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Abstract— Closed-loop control applications for additive man-
ufacturing (AM) technologies introduce unique challenges in
control-oriented modeling and controller development. There
have been developments in current literature to model the
temporal and spatial dynamics of AM processes. The temporal
dynamics of AM processes are often modeled using tools from
fluid dynamics and mechanics to represent the material deposi-
tion and the motion of the deposition system. Spatial dynamics
are often modeled by representing the spreading dynamics of the
deposited material in the layerwise spatial domain. An important
challenge with the spatial dynamics of AM processes is to
understand the performance of the layer-to-layer (L2L) spatial
dynamics under spatial disturbances in the system. To this end,
this article presents a linear layerwise spatially varying (LLSV)
systems modeling framework to represent the L2L spatial height
evolution of a generic AM process. The proposed unifying
modeling framework can easily represent various AM processes.
An L2L stability measure is provided as a performance measure
for the spatial dynamic state of an AM process. L2L stability
is a novel analysis tool to understand and analyze the spatial
characteristics of AM processes. Fundamental L2L stability
definitions for a nominal system model and a system model
with known Gaussian spatial noise are presented. Theoretical
robustness bounds for L2L stability are experimentally compared
to a fused deposition modeling (FDM) process. The results show
that the theoretical robustness bounds given in this work provide
an important foundation for developing novel closed-loop L2L
spatial control applications.

Index Terms— Fault detection, layered manufacturing,
robust stability, stability, three-dimensional printing, tolerance
analysis.

I. INTRODUCTION

ADDITIVE manufacturing (AM) is a prominent advanced
manufacturing technology that allows for additively cre-

ating 3-D structures across a variety of length scales. In an
AM process, a numerically controlled positioning system
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deposits material (in a single layer) by either depositing
material on a build plate (material deposition process) or
transforming the material into a shaped solid form (often
from powder or liquid form). After a single layer is formed,
the positioning stage moves in the vertical direction (or the
build platform moves vertically to accommodate a new layer)
to form subsequent layers on top of the previous ones to create
a 3-D geometry. AM technologies have been developed at a
variety of length scales ranging from microscale to meter scale,
with a diversity of material options ranging from engineered
materials and polymers to metals.

An important open research area in AM is closed-loop
process control [1], [2]. AM process dynamics can be analyzed
in two domains. Temporal dynamics constitute the transient
response of the deposition process and include material pre-
process (e.g., heating), volumetric flow of material through a
deposition nozzle [3]–[5], and the motion of the deposition
system [6]–[8]. Spatial dynamics constitute the spatial char-
acteristics of the process and include the change of material
volume and location as a function of space, deposited material
interactions with the build plate, and the geometry of the
deposited material and the printed part [9]–[14]. Although
most of the temporal dynamics can be modeled using existing
tools in robotics, physics, and kinematics, the spatial dynam-
ics of AM processes pose research challenges that require
novel modeling and control tools. In current practice, most
AM processes lack closed-loop spatial dynamical control,
which results in midprocess failures and reliability issues that
restrict the widespread use of AM processes. The lack of
closed-loop spatial dynamical control is partly due to a lack
of appropriate real-time topography feedback and also due to
a lack of control-oriented models that are suitable for control
applications. By developing spatial dynamical modeling meth-
ods and corresponding analysis tools, it will be possible to
develop efficient closed-loop controllers for high-performance
AM processes to ensure reliability and quality.

A. Motivation and Problem Statement

Spatial dynamics are crucial to ensure that an AM printed
part conforms to the design specifications. Layer-to-layer
(L2L) spatial dynamics entails the interaction of deposited
materials at adjacent layers. Material characteristics and spatial
evolution involve complex physical phenomena that have
often been analyzed via numerical simulations [15]–[18].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8596-8739
https://orcid.org/0000-0002-2510-0556
https://orcid.org/0000-0003-1047-8078


2518 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 6, NOVEMBER 2021

However, these simulation tools are generally not suitable
for closed-loop control applications. A control-oriented
L2L spatial dynamical model may represent the height
evolution of the AM process over a spatial discretization.
By utilizing a discretized representation, it is possible to
develop state-space models of the L2L spatial dynamics.
Therefore, a model for control of the AM spatial dynamics
should describe the L2L spatial dynamics and capture the
material interactions between layers. In addition, stability
properties of the spatial dynamics and a notion of L2L stability
can be utilized to describe and quantify the performance of
AM spatial dynamics (and subsequently an AM printed part)
over the layer domain.

Therefore, to enable closed-loop L2L control of AM spa-
tial dynamics, appropriate control-oriented models should be
developed [14]. Defining the appropriate models and L2L
stability measures will provide a detailed analytical framework
for spatial process dynamics in high-performance AM applica-
tions and enable closed-loop control. Within this context, two
problems are of interest in this work: (P1) how to develop
a mathematical framework to define control-oriented models
for L2L AM spatial dynamics and (P2) how to provide
L2L stability measures to analyze the performance of spatial
dynamics under known spatial disturbances.

The mathematical framework in this work involves spatial
dynamical systems that describe AM processes, given as

gk+1 = f (k, gk, uk) (1)

where k ∈ Z is the layer index, gk ∈ R
n is the (spatial)

state of the system, and uk ∈ R
m is the control input (related

to the material input). Due to the explicit dependence on
the layer k, the dynamics of the system may vary between
the layers. As (1) describes a spatially additive process,
{gk}kn

k=k0
is strictly increasing and can be lower bounded by a

positive-semidefinite function. In the remainder of this article,
two problems are addressed: a linear layerwise spatially
varying (LLSV) model for the general nonlinear system in (1)
is developed to address (P1) and L2L stability properties of the
L2L spatial trajectories {gk}kn

k=k0
are provided to address (P2).

B. Literature Review

Computational models have been developed for the
L2L spatial dynamics of AM processes [16]–[19]. While
most of these models have high accuracy, the tools used
for evaluating such models are computationally expensive.
In addition, computational models are often very complex
and do not allow for closed-form representations to build
closed-loop control applications.

Control-oriented models have also been proposed to model
the spatial dynamics of AM processes. In [12], liquid drop
deposition and spreading dynamics for an ink-jet AM process
are presented. In [10] a spatial modeling framework for
electrohydrodynamic-jet printing (e-jet), a micro-AM process,
is introduced and an efficient spatial iterative learning control
algorithm is introduced. Drop spreading dynamics for the e-jet
spatial deposition process are presented in [9], and various
heightmap models for L2L dynamics at varying fidelities are

presented in [20]. A task-basis controller model to ensure
uniform deposition width in a microrobotic deposition is given
in [3]. Control models for the deposition height of metal AM
processes are given in [11] and [21]–[24]. While controllers
for AM spatial dynamics in the previous literature utilize
difference or differential dynamical models of the spatial
dynamics over a discretization, no unified modeling frame-
work has been adopted. Many different models serving sim-
ilar purposes are developed for various control applications.
In addition, the spatial dynamic behavior of the proposed
models in the presence of spatial disturbances is often not
explicitly modeled. Many of the models lack the capability to
express the effect of deposition path directionality on the L2L
dynamics, which is essential for extrusion-based processes. For
model and process uncertainties, Altin et al. [13] presented
an interval model to account for uncertainties that arise in
most practical AM applications. Nevertheless, a performance
measure to characterize the spatial dynamics is not provided in
the current literature. This is an important gap for the analysis
of the spatial dynamics of AM processes. While variations
of the well-known Lyapunov stability are provided for many
AM spatial control applications [3], [6], [11], [13], [25],
a similar measure for the L2L spatial dynamics to quan-
tify the performance of a printed part has not yet been
proposed.

In this work, we present an LLSV model that builds on
existing models such as [10] to provide a framework that
is able to represent existing spatial models and is extensible
to provide control-oriented models with additional capabili-
ties, such as uncertainty models, path directionality, various
cross-sectional geometries, and spatial performance metrics
for closed-loop controller designs. A spatial modeling frame-
work specific to fused deposition modeling (FDM), where
directionality of deposition path changes the spatial dynamics,
is presented, and initial results on the L2L stability of FDM
spatial dynamics are given in prior work [14]. Here, we for-
malize a novel class of LLSV systems that generalize [14]
and provide the formal definitions and comprehensive analysis
tools for L2L stability of LLSV systems under known spatial
disturbances. Similarly, L2L stability is a novel analysis tool
to characterize the spatial dynamics of L2L processes and
quantify the performance of the printed part with respect to
the desired physical attributes, such as optical, mechanical,
or electrical properties.

C. Contributions to Literature and Article Organization

The main contributions of this work are the following:
1) a novel linear spatial dynamic modeling framework

for AM processes and a switched affine system (SAS)
representation;

2) formal definitions of layerwise regularity and L2L sta-
bility measures in the context of well-known Lyapunov
stability, generalizing [14];

3) a formal analysis of robustness margins for L2L stability
measures under spatial disturbances to characterize prob-
abilistic L2L stability results;

4) comparison of theoretical versus experimental robustness
margins with an experimental study for FDM.
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The rest of this article is organized as follows. Section II
provides the preliminary definitions, notations, and assump-
tions. Section III presents the LLSV model by introducing its
constituents based on their contributions to the L2L spatial
dynamics. Section IV provides the definitions of L2L stability
and a theoretical framework for robustness margins in the
presence of known spatial Gaussian noise in the system.
Section V presents a case study on FDM and a comparison of
the theoretical results to experimental data. Section VI gives
concluding remarks for this article.

