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Control of Very Lightweight 2-DOF Single-Link
Flexible Robots Robust to Strain Gauge Sensor

Disturbances: A Fractional-Order Approach
Daniel Feliu-Talegon and Vicente Feliu-Batlle , Senior Member, IEEE

Abstract— This article deals with the control of two degrees
of freedom manipulators that have a flexible and very light-
weight link. These robots have a single low-frequency and high-
amplitude vibration mode. Their actuators have high friction,
and their vibration sensors are often strain gauges that have
offset and high-frequency noise. These problems reduce the
robot precision and produce noisy control signals that saturate
actuators. An efficient control system is proposed to overcome
these drawbacks. Actuator friction effect is nearly removed by
closing a high gain position control loop around the actuator.
It causes the separation of the robot dynamics into the controlled
actuator fast subsystem and the link dynamics slow subsystem.
Based on that, an innovative control system is designed to remove
vibrations using the singular perturbation theory combined
with the input-state linearization technique. This control system
includes fractional-order controllers that nearly remove unknown
sensor offset and sensor ramp disturbances while reducing the
high-frequency component of the control signal caused by sensor
noise. Simulated and experimental results show the superior
performance of these controllers over other standard integer-
order controllers of similar complexity and nominal behavior.

Index Terms— Control of vibrations, flexible robots, fractional-
order controller, high-frequency noise.

I. INTRODUCTION

SOME robotic applications demand lighter and larger
robots that can be driven using smaller amounts of

energy and can be more easily transported. Unfortunately,
the flexibility of the links of these robots produces oscillations
during motion that make the precise positioning of their tips
extremely difficult.

Though a flexible link robot has infinite vibration modes,
only a small number of them is usually considered in the

Manuscript received September 22, 2020; revised December 24, 2020;
accepted January 13, 2021. Date of publication February 3, 2021; date
of current version December 15, 2021. Manuscript received in final form
January 20, 2021. This work was supported in part by the Spanish Pro-
gram under Grant FPU14/02256, in part by the Spanish State Research
Agency, and in part by the European Social Fund (AEI/FEDER, UE)
under Project PID2019-111278RB-C21. Recommended by Associate Editor
S. Dadras. (Corresponding author: Daniel Feliu-Talegon.)

Daniel Feliu-Talegon is with the Robotics, Vision and Control Group, Uni-
versity of Seville, 41004 Seville, Spain (e-mail: danielfeliu91@hotmail.com).

Vicente Feliu-Batlle is with the E.T.S. Ingenieros Industriales, Univer-
sity of Castilla-La Mancha, 13071 Ciudad Real, Spain, and also with
the Instituto de Investigaciones Energéticas y Aplicaciones Industriales,
University of Castilla-La Mancha, 13071 Ciudad Real, Spain (e-mail:
vicente.feliu@uclm.es).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCST.2021.3053857.

Digital Object Identifier 10.1109/TCST.2021.3053857

design of its control system. This number depends on the
ratio between the links and the payload masses: the lower this
ratio, i.e., the lighter the links and the heavier the payload, the
smaller the number of significant vibration modes.

Links made of composite materials (e.g., the graphite–epoxy
of fiberglass) are able to carry heavy payloads in spite of being
very lightweight. Robots with large thin links made of these
materials, therefore, often have very small link-payload mass
ratios that allow us to regard them as having a single vibration
mode. This greatly simplifies the dynamic models of these
robots and facilitates the design of their controllers. However,
there are several technological problems in the implementation
of these controls, which must be considered, and have not been
satisfactorily solved yet, which are described in the following.

One problem is the significant Coulomb friction of the robot
actuators, which is a discontinuous nonlinearity that makes
difficult the precise positioning of the robot.

Another problem is the disturbances of the vibration sensors
of flexible robots. These robots often use strain gauges because
they allow measuring both vibrations and deflections and
are cheap. However, strain gauges have several drawbacks:
1) they are prone to variations in temperature [1]; 2) they have
high-frequency noise, due to electromagnetic interferences [2],
which may cause saturation in the actuators, thus leading
to bad dynamic performance, and may impede the accurate
observation of the robot state (often needed for control) [3];
and 3) they have offset, which prompts a steady-state error in
the closed-loop positioning of the links [4].

In particular, reducing offset is mandatory because it
decreases the precision of the robot. This problem is normally
overcome by executing a calibration process before the robot
starts moving. However, the offset value may vary over time
and a calibration process may, therefore, be required before the
execution of each trajectory in order to remove the offset dur-
ing that movement. This calibration may be more or less time
consuming according to the positioning precision required.
Besides being a waste of time, this process is sometimes
ineffective as regards completely removing the offset because
its value may vary throughout the movement. Devising control
systems that remove the steady-state error caused by the offset
is, therefore, of the utmost importance.

