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ABSTRACT

The present paper develops recursive algorithms to track shifts in the resonance frequency of linear
systems in real time. To date, automatic resonance tracking has been limited to non-model-based
approaches, which rely solely on the phase difference between a specific input and output of the
system. Instead, we propose a transformation of the system into a complex-valued representation,
which allows us to abstract the resonance shifts as an exogenous disturbance acting on the excitation
frequency, perturbing the excitation frequency from the natural frequency of the plant. We then
discuss the resonance tracking task in two parts: recursively identifying the frequency disturbance
and incorporating an update of the excitation frequency in the algorithm. The complex representation
of the system simplifies the design of resonance tracking algorithms due to the applicability of well-
established techniques. We discuss the stability of the proposed scheme, even in cases that seriously
challenge current phase-based approaches, such as nonmonotonic phase differences and multiple-
input multiple-output systems. Numerical simulations further demonstrate the performance of the
proposed resonance tracking scheme.

Keywords adaptive control · complex variables · frequency tracking · resonance.

1 Introduction

Precisely tracking the resonance frequency of oscillating systems is of great interest in resonant sensing [1, 2] and in
the driving of vibrating loads [3, 4]. Resonant sensors, the function of which relies on the resonant characteristic of
a vibrating structure, have been proposed for a wide range of measurements and instruments, including thermometers
[5], accelerometers [6], viscometers [7], humidity sensors [8], water cut measurements [9] and gyroscopes [10, 11]. In
terms of miniaturization and increased sensitivity, microelectromechanical systems (MEMS) with vibrating cantilevers
have emerged as an appealing solution, and achievements such as atomic force microscopy in space [12] and mass
detection in the range of atto- and zeptograms [2] have been reported. Furthermore, resonant electromechanical
actuators have been widely proposed for power electronics [13, 14, 15, 16], ultrasonic applications [17], thermosonic
wire bonding [18] and acoustic particle trapping [19].

To increase the sensitivity of sensors and the power output of vibrating actuators, designers adopt systems with “sharp”
resonances (low damping and a high quality factor) [19]. As a drawback, this design leads to diminished performance
when the excitation frequency deviates even slightly from the resonance frequency due to the inherently narrow band-
width of the system. Even for actuators that have been designed to operate at a constant resonance, shifts from the
designed operating frequency may occur because of environmental changes such as temperature and humidity varia-
tions [20], aging of the device [21] or changes in the load [18, 15]. As a remedy, designers resort to feedback resonance
tracking control to compensate for these shifts and achieve maximum efficiency [4, 13]. In the case of sensing ap-
plications based on changes in the resonance frequency with the measured quantity, the use of feedback control is
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unavoidable, and the performance of the control system directly affects the sensitivity, resolution and bandwidth of the
sensor [21, 22].

Regardless of the application, the phase locked loop (PLL) is the typical scheme for resonance tracking [21, 7]. The
self-sustained oscillation (SSO) scheme [23, 24] has also been proposed to induce excitation at resonance frequencies.
Both techniques achieve tracking of the resonance frequency by maintaining a constant phase difference between the
input and the output of the system. Their main difference lies in the fact that the PLL utilizes an external oscillator
to generate the signal that excites the system. In contrast, for the SSO case, the excitation signal is generated by the
oscillating structure itself; the system output is amplified and phase-shifted before it is fed back to the system. The
design and analysis of the PLL and SSO resonant tracking schemes connected with a single-input single-output (SISO)
2nd-order system have been extensively discussed by many authors for various applications [21, 25, 6, 26, 23, 7]. A
drawback of these resonance tracking approaches is that they are far from being model-based; more importantly,
however, the closed-loop robustness and stability cannot be guaranteed. This situation is true even for linear SISO
systems if the phase difference between the input and output signal is nonmonotonic. This problem has been pointed
out for piezoelectric actuators and multi-degree-of-freedom systems, where resonance and anti-resonance frequencies
are present [27, 18, 28, 17].

To supplement the two techniques mentioned above, specialized resonance tracking algorithms have been developed
for specific cases. In the absence of phase information, an algorithm that detects the maximum of the output signal has
been employed in piezoresponse force microscopy [29]. A maximum power tracking adaptive approach for the driving
of resonant loads was proposed in [4]; in this approach, a small sinusoidal perturbation signal is added to the driving
signal to estimate the derivative of the absorbed power and update the excitation frequency. A control algorithm that
tunes the system to a specific resonance frequency was developed to address the issue of online modal frequency
matching in vibratory gyroscopes [25]. Other specialized schemes employ controller scheduling [30] and fuzzy logic
[18]. Nonetheless, all of the previous approaches were developed for operation with a specific system, which makes
it difficult to generalize the approach and may require multiple driving signals. Moreover, the application of these
schemes has been limited to SISO systems, making their extension to multiple-input multiple-output (MIMO) systems
rather complicated.

The PLL and SSO techniques have both proven their capabilities in numerous applications. By neglecting the system
model, these techniques are sufficiently general and therefore applicable in many cases. On the other hand, tuning
the controller parameters may be tedious, and theoretical analysis of the closed-loop performance still requires a
mathematical description of the system. Nevertheless, if a description of the system is available, a model-based
controller design approach is expected to yield improved performance. Here, we consider control algorithms that are
able to track the resonance of linear models. We introduce a representation of the oscillating plant, which splits the
system into a linear time-invariant (LTI) model and an abstract shift of the frequency exciting the system. This model
representation simplifies the application of well-established control and estimation techniques.

The remainder of this paper is organized as follows. The resonance tracking problem is formalized in Section 2.
The complex representation of oscillating linear systems and the abstract modeling of resonance shifts are introduced
in Section 3. Section 4 presents the estimation of the resonance shift and the update of the excitation frequency.
Implementation considerations and numerical simulations are discussed in Section 5. Section 6 concludes the paper.

2 Problem statement

We consider the following discrete-time linear model:

xk+1 = Ãxk + B̃uk + w̃k (1)
yk = C̃xk + D̃uk + ṽk (2)

where xk ∈ Rn, uk ∈ Rm, and yk ∈ Rp denote the state, input and output vectors, respectively, at the discrete
sampling instances k ∈ N and w̃k ∼ N (0, Q) and ṽk ∼ N (0, R) are uncorrelated additive white Gaussian noise used
to model the disturbance input and the measurement noise, respectively. The system matrices depend on an unknown
parameter vector, κ, such as Ã(κ), B̃(κ), C̃(κ) and D̃(κ). The vector κ may be time-varying: in such cases, the
system (1-2) becomes linear time-varying (LTV), which we indicate by explicitly adding the subscript k to the system
matrices, e.g., Ãk.

We assume that the system has at least one pair of conjugated complex eigenvalues corresponding to the resonance
frequency of interest. We denote the eigenvalue of interest by λ̃s and its corresponding resonance by ω̃λ = arg λ̃s > 0.
The system is subjected to a sinusoidal input ui,k = βi,k cos(θk+ψi,k), where βi,k ∈ R≥0 and ψi,k ∈ (−π, π] denote
the instantaneous amplitude and phase, respectively, of ui,k, the ith component of uk. The common reference phase is
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Figure 1: Schematic of the frequency tracking problem.

denoted by θk ∈ R and evolves according to
θk+1 = θk + ωk (3)

where ωk is the normalized angular frequency of the excitation.

The goal of this study is to develop a recursive scheme that detects the resonance frequency of the linear system (1-
2). More precisely, we aim to develop a recursive algorithm that drives the excitation frequency ωk towards ω̃λ. A
schematic representation of the structure of the resonance tracking problem and the composition of uk is shown in
Fig. 1.

3 Complex state-space model

In this section, we introduce a transformation of the oscillating system into an equivalent description where the state,
input and output variables are represented as complex envelopes of sinusoidal signals.

