for
each period t, we have a fixed power availability G1(t) on the
supply-side. Also, for each consumer n, his minimum demand
Emin

n and budget Bn are fixed for the entire horizon. These
are necessary parameters that need to be known to solve for
optimal demands and prices. We let the power availabilities G1

match the experimental hourly variation of the total demand.
For the entire time-horizon, we have

2000∑
n=1

Emin
n =

24∑
t=1

G1(t) ≈ 54 MWh.

For homogenous consumers, it follows that

Emin
n =

∑24
t=1G1(t)

2000
≈ 27 kWh.

Next, using Theorem 1, we plug-in Emin
n and the experimental

hourly prices in (11) to find the minimum budget need, which
is Bn ≈ 7.6 DKK, for each n.

2) Numerical Results: Now, using the parameters found
above, we can compute the optimal demands and prices for the
Stackelberg game using (10) and (14), and study their effects.

In Figure 3, we plot the total power availabilities G1, the
prices found experimentally and using the Stackelberg game,
and the corresponding total payments by all consumers for
their demands. Our approach leads to prices that have a slightly
smaller mean than in the experiment and a significantly smaller

variance, which is a desirable property [46]. At the equilibrium
point, as stated in Remark 2, we observe that

p∗k(t)(Gk(t) +N) = p∗k(t)

( ∑
n∈N

d∗n,k(t) +N

)
is a constant for each period t and each company k. Hence,
whenever company k at time t has a large amount of power
available to sell Gk(t), it would lower its price, and vice versa.
Here, consumers are attracted to buy more whenever the price
is low, and will buy less whenever the price is high, which is
intuitive. One advantage our approach has is that it results
in billing savings for consumers, as we show in Figure 3
(this demonstrates the importance of Theorem 1, which we
use to find the minimum budget need for the consumers).
Here, the equilibrium demands are similar to the experimental
values, but since the prices differ, consumers receive the
same amount of energy at smaller costs. This would lead to
more monetary incentives for active consumer participation in
demand response management, while being consistent with the
company’s objectives, since the Stackelberg game prices found
using (14) are revenue-maximizing as shown in the proof of
Theorem 2.

Next, we make consumers heterogeneous and increase the
number of companies. We differentiate between consumers by
varying their budgets, and take 5 classes of consumers, as in
the EcoGrid EU experiment. We let consumers’ budgets be
B1−400 = 4 DKK, B401−800 = 5 DKK, B801−1200 = 6 DKK,
B1201−1600 = 7 DKK, and B1601−2000 = 8 DKK. We also let
the number of companies be K = 4, which is consistent with
the actual energy sources used in the experiment. Precisely,
the system is powered by 61% wind energy (k = 1), 27%
biomass (k = 2), 9% solar energy (k = 3), and 3% biogas
(k = 4). We split the total need (54 MWh) among the energy
sources according to experimental proportions, assuming that
each energy source is owned by a single company that acts as
a company in our game.

With the above setup, we study the effect of varying the
number of periods T from 1 to 50. To do this, we need to
find a way for companies to allocate their total power across
the time horizon for each fixed T , which can be done by
using Theorem 3, which states that equally splitting the total
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Fig. 4: The effects of varying the number of periods for companies (with different market shares and at Nash equilibrium of
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Fig. 5: Distributed algorithm’s performance (Theorem 4 requires δ ≥ 0) using the EcoGrid EU experimental data.

power across the time horizon for each company k constitutes
a unique Nash equilibrium for the power allocation game (it
is also shown to be the global maximizer in the proof).
Figure 4 shows the influence of varying the number of periods
on prices, power allocated, revenues, and consumer utilities.
We observe that as T increases, the power allocated at each
period gets progressively smaller. On the other hand, prices
can increase or decrease, depending on the company, and they
converge to positive constants. Furthermore, revenues might
also increase or decrease, depending on the company (note
that the company that achieves the highest revenue is the one
that offers the lowest prices, and vice-versa). In view of (15),
the sum of revenues at equilibrium is a constant that matches
the sum of all consumer budgets. And hence, whenever the

revenue increases (decreases) for a company k, at least one
other company will incur a loss (gain) in terms of revenue.
None of the companies can do better by altering its power
availabilities across the time horizon, nor by changing its
prices. This follows from the definition of Nash equilibrium.
Furthermore, we note that the revenues are proportional to
the total capacity, and the company with the highest (lowest)
portion of the market is the one that incurs the largest increase
(decrease) in revenue.

