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Abstract

Optimising wind turbine performance involves maximising energy harvesting while
seeking to minimise load fatigues on the tower structure, blades and rotor. The problem
is inherently difficult due to the slow response of wind turbines compared to wind vari-
ation frequencies. To improve turbine control performance, wind preview measurement
technologies such as Light Detection And Ranging (LIDAR) have been a point of interest
for researchers in recent years. However, the effective augmentation of wind preview in-
formation into control methodologies has to date proven to be a challenging problem. In
this paper, we explore the application of a classical control methodology known as Exact
Output Regulation (EOR) for improving the control performance of a LIDAR-enhanced
wind turbine. The EOR controller is designed to achieve the rejection of known input
disturbances, while also ensuring the system output tracks a desired reference signal. The
controller is comprised of a state feedback controller together with a feedforward gain.
The LIDAR wind preview information is used to obtain a low-order exosystem for mod-
eling wind dynamics. This wind exosystem is used to obtain the feedforward gain matrix
that enables the EOR controller to effectively reject the input disturbance and achieve
the desired reference tracking. Extensive simulations of the EOR controller with a broad
range of wind speeds in both partial load and full load operating regions are performed
on the full nonlinear aero-elastic model of the National Renewable Energy Laboratory
(NREL) 5 MW reference wind turbine. For performance comparisons, we also implement
a Baseline torque controller and a commonly used feedforward control method known as
Disturbance Accommodation Control (DAC). The results show that, in comparison with
a Baseline and DAC controller, the EOR controller can provide substantially improved
reduction of fatigue loads and smoother power output, without compromising energy
production levels.

1 Introduction

Reliable power production from wind is a difficult problem, due to the intermittent nature
of the wind. It has been the subject of research interest from the early days of electrical
wind turbines. The transformation of the free kinetic energy of the wind into mechanical,
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and subsequently, electrical energy comes with the cost of the structure and materials of the
turbine as well their maintenance. Two simultaneous approaches taken to reduce the levelised
cost of wind energy (LCOE) [1] are maximizing the energy harvesting efficiency and reducing
the cost of maintenance by reducing turbine fatigue loads. From the control engineering point
of view, performance improvements may be achieved through a combination of additional
measurements and superior control methodologies.

Mechanical loads on the wind turbine structure induced by sudden variations of the wind
can be mitigated by the control of the blade pitch angle and generator torque control [2].
Energy harvesting efficiency can be improved by more precisely steering the wind turbine
states on their optimal trajectories. The use of feedback control is the conventional approach
for stabilizing and regulating dynamical systems, however, feedback control for turbines may
not yield satisfactory system behaviour, as it assumes the turbine only reacts to the variations
of the wind which may have already influenced the system states and driven them away from
their desired values. To address this shortcoming, Light Detection And Ranging (LIDAR) has
been proposed as a new technology to provide estimates of upcoming wind speeds prior to the
wind interacting with the turbine blades [3]. Recent LIDAR cost reductions have opened a
new research area on the use of feedforward control for large scale wind turbines, using nacelle-
based LIDAR systems to obtain real-time wind speed and direction information up to several
hundred meters ahead of the wind turbine [4, 5]. Recently [6] collected extensive field data
which showed that profiling LIDARs can measure wind speeds and turbulence intensities with
acceptable accuracy, in comparison with tower-mounted cup and sonic anemometers.

An early work involving LIDAR for feedforward control of the wind turbines [7] showed
that an augmented LIDAR feedforward control may improve turbine energy harvesting and
load reduction. Further investigations using non-causal series expansion model-inverse method
appeared in [8], where it was shown that a lower damage equivalent load (DEL) on tower
root fore-aft oscillations could be obtained relative to a Baseline controller, with no loss in
the produced power. In [9], a preview-based feedforward method assuming highly idealized
wind measurements concluded that wind evolutions in more realistic conditions can elimi-
nate advantages gained by using preview-based feedforward techniques. The LIDAR-assisted
design in [10] used three different model inversion methods to augment the feedback loop:
the nonminimum-phase zeros ignore (NPZ-Ignore), the zero-phase-error tracking controller
(ZPETC) and the zero-magnitude-error tracking controller (ZMETC); some improvement in
some of the loads were obtained. Two early field testing surveys of LIDAR-based feedforward
control using model inversion methods were carried out in [11, 12]. The results showed evi-
dence of tower load reduction by 10% due to the utilization of LIDAR, confirming the previous
results on simulations. In [13] load reductions were improved by using Continuous-Wave LI-
DAR. Although model inversion methods are feasible in the presence of look-ahead LIDAR
information, they require the use of approximated models of the plant inverse to avoid the
effects of non-minimum phase zero inversion.

LIDAR-assisted control has also been tested for improving energy harvesting at below rated
wind speeds. Results from [14] showed that LIDAR-aided rotor speed and yaw angle control
yielded increased energy production. Field tests of the methods proposed in [14] were extended
in [15] with real data collected from LIDAR where 0.3% improvement in energy gain was
achieved, however this came at the cost of doubling the loads on the shaft. In [4] three different
methods of wind turbine control are augmented by LIDAR and compared at below-rated wind
speeds: the optimally tracking rotor (OTR) control scheme [16], Preview Control [17] and
Disturbance Accommodation Control (DAC), sometimes also known as Disturbance Tracking
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Control (DTC) [18]. However, these methods were only able to increase energy harvesting by
very small amounts, and these improvements came at the cost of substantial increases in some
fatigue loads.

DAC has been one of the most widely used feedforward methods for wind turbine control
during the last decade, due to its simplicity and capacity to estimate the effective wind speed
on the rotor. It was first applied to wind turbines in [19], to counteract the effects of wind
disturbances. Later, DAC methods have been used in [20] and [21] to reduce blade fatigue
loads induced by the wind disturbances. Also in [22] it was applied for canceling asymmetric
blade mass effects of a two-bladed wind turbine causing periodic loads. A field test on the
Controls Advanced Research Turbine (CART) [23] showed that, compared to a Baseline PI
controller, DAC can reduce structural dynamic loads in real case scenarios.

Efforts have been made to enhance DAC by augmenting the controller with LIDAR infor-
mation, replacing the estimated wind speed with the LIDAR measured speed. However, to
date only modest performance improvements have been achieved. [4] showed that the LIDAR
augmented DAC (known as DAC+LIDAR) achieved less than 0.5% improvement in power
production, and this improvement came at the cost of a 5.7% increase in rotor fatigue load.

Model Predictive Control (MPC) methods have also been a point of interest since they
can readily accommodate LIDAR wind information. The simulation studies [24, 25] showed
that nonlinear MPC can reduce structural loads for turbulent winds and extreme loads gusts.
However, a key limitation of nonlinear MPC is the substantial computational cost, making it
infeasible for real-time applications on conventional industry grade controllers.

In this paper, we present a novel method for turbine control that can make effective use
of LIDAR information, without requiring the excessive computational costs of MPC. Our
approach will employ the Exact Output Regulation (EOR) control methodology, and our results
will show that it can deliver substantial reductions in fatigue loads, without compromising
energy harvesting. Additionally, its rapid computation time makes it feasible for real-time
implementation [26].

The EOR control methodology has played a central role in modern control systems design
for several decades [27]- [28]. The output regulation problem considers a linear time invariant
(LTI) plant that is assumed to be subject to known input time-varying disturbances, and
whose output is desired to track a known time-varying reference signal. The reference signals
and external disturbances are modelled as the outputs of a linear exosystem. Solution of
the problem requires the design a combined state feedback and feedforward controller that will
internally stabilise the plant while rejecting the disturbances and ensuring the output converges
asymptotically to the desired reference signal. The required feedback and feedforward gain
matrices are readily computable [28].