3.1 CSS representation

We discuss the transformation for a general LTV system:

xk+1 = Ãkxk + B̃kuk + w̃k (4)
yk = C̃kxk + D̃kuk + ṽk (5)

excited by the sinusoidal input uk. Inspired by [31, 21], we write the state and output variables in an amplitude-phase
formulation, xi,k = αi,k cos(θk +φi,k) and yi,k = δi,k cos(θk +ϕi,k), where αi,k, δi,k, φi,k and ϕi,k are components
of time-varying vectors of appropriate dimensions. Substituting the phase-amplitude expressions into (4), the time
update for the ith component of xk is

αi,k+1 cos(θk + ωk + φi,k+1) =

n∑
l=1

Ãil,kαl,k cos(θk + φl,k) +

m∑
l=1

B̃il,kβl,k cos(θk + ψl,k)

where Ãil,k and B̃il,k are the components of the ith row and lth column of the matrices Ãk and B̃k, respectively. In the
previous expressions, we have neglected the effect of w̃k. We use the angle-sum trigonometric identities to expand the
terms in (6):

αi,k+1[cos θk cos(ωk + φi,k+1)− sin θk sin(ωk + φi,k+1)]

=

n∑
l=1

Ãil,k[αi,k(cos θk cosφl,k − sin θk sinφl,k)] +

m∑
l=1

B̃il,k[βl,k(cos θk cosψl,k − sin θk sinψl,k)] (7)
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which can be compactly written as

cc,i,k cos θk + cs,i,k sin θk =
√
c2c,i,k + c2s,i,k sin(θk + arctan

cc,i,k
cs,i,k

) = 0. (8)

Eq. (8) becomes independent of θk by setting cc,i,k = cs,i,k = 0:

αi,k+1 cos(ωk + φi,k+1) =

n∑
l=1

Ãil,kαl,k cosφl,k +

m∑
l=1

B̃il,kβl,k cosψl,k (9)

αi,k+1 sin(ωk + φi,k+1) =

n∑
l=1

Ãil,kαl,k sinφl,k +

n∑
l=1

B̃il,kβl,k sinψl,k. (10)

We introduce the transformation for the ith state component in complex notation, zi,k = αi,k(cosφi,k + j sinφi,k) =
αi,ke

jφi,k . Similarly, we write the output as qi,k = δi,ke
jϕi,k and the input as si,k = βi,ke

jψi,k . The symbol j =
√
−1

is the imaginary unit. This complex signal form is similar to the complex envelope representation of a bandpass signal
in communication channels [32] and to the analytic signal [33]. Substitution of the complex variables into (9-10)
results in the following complex system:

zk+1 = (Ãkzk + B̃ksk + wk)e−jωk (11)
qk = C̃kzk + D̃ksk + vk (12)

where wk and vk are proper random variables with a complex Gaussian (CN ) probability density function, that is,
wk ∼ CN (0, Q) and vk ∼ CN (0, R). The complex envelope of white real-valued Gaussian signals has been shown
to be complex proper normal, where the properness arises from the stationarity assumption [34, 32]. Eq. (12) follows
from (5) using the same procedure. We refer to the system (11-12) as the complex state space (CSS) representation.

The conversion of an LTV system into the CSS representation can be derived by substituting the analytic signal directly
into (4-5). The derivation is simpler and directly relates each signal to its complex envelope but lacks intuition and
reasoning for the complex representation of the variables. The substitution of uk = ske

jθk and w̃k = wke
jθk into (4)

results in
xk+1 = Ãkxk + B̃ske

jθk + wke
jθk (13)

which is equal to (11) for xk = zke
jθk and xk+1 = zk+1e

jωkejθk . The evolution of the real part of (13), which is
entirely disconnected from the complex part, coincides with (4). Furthermore, we apply the same reasoning to derive
the continuous-time CSS representation in Appendix A.

3.2 Properties of the CSS representation

Transforming (4-5) into the CSS representation constitutes an alternative description of the original system. Under
equivalent input and noise sequences, the trajectories of xk and zk can be derived from one another. It is therefore
expected that the properties of (4-5) are retained after the transformation. In the following, the relevant properties for
the design of the resonance tracking algorithm are discussed.

The state transition matrices of the two systems are closely related. Let Φ(k, i) =
∏k−1
l=i Ãl be the state transition

matrix for the system (4-5); then, the state transition matrix for the CSS representation (11-12) is

Φc(k, i) =

k−1∏
l=i

(Ãle
−jωl) =

(
k−1∏
l=i

Ãl

)
e−j

∑k−1
l=i ωl = Φ(k, i)e−j

∑k−1
l=i ωl (14)

with Φ(k, k) = Φc(k, k) = I .
Lemma 1. Consider the LTV system (4-5) and the associated CSS representation (11-12). For any given sequence
ωi, i = 1, 2, . . . , k, the system (11-12) is globally exponentially stable if and only if the associated system (4-5) is
globally exponentially stable.

Proof. The exponential stability of (4-5) implies that there exist scalars c1 > 0 and 0 < λΦ < 1 such that [35,
lemma 1]

‖Φ(k, i)‖ ≤ c1λk−iΦ , ∀i, k ∈ N. (15)

For the CSS representation, ‖Φc(k, i)‖ = ‖Φ(k, i)‖ ≤ c1λ
k−i
Φ , which concludes the global exponential stability

of (11-12).

The reverse statement can be shown similarly.
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Furthermore, the optimal control and optimal estimation problems for (11-12) and the LTV system are directly con-
nected. Assume an observable system (4-5), and consider the optimal state observer design problem with an initial
state estimate x̂0 = E[x0] and variance Px,0 = E[(x0 − x̂0)T (x0 − x̂0)], where E[·] denotes the expected value. The
trajectory of the optimal state estimates and the covariance matrix, Px,k+1|k, are given by the Kalman filter equations.
Specifically, Px,k+1|k follows the Riccati equation

Px,k+1|k = ÃkPx,k|k−1Ã
T
k +Q− ÃkPx,k|k−1C̃

T
k (C̃kPx,k|k−1C̃

T
k +R)−1C̃kPx,k|k−1Ã

T
k . (16)

Lemma 2. Given the optimal estimation problem for the CSS system (11-12) with the initial conditions ẑ0 = E[z0]
and Pz,0 = E[(z0 − ẑ0)H(z0 − ẑ0)], (16) then describes the evolution of the optimal covariance, Pz,k+1|k, for any
sequence ωi, i = 1, 2, . . . , k. Moreover, if Pz,0 = Px,0, then Pz,k+1|k = Px,k+1|k, ∀k > 0.

Proof. The system matrices of (11-12) are real-valued, and the noise variables are proper. The optimal estimator for
such systems has been shown to be the Kalman filter, which achieves optimality in terms of being unbiased and having
minimum variance [36, remark 6].

We write the Kalman filter equations for the CSS model, presented in a prediction and a correction step, as

Prediction step:
ẑk|k−1 = (Ãkẑk−1|k−1 + B̃ksk)e−jωk (17)

Pz,k|k−1 = (Ãke
−jωk)Pz,k−1|k−1(Ãke

−jωk)H +Q = ÃkPz,k−1|k−1Ã
T
k +Q (18)

Correction step:
ẑk|k = ẑk|k−1 + Lk(qk − C̃kẑk|k−1 − D̃ksk) (19)

Lk = Pz,k|k−1C̃
T
k (C̃kPz,k|k−1C̃

T
k +R)−1 (20)

Pz,k|k = (I − LkC̃k)Pz,k|k−1 (21)

where ẑk|k−1 and ẑk|k are the prior and posterior state estimates, respectively. We use the same convention for Pz,k+1|k
and Pz,k|k. Combining (21-20) with (18) results in (16). Additionally, if Pz,0 = Px,0, the trajectories of Px,k+1|k and
Pz,k+1|k are identical and independent of ωk.

The previous result is connected to the fact that the properness (with respect to the vanishing pseudocovariance) and
normality of the complex random variable are retained under affine transformations [32]. Moreover, for the proper
random variable, zk, the random variable zke−jωk has the same second-order statistical properties [37]. We note that
Pz,k+1|k is bounded, a statement that extends the variance of proper random variables filtered by a CSS model. The
connection between the LTV system and the CSS representation can be extended to the linear quadratic regulator
(LQR) problem; for more details, see Appendix B.

3.3 Modeling resonance shifts

The model-based resonance tracking algorithm employs a simplified model to control the plant; the real system is
abstracted into a nominal LTI part and a complex-valued frequency disturbance, h. The frequency disturbance acts
independently to shift the resonance frequency of the system by arg h. The disturbed system can be written as

zk+1 = h (Azk +Bsk + wk) e−jωk (22)
qk = Czk +Dsk + vk. (23)

The description (22-23) is sufficiently general and can model a set of LTI systems with similar dynamics as an average
LTI model disturbed by some h or split an LTV system into an LTI part and a time-varying hk.