Interestingly, in Figure 4 we observe that as T increases, the
utilities for consumers also increase, and hence they will be
more attracted to demand response programs, which is desir-
able [47]. In comparison with the single-period setup [1], [20],
this shows that the multi-period demand response provides
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Fig. 6: Average consumer demand (left), Stackelberg game and Dutch pilot prices (middle), and the cumulative payments and
billing savings for average consumer (right).

0 5 10 15 20 25 30 35 40
Iteration i

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ice

(E
UR

/k
W

h)

δ = 100 (fast convergence)

0 5 10 15 20 25 30 35 40
Iteration i

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ice

(E
UR

/k
W

h)

δ = 1000 (slower convergence)

Fig. 7: Distributed algorithm’s performance (Theorem 4 requires δ ≥ 0) using the Dutch pilot data.

improvements on the consumers’ end. This increase, however,
does not change significantly beyond a certain number of
periods. To demonstrate the performance of our algorithm,
we take the case when T = 1 and study the algorithm’s
performance for different values of δ in Figure 5. When
δ = 1000, we observe that the algorithm converges very fast
to the optimal prices and takes about less than 5 iterations to
reach equilibrium. The values are consistent with the values
in Figure 4 when T = 1, where we used the analytical
expressions of the prices. Next, we increase δ to 10000 and
observe that the algorithm converges at a lower rate, but still
fast. Thus, the rate of convergence is inversely proportional
to the value of δ. However, when δ decreases to a negative
value, there are no guarantees on convergence. Theorem 4 only
guarantees the convergence of the algorithm when δ ≥ 0. We
have verified that our distributed algorithm converges very fast
for various values of δ and alternative values of T and K,
and the reader might experiment with varying them using our
open-source code in [45].

B. Dutch Smart Grid Pilot

To further validate our multi-period-multi-commpany
framework, we use data from the Dutch Smart Grid Pilot [43],
which was conducted in Zwolle, the Netherlands, for about
one year (May, 2014 to May, 2015). Tariffs were announced
to consumers a day ahead, and the average consumer behavior

was reported. For a group of 77 homogeneous consumers,
we study the average consumer’s demand and payments using
experimental prices and the prices derived using our method.
Here, we take K = 1, which is consistent with the Dutch
pilot. Also, the experimental prices are in EUR/kWh.

1) Finding the necessary parameters: We find the fixed
parameters similarly to the EcoGrid EU experiment. For each
consumer n, we have Emin

n ≈ 8.8 kWh. Then, by (11), we find
the minimum necessary daily budget, which is Bn ≈ 1.1 EUR
for each consumer.

2) Numerical Results: Using the above parameters, we
again use (10) and (14) to find optimal demands and prices.
In Figure 6, we plot the average consumer’s hourly demand,
the prices found experimentally and using the Stackelberg
game, and the corresponding total payments by the average
consumer. We again observe that our approach leads to smaller
prices with a significantly smaller variance. For the average
consumer, we observe that significant savings can be achieved
using our approach (more than 30%). Next, we study the
performance of our distributed algorithm in Figure 7. As in
the case of the EcoGrid EU experimental data, our algorithm
achieves fast convergence to optimal prices using only local
information.

IX. GENERALIZATIONS

In the previous sections, we have analyzed our multi-period-
multi-company framework under some assumptions to keep



the analysis tractable and to reveal various insights on what
happens at the equilibrium strategies. Due to the desirable
mathematical properties of our framework, it is possible to
extend our model at both the consumer-level and company-
level. Here, we discuss some such possible extensions.

A. Consumer-Side

In the utility function (3), the parameters γn and ζn for
consumer n are time and company independent. However, it is
possible, to consider both time-specific and company-specific
preferences γn,k,t and ζn,k,t, which allows consumers to have
further flexibilities without violating existence and uniqueness
of optimal strategies. In this case, the utility of consumer n
would be defined as

un(dn) =
∑
k∈K

∑
t∈T

γn,k,t ln(ζn,k,t + dn,k(t)). (28)

By an analogous analysis to the derivation of (10), it follows
that optimal demands, under Assumption 1, are given by

d∗n,k(t) =
Bn +

∑
j∈K

∑
h∈T pj(h)ζn,j,h

pk(t)
Γn,k,t

− ζn,k,t, ∀ t ∈ T , k ∈ K, (29)

where
Γn,k,t =

γn,k,t∑
j∈K

∑
h∈T γn,j,h

.

We remark that
∑

k∈K
∑

t∈T Γn,k,t = 1. Thus, if consumer n
prefers a higher demand from company k at time t, choosing
a higher weight γn,k,t can achieve this. We also note that in
(10), where consumer n has identical time-specific/company-
specific parameters,

Γn,k,t =
1

KT
.