For turbine control, effective disturbance rejection involves the minimisation of wind dis-
turbances on the control actuation. These are the rotor torque and also the blade pitch angle.
Effective reference tracking involves operation of the turbine rotor and blades so as to generate
the optimal energy from the wind. The problem is difficult as the wind frequency variation
(turbulence) is much faster than the turbine response. The availability of LIDAR wind preview
information enables the wind signal to be modeled as a low-order linear dynamical system. This
linear system may then be incorporated into the EOR control methodology as an exosystem
whose outputs provide the input disturbance and the output reference signal [29, 30]. When
the turbine is operating below its rated power, the reference signal is the value of the rotor
speed that achieves the maximum power generation. When the turbine operates at its rated
power, the reference is the value of the blade pitch angle that maintains the turbine at its rated
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power.
A simulation environment known as Turbine Output Regulation (TOR) has been developed

by the authors to apply EOR to the control of a 5 MW reference Horizontal Axis Wind Turbine
(HAWT) [31]. To simulate the turbine response, the Fatigue, Aerodynamics, Structures, and
Turbulence (FAST) code using a high-order aero-elastic nonlinear turbine model developed by
National Renewable Energy Laboratory (NREL) [32] will be used. The NREL TurbSim package
[33] is used to simulate realistic wind fields, and damage equivalent loads (DELs) are computed
by the Rain-Flow-Counting-Algorithm open source MATLAB R© code [34]. For performance
comparison purposes, TOR obtains a feedforward controller using the DAC method, and also
a Baseline torque controller. Energy harvesting and DELs are computed within the TOR
simulation environment to allow performance comparisons of these three controllers, for a
broad range of wind speeds and intensities.

Our simulations studies on the 5 MW HAWT model show that, in comparison with DAC
and the Baseline method, the EOR controller can substantially reduce the fatigue loads on the
tower, blades and low speed shaft. Additionally, EOR is able to reduce the standard deviation
of rotor speed and output power, without any loss in energy harvesting. The authors believe
that EOR is able to obtain these improvements through its modeling of the wind dynamics.
Where DAC treats the wind signal as a constant disturbance and does not consider any output
tracking objective, EOR is able to accommodate derivatives of the wind signal, leading to
improved tracking performance and disturbance rejection.

The remainder of this paper is organized as follows. Section 2 describes the turbine mod-
elling in both rated and below rated operating regions. Section 3 introduces the control per-
formance objectives and methods to be considered in our simulation studies. We provide a
summary of the EOR control methodology for a general linear time invariant plant in state
space form. The Baseline feedback controller and DAC control method are also described. In
Section 4, we consider how to use raw LIDAR wind measurement data to develop a suitable
low-order linear wind model that will be used as the exosystem for the development of an
EOR controller for the turbine. Section 5 describes the turbine simulation environment used
for our performance comparisons, and our simulation results will be presented and discussed
in Section 6. Finally, in section 7 our conclusions and future work will be presented.

2 Wind Turbine Modeling

The wind turbine model used in this work is the NREL 5-MW reference Horizontal Axis Wind
Turbine (HAWT) [31]. Detailed specifications of the turbine are presented in Table 1.

2.1 Operating Regions

Turbine operation may be divided into four distinct regions, determined by the mean wind
speed, as depicted in Figure 1. The start-up region applies for very low wind speeds, where the
kinetic energy of wind is insufficient for turbine operation. At the cut-in wind speed (about
3 m/s), the turbine begins to operate in Region 2. The higher the wind speed, the greater
the energy that can be harvested by the blades. The rated power of the turbine is determined
by factors such as the mechanical load capacity of the components as well as the limits on
the electrical power and currents deliverable by the generator. The wind speed at which the
turbine is able to generate its rated power is called the rated wind speed, (about 11.4 m/s),

4



Table 1: The NREL 5-MW Wind Turbine Specifications

Quantity Symbol Value

Rated power Prated 5 MW
Rated rotor speed Ωrated 12.1 rpm
Rated wind speed Vrated 11.4 m/s
Rated generator
torque

Mrated 43.1 kNm

Cut-in wind speed Vin 3 m/s
Cut-out wind speed Vout 25 m/s
Rotor radius R 63 m
Hub height hH 90 m
Rotor moment of iner-
tia

Jr 11.8 kt/m2

Generator moment of
inertia

Jg 534 kg/m2

Drive-train Stiffness Kd 867 MNm/rad
Drive-train Damping Cd 6.2× 106

Gearbox ratio i 1/97
Tower equivalent
modal mass

mTe 4.36× 103kg

Tower structural
damping

cTe 17782

Bending stiffness kTe 1.81MN/m
Static tower-top dis-
placement in absence
of thrust forces

xT0 -0.0140 m

Blade pitch actuator
undamped natural fre-
quency

ω 2π rad/s

Blade pitch actuator
damping factor

ζ 0.70

Optimal tip speed ra-
tio

λ∗ 7.55

Maximum power coef-
ficient

C∗p 0.482
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Figure 1: Wind Turbine Operating Regions [25]

and wind speeds above this are referred to as Region 3. The shut-down region applies when
the wind speed exceeds a safe limit known as the cut-out wind speed (about 25 m/s).

2.2 Optimal Power Generation

The instantaneous power carried by the air moving through the vertical plane of the rotor
blades is given by

Pwind =
1

2
ρARv

3
x, (1)

where AR is the swept area of the blades with radius R, ρ is the air density and vx is the
magnitude of the component of the wind velocity vector that is perpendicular to the rotor plane.
We refer to this perpendicular component as the longitudinal wind speed. The mechanical power
extracted from the wind is Pmech = ΩrMr, where Ωr and Mr are the rotor speed and rotor
torque, respectively.

The blade tip speed ratio (TSR) is the ratio of the linear speed of the blade tip to the
longitudinal wind speed vx that can be formulated as:

λ(Ωr, vx) :=
ΩrR

vx
. (2)

This efficiency of the conversion of the wind energy to rotational-mechanical energy by the
blades is the power coefficient of the turbine and is defined as

Cp(λ, θ) :=
Pmech
Pwind

, (3)

where θ is the blade pitch angle. According to Betz’ law [35], the power coefficient is upper
bounded 59.3 %. However, most wind turbines in real operating conditions fall short of this
limit. The power coefficient is provided as a 2-D lookup table by the turbine manufacturer.

The aerodynamic torque of the rotor is modeled by the equation

Ma(Ωr, vx, θ) :=
1

2
ρπR3Cp(λ, θ)

λ
v2x, (4)

In Region 2, the main objective of the turbine controller is to convert as much of the
available wind energy into mechanical energy as possible. To achieve this, the blade pitch
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angle is kept at θ = 0 and a rotor torque controller is used to maintain the TSR at the optimal
value λ∗ that maximizes Cp; thus

C∗p = Cp(λ
∗, 0). (5)

Using (2), (5) and λ∗, we obtain Ω∗r, the rotor speed that yields optimal energy harvesting.
In Region 3, the convertible power Pmech is larger than the wind turbine’s rated power.

Hence the maximum power extraction objective no longer applies, and the control objective
becomes that of maintaining the turbine power output constant at the rated power level. This
is achieved by keeping the generator torque at the rated value, and the blade pitch angle θ∗ is
chosen to ensure the aerodynamical torque of the rotor is at its rated value.