II. PRELIMINARIES

A. Notations Used in This Article

FE denotes a fixed inertial frame on the substrate (build
plate), defined in R

3, with the orthogonal directions of unit
length (ı̂ E , ĵ E , k̂E ). The 3-D physical vectors are denoted
with boldface letters and a vector arrow, e.g., �r. Vectors are
denoted with boldface letters, e.g., x ∈ R

n denotes a vector in
n-dimensional space. The norms �·�1, �·�2, �·�∞ are the �1, �2,
and �∞ norms and the induced matrix norms, respectively. A
sequence of vectors is denoted by {xi }n f

i=n0
. Letter h is reserved

for functions of height, the magnitude of the equivalent phys-
ical vector in the k̂E direction. Lowercase letter k denotes the
layer index throughout this article. Similarly, variables indexed
with k denote layer-dependent variables. Vector en

i denotes the
unit vector for the i th dimension of an n-dimensional space
(e.g., e2

1 = [1, 0]T ). Sets are denoted with capital letters e.g.,
A, with cardinality |A|.

Matrices are denoted with capital boldface letters, e.g.,
A ∈ R

n×m. The element at the i th row and j th column of
A is denoted by A[i, j ]. The spectral radius of A is denoted
by ρ(A). Vectorization operation is denoted with vec(·)
and its inverse, matricization, is denoted with vec−1(·, n,m).
A function ϕ : R≥0 → R≥0 is a class K function
[26, Sec. 4.4] if it is strictly increasing, continuous, and
ϕ(0) = 0.

B. Definitions

Definition 1 (Power-Series Bounded Matrix): A matrix
M ∈ R

n×n is power-series bounded if lim supr→∞ �Mr�∞ =
m̄ < ∞ exists or equivalently if ρ(M) ≤ 1 and the
eigenvalues on the unit circle are of index 1 [27].

Proposition 2 (Corollary to Gelfand’s Formula): For a
matrix M ∈ R

n×n, the following property holds for r ≥ 1,
r ∈ Z>0:

ρ(M) ≤ �Mr�1/r .

Proof: This follows from [28, Proof of Corollary 5.6.14],
which includes the proposition statement given here. �

The following definitions are used to represent the physical
AM process by formal mathematical notation. An AM process
is defined in a finite volume in R

3, called volume of interest
(VOI). The VOI is defined by a rectangular cuboid

V = �
x ∈ R

3|x ∈ �
0, i max

E

� × �
0, j max

E

� × �
0, kmax

E

��
where (·)max

E denotes the upper limit in each direction in FE .
A layer is the material deposition on a 2-D cross section of

the VOI, with the normal of the cross section aligned with
k̂E direction.

The material deposition follows a predefined path p(k, γ ) :
Z>0×[γ0, γ f ] → Lk , where Lk is the 2-D deposition plane in
V for layer k, γ ∈ R is a path parameter, p(·, γ ) is a Lipschitz
continuous mapping, p(k, γ0) is the initial point, and p(k, γ f )
is the final point of the path and γ0 < γ f .

Remark 3: In practice, the temporal execution of the depo-
sition path of an AM process may include discontinuous jumps
between deposition points in the geometry. Here, we define
the predefined path p(k, γ ) to represent the spatial deposition
geometry for a single layer, which may be viewed as the
overall spatial representation of the deposition path. Thus,
as long as the deposition path is connected, we are able
to define p(k, γ ). We do not treat the cases with spatially
disconnected deposition paths in this work for simplicity of
presentation.

The AM process is defined as the sequential material
deposition in a VOI, starting with an initial layer k = 1 and
continuing in predefined increments in the k̂E -direction. The
predefined increment between the layers is called the layer
height, denoted by h�. In this work, paths of all layers k are
predefined and fixed for the AM process. Furthermore, h� is
uniform and fixed for all the layers in the AM process.

The dynamics of the AM process can be analyzed in two
domains, as described in [14]. Two important attributes of the
spatial dynamics of the AM process are the in-layer and the
L2L attributes. In-layer attributes are related to the deposition
of material within a single layer. L2L attributes (i.e., L2L
spatial dynamics) relate the material deposition on one layer
to a subsequent layer. In other words, L2L spatial dynamics
describe the height evolution of the printed part across multiple
layers.

C. Assumptions

In the presented spatial dynamical model, the dynamics of
material flow are assumed to be well known for the duration
of the process. A list of standing assumptions for this work is
as follows.

A1): Temporal dynamics of the AM process are stable and
in steady state.

A2): Material deposition within layer k follows a pre-
defined spatial deposition path p(k, γ ) accurately
(i.e., within some precision that ensures that the material
is deposited at the desired spatial location) in the spatial
domain, for all layers (∀k).

A3): Spatial dynamics (and consequently the spatial dynami-
cal state) of the AM process are measurable. The spatial
dynamics are measurable at the end of deposition for a
layer, including any layerwise post-process (e.g., mate-
rial curing, mechanical shape modification, and so on).

A4): Spatial dynamics are observed as a result of material
input in the AM process, and each layer k in the process
has a predefined uniform layer height h�.

Assumption A1) ensures that the temporal dynamics are
stable for the analysis of spatial dynamics in this work.
Assumption A2) states that the deposition system follows a
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predefined path correctly and the disturbances in the process
do not alter the actual deposition path in the process. Assump-
tions A3) and A4) ensure that the spatial dynamics are a
result of material deposition in the process. Note that we
only require the spatial state to be measurable at the end of
the material deposition process within a layer, including any
additional layerwise process treatments that may be necessary
(see [11], [13], [22], [29]). While layerwise post-processes,
such as material curing, may influence the deposited spatial
dynamics, we consider these influences as part of the spatial
dynamics and do not consider the individual effects of material
deposition versus process treatment in this work.

III. FORMULATION OF THE PROPOSED MODEL

This section provides the first contribution of this article as a
formulation of the proposed LLSV model and the model repre-
sentation as a SAS. The spatial dynamics of AM processes are
represented on a discretization of a domain of interest. First,
a discretization scheme for a given VOI is presented and a
matrix representation denoting the height evolution over the
discretization is given. Then, discretization of a continuously
defined deposition path and the local path frame is introduced.
Using the discretization scheme, the LLSV system model
is introduced and a simplified reformulation of the spatial
dynamics is given. An uncertainty model in the form of spatial
noise is provided at the end of the section.

A. Discretization of the VOI

To define the spatial dynamic state of the AM process, it is
desirable to define a suitable discretization of the VOI V .
We consider the layerwise deposition as always aligned
with k̂E and define the deposition plane Lk = {x ∈
R

2 | [xT , hk]T ∈ V}, where hk denotes the deposition height
for layer k (e.g., hk = kh�). Let αi and α j denote the
discretization size in the ı̂ E - and ĵ E -directions, respectively,
shown in Fig. 1. Discretization in the ı̂ E direction is defined by
the ordered set �i = {x ∈ R|x = αi d, x ∈ [0, i max

E ], d ∈ Z≥0}
and similarly defined for the ĵ E -direction � j = {x ∈ R|x =
α j d, x ∈ [0, j max

E ], d ∈ Z≥0}. Then, the discretization of the
layer plane D is given as � = {x ∈ L|x ∈ (�i ×� j )}. � is
assumed to be identical for all layers.

To denote the height at the spatial locations, the matrix
� ∈ R

ni ×n j represents the locations of spatial grid �,
where each element �[m, n] corresponds to a spatial location
λ(m, n) = (�i [m],� j [n]). A realization of the matrix � at a
given layer k denotes the height at the discretized locations in
that layer. Overloading the notation, let h(�[i, j ], k) denote
the height of the spatial location �[i, j ] up to layer k.
Thus, the spatial height matrix H(�, k) ∈ R

ni ×n j with the
discretization � for layer k is denoted with

H(�, k)

=
⎡
⎢⎣

h(�[0, 0], k) · · · h(�[0, n j − 1], k)
...

. . .
...

h(�[ni − 1, 0], k) · · · h(�[ni −1, n j −1], k)

⎤
⎥⎦. (2)

Now, we can define the spatial dynamic state for layer k as

gk = vec(H(�, k)). (3)

Fig. 1. Conceptual setting to describe the LLSV system as an AM process.
Within the VOI V , the deposition of layers starting from the initial layer k0
over the spatial discretization λ parameterized by αi , α j is shown. Three-layer
groups 	i are shown with five layers in each layer group and the deposition
path p̄(k, γ̄ (�)) for the final layer along with the deposition direction is
highlighted in light blue with the start point/endpoint of the path shown with
the blue filled circle. The deposition path is aligned with the grid, which
results in material deposition centered on the grid points.

Using the underlying discretization �, it is possible to repre-
sent the spatial dynamic state as a vector gk ∈ R

ng , where
ng = ni n j , or as a matrix by using the vec−1(gk, ni , n j )
operation. Therefore, gk represents the total height evolution
(in the k̂E -direction) in the process up to layer k. The number
ng ∈ Z denotes the size of the discretization � and will
be used in place of ni n j throughout the rest of this article.
The discretization � represents a finite number of spatial
locations in D. Each spatial location can be viewed as a
node of a graph, with ng nodes in total. We define the graph
G = (�, E), with the edges E in the graph connecting each
spatial location λ ∈ � to its neighboring spatial locations
(including diagonals) within �. A conceptual representation
of G is given in Fig. 1 as the bottom grid indicated as �.
Each intersection in the grid represents a location λ ∈ �,
and the grid shows the edges E between the locations with
the diagonal edges between locations omitted in the figure for
visual simplicity. The graph G is a simple graph with self-
loops, and thus, its adjacency matrix is positive semidefinite
with possible nonzero diagonal entries.