For a fixed h, the model (22-23) is connected to an equivalent LTI representation, as in (13). In this case, the complex
and real parts of the system variables are not disconnected but can be written in real-valued form as[

<xk+1

=xk+1

]
=

[
hrA −hiA
hiA hrA

] [
<xk
=xk

]
+

[
hrB −hiB
hiB hrB

] [
<uk
=uk

]
(24)[

<yk
=yk

]
=

[
C 0
0 C

] [
<xk
=xk

]
+

[
D 0
0 D

] [
<uk
=uk

]
(25)

where hr = <h and hi = =h. In the following, we adopt (24-25) whenever it is advantageous to include ωk in the
excitation signal uk; alternatively, we use the CSS representation (22-23) when it is more convenient to treat ωk as a
system parameter.
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It is also of interest to define a one-step-ahead predictor for (22-23). As a consequence of Lemma 2, such a predictor
can be realized as a steady-state Kalman filter:

ẑk+1 = h[(A− LC)ẑk + (B − LD)sk + Lqk]e−jωk (26)
q̂k = Cẑk +Dsk (27)

where ẑk and q̂k denote the state and output estimates at time k, respectively. The steady-state Kalman gain is

LC = e−jωkAP∞C
T (CP∞C

T +R)−1 = e−jωkL (28)

where P∞ is the fixed point for Pz,k+1|k in (16). In the following, we denote the set of parameterized models or the
parameterized one-step-ahead predictors withM.

4 Resonance tracking control

The resonance tracking algorithm developed in the present section is inspired by the ideas of adaptive control. Initially,
we apply the recursive identification method to estimate h without feedback on ωk, which provides the base for the
closed-loop algorithm. Then, we modify the algorithm to include the update of the excitation frequency.

4.1 Estimating the frequency shift

The estimation of h is based on minimizing the estimation error, namely, the discrepancy between the observed and
estimated values, ρk = qk− q̂k. The model identification of dynamical systems based on parameterized estimators has
been thoroughly discussed in the literature [38, 39]; the identification technique is termed the prediction error method
(PEM). We follow [39] and discuss the recursive PEM in two steps; initially, we transfer previous results for the offline
identification procedure to the current complex-valued structure, and then we discuss the recursive counterpart of the
PEM.

In the offline setup, the sequences qk, sk and ωk for k = 1, 2, . . . , N are available for the identification procedure. For
any given value of h, the sequence q̂k is computed by (26-27), and the cumulative estimation error is computed by

Jest,N (h) =
1

2N

N∑
k=1

‖ρk‖2. (29)

We define ĥ = argmin Jest,N . The objective function Jest,N is a real-valued function of complex arguments; opti-
mization problems involving such functions have been addressed by the mathematical framework of the CR-calculus
[40, 41]. Although Jest,N is not holomorphic, the second-order expansion exists and can form the basis for the
Gauss–Newton gradient descent minimization method. The offline estimate is obtained by iteratively applying

ĥ(i+1) = ĥ(i) + δĥ(i) (30)

from some initial guess ĥ(0), where the superscript (i) denotes the values of the procedure at iteration i and δĥ(i) is
the search direction. To apply this theory to our problem, we rewrite (29) as

Jest,N =
1

2N

N∑
k=1

‖qk − Cẑk −Dsk‖2 =
1

2N
[qm − g(h)]H [qm − g(h)] (31)

where qm ∈ CNp is a column vector created by concatenating qk −Dsk vertically for k = 1, 2, . . . , N . The function
g(h) : C 7→ CNp maps h to the vector created by stacking the values of Cẑi for k = 1, 2, . . . , N . We remark that
g(h) is holomorphic and that ∂g(h)/∂h can be compiled from Cηk, where ηk = ∂ẑk/∂h. The latter can be computed
recursively as

ηk+1 = [(A− LC)ẑk + (B − LD)sk + Lqk + h(A− LC)ηk]e−jω (32)
with the initial value η0 = 0. The Gauss–Newton search direction for minimizing (31) is written as follows [40]:

δĥ(i) =
(
H(i)

)−1
(
∂g(ĥ(i))

∂ĥ(i)

)H (
qm − g(ĥ(i))

)
(33)

H(i) =

(
∂g(ĥ(i))

∂ĥ(i)

)H (
∂g(ĥ(i))

∂ĥ(i)

)
(34)
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whereH(i) is an approximation of the Hessian matrix and the superscript H indicates the conjugate transpose.

We point out that the previous optimization can be formulated outside the complex-valued framework; Jest,N can be
viewed as a function of two real-valued arguments, namely, <h and =h. Likewise, the estimators can be regarded as
linear and real-valued, as in (24-25). If the optimization is performed in a real-valued context, the search direction and
Hessian approximation are equivalent to (33-34) [40]. In the following, we state that a function is differentiable if the
derivatives of the function exist in the context of the CR-calculus. We briefly outline the basic relationship between
the real and CR-calculus derivatives in Appendix C.

Furthermore, we formulate the recursive version of the PEM (RPEM) [39]. The update at each time step k is given as
q̂k = Cẑk +Dsk (35)

h̃k+1 = ĥk + γkŜ
−1
k+1η

H
k C

H(qk − q̂k) (36)

Ŝk+1 = Ŝk + γk[ηHk C
HCηk − Ŝk + µe] (37)

ẑk+1 = ĥk+1[(A− LC)ẑk + (B − LD)sk + Lqk]e−jωk (38)

ηk+1 =
ẑk+1

ĥk+1

+ ĥk+1(A− LC)ηke
−jωk (39)

where Ŝk approximates H(k) and µe ≥ 0 introduces damping to the iterative procedure. The gain, γk, is a sequence
of positive scalars tending to zero that weights the information contained in the current observation in relation to past
observations (see also Assumption 4 for the limitation on γk). The algorithm is initialized with the state ẑ0 = z0,
frequency disturbance ĥ0 = h0 and Ŝ0 = S0 ≥ µe.
The convergence analysis of general recursive identification algorithms can be performed by associating the asymptotic
behavior parameter update with an ordinary differential equation (ODE) [42, 43] and studying the stability of the ODE.
Specifically, for the RPEM, a detailed discussion on its convergence properties can be found in [39]; we transfer the
results in the present case after introducing the necessary assumptions, which we discuss in the following:
Assumption 1. The real system is described by (11-12) and is exponentially stable.
Assumption 2. The model set,M, is described by (26-27) with h ∈ DM and DM = {h | h ∈ C, |hλi| ≤ dM, i =
1, 2, . . . , n}, where λ1, λ2, . . . , λn denotes the eigenvalues of A − LC. The variable dM < 1 is the maximum
eigenvalue magnitude.
Assumption 3. The input sequence sk is bounded. The values of sk and ωk at k are independent of past values.
Assumption 4. The sequence γk satisfies limk→∞ kγk = c2, c2 > 0.

For a fixed value of h, we denote the limit as N →∞:

1

2N

N∑
k=1

E[ρHk ρk]→ Jest,a(h). (40)

For the sake of simplicity, we introduce the operator Ē acting on the function f as Ē[fk] = limN→∞ 1
N

∑N
k=1E[fk].

Therefore, we write Jest,a = 1
2 Ē[ρHk ρk]. Finally, we introduce the projection method of h̃k into DM:

ĥk+1 =

{
h̃k+1, h̃k+1 ∈ DM
ĥk, h̃k+1 /∈ DM

. (41)

Theorem 1. Consider the system (11-12) and Assumptions 1, 2, 3 and 4. Then, the sequence ĥk, which is calculated
by (35-39) and the projection (41), converges to a local minimum of Jest,a or to the boundary of DM as k →∞.

Proof. The proof is given in Appendix D. Here, we state general remarks on the above assumptions. To associate the
update of ĥk with the ODE, the limit (40) should be well defined. The sequence qk should be bounded, which can be
ensured for a stable system (Assumption 1) and bounded input sk (Assumption 3). Similar stability requirements are
imposed on the estimator model to establish that both ẑk and ηk are bounded; the estimator model should be stable for
constant h (Assumption 2).

For the sake of completeness, we mention the associated ODEs for (36) and (37):
dhD(τ)

dτ
= c2S

−1
D (τ)f(hD(τ)) = −c2S−1

D (τ)
dJest,a
dhD

(42)

dSD(τ)

dτ
= c2[F (hD(τ)) + µe − SD(τ)] (43)
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where the subscriptD discriminates between the variables of the recursive algorithm and the variables of the associated
ODEs. The fictitious time τ depends on the sequence γk, f(h) = Ē[ηHk C

Hρk] and F (h) = Ē[ηHk C
HCηk]. Moreover,

Jest,a is the Lyapunov function used in the stability analysis of the ODEs.

Although the convergence criterion for the RPEM assumes a sequence γk that tends to zero asymptotically, in practical
applications, a constant value can be used if the system parameters change gradually [44]. For systems with sudden
parameter changes, a variable γk scheme can be applied [45]. Therefore, time-varying systems can be handled by
employing an appropriate choice of γk. However, from a system analysis point of view, constant or adaptive γk
schemes are not covered by Theorem 1 and require separate analysis, see for example [46].