Another alternative, is to expand the constraint set of the
optimization problem for consumers to include additional
time-specific or company-specific constraints. In general, com-
panies, as leaders of the Stackelberg game, would need to
anticipate how consumers would respond to their prices, and
given that anticipation, they choose their prices accordingly.
Furthermore, if non-logarithmic utility functions are used by
consumers, it might be more difficult to compute a Nash
equilibrium for the price-selection game for companies, but
the existence of a pure-strategy equilibrium is guaranteed as
long as the function∑

t∈T
pk(t)

∑
n∈N

dn,k(pk,p−k, t)

is concave in each pk(t) over a compact and convex set [34],
for each company. In case (28) is used, by (29), this condition
is satisfied.

B. Company-Side

In the current formulation, consumers’ demands are coupled
through the companies’ problems and the power availability
constraint (8). The upper-bound in (8) is taken to be fixed in
the Stackelberg game, but they can be strategically chosen by

the power allocation game discussed in Section V. However,
this game was solved under restrictive assumptions, such as
the absence of network constraints, the full-controllability of
generation sources, and the absence of ramping considerations.
It is of interest to generalize the power allocation game to
alleviate these limitations. Specifically, suppose that power
availabilities G ∈M ⊂ RKT , where M represents the trans-
mission and distribution network constraints. One possibility
is to assume that M is a system of linear equations that
approximate power flow equations [48]–[52]. Furthermore, for
simplicity, suppose that company k has a ramping limit lk,t at
period t. Also, to encode controllability, suppose that

Gmin
k,t ≤ Gk(t) ≤ Gmax

k,t ,

where Gmin
k,t (Gmax

k,t ) is the minimum (maximum) possible
generation for company k at period t. Thus, company k solves
the following optimization problem:

maximize
Gk

πk(Gk,G−k)

subject to
∑
t∈T

Gk(t) ≤ Gtotal
k ,

|Gk(t)−Gk(t− 1)| ≤ lk,t,∀t, t− 1 ∈ T ,
(Gk,G−k) ∈M, (30)
Gmin

k,t ≤ Gk(t) ≤ Gmax
k,t , ∀t ∈ T ,

Gk(t) ≥ 0, ∀t ∈ T .

We have the following result, whose proof is given in the
Appendix.

Theorem 6: If the power allocation game (30) is feasible,
then, it admits a pure-strategy Nash equilibrium (G∗k,G

∗
−k).

Furthermore, if (G∗k,G
∗
−k) is used for the Stackelberg equi-

librium demands and prices given by Theorem 2, then,∑
n∈N

d∗n,k(t) = G∗k(t), ∀ t ∈ T , ∀ k ∈ K.

The above theorem follows from the strict concavity of
πk(Gk,G−k) and the compactness and convexity of the con-
straint set, in addition to the results in Section IV. Furthermore,
it also demonstrates that it is possible to incentivize consumers
to further shift their consumption in a way that is consis-
tent with network considerations and company requirements.
Finally, we remark that the control of consumers’ demands
here is indirect, that is, it is done via the unique equilibrium
prices (14), which are also affected by consumers’ preferences
and choices. Hence, at equilibrium, optimal supply provided
by companies, G∗, is equal to aggregate optimal demand,
while taking into account consumer budgets and energy needs,
in addition to network considerations and company-specific
constraints and revenues.

X. CONCLUSION AND RESEARCH DIRECTIONS

In this paper, we model and solve a novel multi-period-
multi-company demand response framework. We formulate a
Stackelberg game to capture the interactions between com-
panies and energy consumers, and within the framework of
this model, we have obtained optimal prices and demands.



Using the closed-form expressions, a power allocation game
for companies has been formulated and solved. Furthermore,
a distributed algorithm has been proposed to compute all
equilibrium strategies using only local information. In the
large population regime, an appropriate company-to-user ratio
has been derived to maximize the revenue of each individual
company. The paper has shown theoretically and numerically
that the multi-period scheme provides more incentives for
the participation of energy consumers in demand response
management, which is of critical importance [47]. We have
derived a minimum budget condition for consumers that can
be used to measure whether or not they are spending more
than what is necessary, and case studies using real data
reveals potential savings for consumers that can exceed 30%.
Numerical studies also demonstrate fast convergence of the
proposed distributed algorithm.