2.3 Nonlinear Wind Turbine Model

Wind turbines are nonlinear systems consisting of several dynamic components coupled to-
gether. In our simulations, we use the open source NREL FAST 7 code [32] to provide a
high-fidelity turbine response simulation. However, a lower (reduced) order model is required
for the model-based controller design. The fifth-order nonlinear model from [36] describes the
turbine drive-train as a two-mass system, and the blade pitch actuation system is modeled by
a second order linear system with damping parameter ζ and natural frequency ω according to
Table 1. This model is described as:

JrΩ̇r = −Cd(Ωr − Ωg)−Kdφ+Ma(Ωr, vx, θ), (6)

φ̇ = Ωr − Ωg, (7)

JgΩ̇g = Cd(Ωr − Ωg) +Kdφ−Mg, (8)

θ̈ = −2ζωθ̇ + ω2(θc − θ), (9)

where Ωr, φ, Ωg, and θ are the rotor speed, drive train torsion, generator speed and blade
pitch angle, respectively. The generator torque Mg and blade pitch command θc are the control
inputs. Parameters Jr and Jg are the moments of inertia of the rotor and generator while Cd
and Kd are the damping and stiffness coefficients of the drive train. It should be noted that in
this work Ωg has been normalized for the gearbox ratio i so that it is in the same range as Ωr.

2.4 Linearized Wind Turbine Model

For the EOR and DAC controller design methods used in this study, a reduced order linearized
model will be required. We follow the guidelines for turbine model linearization given in [20]
and introduce x = [Ωr φ Ωg θ θ̇]T as the state variable vector. Also u = [θc Mg]

T is the
control input vector, and d = vx is the input disturbance. For a given mean wind speed, vx,0,
an equilibrium point (x∗, u∗, d∗) may be found which satisfies

ẋ = f(x∗, u∗, d∗) = 0, subject to : Ωr = Ω∗r, (10)

where ẋ = f(·) describes the nonlinear dynamics (6)-(9). For mean wind speeds in Region 2,
we have

Ω∗r =
λ∗

R
vx,0 (11)

In Region 3, Ω∗r = Ωrated, as given in Table 1.
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Obtaining Jacobi matrices at the equilibrium point, we obtain the linear state space model
in homogenised coordinates

Σ :





˙̄x(t) = Ax̄(t) +Bū(t) +Hd̄(t),
ȳ(t) = Cyx̄(t),
z̄(t) = Czx̄(t),

(12)

where x̄ = x − x∗, ū = u − u∗ and d̄ = d − d∗ represent coordinates homogenised to the
equilibrium point. The homogenised measured output is denoted as ȳ, and z̄ is the homogenised
controlled output. The state matrices are

A =




(γ−Cd)
Jr

−Kd

Jr

Cd

Jr

β
Jr

0

1 0 −1 0 0
Cd

Jg
Kd

Jg
−Cd

Jg
0 0

0 0 0 0 1
0 0 0 −ω2 −2ζω



, (13)

B =




0 0
0 0
0 −1

Jg

0 0
ω2 0



, H =




α
Jr

0
0
0
0



, (14)

where

γ =
∂Ma

∂Ωr

∣∣∣∣
x∗,u∗,d∗

, α =
∂Ma

∂vx

∣∣∣∣
x∗,u∗,d∗

, β =
∂Ma

∂θ

∣∣∣∣
x∗,u∗,d∗

We assume that only Ωr, Ωg and θ are measurable. Therefore, the measurement output matrix
Cy will be

Cy =




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0


 . (15)

In Region 3 the generator torque Mg is kept on its rated value and the blade pitch angle θ∗ is
obtained by solving

Ma(Ωrated, vx,0, θ
∗) = Mrated (16)

Thus the input matrix B and controlled output matrix Cz simplify to:

B = [0 0 0 0 ω2]T , Cz = [0 0 0 1 0]. (17)

In Region 2, the blade pitch angle θ is maintained at zero, so (9) is not used, and we obtain
a third order model with the state variables

x = [Ωr φ Ωg]
T .

The control input is the generator torque, u(t) = Mg. The linearized system (12) has matrices

A =




(γ−Cd)
Jr

−Kd

Jr

Cd

Jr

1 0 −1
Cd

Jg

Kd

Jg

−Cd

Jg


 , B =




0
0
−1
Jg


 , H =




α
Jr

0
0
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The measurement output matrix reduces to

Cy =

[
1 0 0
0 0 1

]
. (18)

The rotor speed Ωr is the controlled output, thus Cz is

Cz =
[

1 0 0
]
. (19)

3 Wind Turbine Control

Here we introduce the control objectives and methodologies to be considered in our simulation
studies. We discuss the specific performance objectives of turbine control, and articulate
some measures for comparing the performance of different control methodologies. Lastly, we
introduce the Exact Output Regulation control methodology that has been widely studied in
the control systems literature for several decades. The principal novelty of our work lies in the
application of this classical control methodology to a LIDAR-enhanced wind turbine.

3.1 Wind Turbine Control Objectives

Wind turbine control objectives may be divided into two categories: improving power produc-
tion and reducing load fatigues. In Region 2 the power objective is to generate the maximum
power from the available wind, while in Region 3, the objective is to maintain the power at the
turbine’s rated value. The performance metric for these power objectives are the mean and
standard deviation of the associated signal. For example, the mean value for the generated
power will be calculated with the following equation:

Pmean =
1

T

∫ T

0

P dt, (20)

where T is the time duration of measurement and P is the generator output power measured by
FAST. A smaller standard deviation of the rotor speed std(Ωr) indicates improved performance
of the controller on retaining the rotor speed at the rated speed in Region 3. A smaller
value for the standard deviation of the generated power std(P ) indicates reduced frequency
fluctuations of the power supplied to the power network; such fluctuations are known to be
a problematic aspect of the injection of intermittent active power from large wind farms into
the network [37, 38]. In Region 2, a smaller value for the standard deviation of the tip speed
ratio std(λ) indicates the controller is more successful in maintaining the tip speed ratio at the
optimal value for power generation.

Fatigue loads on the structure are caused by the oscillations induced by the wind and actua-
tor variations. The standard metrics for measuring turbine fatigues are the Damage Equivalent
Loads (DELs) which represent the damages caused by the structural loads accumulated during
the lifetime of the turbine. The three principal loads considered in this paper are the torsional
displacement on the drive train shaft, and the bending moments of the tower root and blade
root. These points are under high strain and also compose the most expensive parts of the wind
turbine. Therefore, load mitigation on these points are economically very desirable. Finally,
for visualization in the frequency domain [24], power spectral density (PSD) of some of the
measurements will be shown. PSD represents the spectral content of these signals. Normally,
reduced high frequency spectral content is desirable as it implies reduced vibrations in the
system components.
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Figure 2: Block diagram of EOR control methodology

3.2 The Exact Output Regulation Control Methodology

EOR is a multi-variable LTI control methodology in which the plant is subject to known time-
varying input disturbances that are to be rejected, and the plant outputs are required to track
a known time-varying reference signal. The aim of EOR is to design a feedback control law
which ensures that the plant dynamics are stable, and the output asymptotically converges to
a desired reference signal while rejecting the disturbances. The following summary of EOR is
taken from [39], which was adapted from [28].