This article consequently studies the control of robots of
several DO F (degrees of freedom) that have a particular
mechanical configuration: one flexible link with azimuthal
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and attitude degrees of freedom (2-DOF-1FL robots), whose
parameters are known with the exception of the friction of the
actuators and the disturbances of the strain gauge sensor.

This article is organized as follows. Section II presents the
proposed control approach and justifies its contribution with
respect to previous works. Section III describes the dynam-
ics of our robot. Section IV develops the proposed control
structure. Section V studies the conditions required to achieve
robustness to strain gauge disturbances and presents the design
of using a fractional-order controller (FOC). Section VI applies
the previous results to the fast and accurate control of a flexible
link sensing antenna and shows that an FOC is superior to
other equivalent integer-order controllers (IOCs). Finally, some
conclusions are given in Section VII.

II. CONTRIBUTIONS AND RELATED WORK

The contributions are the following: 1) an innovative control
system based on two nested loops that remove vibrations
and minimize actuator friction effects; 2) controllers that
significantly improve the precision of the robot tip positioning
by reducing the effect of the offset and noise of strain gauge
sensors; and 3) an improvement to the results attained in 2)
by using an FOC rather than an equivalent IOC. These
contributions are put into context in Section II-A.

A. Control System

Since the dynamics of our robots is nonlinear and most
parameters are known, the input-state feedback linearization
technique (see [5]) is used to design their controllers. Single-
link flexible robots were controlled with this technique in [6]
and, subsequently, robots with two flexible links [7].

A drawback of the above technique is that the Coulomb
friction of the actuators may introduce undesirable steady-
state errors. These can be removed by introducing an integral
term in the controller at the cost of reducing the stability
robustness (which can be a critical issue in robots, whose
payload changes) [8]. Another solution is to use a two nested
loop control scheme [9] that will be described in Section III.

The two nested loop control scheme allows us to divide the
system into two simpler subsystems and subsequently use the
input-state feedback linearization technique to control the slow
subsystem and the singular perturbation theory to guarantee
the complete stability of the system.

The singular perturbation theory has been used with single-
link [10] and multilink [11] flexible robots. It considers the
rigid dynamics as the slow subsystem and the flexible dynam-
ics as the fast subsystem. It has been applied using different
control techniques, such as composite learning combined with
sliding mode control [12] or neural networks plus disturbance
observers [13]. However, robots of very low stiffness—as
is our case—may not accurately follow desired trajectories
because the coupling between slow and fast subsystems cannot
be neglected. This drawback and the fact that a high gain
inner loop is closed in order to reduce the effect of actuator
friction—which makes the rigid dynamics faster than the flex-
ible link dynamics—make unsuitable the previous applications
of the singular perturbation theory and motivate that this theory

is applied differently in this article to that shown in previous
research: the vibration mode of the link is considered to be the
slow subsystem and the actuator dynamics the fast subsystem.

B. Robustness to Sensor Disturbances
High-pass filters are used to remove the offset of strain

gauges. However, they eliminate the constant component
caused by gravity, which is needed by the feedback controllers
of robots in order to achieve a precise tip attitude positioning.
These filters may be useful for movements on the horizontal
plane or 3-D movements in outer space—where the action
of gravity can be ignored—but they drastically reduce the
position accuracy of a flexible link robot when gravity is
present.

The aforementioned control methods, and others listed
in [1], are sensitive to strain gauge disturbances. In particular,
offset produces position steady errors. Artificial intelligence
techniques have been applied to flexible link robots, such as
fuzzy logic [14] or neural network [15] controllers. How-
ever, they have not proved to be robust to either actuator
friction or sensor disturbances. A new method, therefore, is
developed here to remove these disturbances.

C. FOC to Increase Robustness to Sensor Disturbances
FOCs have been already applied to industrial robots with

rigid links [16]. However, their application to flexible robots
is rare. The control of one horizontal degree of freedom single-
link flexible robot (1-DOF-1FL robot) using strain gauges was
addressed in [17]. Since that robot moved on a horizontal
plane, it had a linear time-invariant dynamics. This article in
question developed: 1) a control structure that reduced the tip
position error caused by sensor offset and 2) a linear FOC
(FOCs are described in [18]) embedded in that structure that
attenuated the effect of sensor noise better than any equivalent
IOC. We apply the control system from [17] to 2-DOF-1FL
robots in order to take advantage of the robustness properties
of its FOC. This application is not straightforward because
these robots are nonlinear and have static deflection caused
by gravity, unlike the robot in [17], which is linear and
has no such deflection. Our new control system, therefore,
involves the use of a nonlinear controller, the development of
a nonlinear and multivariable version of the previous control
structure robust to sensor offset, and an adaptation of the FOC
from [17].

III. DYNAMIC MODEL

A. Link Dynamics

We assume links that have certain specific features.

1) The deflections of the points of the link are small when
compared to their distance to the base. This is usually
assumed when obtaining the dynamic models of flexible
links [19].

2) Uniform link in Section I and elasticity coefficient E
through the link.