While the proposed method focuses on the interplay be-
tween competing companies and their consumers, its use-
ful mathematical properties make it generalizable to more
consumer-specific and/or company-specific considerations. For
example, it is possible to include period-specific constraints for
consumers. The game studied in this paper is multi-period but
static. Therefore, it is a one-shot game and all the information
are given at the the beginning of the game. Extending it to
dynamic information structures, and using tools from dynamic
game theory, such as feedback Stackelberg games [34], where
companies at each period change their prices for the next
periods based on the information available at that particular
period in which they are making the decisions, is another
possible direction. Finally, for the distributed algorithm, it
would be interesting to study privacy aspects other than
convergence using only local information, such as, the ability
of companies to approximate private parameters.
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XII. APPENDIX

A. Proof of Theorem 1

Note that

Bn ≥
Emin

n + ζnKT∑
k∈K

∑
t∈T

1
KTpk(t)

− ζn
∑
k∈K

∑
t∈T

pk(t)

is the same as∑
k∈K

∑
t∈T

Bn + ζn
∑

k∈K
∑

t∈T pk(t)

KTpk(t)
−
∑
k∈K

∑
t∈T

ζn ≥ Emin
n .

By (10), this is equivalent to
∑

k∈K
∑

t∈T d
∗
n,k(t) ≥ Emin

n .

B. Proof of Lemma 1
The matrix A can be represented as
KT (G1(1) + Z) 0 . . . 0

0 KT (G1(2) + Z) . . . 0
...

. . .
0 . . . 0 KT (GK(T ) + Z)



+


−Z
−Z

...
−Z

(1 . . . 1) := Â+ uvT

Note that Â is invertible. Furthermore,

1 + vT Â−1u = 1− 1

KT

∑
k∈K

∑
t∈T

Z

Gk(t) + Z
.

Since Gk(t) > 0 and Z > 0, each element in the summation
is less than 1 and overall value of the summation is less than
KT , and this clearly leads to 1 + vT Â−1u 6= 0. By Sherman-
Morrison Formula [53], if 1 + vT Â−1u 6= 0, then

A−1 = (Â+ uvT )−1 = Â−1 − Â−1uvT Â−1

1 + vT Â−1u
. (31)

Thus, A is invertible and we can apply (31).

C. Proof of Lemma 2

By Lemma 1, the prices are uniquely given by P = A−1Y ,
and by using (31), the price selection for each k at t is

p∗k(t) =
B

Gk(t) + Z

(
1

KT −∑j∈K
∑

h∈T
Z

Gj(h)+Z

)
.

Strict positivity follows from

B

Gk(t) + Z
> 0 and

∑
j∈K

∑
h∈T

Z

Gj(h) + Z
< KT.

D. Proof of Theorem 2

(i) By plugging-in the demands given by (10) in the revenue
function (7) for k, we have

πk = B/K + (Z/K)
∑
k∈K

∑
t∈T

pk(t)− Z
∑
t∈T

pk(t),

which is concave (linear) in each pk(t). Thus, by the
compactness of Lk,t, there exists a pure-strategy Nash
Equilibrium (NE) [34]. Next, suppose that a company k
deviates from (14) and announces a price of p̂k(t) =
p∗k(t) + ε at a fixed time t. If ε > 0, then

π̂ − πk = ε
Z − ZK

K
≤ 0,

where the inequality follows from ZK ≥ K. Thus,
k has no incentive to increase the prices from (14).
Furthermore, since the prices given by (14) are attained
the equality of the capacity constraint in (8), company
k has no incentive to choose ε < 0 because it will not
result in selling more energy. Therefore, for every period
t, company k does not benefit from deviating from (14).
Hence, the prices given by (14) maximize the revenues
and constitute a NE.



(ii) By the uniqueness of the demands given by (10) and
using (i), it follows that there exists a unique Stackelberg
equilibrium and it is given by the pair d∗(p) and (14).

E. Proof of Theorem 3
Note that the revenue πk(Gk,G−k) is equivalent to∑

t∈T

BGk(t)

(Gk(t) +N)(α−k −
∑

h∈T
N

Gk(h)+N )
, (32)

where

α−k := KT −
∑

j∈K,j 6=k

∑
h∈T

N

Gj(h) +N
> T.