4.2 Update of the excitation frequency

The current section discusses the update of the excitation frequency, ωk, using the estimates ĥk. A straightforward
approach is to select ωk as

ωk+1 = arg λs + arg ĥk = ωλ + arg ĥk (44)

where ωλ is the resonance frequency of interest corresponding to the eigenvalue λs of A. Determining the conver-
gence of the RPEM under feedback (44) presents two hurdles. First, although the associated ODEs presented in the
asymptotic analysis of the RPEM still apply, (40) is not a Lyapunov function for the system because it does not ac-
count for the effect of the feedback; therefore, these ODEs cannot be used to conclude the convergence properties of
the closed-loop system [43]. Second, the correlation between ηk and εk further complicates the analysis. Nonetheless,
a slight modification of the algorithm can address these points. The update of h̃k can be selected to satisfy some
alternative Lyapunov function. Constructing an estimate for ηk that does not depend on qk removes the correlation
with ρk (referred to as the method of instrumental variables (IV)). An uncorrelated estimate for ηk can be realized by
setting L = 0. For the closed-loop system, we modify the assumptions forM and the input:

Assumption 5. The model setM is described by (22-23) and is restricted such that h ∈ Dc, withDc being a compact
set. The eigenvalues of hA lie strictly inside the unit circle ∀h ∈ Dc.
Assumption 6. The input is set to a constant value, sk = s.

By incorporating this modification and the above assumptions, the closed-loop system becomes

qk = C̃zk + D̃s+ vk (45)
zk+1 = (Ãzk + B̃s+ wk)e−jωk (46)

ẑk+1 = ĥk+1(Aẑk +Bs)e−jωk (47)
ηk+1 = Fηk + Ĝz ẑk +Gss (48)
h̃k+1 = ĥk + γkŜ

−1
k+1η

H
k C

H
η Λρk (49)

Ŝk+1 = Ŝk + γk[ηHk C
H
η ΛCηηk − Ŝk + µe] (50)

where ejωk = ĥk|ĥk|−1, Λ is a constant positive definite matrix, andCη is a constant matrix of appropriate dimensions.
The matrices F , Ĝz and Gs may depend on ĥk; in this case, the following restrictions apply.

Assumption 7. The matrices F (h), Ĝz(h) and Gs(h) are differentiable with respect to h, and the eigenvalues of
F (h) lie strictly inside the unit circle for all h ∈ Dc.

In the following, we do not explicitly state the dependence of F , Ĝz and Gs on h; this dependence should be assumed
unless stated otherwise.

Theorem 2. Consider the system (45-50) and Assumptions 1, 4, 5, 6 and 7, along with a projection that always
maintains ĥk ∈ Dc. Assume that there exists a real positive function VD(hD, SD) such that

dVD(hD(τ), SD(τ))

dτ
< 0, hD ∈ Dc (51)

along the trajectories

dhD(τ)

dτ
= c2S

−1
D (τ)ηHa C

H
η Λρa (52)

dSD(τ)

dτ
= c2[ηHa C

H
η ΛCηηa + µe − SD(τ)] (53)
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with ηa = (I−F )−1(Ĝz ẑa+Gss), ρa = C̃za−Cẑa+(D̃−D)s, ẑa = hDĤ
−1Bs and za = H̃−1B̃s. The matrices

H̃ and Ĥ are defined as H̃ = Iejω(hD) − Ã and Ĥ = Iejω(hD) − hDA, respectively. Let

DV = {h, S | dVD(h, S)

dτ
= 0}. (54)

Then, as k →∞, {ĥk, Ŝk} tends to DV , or ĥk tends to the boundary of Dc.

Proof. The asymptotic analysis of (45-50) is based on [43, theorem 4.2], which applies the technique of the associated
ODEs to a general family of recursive algorithms. We verify the necessary conditions for the application of the
theorem (labeled Conditions M1, M2, Cr1, Cr2, R1, G1 and A1 in [43]) and confirm the requirement that the system
is described by a linear structure.

The closed-loop system can be written as

zc,k+1 = A(h)zc,k + Bs(h)s+ Bwwk (55)[
ρk
ηk

]
=

[
C1
C2

]
zc,k +

[
D̃ −D

0

]
s+

[
I
0

]
vk (56)

where zc,k = [zTk , ẑ
T
k , η

T
k ]T . Taking into account that ejω(h) = h|h|−1, the system matrices are given as

A(h) =

h|h|−1Ã 0 0
0 |h|A 0

0 Ĝz F


Bs(h) =

h|h|−1B̃
|h|B
Gs

 , Bw =

[
I
0
0

]
[
C1
C2

]
=

[
C̃ −C 0
0 0 I

]
which constitutes a linear model structure. Assumptions 1, 5 and 7 ensure that (55-56) is stable for all h ∈ Dc and is
differentiable with respect to h, satisfying Conditions M1 and M2.

Condition Cr1 sets the smoothness requirements for the function that determines the update for ĥk, f̃(k, h, ρ, η) =
ηHCHη Λρ. Since the conditions in [43] assume real-valued functions, we assume that the norms are taken as if the
functions are real-valued; we have adapted the relations to take into account the differences that arise from the complex
nature of the problem, as described in Appendix C. The function f̃ is differentiable with respect to h, ρ and η, and

‖f̃‖+

∥∥∥∥∥∂f̃∂h
∥∥∥∥∥ = ‖ηHCHη Λρ‖ ≤ ‖Cηη‖‖Λρ‖ ≤

1

2
(‖Λρ‖2 + ‖Cηη‖2) ≤ c3(1 + ‖ρ‖2 + ‖η‖2). (57)

for some c3 <∞. In the previous derivation, we used the Cauchy–Schwarz inequality. Likewise,∥∥∥∥∥∂f̃∂ρ
∥∥∥∥∥+

∥∥∥∥∥∂f̃∂η
∥∥∥∥∥ = ‖ηHCηΛ‖+ ‖CηΛρ‖ ≤ c3(1 + ‖ρ‖+ ‖η‖). (58)

Similar smoothness conditions must be verified for the update function of Ŝk, F̃ (k, S, h, ρ, η) = ηHCHη ΛCηη − S.
The function should be differentiable with respect to S, h, ρ and η, which is true, and

‖F̃‖+

∥∥∥∥∥∂F̃∂S
∥∥∥∥∥+

∥∥∥∥∥∂F̃∂h
∥∥∥∥∥ = ‖ηHCHη ΛCηη − S‖+ 1 ≤ c3(1 + ‖ρ‖2 + ‖η‖2) (59)∥∥∥∥∥∂F̃∂ρ

∥∥∥∥∥+

∥∥∥∥∥∂F̃∂η
∥∥∥∥∥ ≤ 2‖ηHCHη ΛCη‖ ≤ c3(1 + ‖ρ‖+ ‖η‖). (60)

Therefore, F̃ complies with Condition Cr2.

We presume that Ŝk ≥ µe > 0; then,

Ŝk+1 = (1− γk)Ŝk + γk(ηHk C
H
η ΛCηηk + µe) ≥ (1− γk)Ŝk + γkµe ≥ µe (61)
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since ηHk C
H
η ΛCηηk ≥ 0. Therefore, if Ŝ0 ≥ µe, then by mathematical induction, Ŝk ≥ µe, ∀k > 0, which is in

accordance with Condition R1. Condition G1 coincides with Assumption 4.

Condition A1 sets two requirements. First, the input sequences s, wk and vk are such that f(h) = Ē[ηHk C
H
η Λρk] and

F (h) = Ē[ηHk C
H
η ΛCηηk] exist ∀h ∈ Dc. The limits are well defined since s is bounded, wk and vk are stationary,

and ρk is asymptotically stationary. Moreover, wk and vk have bounded moments and

lim
N→∞

sup
1

N

N∑
k=1

(1 + ‖s‖+ ‖wk‖+ ‖vk‖)3 <∞ (62)

satisfying the second requirement of Condition A1. The aforementioned limits can be written in closed form because
for a fixed h, (55) approaches a steady state. We denote za = Ē[zk], ẑa = Ē[ẑk], ρa = Ē[ρk] and ηa = Ē[ηk], which
are computed as

za = (Iejω(h) − Ã)−1B̃s = H̃−1B̃s (63)
ẑa = (Iejω(h) − hA)−1hBs = Ĥ−1hBs (64)
ρa = C̃za − Cẑa + (D̃ −D)s (65)
ηa = (I − F )−1(Ĝz ẑa +Gss). (66)

Since ηk is not correlated with ρk, f(h) = ηHa C
H
η Λρa and F (h) = ηHa C

H
η ΛCηηa.