The EOR control methodology considers a linear time-invariant multivariable system shown
in the block diagram of Figure 2. The plant Σ is assumed to be described by state equations
in the form of (12), where x, y and z are respectively the plant state, measured output and
regulated output. A known linear time-invariant exosystem Σexo generates the autonomous
time-varying reference signal r and input disturbance signal d. The error signal e = z − r
represents the difference between the regulated output and the reference. The exosystem can
be written in the form of:

Σexo :





ẇ(t) = Sw(t), w(0) = w0

d(t) = Ldw(t)
r(t) = Lrw(t)

(21)

Here S represents the exosystem dynamics and w is the state of the exosystem. Output
matrices Ld and Lr construct the disturbance and reference signals from the exosystem states.
By defining

Ew = H Ld

Dw = −Lr

we can replace Σ in (12) with the error system Σe:

Σe :





ẋ(t) = Ax(t) +Bu(t) + Eww(t),
ẇ(t) = Sw(t),
y(t) = Cyx(t)
e(t) = Czx(t) +Dw w(t).

(22)

A feedback controller u for the system Σe is said to achieve exact output regulation [28] if the
closed-loop system is internally stable and, for all initial states x0 and w0 of the plant and
exosystem, the system satisfies limt→∞ e(t) = 0. Ensuring the error signal vanishes means that
the input disturbance is asymptotically rejected, and the controlled output z asymptotically
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tracks the desired reference signal r. For the case where all states are measurable, we have
y = x and state feedback can be used to achieve exact output regulation according to the
following theorem:

Theorem 3.1 [28] Assume system Σe in (22) satisfies the following assumptions

(A.1) The pair (A,B) is stabilizable.

(A.2) The matrix S is anti-Hurwitz-stable.

(A.3) There exist matrices Γ and Π satisfying

ΠS = AΠ +B Γ + Ew (23)

0 = Cz Π +Dw. (24)

Let F be any matrix such that A+B F is Hurwitz stable, and let G = Γ−F Π. Then the state
feedback control law

u = Fx+Gw, (25)

achieves exact output regulation for Σe.

The Sylvester matrix equations (23)-(24) are known as the regulator equations and generic
solvability conditions are given in [28]. The matrix S is anti-Hurwitz stable if none of its
eigenvalues are stable. In fact, this assumption is not essential and was adopted in [28] only to
avoid a trivial problem formulation in which output regulation is achieved by default because
the exosystem states vanish.

In practice, it is not always possible to measure all states of the plant, and an estimate x̂ of
the plant state must be constructed using the measured output y. The following theorem gives
conditions under which exact output regulation may be achieved with a dynamic measurement
feedback controller.

Theorem 3.2 [28] Assume the system Σe in (22) satisfies the assumptions (A.1)-(A.3). Fur-
ther, assume the matrix pair (

[Cy 0],

[
A Ew
0 S

])

is detectable. Then the exact output regulation problem is solvable by a dynamic measurement
feedback controller of the form

Σc :





[
˙̂x(t)
ẇ(t)

]
=

[
A Ew
0 S

] [
x̂(t)
w(t)

]
+

[
B
0

]
u(t)

+

[
KA

0

]( [
Cy 0

] [ x̂(t)
w(t)

]
− y(t)

)

u(t) = Fx̂(t) +Gw(t)

(26)

where F and KA are such that A + BF and A + KACy are both Hurwitz stable matrices, and
G = Γ− F Π.

In sections 4 and 5, we discuss the application of EOR to a LIDAR-enhanced wind turbine.
For a given mean wind speed vx,0, we first develop a state model Σ as in (12), with coordinates
homogenised to the mean wind speed. The appropriate turbine model and controller are used
for Region 2 or 3 according to whether the mean wind speed is below or above the rated wind
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speed of 11.4 m/s. We then include wind dynamics to obtain the error system Σe as in (22),
also in homogenised coordinates.

The vector w represents the deviations of the perpendicular wind speed (as measured by
LIDAR) from its mean value, and its dynamics are modelled by the matrix S. The wind speed
deviation is modeled as an input disturbance d̄ , and effective disturbance rejection means that
the effect of d̄ on the turbine response is attenuated. The wind speed deviation also determines
the reference signal r̄. In Region 2, the reference is the rotor speed that delivers the optimal
tip speed ratio. In Region 3, the reference is the blade pitch angle that will maintain the rotor
speed at the turbine’s rated power.

Theorems 3.1 and 3.2 are applicable to the nominal linear system Σe, and hence the appli-
cation of the EOR control law (26) to the nonlinear turbine dynamics (as modelled by FAST)
cannot be expected to achieve exact output regulation. However, the simulation results to
be presented in Section 6 will show that the EOR control method achieves the required rotor
speeds for optimal energy harvesting with smoother control actuation. This leads to reduced
fatigue loads, relative to alternative control methods that do not incorporate wind dynamics
into their controller design.

3.3 Alternative Turbine Control Methodologies

To demonstrate the effectiveness of the EOR method in reducing fatigue loads, in Section 6
we shall compare its performance with two alternative control methods whose application to
turbines have been widely studied. Here, we briefly describe these alternative methods.

One of the most well-known wind turbine control methods is DAC, which uses wind esti-
mation data to reduce or cancel persistent input disturbances. Similar to EOR, DAC assumes
a linear plant model of the form (12). Disturbance states are created by the augmentation of
a state-estimator in a state feedback controller by an assumed-waveform model. These distur-
bance states are used to reduce or counteract the persistent disturbance effects of the wind.
The wave-form model is commonly assumed to take a constant value ( [20,40,41]) in the form

żd(t) = 0, (27)

d(t) = zd(t), (28)

where zd(t) is the state of the disturbance model. In this paper, the LIDAR-enhanced variant
of DAC known as DAC+LIDAR [4] will be used for comparisons, in which d(t) is taken as the
LIDAR longitudinal wind measurement. Thus in our performance comparisons in Section VI,
EOR and DAC+LIDAR have access to the same wind preview information. For simplicity,
in the following we shall use DAC when referring to the LIDAR-enhanced version. The DAC
control law is

u(t) = Fx(t) +Gdzd(t), (29)

where F is a state feedback matrix chosen to place the closed-loop poles at certain desired
locations, and x is the state variable of the wind turbine model. Then, if possible, the wind
disturbance state gain Gd is chosen to exactly cancel out the wind disturbance by solving

BGd +H = 0 (30)

for Gd in which B and H are defined in (12).
When (30) is solvable, the DAC control methodology may be viewed as a special case of

the EOR control methodology. If we apply the simplifying assumptions S = 0 and Ld = 1 to
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(21), we obtain Ew = H and

ẇ(t) = 0 (31)

d(t) = zd(t) (32)

which are identical to (27)-(28) with w = zd. Using Π = 0 in the EOR control law gives
Γ = Gd, so the first regulator equation (23) becomes

0 = BGd +H (33)

which is (30).
The equation (30) may not be solvable if the vector B has zero elements. Then Gd is chosen

by the minimization problem
argminGd

‖BGd +H‖2. (34)

In such cases, DAC will not be able to exactly cancel the disturbances.
We note a number of similarities and differences between EOR and DAC. Both use a state

feedback law to stabilise the closed-loop dynamics and a feedforward term to cancel input
disturbances. Where DAC models the disturbance as a constant, the dynamic exosystem used
in EOR enables greater flexibility in the modelling of the disturbance. Moreover, under mild
system assumptions of controllability and observability, (23)-(24) are solvable. By contrast,
only approximate solutions can be obtained for (30), leading to only approximate disturbance
cancellation. Additionally, DAC cannot ensure the output tracks any desired time-varying
reference.