Note that α−k depends on the strategies of other companies
and it is fixed for company k. A pure-strategy Nash equilib-
rium exists if πk is concave in each Gk(t) ∈ Pk,t for each
company k and if Pk,t is a compact subset of R [34]. Since it
is clear that Pk,t is compact, it is enough to show concavity
of company, k. From (32), via a sequence of mathematical
tricks,

πk =
B
∑

t∈T Gk(t)
∏

h 6=t(Gk(h) +N)Gk(t)+N
Gk(t)+N∏

h∈T (Gk(h) +N)(α−k −
∑

h∈T
N

Gk(h)+N )

=
B
∏

h∈T (Gk(h) +N)
∑

t∈T
Gk(t)

Gk(t)+N∏
h∈T (Gk(h) +N)(α−k −

∑
h∈T

N
Gk(h)+N )

=
B
∑

t∈T
Gk(t)

Gk(t)+N

α−k −
∑

h∈T
Gk(h)+N
Gk(h)+N +

∑
t∈T

Gk(t)
Gk(t)+N

= B

∑
t∈T

Gk(t)
Gk(t)+N

(α−k − T ) +
∑

t∈T
Gk(t)

Gk(t)+N

=:
f

γ−k + f
. (33)

Note that fGk(t) = ∂f
∂Gk(t)

= N
(Gk(t)+N)2 > 0 and

∂πk
∂Gk(t)

=
fGk(t)γ−k

(γ−k + f)2
=

Nγ−k
(γ−k + f)2(Gk(t) +N)2

> 0.

This leads to
∂2πk

∂Gk(t)2
=

[−2Nγ−k][(γ−k + f) + fGk(t)(Gk(t) +N)]

[(γ−k + f)(Gk(t) +N)]2
,

which is strictly negative since f, fGk(t), N, γ−k > 0. Hence,
strict concavity holds. We can relax the non-negativity con-
straint as the solution will be positive by the properties of the
objective function. The Lagrange function for company k is
then given by

Lk(Gk,G−k, λk) = πk + λk

(∑
t∈T

Gk(t)−Gtotal
k

)
, (34)

and by the first-order necessary condition ∇L = 0,

λk = − Nγ−k
(γ−k + f)2(Gk(t) +N)2

, ∀ t ∈ T (35)

∂Lk

∂λk
= 0 =⇒

∑
t∈T

Gk(t) = Gtotal
k . (36)

Thus, for company k, elements of Gk must be identical, and
must add up to Gtotal

k .

F. Proof of Theorem 4

To find an appropriate ε(i)k,t that leads to the convergence,
recall that the prices must be positive. The algorithm diverges
whenever any p

(i)
k (t) is negative, which might happen when∑

n∈N d
(i)
n,k(t) < Gk(t), for any company k ∈ K at any time

t ∈ T in iteration i. To avoid this, it suffices to require
p
(i)
k (t)ε

(i)
k,t >

∣∣∣∑n∈N d
(i)
n,k(t)−Gk(t)

∣∣∣ whenever we have∑
n∈N d

(i)
n,k(t) < Gk(t). This translates into requiring

p
(i)
k (t)ε

(i)
k,t > Gk(t)−

∑
n∈N

d
(i)
n,k(t)

for any k ∈ K, t ∈ T , and i. By (10), it follows that we need

ε
(i)
k,t >

Gk(t)−∑n∈N

(
Bn+

∑
j∈K

∑
h∈T p

(i)
j (h)

KTp
(i)
k (t)

− 1

)
p
(i)
k (t)

. (37)

The bound (37) is the tightest one, but using it to find ε(i)k,t is
not implementable. By choosing

ε
(i)
k,t ≥

Gk(t) +N

p
(i)
k (t)

, (38)

convergence is guaranteed since

Bn +
∑

j∈K
∑

h∈T p
(i)
j (h)

KTp
(i)
k (t)

≥ 0.

G. Proof of Theorem 5

Suppose that
K

N
<

Bn

pmaxTG∗k(t)
.

By (26), this implies that

pmax <
NBn

KTG∗k(t)
= p∗k(t), ∀ t ∈ T , ∀ k ∈ K,

and companies will charge pmax, which implies∑
k∈K

πk = pmaxKTG∗k(t) < NBn =
∑
n∈N

Bn,

which means that the sum of the revenues is strictly less than
the sum of the budgets and hence companies incur losses,
compared to the equilibrium prices. On the other hand,

K

N
≥ Bn

pmaxTG∗k(t)

is equivalent to

pmax ≥ NBn

KTG∗k(t)
= p∗k(t), ∀ t ∈ T , ∀ k ∈ K.

Furthermore, we have∑
k∈K

πk = p∗k(t)KTG∗k(t) = NBn =
∑
n∈N

Bn.



H. Proof of Theorem 6

From Section XII-E, the revenue function

πk(Gk,G−k)

is strictly concave in Gk(t) for each company k at period t.
Furthermore, since the constraint set is convex and compact
in Gk(t), existence of a pure-strategy Nash equilibrium is
guaranteed [34]. The rest of the proof readily follows from
Theorem 2.
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