All of the conditions for the application of [43, theorem 4.1] are satisfied, and the associated ODEs are given in (52-
53). Therefore, if the function VD exists and is strictly decreasing along the trajectories of (52-53), then {ĥk, Ŝk}
tends to DV or ĥk, the boundary of Dc, as k →∞.

Selecting a general Lyapunov function is a challenging task. The process can be simplified if we assume that the real
system is contained inM, written formally as

zk+1 = hs(Azk +Bs+ wk)ejω(h) (67)
qk = Czk +Ds+ vk (68)

with hs ∈ Dc. In this case, the prediction error for the state, εk = zk − ẑk, evolves as

εk+1 = [hs(Aεk + wk) + (hs − ĥk)(Aẑk +Bs)]e−jωk . (69)

Theorem 3. Consider the system (67-68) and Assumptions 4, 5, 6 and 7. Assume a projection that always maintains
ĥk ∈ Dc. Then, the sequence of ĥk produced by the algorithm (47-50) converges asymptotically to hs or to the
boundary of Dc if M +MH > 0, ∀h ∈ Dc, with

M(h) = sH [Cη(I − F )−1(hĜzĤ
−1B +Gs)]

HΛCH−1Ĥ−1Bsejω(h) (70)

and H = Iejω(h) − hsA.

Proof. We apply Theorem 2 in the case that Ã = hsA, B̃ = hsB, C̃ = C and D̃ = D. The candidate Lyapunov
function is VD = (hs − h)(hs − h). The asymptotic values for za and εa = Ē[εk] become

za = (Iejω(h) − hsA)−1hsBs = H−1hsBs (71)

εa = (Iejω(h) − hsA)−1 ẑa
h

(hs − h)ejω(h) = H−1 ẑa
h

(hs − h)ejω(h) (72)

with an estimation error of ρa = Cεa. The rate of change of VD along the trajectory of (52-53) is given as

dVD
dτ

=
∂VD
∂hD

dhD
dτ

+
∂VD

∂hD

dhD
dτ

= −(M +MH)
c2VD
SD

(73)

M = [Cη(I − F )−1(Ĝz ẑa +Gss)]
HΛCH−1 ẑa

h
ejω(h).

The Lyapunov function is a decreasing function if M + MH > 0 since VD, c2 and SD are positive real variables.
Starting from some initial ĥ0 ∈ Dc, as k →∞, the algorithm (47-50) drives ĥk → hs or the boundary of Dc.

Theorem 3 allows one either to select F , Ĝz , Gs, Cη and Λ and ensure the convergence of h to hs in a given Dc or to
estimate Dc for a given update of ηk. For models with perfect state information, the analysis of the resonance tracking
algorithm can be significantly simplified. We introduce the following lemma to facilitate the discussion.
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Lemma 3. Given the invertible matrices X,Y ∈ Cn×n and Z = Y −X ,

Y Y H − ZZH > 0⇔
(Y −1)HX−1 + (X−1)HY −1 − (Y −1)HY −1 > 0. (74)

Proof. We substitute the expansion for Z into Y Y H − ZZH ≥ 0:

Y Y H − (Y −X)(Y −X)H > 0⇔
Y XH +XY H −XXH > 0⇔

X−1Y + Y H(X−1)H − I > 0⇔
(Y −1)HX−1 + (X−1)HY −1 − (Y −1)HY −1 > 0.

Corollary 1. Given the system (67-68) with C ∈ Rn×n being invertible, selecting F = 0, Ĝz = Ae−jωk , Gs =
Be−jωk , Cη = (C−1)H and Λ = I ensures that for Dc = {h | h ∈ C, ‖hA‖ ≤ dM < 1}, the algorithm (47-50) will
converge to hs or to the boundary of Dc with an appropriate projection for ĥk ∈ Dc.

Proof. The previous statement is a special case of Theorem 3. The asymptotic value for ẑa satisfies h−1ẑa = (Aẑa +
Bs)e−jω(h), which results in M = ẑHa H

−1ẑa|h|−2ejω(h). We apply Lemma 3 with X = H and Y = Iejω(h).
We note that Z = Iejω(h) − H = hsA. From the definition of Dc, we have ‖hsA‖ < 1, which implies that
I − |hs|2AHA > 0 and ejω(h)H−1 + e−jω(h)(H−1)H − I > 0. Thus, M +MH > 0 for ‖ẑa‖ > 0, concluding the
proof.

It is more relevant for the imperfect state information setting to assign the update for ηk and to identify the set Dc
that establishes convergence to hs. The estimation of Dc can be formulated as a constraint optimization problem.
For simplicity, we parameterize Dc as an annular sector on the complex plane Dc = {h | h ∈ C, dm ≤ |h| ≤
dM , | arg h| ≤ dφ}. The maximum radius dM can be set to a value close to ‖A‖−1, satisfying Assumption 5. We seek
to maximize the area of the sector:

max
dm,dφ

dφ(d2
M − d2

m) (75)

s.t. min
h,hs∈Dc

(M +MH) > 0

|dφ| ≤ π
0 ≤ dm < dM .

Taking into account (44), the dimensionality of the minimization of the first constraint can be reduced for some
updates. Specifically, He−jω(h) = I − |h|e−jωλA and Ĥe−jω(h) = I − |hs|ej(δφ−ωλ)A, where δφ = arg hs− arg h.
The constraint can be confirmed by minimizing M + MH with respect to dm ≤ |h| ≤ dM , dm ≤ |hs| ≤ dM and
|δφ| ≤ 2dφ. We note that M +MH ∈ R and the problem can be solved using standard optimization algorithms.

Finally, we study a noise-free system. In the absence of disturbances and measurement noise, there is no correlation
between ηk and εk, and a linear term of qk can be included in the update for ηk. The noise-free system equations and
the modified ηk update become

qk = Czk +Ds (76)
zk+1 = hs(Azk +Bs)ejω(h) (77)
ηk+1 = Fηk +Gqqk + Ĝz ẑk +Gss. (78)

Theorem 4. Consider the system (76-77) and Assumptions 4, 5, 6 and 7. Assume a projection that always maintains
ĥk ∈ Dc. Then, the sequence of ĥk produced by the algorithm (47), (78) and (49-50) converges asymptotically to hs
or to the boundary of Dc if M +MH > 0, ∀h ∈ Dc, with

M(h) = sH
{
Cη(I − F )−1[Gq(hsCH

−1B +D) +Gs + hĜzĤ
−1B]

}H
ΛCH−1Ĥ−1Bsejω(h). (79)

Proof. The proof is analogous to Theorem 3.

For a system with perfect state information, similar results can be stated for the noise-free case.
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Corollary 2. Given a system (76-77), with C ∈ Rn×n being invertible, selecting F = Ĝz = 0, Gq = AC−1ejω(h),
Gs = (B −AC−1D)ejω(h) and Cη = (C−1)H ensures that for Dc = {h | h ∈ C, ‖hA‖ ≤ dM < 1}, the algorithm
(47), (78) and (49-50) will converge to hs or to the boundary of Dc with an appropriate projection for ĥk.

Proof. The previous statement is a special case of Theorem 4. The asymptotic value for za satisfies h−1
s za = (Aza +

Bs)e−jω(h), and the state error can be alternatively written as

εa = Ĥ−1 za
hs

(hs − h)ejω(h)

which results in M = zHa Ĥ
−1za|hs|−2ejω(h). We apply Lemma 3 with X = Ĥ and Y = Iejωk . We note that

Z = Iejω(h) − Ĥ = hA. From the definition of Dc, we have ‖hA‖ < 1, implying that I − |h|2AHA > 0 and
ejω(h)Ĥ−1 + e−jω(h)(Ĥ−1)H − I > 0. Thus, M +MH > 0 for ‖za‖ > 0, concluding the proof.

5 Implementation and numerical simulations

The present section discusses ways to estimate the complex envelope of signals in real time and evaluates the perfor-
mance of the proposed algorithms through simulation. Regarding the real-time requirements of the general tracking
algorithm, each time step involves the evaluation of (47-50), and the memory requirements scale with n. The process-
ing power can range significantly depending on the value of ωλ, which imposes the range of Ts and the time interval
on computations between updates ωk. The number of operations per frequency update is determined by n.

5.1 Estimating the analytic representation

The main issue related to the implementation of the proposed frequency tracking scheme is the extraction of the
complex envelope qk from the measured output. The sliding discrete Fourier transform (sDFT) and sliding Goertzel
algorithms have been proposed to convert a signal into its analytic representation [47]. The sDFT is equivalent to the
discrete Fourier transform (DFT) applied to a window of length Nf ∈ N>0; the output rate is equal to the input signal
rate, but the analytic representation is computed only at a specified center frequency.