B. Discretization of the Deposition Path on a Single Layer

Given the discretization �, discretization schemes for the
deposition path and the local path frames are given here. The
deposition path p(k, γ ) is continuous with respect to the para-
meter γ . Define γ (τ) ∈ [γ0, γ f ] as a continuously increasing
parameter along the path parameterized by the variable τ ,
so that γ (0) = γ0 and γ ( f ) = γ f . An instantaneous direction
vector is then defined as �vτ = p(k, γ (τ + �p)) − p(k, γ (τ )),
on the interval τ ∈ [0, f − �p), for small �p > 0. Similarly,
the instantaneous normalized direction vector is given by v̂τ .
While the choice of �p affects the direction that v̂τ is pointing
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toward, the analysis of this effect will not be presented
here with the understanding that suitable �p can always be
selected so that v̂τ is a “tangent-like” vector. Finally, the local
path frame FP is defined such that k̂P is aligned with k̂E ,
ı̂ P is aligned with �vτ , and ĵ p = k̂P × ı̂ P as expected, where
× denotes the vector cross product.

In practice, the deposition path is defined by a sequence of
spatial locations on �. To do so, the discretization sizes αi , α j

must be chosen small enough to minimize the distortion on
the continuous path p(k, γ ). To represent the deposition at the
discretization �, define the discretized sequence of points on
the path as p̄(k, γ̄ (�)) � {λm}n p

m=1, where each λm is called a
deposition location and denotes a spatial location λ(i, j) ∈ �,
the parameter γ̄ (�) represents the discrete values of γ along
the deposition path that aligns with �, and n p is the number
of points in the discretized deposition path. Choosing the
parameter �p such that both p(k, γ (τ + �p)) and p(k, γ (τ ))
are aligned with � ensures that the local frame FP is always
well-defined with respect to the discretization. For example,
if αi = α j = α̂ ∈ R, choosing �p = α̂ ensures that a deposition
path without diagonal movements p̄(k, γ̄ (�)) is aligned with
�, as shown in Fig. 1 (light blue). We drop the dependence on
the discretization and the layer index for the path whenever it
is clear from the context for brevity.

Remark 4: Note that while deposition paths that are not
aligned with � are possible by defining the proper path
variables, the spatial representation may become complicated
depending on the cross-sectional geometry, the discretization
size αi and α j , and the AM process itself. For the simplicity
of discussions in this work, we focus on the cases where the
deposition path aligns with the spatial grid with a sufficiently
fine grid size.

C. Linear Layerwise Spatially Varying Systems

To model the L2L evolution of the spatial dynamic state
at the spatial discretization �, an LLSV model is pre-
sented in this section. LLSV is essentially a discrete lin-
ear parameter-varying (LPV) model where the state of the
system (gk) is the total height up to layer k (e.g., H(�, k))
and the parameter evolution is in terms of layer progression
(e.g., k to k + 1). The LLSV model is constructed as

gk+1 = Ak gk + Bk uk (4)

where Ak is the spatial register matrix, Bk is the input
matrix, and uk is the spatial input vector. In this section, first,
the spatial effect of the deposition input (Bk) is modeled, and
then, the effect of the previous layer (Ak) is given.

1) Effect of Material Deposition Input: Material deposi-
tion along the path p(k, γ ) results in height evolution on
each spatial location with material input. A shape function
to describe the local cross-sectional height evolution as a
function of distance from deposition location is defined by
c(p, θ, r) : Lk × R

nθ × S → R, where p is the path mapping,
θ ∈ R

nθ is a parameter vector for a given geometry, and
r ∈ S ⊂ R is the Euclidean distance from the deposition point
in the ĵ P direction (in the local path frame FP ). Note that
since c(p, θ , r) defines the height change in a finite interval,

Fig. 2. Three different shape functions, their corresponding shape parameters,
and their discretization on � (with discretization size α). These shape
functions are used for characterizing the cross-sectional shape of deposited
materials at each layer. A simple example of the L2L dynamics on a
rectangular cross-sectional shape is shown on the bottom.

it has finite support for the compact domain S on which the
cross-sectional geometry is defined, and it is zero elsewhere.

Remark 5: Definition of the shape function can be extended
to 2-D height evolution for systems that have height evo-
lution with radial symmetry, by defining the ball S �
β(p(k, γ ), r) ⊂ R

2 as the domain.
Some examples of θ from the literature shown with their

discretization in Fig. 2 are as follows.
1) For a Gaussian bell-curve shape, θ encodes the mean and

covariance [9], [10], [12].
2) For an ellipsoidal shape, θ encodes the minor and major

radii [14], [18], [30].
3) For a rectangular shape, θ encodes the height and width

of the rectangle [4], [31].
While c(p, θ, r) defines a continuous shape function at the
cross section of the deposition path, the analysis over the
discretization � requires discretization of the shape function.
Also, note that the shape parameters may depend on the
material properties of the AM process and process-specific
physical conditions.

Define c̃(λm) ∈ R
ni ×n j as the discretized matrix representa-

tion of the shape function at the deposition location λm ∈ p̄,
for the path sequence p̄ defined previously. c̃(λm) is evaluated
by sampling the function c(p, θ, r) centered at the deposition
location λm over the discretization �. c̃(λm) can be viewed as
the discretized spatial deposition impulse response of an AM
process (i.e., cross section of material spread in � due to an
impulse deposition at deposition location λm). Note that by
defining appropriate shape functions for diagonal depositions
in the discretization �, it is possible to extend the presented
models to various deposition paths. We do not treat such cases
in this work and identify them as part of future work.

Remark 6: The discrete representation of the shape function
is denoted with a matrix of the size of � (c̃(λm) centered at
the deposition location λm and the rest zero padded for full
dimension) for uniform notation.

Using the discretized shape representation c̃(λm), define
cm = vec(c̃(λm)) as the input-to-shape response for a unit
material input at the mth deposition location in p̄(k, γ̄ (�)).
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The vector cm ∈ R
ng denotes the height distribution as

a result of unit material input to the system. The spatial
height map as a result of the unit input is denoted by the
matrix vec−1(cm, ni , n j ). Examples of the spatial height map
representation are given in [10], [11], [13], [14], [20], and [32].
For the linear layerwise representation, define Bk ∈ R

ng×nu

and uk ∈ R
nu , where nu is the number of input channels

(spatial locations with material input). We can take nu = n p

without loss of generality and define

Bk = [c1, c2, . . . , cnu ] (5)

uk = [u1, u2, . . . , unu ]T (6)

where ui ∈ [0, 1] is the normalized material input parameter to
the AM process, which is defined as a physical input quantity
such as pressure applied to the deposition system at a specific
spatial location. A similarly layer-varying spatial height map
model for e-jet printing is given in [20]. Note that ci ui is
the discretized cross-sectional shape scaled by the magnitude
of the input ui and, thus, the name input-to-shape response.
In this work, we utilize a linear input-to-shape response by
noting that the nonlinear effects on the input dynamics may be
approximated within the operating range of the input. Exam-
ples of linear input-to-shape responses include [10], [12]–[14],
[22], [33], and [34]. While nonlinear and state-dependent
relationships (e.g., ci(gk)) may outperform linear models [15],
[18], [20], [29], they are not discussed here for simplic-
ity. For control applications with L2L feedback available to
the controller, an idealized shape function that is spatially
invariant has been utilized in many of the works in the
literature [10]–[13].

2) Effect of the Previous Layer: Material deposition at layer
k + 1 is added on top of the previous layer k. Therefore,
the effect of the previous layer on the height evolution of the
subsequent layer must be captured in the spatial dynamics of
the AM process.

A spatial register matrix Ak ∈ R
ng×ng is defined by

the spatial height information relationship between different
spatial locations in � across subsequent layers (i.e., from
layer k to k + 1). Due to the physical interpretation of the
height relationship, the information can be scaled by at most
one; in other words, a scaling factor κ ∈ [0, 1] can be applied
to any height relationship.

Each gk[m] ∈ gk denotes the height information of a point
in � (i.e., height at the spatial location m up to layer k).
In addition, define the mapping M : Z>0 × � → Z(k,m),
where Z(k,m) ⊆ {1, . . . , ng}, to map the height relationship
between spatial locations so that each point in gk is scaled and
mapped to another point in gk+1. This mapping is constructed
based on the physical interactions of the materials deposited
in subsequent layers. An example mapping is given in [14].
Formally, M(k,m) = {w ∈ Z≥0|w ∈ Z(k,m)}, i.e., M(k,m)
is the set of locations w on layer k + 1 where the spatial
height information is related to the height of gk[m]. Then,
the matrix Ak is constructed as the following sum over the
mapping for each location in �:

Ak =
ng�

m=1

�
v∈M(k,m)

κv eng
v


eng

m
�T

(7)

where eng
v is the vth unit basis vector of R

ng and κv ∈ [0, 1] is
the scaling factor based on the AM process, height evolution
geometry, and material properties. The scaling κv may also be
state-dependent (e.g., κv(gk)). Note that if M is a self-mapping
(i.e., M(k,m) = {m}), and κv = 1,∀v, then Ak = I . As an
example of self-mapping, consider AM processes that involve
material curing after the deposition of a layer so that after
a deposited layer is cured and solidified (see A3), its height
information is additive (i.e., mapped to the next layer with
κ = 1) [12], [32] (for additional L2L models with self-
mapping, see [22], [33], [34]). For extrusion-based processes
(see [3], [14], [29], [35]) or other deposition processes
(i.e., remelting phenomenon [11]), the height information in
the previous layer may be scaled in relation to the next
layer. In the case study, we provide a special case for the
FDM process where we constrain κv ∈ [0, 1) to model the
nonzero L2L intersection behavior of the process [14], [29].
The matrix Ak may be precomputed for many processes based
on the layerwise deposition path p̄(k, γ̄ (�)) and the material
interactions in the process. Fig. 2 (bottom) shows a simple
example of L2L dynamics for a rectangular cross section and
an identity A matrix.