3) Link of negligible mass, length l, and a rigidity constant
κ = 3E I/ l.

4) A tip payload that is a lumped mass of value mt .
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Fig. 1. Scheme of a 2-DOF single flexible link.

The dynamic model yielded by these hypotheses can also be
used for a link whose mass is significantly lower than the tip
payload mass. If it were also assumed that the payload does
not have rotational inertia, only one vibration mode would
be apparent. Moreover, if the link rotates on the horizontal
plane, its dynamics can be accurately approximated by using
a second-order linear system (see [20]).

Fig. 1 shows our 2-DOF-1FL robot. In this figure, joint
angles are denoted as θi and tip angles as φi , whose subindexes
i = 1, 2 represent azimuthal and attitude angles, respectively.
Its dynamic model, assuming that the link verifies features
1)–4) and the payload has negligible rotational inertia, is then
obtained from [21]

˙̂x =
⎛
⎝ x̂3

x̂4

P(x̂) + Ka · μ(θ , φ)

⎞
⎠

φ = C · x̂ (1)

in which

P(x̂) =
(

2 · tan(x̂2) · x̂3 · x̂4

−Kg · cos(x̂2) − sin(x̂2) · cos(x̂2) · x̂2
3

)
(2)

μ = μ(θ , φ)

=
⎛
⎝ sin(θ1 − φ1) · cos(θ2)

cos(φ2)
cos(φ2) · sin(θ2)−cos(θ1−φ1) · sin(φ2) · cos(θ2)

⎞
⎠

(3)

C = (I2 02,2) (4)

where θ = (θ1 θ2)
T is the input vector, φ = (φ1 φ2)

T is the
output vector, x̂ = (φT φ̇

T
)T is the state vector, the upper

T signifies transpose, Kg = g/ l, Ka = κ/(mt · l2), g is the
gravity constant, Ik is the identity matrix of dimension k × k,
and 0k,l is the matrix of zeros of dimension k × l.

Equation (1) describes a four-state nonlinear multivariable
system whose outputs, φ1 and φ2, represent the spherical
coordinates of the tip payload position.

The moment applied to the base of the link by the actuators
or, equivalently, the coupling torque between the link and
the set of actuators can be defined by its components in the
directions of the azimuthal and attitude degrees of freedom
�

coup
1 and �

coup
2 , respectively. These are given by

�
coup
1 = κ · sin (θ1 − φ1) cos (θ2) cos (φ2)

�
coup
2 = κ · (− cos (θ1 − φ1) cos (θ2) sin (φ2)

+ cos (φ2) sin (θ2)). (5)

B. Actuator Dynamics

DC motors with high ratio reduction gears actuate our
2-DOF-1FL robots. The dynamic model of the motor is

�i = ni Kmi qi = Ji θ̈i + νi θ̇i + �nlc
i + �

coup
i (6)

where the subindex i = 1, 2 is the azimuthal or attitude joint
and ni is the ratio of the reduction gear. In this equation,
voltages qi are the control signals. As it is assumed that the
motors have servo amplifiers with very fast dynamics, the
currents of the motors and, therefore, the motor torques �i ,
are assumed to be proportional to the previous voltages. Kmi

are the motor constants that define this proportionality, νi are
the corresponding viscous friction coefficients, and Ji are the
motor rotational inertias. �

coup
i are the moments transmitted

by the actuators to the link and �nlc
i are the Coulomb friction

terms, which are nonlinear. In summary, the inputs to the
system are voltages q1 and q2, which are applied to the motors,
and the outputs are angles θ1 and θ2.

The complete dynamic model is, therefore, provided by
(1)–(5), plus (6), which are particularized for the 2-DOF
i = 1, 2. The complete system is, therefore, an eighth-order
differential equation with two inputs, q1 and q2, and two
outputs, φ1 and φ2. The Coulomb friction of the motors is
considered disturbances.

IV. CONTROL SCHEME

A. General Description

Motor positions θi and moments at the base of the link �
coup
i

are often used to control flexible links [22]. They are obtained
using optical encoders and strain gauge bridges, which are
placed at the base of the flexible links. Control laws often
feedback the tip position of the flexible link, which is estimated
by combining these measurements.

The strategy proposed in this work consists of dividing the
control system into two nested loops (denominated as the inner
and outer loops) such that the output of the control law of
the outer loop is the reference of the inner loop. The inner
loop is responsible for controlling the position of the actuators
in such a way that the effects of nonlinear and time-varying
frictions are almost removed. The outer loop is responsible
for controlling the outputs of the system in such a way that
vibrations are removed [9].

This methodology makes it possible to design the control
system in two separate stages that have different objectives.
First, the inner loop is designed to move the actuators as quick
as possible without saturating the actuators. The usually more
complex outer loop is then designed in order to achieve the
desired behavior of the complete system. The complete closed-
loop dynamics is subsequently integrated into a singularly
perturbed model in order to assess the stability of the closed-
loop system.