Hence we can expect better disturbance rejection performance from EOR as it has access
to derivatives of the disturbance input. Conversely, DAC only has access to the absolute value
of the disturbance. Moreover, non-solvability of the DAC minimization equation (34) can
occur if the disturbance input vector H and control input vector B are orthogonal. In such
cases, obtaining a non-zero solution for Gd will require some plant model reduction, leading to
reduced control performance.

In our simulation results, we shall also compare the control performance of EOR and DAC
against a Baseline method of wind turbine control, employing a proportional torque controller
of the kind commonly used in the industry. The standard (Baseline) controller for Region 2 is
a generator torque reference proportional to the square of the rotational speed of the rotor

Mg = kΩ2
r, (35)

where k is given by

k =
1

2
ρπR5Cp(λ

∗, 0)

(λ∗)3
. (36)

In Region 3, the Baseline controller is a PI regulator which is set to eliminate rotor speed error
by generating the required references for the blade pitch angle. The feedback information is
taken from the rotor speed Ωr and compared against the rated rotor speed. The rotor speed
error is then fed into a conventional PI controller to generate the pitch command θc in the
following form

∆Ω = Ωr − Ω0 (37)

θc = Kp∆Ω +Ki

∫
∆Ωdt (38)

The design procedure for determining the proportional and integral gains Kp and Ki is de-
scribed in [40].
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4 Synthesizing Disturbance and Reference Exosystems

for Wind Turbines

A key component of the EOR control methodology introduced in Section 3.2 is a linear exosys-
tem in (21) that generates the known disturbance and reference signals. In this section, we
describe how LIDAR measurement data can be used to synthesize linear exosystem dynamics
to represent short-term wind evolution with a high fidelity.

If f is the focal distance of the CW-LIDAR and vx,0 is the mean longitudinal wind speed,
a time window of Tf = f

vx,0
of wind preview information will be available. Since Tf depends

on the mean wind speed, a constant preview length of 0 < Tpl < Tf is assumed to cover the
whole range. In this work, we assume f = 60 m and our largest wind speed is 24 m/s, hence
Tpl = 1.5 s is suitable. To find an exosystem that can accurately model the longitudinal wind
signal vx, an auto-regressive model is fitted to the longitudinal wind speed signal v̂x provided
by the LIDAR (our LIDAR model will be discussed in Section 5.0.2) over the time window
[0, Tpl]. Therefore, the combined exosystem and turbine model (12) are constructed in discrete
time. The exosystem dynamics are modeled with an LTI difference equation

wx[n] = a1wx[n− 1] + a2wx[n− 2] + · · ·+ aNwx[n−N ], (39)

in which
wx[n] = v̂x[n]− v̂x,0 (40)

is the deviation of the LIDAR-measured longitudinal wind speed v̂x from the mean LIDAR
longitudinal wind speed v̂x,0, at sampling instant n. The ak are the system coefficients and N
is the order of exosystem dynamics to be chosen.

Choosing higher values of N yields better representation of the wind deviation, leading to
better disturbance rejection and reference tracking. However, aggressive disturbance rejection
and reference tracking are contradictory to fatigue load reduction. This is because perfect
disturbance rejection would require all the turbine states to precisely track their equilibrium
value against the wind speed, which would increase tower deflection and drive-train torsion.
Thus, a trade-off needs to be made between higher fidelity modeling of the wind (using larger
N values) and reducing the time-variation of the control input signal (using lower N values).

Throughout this work, N = 2 has been empirically chosen to generate exosystems that
are computable in real time. Hence we introduce a state vector for the exosystem as w[n] =
[wx[n], wx[n− 1], wx[n− 2]]T , and the exosystem dynamics are given by

w[n+ 1]=



a∗1 a∗2 a∗3
1 0 0
0 1 0




︸ ︷︷ ︸
S

w[n], (41)

The optimal coefficients a∗k, for 1 ≤ k ≤ 3 may be obtained by passing a batch of sampled
LIDAR measurements into a Least Square Algorithm every Tpl seconds. However, a batch least
square method has to perform large matrix inversions at every G matrix update event which
might be not feasible for real-time applications. By using Recursive Least Square (RLS) in-
stead, this computation load is distributed evenly for each simulation step. The RLS estimator
for a∗k coefficients are shown in Figure 3. Thus the ak coefficinets, and hence the S matrix, are
updated at each time step, with frequency 10 Hz. With a forgetting factor of 0.90 in the RLS,
the weight of each sampled data becomes almost zero after 6 seconds, as 0.9060 ≈ 0.001. The
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wind speeds from 12 to 24 m/sec. Since f (vx) is a nonlinear function, to obtain Lr, we need a

linearized form of f (.) around the reference wind speed vx,0. Therefore, in Region 3 the reference

r for blade pitch angle will be r = dθ∗
dvx,0

wx which means we can obtain Lr in the form of

Lr =





[λ∗
R 0 0] : Region 2

[ dθ∗
dvx,0

0 0] : Region 3.
(5.9)

We produced Lr with the same dynamics as wind but with a different output gain. Therefore

to similarly construct the reference exo-system to the disturbance given in (5.10), we should use

r[n] = Lrw[n].

Combining S, Lr and Ld yields the exo-system Σexo in (2.22) that will be used to develop the

EOR dynamic measurement feedback controller Σc according to theorem 3.2.

Finally, the system





w[n + 1] = Sw[n],

d[n] = Ldw[n],

r[n] = Lrw[n],

(5.10)

Figure 4: Equilibrium locus of the optimal blade pitch angle θ∗ for Region 3 wind speeds (Blue)
and its tangent (Red)

regulator equations (23)-(24), and consequently the feed-forward gain matrix G, are updated
every 6 seconds.

To complete the exosystem model Σexo in (21), output matrices Ld and Lr should be also
determined. The disturbance input is the deviation of the longitudinal wind speed from the
mean value d̄(t) = v̂x(t)− v̂x,0(t) = wx(t), so

Ld = [1 0 0]. (42)

As discussed in Section 2.2, in Region 2 the controlled output is the rotor speed Ω∗r, and from
(2) we have, in homogenised coordinates, Ω̄r = λ∗wx

R
. Taking Ω̄r(t) as the time-varying reference

signal to be tracked by the EOR controller, we need

Lr =

[
λ∗

R
0 0

]
(43)

For a Region 3 mean longitudinal wind speed vx,0, the controlled output is the blade pitch
angle θ∗, obtained by solving (16). Figure 4 shows the graph of θ∗ as a function of vx,0.

To obtain the time-varying reference signal θ̄(t) in homogenised coordinates, we use the
first order approximation

θ̄ =
dθ∗

dvx,0
wx (44)

Thus for Region 3,

Lr =

[
dθ∗

dvx,0
0 0

]
(45)
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Figure 5: Block Diagram of TOR. Thick gray lines represent matrices and thin black lines
represent signals.