Based on A4), height evolution in the process is due to
the material input and is bounded between the adjacent layers
(e.g., k − 1 and k). Each row of the spatial register matrix
Ak[i, ·] relates the height information from previous layer gk
to the location in the subsequent layer gk+1[i ], and thus,
the condition �Ak�∞ ≤ 1 states that this relationship is
bounded.

Remark 7: Based on the definition in (7), the following
induced matrix norm relationship holds for all LLSV systems:

�Ak�1 ≤ ϑ max
m∈[1,ng ]

{|M(k,m)|}
where ϑ ∈ R≥0 is given by ϑ = max{κv} ≤ 1.

D. SAS Reformulation

Based on Assumptions A2) and A4), uk and Bk are
predefined for a specific geometry and process based on
the fixed deposition paths that will be deposited at a layer.
The model given in (4) can be reformulated into a simpler
form as an SAS with predefined switches. This representation
allows for grouping similar layers together and creates a
succinct formulation of the spatial dynamics with a prede-
fined control input. In addition, if the geometry of adjacent
(e.g., k−1 and k) layers is identical, uk−1 and uk are identical.
In practice, an AM process typically includes multiple layers
with geometries that are identical. Let the tuple (k,	i) denote
the layer k belonging to layer group 	i , where 	i is the set
of all layers in the process that has identical inputs such that
uk = uk̄,∀(k, k̄) ∈ 	i . The set of all such tuples for an
AM process with n	 layer groups is defined as

	 = {(k,	i) | k = 1, . . . , n�, i ∈ [1, n	]} (8)

where each layer is mapped to one and only one layer
group 	i . An AM process may contain multiple layer groups
(see Fig. 1), so the map σ(k) : k → 	i maps a layer
k to its respective layer group for (k,	i) ∈ 	. A switch
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occurs when σ(k) and σ(k + 1) map the subsequent layers to
different 	i . As a result, the LLSV spatial dynamics can be
represented as

gk+1 = A(σ (k), σ (k − 1))gk + μ(σ (k)) (9)

where the switch of the spatial register matrix depends on
the layer group of the current and previous layers (i.e., k and
k − 1). Note that if σ(k − 1) = σ(k), then the dependence
on σ(k − 1) is redundant and may be omitted for brevity.
The layer group-dependent input μ(σ (k)) ∈ R

ng is defined by
μ(σ (k)) = Bk uk for all (k, σ (k)) ∈ 	.

As many practical AM processes have layer groups (for
example, task groups in [36]), the representation in (9) allows
one to design controllers independently for each layer group,
which may result in simpler controller formulations due to
the dynamical similarities within a layer group. In such cases,
the controller for each layer group would switch whenever the
layer group switches, and the control design should ensure
stability during the switch. In addition, using layer groups,
nonconstant layer heights in the AM process may be grouped
together to design individual closed-loop controllers for dif-
ferent layer heights.

E. Uncertainty in the LLSV Model

The AM process model has uncertainty due to material
properties, discretization errors, environmental conditions, and
unmodeled disturbances. In this work, the effect of uncertainty
on the LLSV model is represented as a spatial noise dis-
tribution in the form of a Gaussian process (GP). A spatial
noise distribution is a multivariate Gaussian distribution in
which each dimension represents a spatial location λ ∈ �.
Based on the GP framework, it is possible to define the mean
and covariance of the uncertainty on the discretization �.
Let λ̄ = vec(�) denote the vector with the locations in �,
mλ̄ ∈ R

ng denote the mean function, and �λ̄ ∈ R
ng×ng denote

the covariance function for the spatial noise distribution. Then,
the uncertainty as a spatial noise distribution is given by the
GP ν(λ̄) ∼ N (mλ̄,�λ̄).

The GP is assumed to be stationary with respect to the
L2L spatial dynamics, for an AM process. This means that
the mean and covariance of the GP remains the same over the
layer domain (and over �). This assumption is not restrictive
since the uncertainties in the spatial dynamics are most likely
to be functions of the space and, thus, invariant to the height
change in the AM process.

Define I(·) as the elementwise indicator function for
nonzero elements of a matrix. Then, I(μ(σ (k))) ∈ {0, 1}ng

is a vector with ones in the locations with material depo-
sition for layer k and zeros elsewhere. Also, define Ik �
diag(I(μ(σ (k)))) as a diagonal matrix of size ng ×ng . Then,
the random vector ν(μ(σ (k))) ∼ IkN (mμ(σ (k)),�μ(σ (k)))
gives the spatial noise for a specific deposition geometry with
input μ(σ (k)). The resulting LLSV model with the uncertainty
term as a spatial noise distribution is given as follows:
gk+1 = A(σ (k), σ (k − 1))gk + μ(σ (k))+ ν(μ(σ (k))). (10)

IV. L2L STABILITY

In this section, the L2L stability of the system in (9)
[equivalently (4)] is investigated. In addition, robustness mar-
gins for L2L stability are given for the uncertainty reformula-
tion of the system in (10).

A. Layerwise Regularity

In order to evaluate the L2L stability of the LLSV sys-
tem, some additional measures for individual layers must
be defined. A reference spatial state trajectory gd for the
AM process is defined based on the design of the desired end
geometry, discretization �, and deposition path p̄(k, γ̄ (�)) as
gd = {gd

1, . . . , gd
n�}, where n� denotes the total number of lay-

ers. Then, define the maximal admissible height deviation from
gd

k as ωk(gd
k ) ∈ R

ng

≥0 as admissible bounds for the layerwise
AM process (i.e., tolerance). Note that ωk (dependence on gd

k
is omitted for brevity) is a layer-varying parameter so that the
admissible bounds on the spatial state may be varied between
the layers based on the geometry or other considerations.

Definition 8 (Layer Spatial Conformance): A layer k with
the spatial dynamic state gk is layer spatial conforming if
ω̂0

k(g
d
k )  gd

k − gk  ω̂1
k(g

d
k ).

Here,  denotes elementwise less than or equal to. Layer
spatial conformance denotes if the system trajectories are
within the admissible bounds. The bounds ω̂0

k(g
d
k ) and ω̂1

k(g
d
k )

over the discretization � are design variables that are deter-
mined based on the prescribed layer height h�. By prescribing
ω̂0

k(g
d
k ) and ω̂1

k(g
d
k ) independently, nonsymmetric tolerance

bounds may be prescribed. For the remainder of this article,
we utilize symmetric tolerances [i.e., ω̂0

k(g
d
k ) = −ω̂1

k(g
d
k ) ] for

simplicity. The following definition describes if the trajectory
{gk}nk

k=k0
follows gd within the admissible bounds.

Definition 9 (Layer-Wise Regularity [14]): An AM process
is said to be layerwise ω-regular at layer k if �gd

k − gk�2 ≤ ω.
Layerwise regularity states that the spatial trajectories of

the LLSV system are within a tube of radius ω around gd .
The numerical value of ω may be defined based on specific
design considerations for part functionality (e.g., mechanical,
electrical, or optical properties). A detailed discussion on
the design of ω is beyond the scope of this work and not
discussed here. An example of ω for dimensional performance
is provided in the case study. Using the definitions of spatial
conformance and layerwise regularity, L2L stability definitions
are given next.

B. L2L Stability Definitions

An important property of an AM process is its geometric
stability. This is the ability of subsequent layers to be built
on top of the existing layers. Define g̃k = Ik−1 gk as a vector
with height information of the spatial locations with height
change on layer k, defined by μk−1, and zeros elsewhere. The
vector g̃k denotes the height of the locations in � that had
deposition for the current layer.

Definition 10 (L2L Geometric Stability [14]): An LLSV sy-
stem is said to be L2L geometrically stable (L2LGS) if
�gk−1�∞ < min j {| g̃k[ j ]| > 0}, for all k ∈ (1, n�].
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Fig. 3. Left: top view of the deposition process with a rectangular shape
function. The green path labeled with Layer k is the currently deposited layer.
The deposition path p1 at layer k + 1 is sufficiently supported from below,
whereas p2 at layer k + 1 is not sufficiently supported from below. Right:
cross-sectional view of the deposition process at layers k and k + 1 illustrates
the sufficient support condition for example. The partial graph G of the process
is given below to illustrate the adjacency between the spatial locations within
the dotted rectangle in �.

The operator min j{| g̃k[ j ]| > 0} denotes the magnitude of
the minimum nonzero element in the vector g̃k , with elemen-
twise absolute value operator | · |. Therefore, in an L2LGS
system, the minimum height at the spatial locations with
deposition for layer k is greater than the maximum height
in layer k − 1. Intuitively, the L2LGS condition ensures that
the current spatial state gk is always “above” the preceding
layer, providing a natural condition for geometrical stability
of the printed part.

Remark 11: The LLSV system with A2) is L2LGS by
design since the layer geometries and path planning for the
AM process follow this stability condition to create refer-
ence trajectories p(k, γ ) for all k ∈ (1, n�], which in turn
defines gd . Without loss of generality, the L2LGS condition
holds for all LLSV systems analyzed in this work.

Going back to the graph G interpretation of the discretiza-
tion �, any spatial state gk denotes the height on the nodes
of G up to layer k. The L2L geometric stability condition
requires the material deposition at the subsequent layer (k +1)
to be sufficiently supported from below (at layer k). Sufficient
support is the least amount of material present at a certain
location λ(m, n) ∈ � in layer k so that the deposition on the
subsequent layer k + 1 is L2LGS according to Definition 10.
Sufficient support depends on the specific AM technology,
geometry, and material properties. A brief analysis of the
L2L geometrical stability and its implications on the input
design is given in [14].