B. Inner Loop
The scheme proposed in [22]–[24] is used to control the

position of the motors. It includes feedback of the coupling
torques �

coup
i , which makes the dynamics of the controlled
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Fig. 2. Inner control loop scheme.

motors insensitive to the movements of the link. This feedback
of the coupling torque drastically simplifies the motor models
used to design the motor controllers, thus making the design
of this inner loop relatively simple.

Let us consider the motor dynamics (6). Fictitious control
signals for the motors can, therefore, be defined as q ′

i(t) =
qi(t) − ((�

coup
i (t))/(ni Kmi )), which cancel the effect of the

link on the motor dynamics by substracting terms proportional
to the coupling torques to the real control signals. Moreover,
if it were assumed that the Coulomb friction is a step-like
disturbance that can be compensated by the loop closed around
the motor, the transfer function from the fictitious input to the
motor angular position would be obtained as

θi(s)

q ′
i (s)

= Gmi(s) = Kmi

s · (Ji · s + νi )
, i = 1, 2 (7)

where Gmi (s) is the transfer function between the motor angle
θi(t) and the fictitious control signal q ′

i (t).
Proportional, integral, and derivative (PID) controllers

with a low-pass filter term, i.e., of the form R(s) =
((a2 · s2 + a1 · s + a0)/(s · (s + b))), ensure good trajectory
tracking, compensate disturbances such as unmodeled compo-
nents of the friction, and are robust to parameter uncertainties,
thus providing precise and fast positioning of the motor. These
PID controllers are, therefore, used in the inner loop according
to the 2-DOF control scheme shown in Fig. 2, in which two
of these controllers, R1,i (s) and R2,i (s), are implemented in
each motor control in order to place the poles and zeros of
the closed-loop system at the desired locations.

The four closed-loop poles of this scheme are placed at the
same arbitrary location pi by following the algebraic method
described in [24]. The two zeros of the closed loop are also
placed in pi in order to cancel two poles of the closed loop.
The overall transfer functions of the inner loop then become

Mi (s) = θi (s)

ûi(s)
= 1

(1 + εi · s)2
; εi = −p−1

i , i = 1, 2 (8)

where ûi is the command signal for the motor. Since very fast
motor movements are desired, the absolute values of poles pi

are high and the values of εi are, therefore, small.

C. Outer Loop

The system to be controlled by the outer loop is expressed
by (1)–(5) plus the two inner loop transfer functions (8). This
system has eight states: φ1, φ2, φ̇1, φ̇2, θ1, θ2, θ̇1, and θ̇2; two
inputs: u1 and u2; and two outputs: φ1 and φ2. Moreover, there
are four variables that are measured: θ1, θ2, �

coup
1 , and �

coup
2 .

Since the model above is nonlinear, the input-state lineariza-
tion technique (see [5]) is proposed in order to achieve a
fast, precise and free-of-vibration outer loop control. Obtaining
the controllability and involutivity conditions of this system,
along with the linearizing control law, is a highly involved
process, yielding very complex mathematical expressions. It is,
therefore, difficult to apply to control this system.

An alternative approach was proposed in [21], in which the
inner loop dynamics (8) was canceled by adding prefilters to
the inputs of the inner loop. These prefilters are of the form
Fi (s) = ((ûi(s))/(û′

i (s))) = ((1 + εi · s)/(1 + ςi · s))2, where
ςi � εi and û′

i are the outputs of the outer loop controller
(i = 1, 2). These prefilters Fi (s) approximately cancel the
inner loop dynamics. The overall system (prefilter-inner loop-
link dynamics) can, therefore, be approximated by only the
link dynamics (1)–(5).

Since the inner loop dynamics Mi (s) are approximately
inverted by prefilters Fi (s), the motor angles θ closely follow
their references û′ = (û′

1 û′
2)

T , which are generated by the
controller of the outer loop, and vector θ can be substituted
for vector û′ in (1).

Model (1) is not affine in its input θ , signifying that
the input-state linearization technique cannot be directly
applied. However, it is affine in μ. A fictitious input μ =
(μ1 μ2)

T given by (3) can then be designed [21], which
makes (1) affine and allows the implementation of this control
technique.

Moreover, some analytical expressions were obtained
in [21] that allowed the inversion of the vector field (3), pro-
vided that φ were known. This inversion process is represented
as

θ = μ−1(μ, φ) (9)

and involves the following calculations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ2 = arcsin
(

cos(φ2) · μ2 ± sin(φ2)

·
√

1 − (μ1 · cos(φ2))2 − μ2
2

)
θ1 = φ1 + μ1 · cos(φ2)

cos(θ2)

. (10)

This makes it possible to calculate the real control signal to be
provided by the outer loop controller once the fictitious input
has been determined. This transformation was used in [21] as
the basis on which to successfully implement an input-state
linearization controller. However, prefilters Fi (s) are phase-
lead compensators that make the actuators prone to saturation
when very fast trajectories are demanded.