For the present application, we need to estimate qk at noninteger multiples of T−1
s . Moreover, ωk may change over the

computation window, which makes the nonuniform discrete time Fourier transform a more appropriate choice than the
DFT [48]. Hence, we extend the sDFT algorithm to the sliding nonuniform discrete time Fourier transform (sNDTFT)
case. Following the derivation of the sDFT in [47], the sNDTFT filter is formulated as

Ỹk = Ỹk−1e
jωk − yk−Nf ejδωk + yk (80)

δωk = δωk−1 + ωk − ωk−Nf (81)

where Ỹk is an internal state and ωk = 0 and yk = 0 for k < 0. The complex envelope qk is reconstructed as

qk = 2
Ỹk
Nf

e−jθk (82)

where the last term has a dual role: to apply the phase correction introduced in [49], which accounts for the calculation
at a noninteger multiple of T−1

s , and to match the phase qk with (3). More details are given in Appendix E.

To mitigate the effect of spectral leakage, a Hann window is applied in the frequency domain; we compute (80) for two
adjacent frequencies ωk±2π/Nf , and the results are averaged and subtracted from Ỹk before the calculation (82). This
calculation includes the correction factor of 2 needed to recover the correct signal amplitude. Since the calculations
are performed with an offset of 2π/Nf , δωk remains the same for the adjacent frequencies; only the first Nf samples
will exhibit a mismatch. We point out that the sNDTFT will produce an approximation of the complex envelope,
which depends on Nf . Additionally, the responsiveness of the algorithm to changes in ωk is also affected by Nf .
The real-time implementation of the sNDTFT requires storing Nf values per system output and an additional Nf past
values of ωk.

5.2 Numerical simulations

For the simulations, we selected systems with imperfect state information. We tested three updates for ηk influenced
by the analysis of Section 4.2:
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Figure 2: Phase difference of the piezoelectric transducer (85). The points indicate the resonance and the antiresonance
at −π/2, which coincide with the equilibria for control techniques based solely on phase information (i.e., the PLL).
The arrows show the attraction (stable) and repulsion (unstable) in the region around the equilibria.

• ηk+1 = (hAηk + Aẑk + Bs)e−jωk , Cη = C and Λ = I . Substitution in (70) results in M =

ẑHa (Ĥ−1)HCHCH−1ẑa|h|−2. Due to the similarity of the present algorithm to the RPEM algorithm in-
troduced for the open-loop system, we refer to this update as the cRPEM.

• ηk = (Aẑk + Bs)e−jωk , Cη = c5C and Λ = I . Eq. (70) becomes M = c5ẑ
H
a C

HCH−1ẑa|h|−2ejωk . We
refer to this update as recursive IV (RIV).

• ηk = qk −Ds, Cη = c5I and Λ = I . Eq. (79) becomes M = c5z
H
a C

HCĤ−1zah
−1
s ejωk . We refer to this

update as the output association (OA).

We assessed the robustness of each update by calculating Dc through the optimization (75). We note that Dc is
calculated under the assumption that the real system can be described by (67-68) using the matrices M given above,
which is not the case. We used the area of Dc as a metric to assess the robustness of each algorithm. Moreover, for the
simulations, we used the estimated Dc for the projection scheme despite the fact that the simulations were performed
with the system described by (1-2). Furthermore, we implemented a projection scheme that is more appropriate for an
annular sector that selects the phase and the magnitude separately:

arg ĥk+1 =


−dφ, arg h̃k+1 < −dφ
dφ, arg h̃k+1 > dφ
arg h̃k+1, otherwise

(83)

|ĥk+1| =


dm, |h̃k+1| < dm
dM , |h̃k+1| > dM
|h̃k+1|, otherwise

. (84)

The numerical simulations and optimizations were performed using Scilab/Xcos 6.0.2 software.

5.2.1 SISO system with a nonmonotonic phase

Initially, we simulated the resonance tracking algorithm for the model of a piezoelectric actuator, a system with both
resonance and antiresonance. The actuator is modeled as a resistor-inductor-capacitor oscillator (Rm, Lm, and Cm)
in parallel with a capacitor C0, as described in [17]. The transfer function Gp(s) from voltage to charge in the Laplace
domain is given as

Gp(s) = C0

s2 + sRmLm + Cm+C0

LmCmC0

s2 + sRmLm + 1
LmCm

(85)

where s is the Laplace variable. The nominal values for the parameters (C0 = 2 nF, Rm = 50 Ω, Lm = 0.103 H, and
Cm = 80 pF) are taken from [17].

The model exhibits a nonmonotonic input-output phase, as shown in Fig. 2, which is challenging for resonance tracking
techniques based solely on phase information. Since the phase is not unique, multiple equilibria arise, which alternate
between stable and unstable modes [27, 18, 28, 17]. The points in Fig. 2 mark the two equilibria at a phase difference
of −π/2. The stability of the equilibria for a negative gain controller is marked by arrows. To demonstrate that the
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Figure 3: The region Dc for the piezoelectric transducer (85) and the different update algorithms. The region of
stability for the PLL along with the ω̃λ for a random plant set are shown for comparison.

proposed resonance tracking algorithm remains unaffected by the nonmonotonic nature of the phase, we assume that
the model parameters vary by 10% around their nominal values.

First, we determined the region Dc, where M satisfies Theorems 3 and 4, for the different η updates. The resulting
annuli are plotted in Fig 3. The OA update covers more area on the complex plane, followed by the cRPEM and RIV.
The frequency response of (85) away from resonance is almost constant, limiting the range of Dc around ωλ. The
region of stability for the PLL algorithm, which includes all resonance shifts that do not cross the antiresonance, can
also be seen in Fig 3. The resonances of a random set of plants with 10% parametric uncertainity are included for
comparison.

Next, we performed Monte Carlo sampling of the model parameters to create a set of one hundred random plants.
The systems were discretized with Ts = 1 µs and converted into the minimal and balanced state-space realization, and
we set s = 1 V. The noise was selected to have a power of approximately 10% of the signal power at resonance;
specifically, Qs = 0.01 V2 and R = 64 nC2. We point out that the signal-to-noise ratio will be significantly higher
than 10% “far” from the resonance frequency.

As a point of reference, we first simulated the model set with a simple PLL scheme, which we implemented as a
discrete-time proportional–integral–derivative (PID) controller with a derivative filter:

CPID(z) = Kp +KiTs
z + 1

z− 1
+

Kd

Tf + Tsz
z+1

(86)

where Kp, Ki and Kd are the proportional, integral and derivative gains, respectively, Tf is the derivative filter time
constant, and z is the discrete shift operator. The phase error from the setpoint −π/2, δφk = π/2 + (ϕk − ψk), is
fed to CPID, and the output is added to the PLL center frequency, ωPLL, to determine ωk. We used the sNDTFT with
Nf = 32 to determine δφk, and we selected ωPLL = ωλ. The PID parameters were selected as a compromise between
the responsiveness and the rejection of noise and set toKp = 0.001,Ki = 2,Kd = 0.001 and Tf = 2. The simulation
results are shown in Fig. 4, showing that for 47% of the uncertain plants, the PLL failed to lock on ω̃λ. This result is
in accordance with Fig. 3, where almost half of the uncertain plants lie outside the stable PLL region. We note that by
setting ωPLL to a significantly lower value than ωλ, the region of instability could have been avoided during the initial
transient at the cost of a slower response. This approach does not avoid disturbances that can perturb the controller
from the resonance lock into the region of instability.

For the cRPEM, we set γ = 0.002, Ŝ0 = 0.01 µC2 and µe = 8× 10−4 µC2. For the RIV and OA algorithms, we
selected γ = 0.0015, Ŝ0 = 10 µC2 and µe = 10−5 µC2. For adequate noise rejection, Cη = 440C for the RIV
algorithm and Cη = 380I for the OA algorithm. The sNDTFT window was fixed to Nf = 24 in all cases.

The selection of the parameters was based on the following heuristic: we selected a sufficiently small value for Nf
that is comparable to the period of the lowest expected resonance, and by trial and error, we found the values of γ that
provide an acceptable system response. We increased Nf to improve the algorithm response and partially mitigate
noise. In the case of the RIV and OA algorithms, we increased the value of c5 from the initial value of 1 to improve
the rejection of noise or decreased the value for a faster response. Then, we selected µe to ensure that Ŝk does not
become singular. We always set Ŝ0 at a high value to avoid transients at the beginning of the simulation.
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Figure 4: Simulations results of the PLL algorithm with a set of 100 plants with 10% parametric uncertainty. The
regions bounding the stable and unstable trajectories are shown along with the trajectory for the nominal plant.
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Figure 5: Tracking of the resonance frequency for a set of 100 plants with 10% parametric uncertainty. The region
bounding the trajectory of the normalized frequency ωk/ω̃λ for the set of plants is indicated by the shaded regions,
along with the trajectory for the nominal plant. a) Simulation results using the cRPEM (the solid lines correspond to the
LTI model with the sNDTFT algorithm, and the dashed lines correspond to the real plant in the CSS representation).
b) Simulation results using the RIV and OA algorithms with the LTI model and the sNDTFT filter.