Consider the L2L dynamics shown in Fig. 3. Let Jk define
the adjacency matrix of the graph G and the shape function
of the process be a rectangular one. We may associate the
region of sufficient support in Fig. 3 with the adjacency of
the graph G. In the given case, material deposited in layer k
at a location λ supports the material deposition on the spatial
locations immediately adjacent to it at layer k + 1. Note that
the adjacency relationship is a function of the discretization
size, shape function, and the physical properties of the material
and process. Therefore, the deposition on layer k in the
figure provides sufficient support for the deposition path p1

on layer k + 1, but the path p2 becomes L2L geometrically
unstable. Based on Remark 11, we assume that the sufficient
support condition holds for all LLSV systems analyzed in this
work.

The L2L stability of an LLSV system is then defined based
on the definitions of regularity and stability.

Definition 12 (L2L Stability): An LLSV system that is
L2LGS is said to be:

1) L2L stable (L2LS) if for any given δc > 0, ∃δs > 0, such
that �gd

k0
− gk0

� < δs implies �gd
k − gk� < δc for all

k ∈ [k0, n�];
2) L2L finite stable (L2LFS) if it is L2L stable and ∃ξ ∈
(0, 1) such that �gd

k+1 − gk+1� ≤ ξ�gd
k − gk� for all

k ∈ [k0, n� − 1].
Note that L2LFS denotes finite convergence of the spatial

trajectories to the desired state trajectories (within a predefined
precision) with a convergence rate of at most ξ . The actual ξ
for a practical system determines whether perfect tracking is
feasible within finitely many layers in the AM process.

While L2LS defines a stability measure for the process,
we are often interested in understanding if the spatial dynamics
are L2L stable with respect to the layerwise ω-regularity.

Definition 13 (L2L ω-Stability): An LLSV system that is
L2L stable is said to be L2L ω-regular stable if given
δc = ω > 0, there exists a δs ∈ (0, ω) so that all the spatial
trajectories are layerwise ω-regular.

Therefore, L2L stability of the spatial trajectories is a
performance measure for the LLSV system to have geometric
stability and stay close to a desired spatial trajectory gd ,
whereas L2L ω-regular stability implies that we can prescribe
how “close” the system trajectory is to the desired trajectory.

Remark 14: Note that L2L ω-regular stability implies that
L2LS can be ensured for a desired stability bound ω > 0 for
all layers and thus is more stringent than the nominal L2LS.
Characterizing the conditions under which an LLSV system is
L2LS and L2L ω-regular stable is left for future work.

Another important aspect is the relationship between the
L2L stability and the stability of the error dynamics of the
system, highlighted in the following remark.

Remark 15: While L2LS provides a framework to charac-
terize the system performance, it is not readily compatible
with the usual stability analysis tools as L2LS is defined with
respect to the desired trajectory rather than an equilibrium for
the unforced system. Therefore, by defining the error dynamics
of the LLSV system with respect to a desired spatial trajectory,
we utilize the transformed system dynamics to draw parallels
between the L2L stability framework and the well-known
Lyapunov stability.

Without loss of generality, consider the error dynamics
of (9) for a single 	i , which we assume to be power-series
bounded for the simplicity of discussion. Define the error state
ηk = gd

k − gk and the dynamics of the error as ηk+1 = Aηk ,
where we use the shorthand A for Ak, k ∈ 	i . The following
lemma is given as the main result for L2L geometric stability
of an LLSV system.

Lemma 16: An LLSV system without noise, given in (9),
with the error state as ηk = gd

k − gk is L2LGS if and only if
there exists c0, c1 > 0 such that

�
I (1 − c0)I

−c1 I (1 − c1)I

��
ηk+1 − ηk

gk+1 − gk

�
� 0 ∀k ∈ [1, n� − 1].
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Proof: Define π1 = ḡd
k −c0 ḡk and π2 = ḡk −c1 ḡd

k , where
ḡd

k := gd
k − gd

k−1 and ḡk := gk − gk−1. Then, decompose
π i = π+

i − π−
i , i = 1, 2, where π+

i = max{0,π i } and
π−

i = max{0,−π i } with the elementwise max operator. Let
c0 = m( ḡd

k )/� ḡk�1, where m(·) denotes the smallest nonzero
element of a vector. Similarly, let c1 = m( ḡk)/� ḡd

k �1.
Now, observe that with the chosen scaling factors c0 and

c1, nonzero elements of π+
1 denote the spatial locations at

layer k that either has desired deposition or voids (deposition
is desired, but there is none). The nonzero elements of π−

1
denote the spatial locations with extra deposition (deposition
is not desired at these locations). Similarly, nonzero elements
of π+

2 denote the desired and extra depositions, and nonzero
elements of π−

2 denote voids.
L2LGS dictates that deposition at a layer must be exactly

at the desired locations that are prescribed by the L2LGS
reference gd

k for each k. Thus, a necessary condition for
L2LGS is �π−

1 � + �π−
2 � = 0, which is possible only if

π−
1 = π−

2 = 0. In that case, we have π i = π+
i � 0

that results in ḡd
k − c0 ḡk = π+

1 � 0, which is equivalently
ηk+1 −ηk +(1−c0)I ḡk � 0. Similarly, we derive −c1 I (ηk+1 −
ηk) + (1 − c1)I ḡk � 0. Combining the last two inequalities
gives the desired result.

To show the reverse direction, suppose there exists an
L2LGS ḡk with voids. Then, it must be that ḡk − c1 ḡd

k =
π2 � 0. Due to the void, there exists at least one direction j
in the vector ḡk which is zero, but is nonzero in ḡd

k . This means
that there exists no c1 > 0 that can make ḡk[ j ]−c1 ḡd

k [ j ] ≥ 0,
and therefore, π−

2 �= 0, which results in a contradiction with
π−

1 = π−
2 = 0. A similar analysis follows for extra depositions

but is omitted here for brevity, which concludes the proof. �
Then, a formal relationship between the stability of the error

dynamics and the L2L stability is given as follows.
Lemma 17: The equilibrium point ηk = 0 at layer k

for an LLSV system given in (4) with the error state
ηk = gd

k − gk satisfying Lemma 16 is said to be:

1) L2L stable if and only if the equilibrium ηk = 0 is stable
in the sense of Lyapunov [26], meaning that for a given
δc > 0, ∃δs > 0 such that �ηk0

� < δs �⇒ �ηk� <
δc,∀k > k0.

2) L2L ω-regular stable if for δc = ω, ∃δs ∈ (0, ω), with ω
as the layerwise regularity bound ∀k.

3) L2LFS if and only if it is linearly convergent to zero,
i.e., ∃ξ ∈ (0, 1) such that �ηk+1� ≤ ξ�ηk�.

4) Asymptotically stable, meaning that the equilibrium is
Lyapunov stable and {||ηk ||}∞k=k0

→ 0 as k → ∞, if it
is L2LFS.

Proof: The proof follows immediately from combining
Lemma 16 with Definition 12. �

Note that the equilibrium ηk = 0 at layer k implies that
gk = gd

k . Given the monotone increasing nature of the
desired spatial states gd

k , the equilibrium ηk = 0 is not an
unforced equilibrium since the absence of an input at layer k
(e.g., uk = 0) implies gk+1 − gd

k+1 = ηk �= 0. Therefore,
the L2L stability and equilibrium stability notions are consid-
ered under the prescribed inputs to the system instead of the
usual Lyapunov stability of an unforced system.

Recall that LLSV systems are strictly increasing due to
the physical AM process that has additive spatial input at
each layer. This property can be denoted as ϕ1(�gk0

�) ≤
{�gk�}n�

k=k0
, where ϕ1 ∈ K.

The findings in this section are summarized in the following.
Theorem 18: For an LLSV system in (4) with the error

state ηk = gd
k − gk satisfying Lemma 16, the following are

equivalent.

1) The LLSV system is L2L stable.
2) The equilibrium ηk = 0 is stable in the sense of

Lyapunov.

In addition, the following are equivalent among each other.

1) The LLSV system is L2L finite stable.
2) The sequence {||ηk ||}∞k=k0

is linearly convergent to zero.

Proofs for Theorem 4 were provided throughout the section.

C. Robustness to Uncertainty

The main theorems of this work are given in this
section. The robustness-to-L2L stability measures presented
in this section serve as analysis tools to analyze if a given
LLSV system will be L2L unstable in future layers.

To define the robustness of the L2L stability bound under
the uncertainties in the model given in 10, the following lemma
is needed.

Lemma 19: The expected value of �ν(μ(σ (k)))�2 is upper
bounded by the following relationship:

E{�ν(μ(σ (k)))�2} ≤ 
t r


�σ (k) + mσ (k)mT

σ (k)

��1/2
.

Proof: Noting that the vector ν(μ(σ (k))) consists
of random variables from the distribution N (mσ (k),�σ (k)),
the expectation of the quadratic form of z � ν(μ(σ (k))) is
E{zT z} = t r(E{zzT }). Then, the expectation is

E{�z�2} = E
��z�2

2

�1/2� ≤ 
E
�z�2

2

��1/2

= (t r(v(z)+ E{z}E{z}T ))1/2

= (t r(v(z)+ mmT ))1/2

with v(·) denoting the variance matrix, which uses Jensen’s
inequality and the fact that square root is a concave function
to derive the required result. �

Lemma 20: For the induced norm of the register matrix
of an LLSV system, the following inequality holds for some
ϑ � ∈ (0, 1]:

�Ak�2 ≤
�
ϑ � max

m∈[1,ng ]
{|M(k,m)|} ∀k ∈ [1, n�].