D. Tip Position Estimator

Tip position can be estimated from the measured variables
by equating φ1 and φ2 from (5). The attainment of these angles
can be simplified by using the following simple estimator [21]:

φ1 ≈ θ1 − �
coup
1

κ · cos(θ2)
, φ2 ≈ θ2 − �

coup
2

κ
(11)

in the most relevant region of the robot workspace.
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E. Singularly Perturbed Model

In order to prevent actuator saturations, prefilters Fi (s)
of [21] are not used in this article. It rather proposes to use a
control system based on a singularly perturbed model in which
the inner loop dynamics (8) and the link dynamics (1)–(5) are
considered to be the fast and the slow subsystems, respectively.
The proposed control combines the inner loop motor control
with a state-input feedback linearization of the link dynamics.

1) Open-Loop Dynamic Model: The slow subsystem is
modeled by equations (1)–(4). A state model of the fast
subsystem (8) can be obtained by defining the state ẑ =
(θT θ̇

T
)T , the input û = (û1 û2)

T , ε = max(ε1, ε2), and
Az = diag(ε/ε1, ε/ε2)

ε · ˙̂z = A · ẑ + B · û (12)

A =
(

02×2 Az

−Az −2 · Az

)
, B =

(
02×2

Az

)
. (13)

2) Reference Trajectory: Let us assume a desired trajec-
tory φ∗(t) for the robot tip. The corresponding state trajec-
tory should, therefore, be x̂∗(t) = (φ∗T (t) φ̇

∗T
(t))T . Since

( ˙̂x∗
3 (t) ˙̂x∗

4 (t))T = φ̈
∗
(t), equating μ in the last two rows of (1)

yields

μ∗(t) = K −1
a · (φ̈∗

(t) − P(x̂∗(t))). (14)

Once μ∗(t) has been determined, the desired motor angles
θ∗(t) can be calculated from (9) and (10) as

θ∗(t) = μ−1
(
K −1

a · (φ̈∗
(t) − P(x̂∗(t))),φ∗(t)

)
. (15)

3) Control Law: The input-state feedback linearization
technique is used

û(t) = μ−1
(
K −1

a · (φ̈
∗
(t) − v(t) − P(x̂(t))), φ∗(t)

)
(16)

combined with a linear feedback control law of order n

ẋc(t) = Ac · xc(t) + Bc · (x̂(t) − x̂∗(t))
v(t) = Cc · xc(t) + Dc · (x̂(t) − x̂∗(t)) (17)

in which xc ∈ �n×1, v ∈ �2×1, Ac ∈ �n×n, Bc ∈ �n×4,
Cc ∈ �2×n , and Dc ∈ �2×4. Dynamics (16) and (17) are
included in the slow subsystem because they are designed to
be much slower than the fast subsystem (12). Model (17) is
a generalization of the static feedback control law commonly
used in state feedback linearization, which is derived from it
by making

Cc = 0, Dc =
(

λ1 0 λ3 0
0 λ2 0 λ4

)
. (18)

4) Closed-Loop Dynamic Model: Define the incremental
variables x = x̂ − x̂∗ and z = ẑ − ẑ∗. Substitute them in
the dynamic equations (1)–(3) and (12) and the control law
(16) and (17). Operating these equations and combining them
yields the incremental dynamic model of 8 + n states

ẋ = f(t, x, z)

ẋc = fc(x, xc)

ε · ż = g(t, x, xc, z). (19)

In this expression, we have that

f(t, x, z) =
⎛
⎝ x3

x4

f3,4(t, x, z)

⎞
⎠ (20)

where the third and fourth rows of f are

f3,4(t, x, z)

= P(x + x̂∗) − P(x̂∗) + Ka · (μ(θ ,φ) − μ(θ∗,φ∗)) (21)

where φ = φ∗ + C · x and θ = θ∗ + C · z. The dynamics of
the control system is

fc(x, xc) = Ac · xc + Bc · x (22)

and the dynamics of the fast subsystem is

g(t, x, xc, z) = A · z − B · μ−1(K −1
a · (φ̈∗ − P(x̂∗)),φ∗)

+ B · μ−1(K −1
a · (φ̈∗ − Cc · xc − Dc · x

− P(x + x̂∗)),φ
)
. (23)

It has been assumed that ε/ε1 and ε/ε2 in Az are constant.

F. Stability Analysis of the Closed Loop

The stability of system (19)–(23) is assessed by applying
a well-known result of singular perturbation theory (see [5]),
which yields the following theorem.