The bounds of the trajectories of ωk/ω̃λ for the cRPEM algorithm are shown as blue solid lines in panel (a) of
Fig. 5. Panel (b) of the same figure shows the bounds for the RIV and OA updates. The cRPEM exhibits the fastest
convergence, followed by the OA and the RIV updates.

To assess the effect of the sNDTFT, we repeated the simulations with the plant model transformed in the CSS rep-
resentation, where qk is readily available. Panel (a) in Fig. 5 compares the simulation results for the two system
representations and the cRPEM algorithm, for which we observed the largest discrepancy. The sNDTFT algorithm
can be satisfactorily combined with the tracking algorithms.
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5.2.2 MIMO system of a gyroscope

Furthermore, we simulated the tracking of the resonance frequency of a vibrating structure gyroscope [10, 11]. The
gyroscope contains two proof masses vibrating in a plane. When the structure is rotated perpendicular to the plane,
energy is transferred between the proof masses due to the Coriolis effect. The vibratory gyroscope can be modeled as
two 2nd-order spring-mass-damper oscillators that are coupled by cross-damping and spring terms. The cross-terms
include the Coriolis effect and parasitic mechanical and electrical coupling. The usual technique for acquiring the
rotational speed is to excite one of the oscillators (which is referred to as the primary mode) at a constant amplitude
while keeping the other oscillator (secondary mode) fixed. As a result, the Coriolis effect acts on the secondary mode
with a force that is proportional to the oscillating amplitude of the primary mode [10]. However, to measure the
rotational speed accurately, the parasitic coupling must be either eliminated or identified and corrected. Here, we
propose an alternative approach to acquire the rotational speed acting on the gyroscope. Both oscillators are excited at
the same frequency, which coincides with the resonance of the primary mode. The Coriolis effect alters the resonance
frequency of the system, which in turn allows the rotational speed to be determined.

The input to our model is the control force ug = [up, us]
T that can be exerted on the primary and secondary modes.

The subscripts p and s indicate variables of the primary and secondary modes, respectively. Given the displacement
of the oscillators xg = [xp, xs]

T , the system dynamics are described by[
ẋg
ẍg

]
=

[
0 I
−Kg −(Dg + Ω)

] [
xg
ẋg

]
+

[
0
I

]
ug (87)

where Dg and Kg are the damping and stiffness matrices of the system, respectively. The Coriolis acceleration acts
on the system through

Ω =

[
0 −ωz
ωz 0

]
(88)

where ωz is the rotational speed to be measured. For our simulations, the model parameters were set to

Kg =

[
355.3 70.99
70.99 532.9

]
Dg =

[
0.01 0.002
0.002 0.01

]
as proposed in [11]. The model is normalized, and all of the units are dropped in the following.

The rotation ωz does not induce an adequate resonance shift in the current gyroscope design. The maximum shift of the
primary mode can be achieved when ẋs ≈ xp. The velocity of the secondary mode can be matched to the displacement
of the primary mode by an LQR. The LQR design for the CSS representation is described in Appendix B. To calculate
the state feedback gain, K, we discretized (87) with Ts = 0.01 s and converted the dicretized model into the CSS
representation. We solve the optimal control problem at the nominal working point, namely, ωz = 0. We selected the
state and input weights as

Qc =

 100 0 0 −100
0 0.001 0 0
0 0 0.001 0
−100 0 0 100


and Rc = 10−4I . The input to the gyroscope model is then synthesized as sk = Kzk + sr, with zk representing the
complex envelope of the discretized states and sr representing a constant excitation. We note that since Qc and Rc
have no imaginary part, K also does not have an imaginary part. For the resonance tracking algorithm, we consider
(87) with the LQR feedback given the input sr and output xg .

To assess the robustness of the different algorithms, we estimated Dc by solving (75). The OA algorithm was found to
have the Dc with the largest area, with dm = 0.06, dM = 1.02 and dφ = 4.21°. The next largest area was identified
for the RIV update, with dm = 0.71, dM = 1.01 and dφ = 0.94°. For the cRPEM, we found that Dc is demarcated
by dm = 0.99, dM = 1.02 and dφ = 4.80°.

Since the real system is not of the form (22-23), there is an offset in the estimated resonance that depends on sr.
The offset for different values of ωz can be found as the root of (52) from Theorem 2. The input sr = [10, 18.6]T

eliminates the offset for all of the algorithms.

In the simulation of the gyroscope, we set the disturbance and measurement noise variances to Q = 4× 10−4I and
R = 1.6× 10−7I , respectively. The estimation parameters were chosen following the heuristic procedure described
in Section 5.2.1, resulting in γ = 0.015, Ŝ0 = 103 and µe = 8× 10−4 for the cRPEM and γ = 0.0065, Ŝ0 = 50 and
µe = 10−6 for RIV and OA algorithms. We selected Cη = 20C for RIV and Cη = 20I for OA. In all cases, we set
Nf = 32. We simulated the response of the tracking algorithms assuming step and ramp changes in ωz . The results
are shown in Fig. 6. All of the algorithms yield similar results. The performance is satisfactory, even for systems with
rapidly changing parameters, confirming the effectiveness of the proposed scheme.
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Figure 6: Tracking of the resonance frequency of a vibratory gyroscope.

6 Conclusion

In this work, we described a model-based resonance frequency tracking algorithm for linear systems. We introduced a
state transformation of linear systems into a complex-valued representation and lumped the resonance shift into a single
variable. This complex transformation allowed us to transfer well-established methods from the system identification
framework and adjust the methods to analyze a general recursive algorithm for the current problem. We described
several special versions of the resonance tracking algorithm and examined their convergence. We further discussed
the implementation issues arising from the computation of the complex envelope of the signal in real time, and we
validated our claims using numerical simulations.

Future work will include assessing alternative frequency updates to (44) and modifying the presented algorithms to
track multiple resonances by increasing the dimensions of h. Moreover, the circularity of the complex noise and
disturbance variables can be relaxed, extending the application of the tracking scheme to systems with widely linear
complex random variables.
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Appendices

Appendix A Continuous-time CSS transformation

Consider the state-space representation of the continuous-time LTV system

ẋ(t) = Ã(t)x(t) + B̃(t)u(t) + w̃(t) (89)
y(t) = C̃(t)x(t) + D̃(t)u(t) + ṽ(t) (90)

where ẋ(t) is the time derivative of x(t) with respect to t. For convenience, we drop the notation x(t) in favor of x
and use the subscript i to indicate the ith element of the corresponding vector. We assume that ui = βie

j(θ+ψi) and
xi = αie

j(θ+φi). We introduce the complex envelope variables with the components zi = αie
jφi and si = βie

jψi and
compute the time derivative of the state variables:

żi = α̇ie
jφi + jαiφ̇ie

jφi (91)
ẋi = α̇ie

j(θ+φi) + jαi(ω + φ̇i)e
j(θ+φi) = żie

jωt + jωzie
jωt (92)

where ω = θ̇. Substitution into (89-90) and elimination of the ejθ terms results in the continuous-time CSS represen-
tation:

ż = (Ã− jωI)z + B̃s+ w (93)
q = C̃z + D̃s+ v (94)

where q is the complex envelope of y. The noise is also transformed into its complex equivalent, similar to the
discrete-time case.

The similarities between the transformed and original models discussed in the discrete-time case also apply to
continuous-time models. We note that only in the case of LTI systems, the zero-order hold discretization of the
CSS-transformed system results in the discrete-time CSS representation. For a constant ω in a time interval of length
Ts, the matrix exponential of A− jωI is

e(A−jωI)Ts = e−jωTseATs (95)

since the matrices A and jωI commute. The discretization of the complex matrix term −jωI results in the multipli-
cation by e−jωTs seen in the discrete-time CSS system.