Proof: The proof follows immediately by applying
Hölder’s inequality with the conditions given in Remark 7,
M(k,m) defined in Section III-C2, and ϑ � = (max{κv}
�A�∞) ≤ 1. �

Theorem 21: In a single-layer group with σ(k �) →
	i , ∀k � ∈ [k0, k f ] that is ω̃-regular at layer k0 and the state
register matrix Ã � A(σ (k), σ (k − 1)) defined over the range
of layers k �, the LLSV system in (10) is L2L ω̃-regular stable
at layer k f in expectation if ∀ζ ∈ [1, k f − k0], we have

� Ã
ζ�2�ηk0

�2 + (t r(�� + m�m�T ))1/2 ≤ ω̃
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where �� = �σ (k) + Ã�σ (k) Ã
T + · · · + Ã

ζ−1
�σ (k)( Ã

ζ−1
)T ,

m� = Pζ−1( Ã)mσ (k), Pζ−1( Ã) is a matrix polynomial up to
power ζ − 1, and ω̃ > 0 is the L2L stability bound (δc).
Furthermore, if mσ (k) = 0, then

� Ã
ζ�2�ηk0

�2 + �L�F ≤ ω̃ (11)

where LLT = ��.
Proof: The proof is given for ζ = k f − k0 since

the same analysis follows ∀ζ ∈ [1, k f − k0]. Define ν̃ �
ν(μ(σ (k))). The error dynamics of the LLSV system are
given by

ηk f
= Ã

k f −k0
ηk0

+ �k f −1
i=k0

Ã
k f −i−1

ν̃.

The sum in this equation is a matrix polynomial up to degree
ζ − 1 given as�k f −1

i=k0
Ã

k f −i−1
ν̃ = I ν̃ + Ãν̃ + · · · + Ã

ζ−1
ν̃

which has the expected value E{�k f −1
i=k0

Ã
k f −i−1

ν̃} = m� =
Pζ−1( Ã)mσ (k), where Pn(A) = I + A + · · · + An, and
covariance �� = �σ (k)+ Ã�σ (k) Ã

T +· · ·+ Ã
ζ−1

�σ (k)( Ã
ζ−1
)T .

Therefore, we have
�k f

i=k0
Ã

k f −i−1
ν̃ ∼ N (m�,��). Taking �2

norms of both sides and their expectations yield the following
inequalities:

�ηk f
�2 ≤ � Ã

k f −k0�2�ηk0
�2 +

����k f

i=k0
Ã

k f −i−1
ν̃

���
2

E{�ηk f
�2} ≤ � Ã

ζ�2�ηk0
�2 + (t r(�� + m�m�T ))1/2.

Since this defines an upper bound on the error after ζ layers,
if this bound is greater than ω̃, L2L ω̃-regular stability cannot
be guaranteed and thus the given bound. Therefore, if the
bound in the theorem holds for all layers in the analysis
(i.e., ∀ζ ∈ [1, k f − k0]), the system is L2L ω̃-regular stable
at layer k f , in expectation. This relationship concludes the
proof of the first part. Now, suppose that mσ (k) = 0 and
�� = LLT (this decomposition always exists since �� � 0),
and then

E{�ηk f
�2} ≤ � Ã

ζ�2�ηk0
�2 + (t r(LLT ))1/2

≤ � Ã
ζ�2�ηk0

�2 + �L�F

which concludes the proof. �
Based on the magnitude of ζ , the bound on the error in

the LLSV system is affected by the uncertainty in the system,
while the effect of the initial error norm is decreasing with
the increasing horizon. Using Lemma 20, the value of || Ã

ζ ||2
can be approximated. Note that if || Ã||2 < 1, we can analyze
ζ = k f − k0 (instead of [1, k f − k0]) in Theorem 21 without
loss of generality (since || Ã||∞ < 1). The analysis for the case
where the spatial register matrix is power-series convergent is
given next.

Corollary 22: If, in addition to Theorem 21, we have
ρ( Ã) < 1 and ς = � Ã�2 < 1, then for large enough ζ and
invertible (I − A), the error dynamics ηk of the LLSV system
are bounded in expectation by

E{�ηk f
�2} ≤ 

t r(��)+ �m���2
2

�1/2

≤ 
t r(��)+ ς ��mσ (k)�2

2

�1/2

where ς � = (1 − ς)−1, �� as previously given, and m�� =
(I − Ã)−1mσ (k).

Proof: If ρ( Ã) < 1 and ς = � Ã�2 < 1, then there exists
c > 0 where Ã

c � 0 and thus ς c � 0. By choosing ζ ≥ c
(assuming that this is feasible in the physical process), the sum
Pζ−1( Ã) is equal to (I − Ã)−1, and � Ã

ζ�2 = 0. The second
upper bound follows from the geometric sum of the ς and the
fact that � Ã

ζ� ≤ � Ã�ζ . �
In addition, the following corollary to Theorem 21 provides

a probabilistic bound for estimating the L2LS of an LLSV
system of the form (10):

Corollary 23: For the system given in Theorem 21, if the
covariance matrix has the form �� = σ 2

s I , probability for the
�2-norm squared of error dynamics (�ηk f

�2
2) being ω̃2-regular

at layer k f is given by

P
�ηk f

�2
2 ≤ ω̃2

� = P

� ≤ ω̃2/σ 2

s

�
where � ∼ X 2

n (ψ) is a random variable from an ng degrees of
freedom noncentral chi-squared distribution with the noncen-
trality parameter ψ = σ−2

s

�ng

j=1(m
∗[ j ])2 and m∗ = Ã

ζ
ηk0

+
m�, ζ = k f − k0.

Proof: Following the proof of Theorem 21, the error
at layer k has the multivariate normal distribution ηk ∼
N ( Ã

ζ
ηk0

+ m�,��). The �2-norm squared of a random vari-
able from this multivariate normal distribution is distributed
as a noncentral chi-squared distribution with ng degrees of
freedom. For the covariance matrix of the form �� = σ 2

s I ,
the noncentrality parameter of the distribution is given by
ψ = σ−2

s

�ng

j=1(m
∗[ j ])2. Therefore, the probability of the �2-

norm squared value of the error being within the stability
bound squared ω̃2 is given by the cumulative distribution
function of X 2

ng
(ψ). �

Theorem 21 is stated for a single-layer group and it is a
known fact that a switched system with stable subsystems
may become unstable under certain switching conditions [37].
To circumvent this issue and ensure the stability of the LLSV
system for all 	i , the following observations are given. The
trajectory of the error dynamics given by ηk+1 = Akηk

is bounded under arbitrary switching if the joint spectral
radius [38] of all A(σ (k), σ (k − 1)) in the LLSV system is
power-series bounded, and the system is L2LGS. However,
this is a much stronger condition than what we need in practice
since the dynamics undergo a known switching sequence
rather than arbitrary switching. Therefore, the stability of
the switches may be analyzed off-line. Further conditions
for finite convergence of the switched dynamics is given
in [39, pp. 170–173].

V. CASE STUDIES ON FDM

This section presents case studies for an FDM process
modeled as an LLSV system. Definitions of L2L stability and
details of the LLSV model for a specific geometry are given.
Leveraging the models and the experimental setup, theoretical
developments on the L2L stability in the earlier sections are
compared against the experimental measurement. A schematic
of an FDM process is shown in Fig. 4. FDM is an AM process
in which a thermoplastic material is extruded through a heated
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Fig. 4. Description of FDM [14]. Ffeed is the material feed force for the
extrusion process in the nozzle. Text is the heat supplied by the extruder heater.
Q̇ is the volumetric flow through the nozzle.

Fig. 5. Experimental setup. 1: laser measurement point. 2: square shell build
geometry. 3: laser distance measurement sensor. 4: mounting piece for the
sensor. 5: extruder head of the FDM printer. 6: PLA filament used in the
experiment. 7: heated build plate with the painter’s tape to mitigate glare.

nozzle in a numerically controlled deposition system. After a
layer of material is deposited, either the deposition system
or the build platform changes its height to accommodate the
next deposition layer until all the layers of a 3-D object are
deposited (refer to [35] and references therein for a survey of
the FDM process).

This case study aims to demonstrate the practical use
of the LLSV model and the L2L stability concepts pre-
sented in this work as a measure of dimensional perfor-
mance. An experimental setup is used to measure the spatial
state of an FDM with induced spatial noise. The theoretical
bounds derived in Theorem 21 are compared to experimental
results.

A. Experimental Setup

The experimental setup is shown in Fig. 5. To enable
a spatial height measurement between layers, a Panasonic
HG-C1030 laser point distance measurement sensor is
mounted on the extruder of an Ultimaker 3 FDM printer. The
laser has a 50-μm spot diameter and a 10-μm repeatability.
An Arduino Mega connected to MATLAB on a Windows 10

Fig. 6. Technical drawing of the assembly of the square shell geometry (left)
and the exploded view of the assembly (right). The conceptual sensor that
fits inside the shell and the housing. A cross-sectional view is shown in the
figure and the assembly is symmetric about the axis of the cross-sectional cut.

TABLE I

EXPERIMENTAL PARAMETERS FOR THE CASE STUDY

machine with i7-4700 CPU is used for collecting the sensor
measurements at a rate of 480 Hz.