Theorem: Let us consider the system described by (2) and
(3), (9) and (10), and (19)–(23), matrices (4) and (13), and
trajectories x̂∗ and ẑ∗ shown in Section IV-E2 that do not
produce vertical configurations (x̂2 = ±π/2 or ẑ2 = ±π/2).
There consequently exists an ε∗ > 0, such that for all ε < ε∗,
the origin of this system is exponentially stable if it is verified
that every eigenvalue of matrix

� =
⎛
⎝ 02,2 I2 02,n

−Dc0 −Dc1 −Cc

Bc0 Bc1 Ac

⎞
⎠ (24)

has a negative real part. In matrix �: Dc0, Dc1 ∈ �2×2 are
submatrices of Dc, such that Dc = (Dc0 Dc1), and Bc0, Bc1 ∈
�nx2 are submatrices of Bc, such that Bc = (Bc0 Bc1).

The proof of this is provided in Appendix I.
Remark 1: The vertical configuration cannot be avoided

a priori. However, constraints in the desired trajectory can
easily be imposed, which prevents the state from reaching
that configuration. They are based on the small link deflection
assumption cited in Section III-A., which was quantified
in [25]; it is verified if the deflection is lower than 10%
of the length of the link. Since (12) is the fast subsystem,
it is assumed that θ(t) ≈ θ∗(t) and, hence, ẑ2(t) ≈ ẑ∗

2(t).
The generation of trajectories whose vertical configuration is
bounded by |ẑ∗

2(t)| < π/2 − 0.1 consequently guarantees that
|ẑ2(t)| < π/2 − 0.1 and, hence, that ẑ2(t) is not vertical
and, therefore, according to the small link deflection condition
mentioned that x̂2(t) would not be either. Note that 0.1 rad
≈ 6◦, which is a small reduction in the robot workspace;
attitude movements are permitted between ±84◦ rather than
between ±90◦.

Remark 1 imposes that tip trajectories must be designed
such that |x̂∗

2(t)| < π/2 − 0.1. ẑ∗
2(t) would subsequently be
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obtained from (15) and condition |ẑ∗
2(t)| < π/2−0.1 would be

checked. If it were not verified, the tip trajectory would have
to be modified in order to make x̂∗

2 (t) and ẑ∗
2(t) simultaneously

fulfill the condition given in the remark. Given x̂∗(t) that
verifies the condition, one way of making ẑ∗(t) also verifies it
too would be to slow down x̂∗. This would reduce velocities,
φ̇

∗
, and accelerations, φ̈

∗
, in (15), which reduces the difference

between x̂∗ and ẑ∗. Having to perform a task in a vertical
configuration is, however, very unlikely, and the robot path
through this configuration can be avoided by choosing other
intermediate points in order to reach a desired target point.

V. CONTROL SYSTEM ROBUST TO STRAIN GAUGE

DISTURBANCES: FRACTIONAL-ORDER CONTROL

The strain gauges used to measure the moments of the
slow subsystem dynamics introduce errors into the estimation
of the state x̂(t) and consequently into the control signal.
This section studies how to reduce the effects of these errors
in the controlled system. First, a dynamic model of the
perturbed system is developed. Conditions are then proposed
for the controllers in order to reduce the effects of offset
and high-frequency noise. The resulting closed-loop system
is subsequently analyzed, and finally, the FOC is designed.

A. Slow Subsystem Model Including Strain
Gauge Disturbances

Denote as γ1(t) and γ2(t) the additive errors produced in the
measurements provided by the strain gauges of the coupling
torques �

coup
1 (t) and �

coup
2 (t). According to (11), the estimate

of the tip position is then represented by φe = φ + d, where

d(t) ≈ −
(

γ1(t)

κ · cos(ẑ2)

γ2(t)

κ

)T

(25)

and the estimate of the slow subsystem state is given by x̂e =(
φT

e φ̇
T
e

)T
. The deviation of this estimate from the reference

is xe(t) = x̂e(t) − x̂∗(t) or, equivalently

xe(t) = x(t) + δ(t) (26)

where δ(t) =
(

dT (t) ḋ
T
(t)

)T
. Since x̂e(t) rather than x̂(t) is

feedback, the dynamics of the controller is

ẋc = Ac · xc + Bc · xe (27)

and the dynamics of the fast subsystem becomes

ε · ż = A · z − B · μ−1(K −1
a · (φ̈

∗ − P(x̂∗)),φ∗) + B · û

(28)

û = μ−1
(
K −1

a · (φ̈
∗ − Cc · xc − Dc · xe − P(xe + x̂∗)),φe

)
.