Appendix B Optimal control for the CSS model

Consider the optimal control problem with state update (11) and the quadratic cost function:

Jc = E

[
zHNcQc,NczNc +

Nc−1∑
i=0

zHi Qczi + sHi Rcsi

]
(96)

where Qc,Nc , Qc and Rc are real positive definite matrices of appropriate dimensions that penalize the terminal cost,
state and control input, respectively. The trajectory of the optimal cost can be computed by applying the dynamic
programming algorithm [50] starting from the final cost:

J∗c,Nc(zNc) = zHNcQs,NczNc (97)

where J∗c,k(zk) denotes the optimal cost at time k from zk. Similarly, at time Nc − 1, the optimal cost is given as

J∗c,Nc−1(zNc−1) = min
sNc−1

E

[
zHNc−1QczNc−1 + sHNc−1RcsNc−1

+ J∗c,Nc

(
(ÃNc−1zNc−1B̃Nc−1sNc−1 + wNc−1)e−jωk

)]
. (98)

By setting the derivative of J∗c,Nc−1(zNc−1) with respect to sNc−1 to zero, we recover the optimal input:

s∗Nc−1 = −KNc−1zNc−1 (99)

KNc−1 = (Rc + B̃HNc−1Qc,NcB̃Nc−1)−1B̃HNc−1Qc,NcÃNc−1. (100)

Substitution of the optimal input into (98) results in

J∗c,Nc−1(zNc−1) = zHNc−1VNc−1zNc−1 + E
[
wHNc−1Qc,NcwNc−1

]
(101)
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where the optimal cost is quadratic with respect to the current state zNc−1. The symmetric matrix VNc−1 is equal to

VNc−1 = ÃHNc−1Qc,NcB̃Nc−1KNc−1 + ÃHNc−1Qc,NcÃNc−1 +Qc. (102)

The recursive application of the dynamic programming algorithm results in a quadratic representation of the optimal
cost. The weight matrix of the cost is given by the recursion

Vk−1 = ÃHk VkB̃k(Rc + B̃Hk VkB̃k)−1B̃Hk VkÃk + ÃHk VkÃk +Qc (103)

with the terminal value VNc = Qc,Nc . The optimal cost weighting matrix for the model (1-2) follows the same
recursion; for equal terminal costs, the trajectories of the optimal cost for the two models are identical.

Appendix C Duality between CR and real derivatives and norms

Here, we present the connection between the real-valued and CR derivatives and norms. We use the Euclidean norm,
which is defined by the inner product, and the matrix norm that is induced. Given the vectors h ∈ Cn and hr =
[<hT =hT ]T ∈ R2n and hc = [hT hH ]T ∈ C2n, we can write [40, 36][

h
h

]
=

[
I jI
I −jI

] [
<h
=h
]

(104)

or hc = Jhr. Moreover, hr = 1
2J

Hhc. Note that 1√
2
J is unitary and that multiplication by a unitary matrix does not

affect the norm. Therefore,

‖hr‖ =
1

2
‖JHhc‖ =

√
2

2
‖hc‖ = ‖h‖ (105)

as expected.

We apply the same reasoning for the Jacobian matrices. Given a function f(h) : Cn 7→ Cp, the function can be written
as fr(hc) = fr(hr) = [<fT =fT ]T or as fc(hc) = [fT fH ]T . The Jacobian matrices are related as [40]

∇rfr = ∇cfrJ =
1

2
JH∇cfcJ

∇rfr =


∂<f
∂<h

∂<f
∂=h

∂=f
∂<h

∂=f
∂=h

 , ∇cfr =


∂<f
∂h

∂<f
∂h

∂=f
∂h

∂=f
∂h



∇cfc =


∂f

∂h

∂f

∂h

∂f

∂h

∂f

∂h


which means that ‖∇rfr‖ =

√
2‖∇cfr‖ = ‖∇cfc‖. If f is holomorphic, then ‖∇rfr‖ = ‖∂f∂h‖ since ∇cfc becomes

block diagonal with blocks of equal norm. Moreover, if f(h) : Cn 7→ Rp, then for any given vector z = [zT1 zT2 ]T

with ‖z‖ > 0 and z1, z2 ∈ Cn, ∇rfz = ∂f
∂hz1 + ∂f

∂h
z2 and

‖∇rfz‖ ≤
∥∥∥∥∂f∂hz1

∥∥∥∥+

∥∥∥∥∂f∂hz2

∥∥∥∥ ≤ 2

∥∥∥∥∂f∂h
∥∥∥∥ ‖z‖ (106)

since ‖z‖ ≥ ‖z1‖, ‖z‖ ≥ ‖z2‖ and ‖∂f∂h‖ =
∥∥∥∂f∂h∥∥∥ = ‖∂f

∂h
‖.

Appendix D Proof of Theorem 1

The convergence properties of the algorithm (35-39) follow from [39, theorem 2] after verifying the necessary reg-
ularity conditions (labeled Conditions S1, M1 and A1 in [39] and described in the following). Since the excitation
frequency can be arbitrary, it is convenient to incorporate ωk in the input, similar to (13). We apply a change of
variables to the estimator model:

x̂k+1 = ĥk+1[(A− LC)x̂k + (B − LD)uk + Lyk] (107)

ξk+1 =
x̂k+1

ĥk+1

+ ĥk+1(A− LC)ξk (108)

21

www.doi.org/10.1109/TCST.2020.3044862


DOI: 10.1109/TCST.2020.3044862 - DECEMBER 22, 2020

with x̂k = ẑke
jθk , uk = ske

jθk , yk = qke
jθk and ξk = ηke

jθk . The h̃k and S̃k updates (36-37) and the definition of
Jest,a are not affected by the change of variables since ejθk is counteracted by its conjugate. The resultingM is an
LTI model set for a fixed h. All of the models inM are twice differentiable with respect to h, and their eigenvalues
lie strictly inside the unit circle ∀h ∈ DM, satisfying Condition M1.

Condition S1 requires the data generation of the real system to be exponentially stable in the sense that, for each
k, l : k ≥ l, ∃ y0

k, u
0
k independent of yl, ul such that E(‖yk − y0

k‖+ ‖uk − u0
k‖)8 < c3λ

k−l
0 , c3 <∞, λ0 < 1. For the

real system, we have used the equivalent representation (13) with xk = zke
jθk . Starting from the initial state xl, we

have

xk = Φ(k, l)xl +

k−1∑
i=l

Φ(k, i+ 1)(B̃ui + wi) (109)

and yk = C̃xk + D̃uk + vk. Then, x0
k can be estimated as the second part of the previous equation [38], which does

not depend on xl. The input is independent of past values, u0
k = uk. Therefore,

E
[
‖yk − y0

k‖8
]

= E
[
‖C(xk − x0

k)‖8
]

= ‖CΦ(k, l)xl‖8 ≤ ‖C‖8‖Φ(k, l)‖8‖zl‖8 (110)

satisfies the definition as a result of Lemma 1.

For fixed h, the sequence of ρkejθk is bounded since the sequences yk and uk are bounded and the system is stable.
The covariance of ρk is also bounded. Therefore, the limit (40) is well defined, which satisfies Condition A1. Finally,
the necessary requirement for γk in [39] is identical to Assumption 4.

With the conditions verified, according to [39, Theorem 2], the convergence of the algorithm is subject to the asymp-
totic stability of the associated ODE, and the RPEM converges with probability 1 to a local minimum of Jest,a or to
the boundary of DM as k →∞.

Appendix E Sliding nonuniform discrete-time Fourier transform

The conversion of the measured real-valued signal into the complex envelope representation can be accomplished by
applying the sliding nonuniform discrete-time Fourier transform (sNDTFT). Nonuniformity refers to the fact that the
instantaneous frequency of the signal may not be constant (although it is known). The complex envelope qk can be
approximated by an sNDTFT of length Nf , Yk, of the measured signal yk as follows:

Yk = yk−Nf+1 +

Nf∑
i=2

yk−Nf+ie
−j∑i

l=2 ωk−Nf+l =

Nf−1∑
i=0

yk−ie
−jδθk(i,Nf−1) (111)

where δθk(i, l) = θk−i+1 − θk−l+1 is the phase difference between the samples. Following [49, 47], we derive a
recursive method to compute (111). First, we multiply both sides of (111) by ejδθk(0,Nf−1):

Yk = e−jδθk(0,Nf−1)

Nf−1∑
i=0

yk−ie
jδθk(0,i) = e−jδθk(0,Nf−1)Ỹk. (112)

The second term can be computed recursively as

Ỹk = Ỹk−1e
jωk − yk−Nf ejδθk(0,Nf ) + yk. (113)

The value of δθk(0, Nf ) can be updated at each time step, as in (81). Phase and magnitude corrections must be applied
to Yk to recover qk. The previous calculation of the sNDTFT assumes zero phase at the start of the computation
window, so we must offset the calculation by θk−Nf+1 to be consistent when comparing the phase shifts to θk:

qk = 2
Yk
Nf

ejθk−Nf+1 = 2
Ỹk
Nf

ejθk . (114)
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