For the case study, a square shell geometry (1 bead thick-
ness) is additively manufactured using FDM. The geometry of
the shell and its assembly is shown in Fig. 6. A manufacturing
scenario in which the shell geometry needs to fit inside a
square slot of 20.4 mm and depth of 5.33 mm is considered
with the given dimensional tolerances shown in Fig. 6. Based
on these dimensional specifications, layerwise regularity and
L2L ω-regular stability limits are evaluated in Section V-B.
The experimental parameters for the case study are given
in Table I. By ensuring L2L ω-regular stability, we can
ensure that the FDM printed shell will conform to the design
specifications and deliver the desired performance in terms
of dimensional accuracy. Similarly, we will conclude that
L2L ω-regular unstable parts will not conform to the design
specifications and thus will be scrap. Thus, we utilize L2LS
as an in situ tool for analyzing printed part performance in
this case study, which is a novel approach to understand the
printed part performance in AM.

B. LLSV Systems for FDM

The spatial deposition path p(k, γ ) for the square shell
geometry is identical for all layers ∀k. Consequently, there is
only a single-layer group σ(k) = 	1, ∀k ∈ [1, n�]. In FDM,
deposited beads of subsequent layers form an intersection
where they partially bond to create a sound structure [35]. As a



2528 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 6, NOVEMBER 2021

Fig. 7. Cross-sectional cutout of one of the deposited square shell specimen
under a microscope. Green ellipsoids are fit to the cross sections to study the
bead intersection between the subsequent layers.

result, the height evolution of the build between subsequent
layers is less than the spatial input to the system, which results
in a κv < 1 [in (7)]. In addition, due to inconsistencies (caused
by transient dynamics of the fluid flow) in the material flow at
the beginning of the process and the interaction of the material
with the build plate, the initial layer height is observed to be
less than expected during the experiments.

1) Spatial Register Matrix for FDM: To understand the
effect of height intersection, ex situ measurements are per-
formed on the printed parts. Experiment specimens cut across
the cross section are measured using a microscope (see Fig. 7).
Green ellipsoids are fit to each cross section in the image
and their intersection amount is calculated. In practice, FDM
deposition is adjusted such that the extruder nozzle presses
onto the deposited material in a layer [29]. In this case study,
the deposition height is adjusted to have a gap between the
nozzle tip and the deposited bead to better understand the
effect of spatial noise on the size of a deposited bead. Through
this study, the mean value of L2L intersection between the
beads of successive layers is found to be d̄ = 30.6 μm.

Using the laser distance measurement sensor, the profile of
the surface of a printed part with 180 layers is measured and
no significant change in the intersection amount is observed.
As a result, the intersection amount is modeled as a constant
amount across layers. The scaling factor κv in (7) is given as

κv(gk[m]) = (1 − d̄/gk[m]).
Since d̄ � gk,∀k, the value of κv(gk) is strictly less than one
(e.g., κv(gk) ∈ (0, 1)).

The height information at spatial locations λ(1,m), m ∈
[2, 125] in layer k are mapped to λ(1,m) and the neighboring
spatial locations at λ(0,m) and λ(2,m) in layer k + 1. The
spatial deposition points on the corners have their height
information mapped to their surrounding points. The mapping
M(k,m) is created by utilizing the relationship given in the
above examples for all the deposition points in the process for
all layers

A(σ (k), gk) =
ng−1�
m=0

�
v∈M(k,m)

�
1 − d̄

gk[m]
�

eng
v


eng

m
�T
. (12)

Since κv(gk) ∈ (0, 1), it is straightforward to show that
�A(σ (k), gk)�∞ < 1 and ρ(A(σ (k), gk)) < 1. Furthermore,
the spectral radius ρ(A(σ (k), gk)), k ∈ [1, n�] is upper
bounded by κv(gn� ) < 1 for the last layer n� since the spatial
state trajectory is nondecreasing.

Details of model creation to represent a bead cross section
at three locations in � are provided in Appendix A. For
simplicity of analysis, we consider the deposited bead cross
sections only along the spatial locations on the deposition path
p(k, γ̄ (�)). We employ the mapping M(k,m) = {m} with
κv(gk) ∈ (0, 1) described as above so that A(σ (k), gk) =
(1 − d̄/gk)I , where the division is elementwise.

2) The Effect of Noise: To illustrate the L2L stability
concept, known spatial disturbances are induced on the depo-
sition process and the results are experimentally measured.
A quadratic positive semidefinite spatial noise function is used
in the case study. The function is given as

v(x, μ) = μ/υ2x2
1 + x2

2

�
(13)

where υ ∈ R is a scale correction factor (e.g., for a spatial
area of 20 mm × 20 mm around the origin, υ = 10) and
x ∈ R

2 is the spatial variable and μ is the amplitude of the
noise function. As the spatial location of the deposition moves
away from the center of the build plate, increased noise is
expected due to errors in the flatness of the build plate.

The induced noise is added as a disturbance to the extrusion
command (i.e., adding noise terms to the E-axis references)
in the G-Code for the FDM machine. Due to the online com-
putational capacity available in the FDM machine, the design
discretization of 0.16 mm is downsampled 1.25 times so that
ᾱi = ᾱ j = 0.2 mm. As a result, the discretization used for
G-Code generation has n̄i = n̄ j = 103. The G-Code dis-
cretization is denoted by �̄, and the deposition path is denoted
by p̄(k, γ̄ (�̄)), with the vector p̄ as the vector with locations
of deposition. Note that diag(Ik) = I(σ (k)) = p̄,∀k.

The spatial noise over the deposition path is given
by the distribution N (v�(x, μ), σ 2

e I) where v�(x, μ) =
v( p̄(k, γ̄ (�̄)) − λ̄(52, 52), μ), x(·) ∈ �̄, and λ̄(52, 52) is
picked as the center of the square deposition discretization
in �̄. The spatial noise is then given as

ν(μ) ∼ IkN

v�(x, μ), σ 2

e I
� ∀k ∈ [1, n�]. (14)

A standard deviation of σe = 6.62 × 10−4 mm is applied to
all of the points, which corresponds to 0.25 of the unit fila-
ment extrusion length ([pe = 0.0025 mm between each point
in p̄(k, γ̄ (�̄))].

The input to the system is defined as uk = Ik0.0025.
The spatial noise ν(μ) is added to the input. To derive a
linear model for the expected effect of induced Gaussian noise,
a first-order approximation of the nonlinear input dynamics
around the nominal layer height is derived as a function of the
noise amplitude variable μ as b̄(uk+E{ν(μ)})|uk=pe � 0.267+
1.0962μ with a fit residual corresponding to less than 2.5μm.
Using the linear approximation, the LLSV dynamics are

gk = A(σ (k), gk)gk + Ik(0.267 + 1.0962ν(μ)). (15)
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Fig. 8. Measurement data for one of the nominal prints over �̄. At each
layer, the deposition starts from the point (10, 10) and follows the corners
(−10, 10), (−10,−10), and (10,−10).

Without loss of generality, we employ a B matrix for the
noise input as B = Ik1.0962I and denote the transformed
input noise as ν̄(μ) ∼ N (Bv�(x, μ), Bσ 2

e I BT ).
3) Definition of L2L Stability Bounds: Based on the

dimensional tolerances shown in Fig. 6, the upper and lower
deviation limits of 0.05 mm for the printed design are given.
To ensure that the printed part fits within the tolerances,
L2L stability bounds are chosen as ω̂k = 0.05,∀k ∈ [1, n�],
and ω̃ = �0.05�2 for the layerwise regularity conditions and
to ensure L2L ω-regular stability for all layers in the process
(when δc in Definition 12 is chosen as ω̃).

4) Experimental Procedure: Layer height for layers k ∈
[1, n�] is identically prescribed as h� = 0.27 mm. A set of
experiments is conducted for the deposition process without
any induced spatial noise on the system. Then, experiments
with induced spatial noise are conducted [dynamics as in (15)].
The value of μ is varied between 1.5 pe and 3.9 pe in 0.2 pe

increments for a total of 13 levels of μ. For each spatial
noise function, four experiments are conducted and in situ
measurements of all the deposited layers are performed with
the experimental setup. The bead-center heights are measured
by centering the laser sensor on the deposited beads and
scanning along the deposition path in the experiments. A total
of 57 parts are printed for the experiments and data for a total
of 1140 layers are collected. It is important to note that there is
no closed-loop control implemented for any of the experiments
as it is beyond the scope of the presented work.

C. Results

1) Nominal Case Without Induced Noise: Experimental
height measurement data for one of the nominal parts over the
discretization �̄ are shown in Fig. 8. At each layer, the depo-
sition starts from the point (10, 10) and follows the corners
(−10, 10), (−10,−10), and (10,−10). The mean layer height
of the seven nominal experiments is taken as the desired
layer height profile gd . The mean height residuals between
the desired height profile and four of the nominal prints are
shown in Fig. 9. The measurements for the nominal case have
an average (for each layer over seven experiments) standard
deviation of 0.0175 mm. Note that this value is the statistical
standard deviation and does not reflect the actual resolution
of the measurement system (10 μm). The desired height
profile gd is defined as the mean of nominal trajectories to
mitigate the effect of inherent disturbances and noise in the
experimental process.

Fig. 9. Residual of the mean layer height for nominal deposition case without
induced spatial noise. Mean values from four nominal prints are shown all
20 layers in the deposition process. The L2L ω-regular stability bounds for
the experiment are shown with red dashed lines.

2) Experimental Results With Induced Noise: Experimental
results for seven different spatial noise functions are given
in Fig. 10. Four parts are printed for each spatial noise
corresponding to different values of μ. The mean layer height
for each of the layers is compared to the desired height profile
defined by the nominal case to evaluate the mean height
residuals. One standard deviation of the mean values from
the four printed parts of each μ value is shown with the filled
colors around the mean values. The L2L stability bounds are
shown with red dashed lines in Fig. 10. The results presented
in Fig. 10 show that the L2L stability bound is violated
between the noise levels μ = 2.1 pe and μ = 2.3 pe and
closer to μ = 2.3 pe, which corresponds to μexp = 0.0057 mm.
We use the approximate value of μexp ≈ 2.25 pe for further
discussions.