(29)

Substitute xe for (26) and φe by φ+d in (29). Assume small
values of δ and d. This makes it possible to approximate (29)
using the first term of its expansion in a Taylor series about the
real system trajectory χ(t) = (x̂(t), xc(t), ẑ(t)). This yields
the dynamic model of the perturbed slow subsystem(

ẋ
ẋc

)
= � ·

(
x
xc

)
+

⎛
⎝ 02×4

−�(χ)
Bc

⎞
⎠ · δ (30)

where

�(χ) = Ka · ∂μ

∂φ

∣∣∣∣
χ

· C + Dc + ∂P
∂ x̂

∣∣∣∣
χ

. (31)

The Jacobian matrices of this expression are

∂μ

∂φ
=

( −m3(θ ,φ) m1(θ ,φ) · cos−2(φ2)
−m1(θ ,φ) −m2(θ ,φ)

)
(32)

where m1(θ ,φ) = sin(θ1 − φ1) · sin(φ2) · cos(θ2), m2(θ ,φ) =
sin(φ2)·sin(θ2)+cos(θ1−φ1)·cos(φ2)·cos(θ2), and m3(θ ,φ) =
cos(θ1 − φ1) · cos(θ2)/ cos(φ2), and

∂P
∂ x̂

=
⎛
⎝ 0

2 · x̂3 · x̂4

cos2(x̂2)
2 · tan(x̂2) · x̂4 2 · tan(x̂2) · x̂3

0 m4(x̂) − sin(2 · x̂2) · x̂3 0

⎞
⎠

(33)

where m4(x̂) = Kg · sin(x̂2) − cos(2 · x̂2) · x̂2
3 . The derivation

of this model is detailed in Appendix II.

B. Control Robust to Strain Gauge Offset

Strain gauge offsets are modeled by means of constant
disturbances: γ1(t) = γ10 and γ2(t) = γ20. The disturbance
vector (25) is, therefore

d0 ≈ −
(

γ10

κ · cos(ẑ20)

γ20

κ

)T

, δ0 = (
dT

0 01×2
)T

. (34)

This section improves the precision of the tip position by
reducing the effect of δ0 on the steady state of x̂. Steady-
state values are represented by φ0, θ0, x̂0, xc0, and ẑ0, their
incremental values by x0 and z0, and the final state of a
reference trajectory by x̂∗

0 and ẑ∗
0. Since in the steady state,

ẋ = 0, ẋc = 0, and x3, x4, δ3, δ4 = 0, expression (30) yields(
�(χ) · CT

−Bc0

)
· d0 =

( −Dc0 −Cc

Bc0 Ac

)
·
(

C · x0

xc0

)
(35)

and eliminating xc0 in this equation gives(
Cc · A−1

c · Bc0 − �(χ) · CT
) · d0 = (

Dc0 − Cc · A−1
c · Bc0

)
· Cx0

which shows that, provided that Dc0−Cc·A−1
c ·Bc0 	= 0, the first

two states of x0 are made zero by imposing the condition

Cc · A−1
c · Bc0 − �(χ) · CT = 0. (36)

If �(χ) is substituted for (31), and considering that (32) and
(33) are

∂μ

∂φ
=

⎛
⎝ − cos(θ20)

cos(φ20)
0

0 − cos(θ20 − φ20)

⎞
⎠ (37)

∂P
∂ x̂

=
(

0 0 0 0
0 Kg · sin(x̂20) 0 0

)
(38)

in the steady state, the following condition is yielded:

Dc0 − Cc · A−1
c · Bc0

= Ka · diag

(
cos(θ20)

cos(φ20)
, cos(θ20 − φ20) − Kg

Ka
· sin(φ20)

)
.

(39)
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If Ac, Bc0, Cc, and Dc0 verify condition (39), the equilibrium
point of (30) is x0 = 0, xc0 = −A−1

c · Bc0 · d0. In this case,
we have that x̂0 = x̂∗

0 and P(x̂0) = P(x̂∗
0). Moreover, since

f3,4 = 0, (21) yields that μ(θ0,φ0) = μ(θ∗
0,φ

∗
0). Considering

that φ0 = φ∗
0, inverting μ on the two sides of that equality

gives that θ0 = θ∗
0. Condition (39) can then be used to tune

the controller by substituting the steady state (φ0, θ 0) for the
reference steady state (φ∗

0, θ
∗
0).

Condition (39) imposes constraints in the design of matrix
Dc. For example, if the feedback control law commonly
utilized in state feedback linearization (18) were used, gains
λ1 and λ2 would be given by condition (39) and only λ3 and λ4

could be tuned to improve the dynamics. Gains λ3 and λ4 make
it possible to tune only the damping of the closed-loop system
and not its speed of response. Alternative control laws must,
therefore, be designed in order to simultaneously achieve the
desired speed of response and damping while approximately
removing the steady-state errors caused by offset.

C. Control Robust to Strain Gauge High-Frequency Noise

Let us consider the state feedback control law (27) with
an output equation whose parameters are (18), where state
xe(t) is corrupted according to (25) and (26). Since signals
δ3(t) and δ4(t) are the time derivatives of δ1(t) and δ2(t),
their amplitudes are high and are amplified by gains λ3

and λ4, producing control signals with large high-frequency
components that saturate the actuators. The objective of this
section is to reduce the effects of this noise on the control
signal û.