5 Turbine Simulation Environment

In this section, we describe our turbine simulation environment, developed in Simulink R©, and
named the Turbine Output Regulator (TOR). Its purpose is the simulation and comparison of
the control performance of the EOR, DAC and Baseline control methodologies for the NREL
5 MW FAST turbine model. The block diagram of TOR is illustrated in Figure 5. It is
comprised of seven subsystems as follows:

1. The TurbSim package [33] for the simulation of realistic wind fields.

2. The LIDAR simulator based on [42].

3. The linearized model of the nonlinear Simplified Low-Order of Wind (SLOW) Turbine
model.

4. The linear exosystem generator obtained from LIDAR data, as described in Section 4.

5. The high fidelity wind turbine simulator FAST.

6. The controller subsystem implements the Baseline, DAC and EOR controllers described
in Section 3.

7. Performance measurement code to calculate metrics related to the power generation and
DELs.

We now briefly describe each subsystem:

5.0.1 TurbSim Wind Field Simulator

TurbSim is a full-field, turbulent-wind simulator developed by NREL using stochastic models to
generate realistic three-dimensional wind field vectors v, with components for the longitudinal,
crosswise and vertical components of the wind, in arbitrary resolution. The detailed parameters
of wind input files are the vertical stability parameter RiTL, shear exponents αD and the mean
friction velocity u?D [43] which are set on the default values in TurbSim to generate 1 hour of
wind information. Figure 6 shows a TurbSim-generated Class-A intensity wind signal of one
hours duration, with a mean longitudinal wind speed of vx,0 = 18 m/s. We also show the
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Figure 6: Effective Hub-height wind speed of Class-A TurbSim wind signal and its cumulative
mean.

cumulative mean of the signal. The output v from TurbSim in Figure 5 is the wind field vector
which is applied to both the FAST turbine simulator and the LIDAR simulator.

The 5 MW reference wind turbine is a class-A wind turbine, and consequently, the FAST
simulator is exposed to a broad range of Class-A intensity wind fields generated by TurbSim
according to IEC-61400-1 standard [44]. These wind fields have mean longitudinal wind speeds
from 8 to 24 m/s with resolution steps of 2 m/s. Wind speeds below 8 m/s are not considered,
as [31] does not recommend the use of a Baseline torque controller of the form (35) below this
wind speed.

5.0.2 LIDAR Simulator

We use the continuous wave CW-LIDAR model described in [42] to simulate the longitudinal
wind speed vx at a specific distance from the turbine blades by focusing the laser beam at that
location. Figure 7 depicts the coordinate system and geometrics of the LIDAR placement on
the wind turbine nacelle.

Twenty-four evenly distributed measuring points on a circular cross-section of the wind
vector v at focal distance f from the rotor plane are scanned by the LIDAR beam, and spatial
averaging is applied to the wind speeds along the length of each measurement beam [42]. The
effect of the averaging is equivalent to passing the wind signal through a non-phase distorting
low-pass filter whose 3 dB bandwidth is determined by

BW3dB =
87

f 2
. (46)

The constant 87 is based on specific parameters of the LIDAR used in [42]. Averaging Rie-
mannian sums of the 24 measurements in the cross-section yields v̂x, an approximation to the
longitudinal speed vx. In Figure 8 the overlay comparison between the real hub-height wind
signal and the simulated LIDAR output v̂x with a focal distance of 60 metres is shown.

TurbSim generates wind signals according to Taylor’s Frozen Wind Hypothesis, which mod-
els the wind field as a turbulence box moving towards the wind turbine at its average wind
speed. Thus the wind field is assumed not to evolve between the LIDAR focal point and the
blades. This hypothesis is appropriate for relatively flat terrain where geological features do
not interact with the air flow between the measurement point and blades. Additionally, the
induction zone caused by the turbine itself certainly causes some wind evolution between the
LIDAR focal point and the blades.
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Figure 7: Coordinate system of wind turbine and nacelle mounted LIDAR shown by x, y and
z. The distance of the focal point of CW-LIDAR is shown by f and R is the scan radius.

5.0.3 Linearized low order model

In order to compute a low-order linearized turbine model, knowledge of the mean wind speed
vx,0 is required. It is apparent from Figure 6 that after some 100 seconds, the cumulative mean
of the longitudinal wind signal vx gives a good approximation to the mean longitudinal wind
speed vx,0, and hence we use the cumulative mean, denoted by v̂x,0, as the linearization point
satisfying (10). The linearized model (12) is obtained as described in Section 2.4, based on
the parameters given in Table 1 in coordinates homogenised to the assumed mean wind speed.
This linear model is passed to the controller subsystem for the computation of the DAC and
EOR control inputs.

5.0.4 Wind Exosystem Generator

This subsystem uses the cumulative mean wind speed to construct the homogenised wind signal
wx in (40). Matrices S, Lr and Ld for the exosystem Σexo (21), are obtained as in Section 4.
The exosystem state variable w, disturbance d and reference r are passed to the controller
subsystem.

5.0.5 FAST Turbine Simulator

To simulate the response of the 5 MW HAWT turbine, we use the NREL FAST 7 code. A
compiled MATLAB R© S-Function of the FAST code is used to link the designed controllers to
FAST in Simulink R©. Table 2 lists the degrees of freedom applicable to the on-shore 5 MW
wind turbine that have been activated in FAST for our simulation. FAST does not include a
model for pitch actuator, so a second order servo-system according to Table 1 has been added
to the Simulink R© environment.

The FAST model receives the wind field vector v from TurbSim and uses it to compute the
turbine state vector x̄ and measured output signal ȳ. These signals are passed to Σc in (26) for
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Figure 8: Blue: A 200 Seconds sample of a Region 2 Class-A wind with mean speed of 8 m/s,
measured at the hub height. Red: Output of the CW-LIDAR model.

Table 2: Enabled DOFs in FAST code

Enabled mode No. of DOFs Total
Generator 1 1
Drive-train Torsion 1 1
1st & 2nd fore-aft
tower bending

1 2

1st & 2nd side-side
tower bending

1 2

1st edge-wise blade 1 × 3 3
2nd edge-wise blade 1 × 3 3
1st flap-wise blade 1 × 3 3
2nd flap-wise blade 1 × 3 3
Total DOFs 18

computation of the control input ū. Finally, all measurements contained in the FAST output
log files, represented by X in Figure 5, are passed to the performance measurement subsystem.
These include the blade root and tower root bending moments, rotor and generator speeds,
and torsion of the drive shaft, as well as the pitch angle and generator torque input commands.

5.0.6 Controller subsystem

This subsystem computes the EOR, DAC and Baseline controller input signals u, and passes
them to the FAST simulator. The EOR dynamic measurement feedback controller Σc is given
by (26). The state feedback matrix F is chosen by the LQR algorithm with Q = CT

z Cz, and
R is empirically chosen to avoid control input saturation. The same matrix F is used for the
DAC controller. The estimated homogenised state vector ˆ̄x is obtained using the homogenised
measured outputs ȳ received from the FAST simulator. The observer feedback gain matrix
KA is determined by a Kalman filter. The wind turbine model in (12) does not have a process
noise term, and the output measurements obtained from the outputs of the FAST contain only
numerical errors, so the process noise covariance matrix of the Kalman filter can be neglected,
and a very small measurement noise covariance matrix is sufficient.
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5.0.7 Performance Measurement

The damage equivalent loads computed are the tower root fore-aft bending moment MyT ,
tower root side-to-side bending moment MxT , blade root flapwise bending moment MyB, blade
root edgewise bending moment MxB, and LSS torque. These are computed using the Rain-
Flow-Counting method [45], with DEL computations performed with the Rain-Flow-Counting-
Algorithm open source MATLAB R© code [34]. This subsystem also computes the average power
generated Pmean, and for Region 3 operation we compute the power standard deviation std(P )
and rotor speed standard deviation std(Ωr). Smaller power standard deviation indicates the
power generation is maintained close to the rated value of 5 MW . For Region 2 operation we
compute the tip speed ratio standard deviation std(λ), with smaller values indicating better
tracking of the optimal tip speed ratio λ∗.