3) Outlook for Control Synthesis: Here, the results in
Theorem 21 are compared to the experimental bound given
above to validate the theoretical framework proposed in
this work. For the discretization �̄, p̄(k, γ̄ (�̄)) has a total
of 400 deposition points per layer. By construction in
Section V-B1, we have ρ(A(σ (k), gk)) < 1 (taken as 0.99
for analysis) and ω̃ = �0.05�2 = 1. The spatial dynamics of
the deposition process are only considered at the measurement
points along the p̄(k, γ , �̄). It is straightforward to show that
the system is L2LGS as the spatial trajectories are building on
top of one another to build a sound structure.

Suppose that we want to synthesize a controller to ensure
L2L ω-regular stability for the remainder of the process at
layer k0 = 1, ζ = 19. For an initial error ηk0 upper bounded
by 0.015 mm (i.e., ηk0  0.015), Theorem 21 is satisfied
for noise levels μ ∈ (0, 0.0014 mm] with a probability
of 0.97 according to Corollary 23. In comparison to the
experimental bound μexp = 0.0057 mm, the theoretical bound
μthr = 0.0014 mm is a conservative underapproximation of
the actual robustness bound. This means that a controller
that stabilizes the AM process according to the theoretical
bounds given in Theorem 21, albeit being conservative, would
indeed L2L stabilize the AM process under disturbances (with
the indicated probability). This is an important finding that
has not been previously presented in the literature and forms
a basis for the theory of L2L stability for LLSV systems.
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Fig. 10. Plots of the mean height residuals and their one standard deviation
for four different noise values. The L2L ω-regular stability bounds for the
experiment are shown with red dashed lines.

In future work, a closed-loop L2L spatial controller may utilize
Theorem 21 to ensure the L2L stability of the system in a
receding horizon fashion.

The gap between the noise levels for the predicted bound
and the experimental bound is 0.0043 mm, which is below the
measurement resolution in the experimental procedure. The
discrepancy between the theoretical and experimental value is
also due to the upper approximations in the formulation, which
represents the worst case effect of the noise on the system
and the uncertainties in the formulation of the spatial register
matrix and the resolution of the first-order approximation for
the effect of input.

4) Outlook for Decision-Making: Here, we provide addi-
tional insights on how the theoretical findings in this work
(i.e., Theorem 21) can be utilized as a decision-making mech-
anism for an autonomous FDM process. Since L2L ω-regular
unstable parts will not conform to the design specifications,
it may be desirable to stop the FDM process once we predict
that the resulting part will become scrap. After the current
layer k0 is measured, we utilize a binary classifier based
on Theorem 21 to predict whether the process will be L2L
ω-regular stable in ζ layers, in expectation. While the bound
μthr is given for a projection of 19 layers, adjusting the
horizon length ζ results in a more accurate prediction of the
experimental robustness bounds. For a controller that stops
the AM process as the prediction of L2L ω-regular instability
(utilizing the LLSV model) is above a certain confidence level,
adjusting the value of ζ would characterize the accuracy of
the decision. To illustrate this concept, we present a receiver
operating characteristic (ROC) curve for a binary classifier
that predicts the L2L ω-regular instability in ζ layers using
Theorem 21.

Fig. 11 shows the ROC curve for predicting whether the
process will be L2L ω-regular unstable, parameterized by ζ .
We have the same analysis setup with η1  0.015 and ω̃ =
�0.05�2. To evaluate the true positive and false-positive rates,
we utilize the experimental data with 13 noise levels, out of
which nine are L2L unstable. We utilize the classifier to predict
L2L ω-regular instability and plot the results for the values
of ζ ∈ [1, 19]. We observe that a value of ζ = 5 provides a
true positive rate of 1 with a low false-positive rate (0.25).
Similarly, a value of ζ = 4 provides a false-positive rate of 0
with a high true positive rate (0.89). Thus, a decision-maker

Fig. 11. ROC curve for the decision-maker utilizing a classifier based on
Theorem 21 to predict whether the FDM process measured at layer k = 1
will be L2L ω-regular unstable. The curve is parameterized by the horizon
ζ ∈ [1, 19] for the remaining layers in the process.

should be operated at one of these levels based on the
desired operating characteristics. This result also confirms
the overconservative nature of the theorem as high values of
ζ cause the classifier to predict that the process will go
unstable. A perfect process model would be able to completely
identify L2L ω-regular stable processes from unstable ones.
Based on the LLSV model derived for a specific process, the
ROC curve can be experimentally constructed and
implemented for a practical decision-maker. A closed-loop
controller may utilize the ROC curve to tune the prediction
horizon of a controller on the spatial dynamics to ensure
L2L stability of the printed device for all layers, which in
turn would provide guarantees on the part functionality.

The fact that theoretical developments are more accurate
with shorter horizons can be explained by the accuracy of
the first-order approximation around the operating point. In
addition, since the spatial register matrix used here is also an
approximation, the accuracy of the projections deteriorate for
long-horizon lengths. By evaluating higher fidelity models of
the AM processes, high-accuracy decision-makers for longer
prediction horizons (ζ ) may be developed.

VI. CONCLUSION

LLSV models provide a general framework for modeling
the spatial dynamics of AM processes where the L2L height
evolution of an AM process is modeled over a discretization of
interest. In this work, a modeling and L2L stability framework
for LLSV systems are proposed. Also, a theoretical bound
for robustness-to-L2L stability is given and the provided
bound is compared with experimental results. This theoretical
framework provides a new analysis tool for the performance
of the L2L spatial dynamics of AM processes. For the
experimental validation, the proposed modeling framework is
demonstrated on an FDM machine and an LLSV model of
the process is developed. The theoretical robustness bound for
L2L stability gives a conservative approximation of the actual
stability bound. Therefore, L2L stability and the robustness
bounds proposed in this work may be leveraged for control
development of LLSV systems.

This work presents crucial findings on the stability of the
spatial dynamics through the notion of L2L stability. Stronger
stability conditions, such as L2L finite stability, can be used for
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designing controllers that guarantee monotonic stability of the
spatial dynamics over the layer domain. The initial proofs and
analyses given here can be leveraged in developing closed-loop
controllers for high-performance AM applications to improve
process quality and reliability. Building on the modeling
framework given here, linear and nonlinear spatial models
of various AM processes may be developed. Alternate rep-
resentations of the proposed models in the frequency domain
may be developed for applications with large spatial domains.
While the presented work focuses on the L2L height evolution
of the spatial dynamics, the framework is flexible enough
to model additional spatial properties, such as electrical or
mechanical properties of the printed parts. Investigation of
such applications to control part functionality is subject for
future work.

APPENDIX A
SHAPE FUNCTIONS AND KERNEL BASES

FOR FDM BEAD MODELING

1) Shape Function and Input for FDM: An ellipsoid shape
function with the major (a) and minor (b) radii and θ = [a, b]
is chosen for the FDM process. The shape function for the
FDM process is given by

c(p, θ , b, y �) = 1

2b

��
b2

�
1 − �y

a2

�
+ b

�
(16)

where y � ∈ [y −a, y +a] and �y = �y − y ��2
2 is the Euclidean

distance squared from a deposition point y ∈ p in the ĵ P
direction, and the function is zero everywhere else.

Single-bead width is measured as 0.36 mm on average with
caliper measurements. The square deposition path on � is
given by the following spatial deposition points:

p̄(k, γ̄ (�)) = {λ(1, 1), . . . ,λ(1, 126)

λ(2, 126), . . . ,λ(126, 126)

λ(126, 125), . . . ,λ(126, 1)

λ(125, 1), . . . ,λ(2, 1)}. (17)

Define P ∈ R
ni ×n j with ones for the spatial locations in �

with deposition, defined by p̄(k, γ̄ (�)) and zeros elsewhere,
and define p = vec(P).

2) Kernel Bases for Deposition Bead Modeling: The con-
cept of kernel basis matrices is introduced in [14] to evaluate
c̄i with the correct spatial location and orientation. A kernel
basis matrix has the nonzero entries that correspond to the
discretized heights of the shape function at a specific orienta-
tion (e.g., 0, π/2) based on the deposition path. Leveraging the
adjacency and the square shape of the deposition path, the fol-
lowing 3 × 3 kernel basis matrices are given. The shorthand
c(y �) = c(p, θ, b, y �) is used for notational brevity

K 1 =
⎡
⎣ 0 0 0

c(y + αi ) c(y) c(y − αi )
0 0 0

⎤
⎦

K 2 =
⎡
⎣0 c(y − α j ) 0

0 c(y) 0
0 c(y + α j ) 0

⎤
⎦ K 3 =

⎡
⎣0 0 0

0 c(y) 0
0 0 0

⎤
⎦.

Since αi = α j and the bead function is symmetric, K 1 = K T
2

in this example. To understand the effect of corner overflow
in the case study, the deposited parts are observed under a
microscope. As a result, K 3 represents the corners of the
square shell.

The c̃(sm) matrices for spatial inputs are evaluated in the
following way for each deposition point.

1) For a point p on the deposition path p̄, a corresponding
kernel basis matrix K i is determined.

2) Taking the center entry of K i as the spatial location
corresponding to p in �, the matrix is padded with zeros
to have the appropriate dimensions R

ni ×n j .

Using the c̃(sm) matrices, input matrix Bk is evaluated as given
in (5). For the spatial locations with multiple overlapping K i

matrices, a saturation function is utilized to ensure that the
control input is appropriately applied to the spatial dynamics.
A similar approach is presented in [14].
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