Additionally, the measurement subsystem provides spectral analysis of the tower fore-aft
bending moment, tower side-to-side bending moment, blade flap-wise bending moment, low
speed shaft torque, pitch rate and the generated power. Reduced high frequency content in the
power spectral density (PSD) of these variables implies reduced fluctuations of the measured
variable. For bending moment (tower or blade) signals, the integral of the amplitude of the
PSD over the frequency range is an indicator of the wind energy dissipated within the turbine
tower or blade. The consequence of this energy dissipation is fatigue accumulation in the tower
or blade, and thus reduced PSD amplitudes are associated with lower lifetime turbine damage.

The TOR environment is able to compute one hour of turbine response simulation in 20
minutes of CPU time on a contemporary desktop PC, and hence the output regulation control
methodology can be expected to be suitable for real-time realization on a wind turbine.

6 Results and Comparisons

We now present the simulation results from our investigation of the performance of the EOR,
DAC and Baseline controllers introduced in Section 3. The simulations use class-A turbulent
wind signals with mean wind speeds ranging between 8 m/s and 24 m/s, as described in
Section 5.0.1. The first 100 seconds of turbine response are excluded from the comparisons, as
this time is required for the initialization of the DAC and EOR controllers.

Fatigue load DELs, standard deviation of rotor speed and generated power are shown for
a range of wind speeds in both operating regions. A colour convention is used to represent the
results for different controllers throughout this section as follows: Green represents outputs
from a Baseline controller, Blue represents the DAC and EOR is shown by Red.

Figures 9 and 10 provide some illustrative time-domain comparisons. They show 800 sec-
onds of turbine response data under the three controllers for class-A turbulent wind signals
of mean speeds 8 and 18 m/s. The responses from the EOR controller exhibit smaller fluc-
tuations than the two alternative controllers, particularly in the LSS torque variations. The
control input graphs for the generator torque (Region 2) and blade pitch rate (Region 3) reveal
that EOR exerts considerably smoother control actuation than both Baseline and DAC.

6.1 Damage Equivalent Load Controller Performance Comparisons

Figures 11a to 11d show fatigue loads for mean wind speeds ranging between 8 m/s to 24
m/s. Results for Region 2 are distinguished with a gray background. In figure 11a, tower root
fore-aft bending moment shows that DAC and EOR both improve considerably over exo in
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Figure 9: Illustrative responses for mean wind speed of 9 m/s using Baseline control (Green),
DAC (Blue) and EOR (Red).

reducing this load. For tower root side-to-side bending moment, Figure 11b does not indicate a
consistent improvement for EOR or DAC over Baseline, apart from the transition region near
12 m/s where EOR improved greatly over both Baseline and DAC. In Figure 11c, low speed
shaft torque performance is illustrated, showing EOR outperforms both alternative controllers
across all wind speeds. For blade root flap-wise moments (Figure 11d), EOR and DAC were
consistently better than Baseline in reducing the blade loads.

In order to compare lifetime DELs under each controller, the DELs applicable at each
mean wind speed must be averaged across the operating range, with weighting according
to the relative frequency of each mean wind speed. Figure 12 represents a sample Weibull
distribution of wind speed variation from measured data at the height of 102 m in Bremerhaven,
Germany, recorded during the winter of 2009 [46]. We have used this distribution to weight
the performance results shown in Figure 11a to 11d, and the calculated lifetime values are
shown in the first three rows of Table 3. The last two rows of this table show the percentage
of improvements of EOR and DAC against the Baseline controller. Positive numbers indicate
improvement relative to Baseline, while negative values indicate inferior performance.

Table 3 illustrates that, without reducing power generation, both the EOR and DAC con-
trollers have been able to reduce lifetime DEL loads, in comparison with Baseline. However,
the DAC performance showed deterioration in LSS torque and tower root side-to-side bending
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Figure 10: Illustrative responses for mean wind speed of 18 m/s using Baseline control (Green),
DAC (Blue) and EOR (Red).

moment, relative to the Baseline controller. By contrast, with the exception of MxB, EOR has
been able to improve on Baseline for all the DEL metrics by margins of between 13% and 41%.

Figure 14 shows power spectral densities for MyT , MxT , LSS and MyB for a mean wind
speed of 20 m/s. In very low frequencies all controllers show similar spectral content, but
above 0.02 Hz, EOR has superior attenuation. As can be seen in Figure 13a for the tower
root fore-aft bending moment MyT , EOR shows the most reduction around 0.05Hz while for
higher frequencies the EOR performance is comparable to DAC. For the tower root side-to-side
bending moment MxT shown in Figure 13b, similar improvements can be seen for EOR. The
excitation around 0.32 Hz represents the first tower root side-to-side natural frequency [31].
Since the tower natural frequency is not considered in the reduced model (7)-(9), this frequency
is not attenuated by any of the controllers. For low speed shaft torque in Figure 13c, DAC falls
short of the other controllers below 0.05 Hz while EOR maintains better attenuation across
the spectrum.

Blade root flap-wise moments MyB in Figure 13d show a peak at 0.2 Hz which is the 1P
frequency (1 times the rotor frequency) for all three controllers. EOR and DAC show similar
improvement over Baseline in the other parts of the spectrum.
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Figure 11: Damage equivalent loads for Class-A turbulent winds with mean wind speeds from
8 m/s to 24 m/s.

Table 3: Weighted average of DEL and Power results for class A turbulent wind in both regions

DELs & STD MyT :[kNm] MxT :[kNm] MyB :[kNm] MxB :[kNm] LSS :[kNm] Pmean :[MW]

Baseline 8.86E+04 2.50E+04 1.05E+04 1.96+04 2.59E+04 3.75

EOR 5.20E+04 1.98E+04 6.68E+03 1.95E+04 2.28E+04 3.74

DAC 5.72E+04 3.66E+04 6.07E+03 1.95E+04 2.72E+04 3.74

EOR cf. BL % 41.3 20.8 33.5 0.5 13.1 ∼ 0

DAC cf. BL % 35.4 -46.4 39.6 0.5 -5.02 ∼ 0

6.2 Power Generation Controller Performance Comparison

To compare the power generation performance of the three controllers, we distinguish between
Region 2 and Region 3 performance. Figures 14a and 14b illustrate the standard deviations of
rotor speed and generated power. Reducing these standard deviations implies less variation in
these variables, indicating that the controller gives better performance in maintaining the rotor
speeds and rated power at their rated values. These two graphs only contain Region 3 wind
speeds, as these objectives only apply in Region 3 operation. Here EOR again outperforms
both controllers, with the DAC controller giving significantly worse performance.

Table 4 summarizes the results of the controller performance for power generation. In
Region 2, we have chosen a single wind speed of 9 m/s to ensure the wind speed signal mostly
remains above 7.85 m/s. For wind speeds below this level, the Baseline controller is not
designed to track the optimal TSR, and this would invalidate the controller energy harvesting
performance comparison.
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m in Bremerhaven [46].

Table 4: Power Generation Performance

Region 2 (9 m/sec) Region 3

std(λ) P :[MW] std(Ωr) std(P ) P :[MW]

EOR 0.534 2.15 0.034 153 4.71

Baseline 0.409 2.15 0.041 171 4.71

DAC 0.641 2.15 0.069 211 4.68

EOR cf. BL % -30.6 ∼ 0 17.9 10.5 ∼ 0

DAC cf. BL % -56.7 ∼ 0 -67.1 -23.4 -0.6

The first column of the table shows that in Region 2, both EOR and DAC have considerably
higher standard deviation in their TSR λ, indicating less rigid control of the rotor speed. While
this might be expected to indicate a failure to achieve the optimal TSR for energy generation,
column 2 of the table indicates negligible differences in the energy harvested by the three
controllers. Thus the load reductions observed in Figures 11a to 11d have been achieved
without sacrificing power generation.

The averaged results for the standard deviations std(Ωr) and std(P ) are shown in columns
3 and 4 of Table 4, with wind speeds weighted according to the Region 3 wind speeds in the
Weibull distribution of Figure 12. The EOR controller achieved a substantial improvement in
both rotor speed and power regulation by 17.9% and 10.5%, relative to Baseline. Conversely,
DAC suffered a performance degradation of 67.1% and 23.4%, relative to Baseline. Column
5 of Table 4 show that EOR generated the same amount of power as Baseline, while DAC
showed some very slight reduction in power generation.

Reducing rotor speed standard deviation in Region 3 reduces the likelihood that the rotor
speed will violate the safe operational limits on Ωr. This reduces the chances of turbine failure
and increases the turbine’s operational availability.

6.3 Pitch Actuation and Command Torque Rate

The command torque rate (CTR) of the generator torque is given by

CTR =

√
1

T

∫ T

0

(
dMg(t)

dt

)2

dt (47)
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Figure 13: Power Spectral Density Graphs of Loads at the wind speed 20 m/s.

The CTR measures changes to the generator torque set point during the 60 minute simulation
period. From the system dynamic equations (6)-(7), we observe that changes in Mg cause
changes in the drive train torsion, and these variations are associated with fatigue on the drive
shaft. Therefore, it is desirable for a controller to achieve its control objectives with reduced
torque actuation. Figure 15 shows the CTR for Region 2 and 3 wind speeds.

The results show that EOR has the lowest CTR in all wind speeds except 12 m/s, indicating
smoother torque control in both operating regions. DAC has lower CTR compared to Baseline
except at wind speeds close to the transition region (12 to 14 m/s). The pitch travel (PT) of
the blade angle over the one-hour simulation period is defined to be

PT =

∫ T

0

∣∣∣∣
dθ

dt

∣∣∣∣ dt (48)

Reducing pitch travel reduces wear and tear on the bearings of the pitch mechanism. Figure
16 shows the pitch travel for Region 3 wind speeds, where pitch actuation is active.

We observe that EOR and DAC have significantly lower pitch travel compared to Baseline.
In higher than 16 m/s wind speeds, EOR has slightly higher pitch travel than DAC. This may
be related to the superior performance of EOR in controlling the rotor speed and output power
at a more constant level, which requires greater pitch actuation.

7 Conclusion and Future Work

We have proposed a new strategy for wind turbine control using the classical EOR control
methodology. Simulations were performed with the NREL FAST code for the NREL 5 MW

25



8 10 12 14 16 18 20 22 24
Wind Speed (m/s)

0

2

4

6

8

10

12
102

EOR
BL
DAC

(a) Standard deviation of electric power generation

8 10 12 14 16 18 20 22 24
Wind Speed (m/s)

0

0.2

0.4

0.6

0.8

1
EOR
BL
DAC

(b) Standard deviation of rotor speed
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Figure 15: Command Torque Rate for Class-A turbulent winds with mean wind speeds from
8 to 24 m/s.

wind turbine model, using a broad range of realistic wind signals generated by TurbSim.
Wind preview information is assumed to be available from LIDAR measurements. Our results
showed the EOR controller was able to provide substantial and consistent fatigue load reduc-
tions compared to the Baseline controller and DAC, without loss of generated power, in both
operating regions. Additionally, its modest computational cost means EOR can be expected
to be suitable for real-time implementation.

In Region 2 maximizing the energy production requires (5) to hold at all times, and this
requires the generator torque controller be designed to precisely track the optimal TSR, and
all other states of the turbine to precisely track their equilibrium value for all instantaneous
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Figure 16: Pitch Travel in Region 3 for Class-A turbulent winds with mean wind speeds from
12 m/s to 24 m/s.
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effective wind speeds. However, it was shown in [47] that the power coefficient Cp is a relatively
flat curve at its maximum and a controller designed to track the optimal TSR may contribute
only very slight increases in power production, while adding a considerable amount of stress
on the structure. Similar results were noted in [4], [48] and [47], where very small increases in
power production came at the cost of substantial increases in DELs.

This situation suggests that proposed improvements in controller design methods should
aim to reduce load fatigues, without compromising power harvesting efficiency. Our results in
Region 2 showed that stress on the structure can be considerably reduced by EOR, without
compromising energy capture. Similarly, our results in Region 3 showed that EOR can re-
duce variability in the rotor speed and power generation, again without compromising energy
production.

Considering the relative performance of the EOR and DAC controllers, our performance
comparisons showed an EOR controller was able to provide superior fatigue load reduction to
a DAC controller. The feedforward gain used in DAC does not take the wind dynamics into
account, and this a restricting assumption when dealing with rapidly varying disturbances.
Conversely, EOR accommodates higher-order dynamics when modelling wind disturbances, by
constructing an exosystem whose states include derivatives of the disturbance. Therefore, EOR
is better able to utilise the wind information obtained from LIDAR to develop wind prediction
capability, by utilising time derivatives of the disturbance signal. However, our study does not
allow for wind evolution between the LIDAR focal point and the blades, nor does it consider
LIDAR measurement noise. The presence of either of these factors can be expected to reduce
the observed performance improvements of both EOR and DAC over Baseline.

The order of the exosystem employed within the EOR methodology can be freely chosen
depending on the reliability of the LIDAR measurements, computational power and the param-
eter estimation limitations. Therefore, it is possible to design the EOR controller with regard
to different control performance objectives. For example, a higher-order exosystem will yield a
more precise description of the wind and may improve disturbance rejection. However, it may
also increase the structural loads and actuation efforts. Hence, selecting the appropriate order
for the exosystem involves a trade-off between increasing the power generation performance
and reducing the loads.

The classical EOR controller design method described in section 3.2 has been extended to
accommodate other control problem frameworks, such as the robust output regulation problem,
in which the objective is to achieve output regulation in the presence of plant uncertainty,
and the nonlinear output regulation problem which considers the problem of regulating the
output of a nonlinear plant [49]. Both of these variations on EOR have the potential to further
improve turbine performance, by accommodating the plant uncertainty introduced by use of
the linearised model (12), or else through the direct use of the nonlinear model in (7)-(9) for
the controller design.

Future developments will also consider the performance of the EOR methodology using
individual pitch control. It is anticipated this yield further improvements in rotor speed control
with reduced fatigue loads, in comparison with Baseline and DAC.

Another area for future work is to develop a transition strategy between Regions 2 and 3.
For mean wind speeds near the transition wind speed of 11.4 m/s, our analysis showed EOR
gave reduced improvements than when the mean wind speeds were not close to transition. For
instance, standard deviation of rotor speed std(Ωr) at the reference wind speed of 12 m/s is
higher under EOR than both Baseline and DAC, in contrast with the superior performance of
EOR at all other Region 3 wind speeds. Similarly, the command torque ratio at 12 m/s for
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EOR is higher than Baseline which can clearly be associated with transition region issues. The
EOR performance is clearly better than Baseline at all other mean wind speeds. Therefore,
an EOR transition strategy is needed to enable more effective switching from generator torque
control to blade pitch control as wind speeds vary between Region 2 and 3.
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