The noise effect can be reduced by canceling the disturbance
input matrix in (30), i.e., making �(χ) = 0 and Bc = 0.
However, this cannot be achieved by the linear time-invariant
controller (17) because: 1) �(χ) is a time-varying function
that, according to (31), cannot be canceled by tuning Dc and
2) if Bc were canceled, (17) would be reduced to a gains
controller that feeds back the state with gains Dc, which is
inconvenient, as stated in the last paragraph of Section V-B.
The following approximation is, therefore, proposed.

1) Tune Dc to the target position at the end of each
trajectory. The effect of noise is, therefore, reduced
when the robot is motionless. In this case, �(χ) can
be made zero because it is a constant matrix. Applying
this condition to (31) and using steady-state reference
values (in which φ̇

∗
0 = θ̇

∗
0 = 02×1) yields the tuning

laws

Dc0 = Ka ·
⎛
⎝m3

(
θ∗

0,φ
∗
0

) −m1
(
θ∗

0,φ
∗
0

) · cos−2
(
φ∗

20

)
m1

(
θ∗

0,φ
∗
0

)
m2

(
θ∗

0,φ
∗
0

)− Kg

Ka
· sin

(
φ∗

20

)
⎞
⎠

Dc1 = 0. (40)

2) Since ḋ(t) has a much higher amplitude than d(t) at high
frequencies, the priority is to cancel the input matrix of
ḋ(t). We, therefore, propose to make

Bc1 = 0 (41)

and Bc0 	= 0, and this last matrix is, therefore, the input
matrix to the controller.

Fig. 3. General control scheme of the system.

The fulfillment of the previous two conditions reduces the
effects of d on x and xc. Since these two state vectors are the
inputs to the controller output equation of (17), v is hardly
affected by this noise and, hence, the u, z, and q signals have
small noise components.

D. Closed-Loop Analysis

In order to remove the effects of the strain gauge offset
and high-frequency noise from the robot steady state, con-
ditions [39]–[41] are imposed on the controller. Substituting
�(χ) = 0 in (36) yields that

Cc · A−1
c · Bc0 = 0 (42)

which, when substituted in (39), gives

Dc0

= Ka · diag

(
cos

(
θ∗

20

)
cos

(
φ∗

20

) , cos
(
θ∗

20 − φ∗
20

) − Kg

Ka
· sin

(
φ∗

20

) )
.

(43)

Equations (1)–(4) yield that, in the equilibrium state, θ∗
10 = φ∗

10
and θ∗

20 = φ∗
20 + arcsin((Kg/Ka) · cos(φ∗

20)). Substituting this
in (43) and operating gives that

Ka · cos
(
θ∗

20

)
cos

(
φ∗

20

) = Ka · cos
(
θ∗

20 − φ∗
20

) − Kg · sin
(
φ∗

20

)
. (44)

Let ω2(φ∗
20) denote these two terms. This is expressed as

ω2(φ∗
20

) = ω2
0 · (√1 + (

� · sin
(
φ∗

20

))2 − � · sin
(
φ∗

20

))
(45)

where ω2
0 = (K 2

a − K 2
g )1/2 and � = (Kg/ω

2
0). The 2 × 2

transfer matrix of controller (17) is, therefore

C(s) = Cc · (s · I − Ac)
−1 · Bc0︸ ︷︷ ︸

C′(s)

+ ω2(φ∗
20

) · I2︸ ︷︷ ︸
Dc0

(46)

whose input is φ − φ∗ and whose output is v. Since (42) is
verified, C′(s) is a 2 × 2 transfer matrix such that C′(0) = 0.

A scheme of the control system with the generic controller
(46) is shown in Fig. 3 and will subsequently be analyzed.

Upon applying the Laplace transform to state equation (30),
where Bc1 = 0, Dc1 = 0 and �(s) denotes the Laplace
transform of �(χ(t)) · δ(t), we obtain that

s2 · �(s) + Cc · Xc(s) + ω2(φ∗
20

) · �(s) + �(s) = 0

Xc(s) = (s · In − Ac)
−1Bc0 · (�(s) + D(s)). (47)

Eliminating Xc in (47) and considering (46) yields that(
s2 · I2 + C′(s) + ω2(φ∗

20

) · I2
) · �(s)

= −C′(s) · D(s) − �(s) (48)
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Fig. 4. Nyquist plots of L(s).

whose right-hand side term groups together the disturbances
and whose left-hand side term gives the characteristic matricial
equation of the closed-loop slow subsystem

I2 + L(s) = 0, L(s) = 1

s2 + ω2
(
φ∗

20

) · C′(s). (49)

By making C′(s) = diag(C ′
1(s), C ′

2(s)), (49) is decoupled into
two equivalent independent scalar characteristic equations

1 + Li(s) = 0, Li(s) = C ′
i (s)

s2 + ω2
(
φ∗

20

) , i = 1, 2. (50)

If the same dynamic specifications were imposed on the
azimuthal and attitude movements, controllers C ′

i(s) could be
made equal for the two degrees of freedom.

Expressions (50) show that controllers C ′
i(s) have to be

tuned before each movement according to the attitude angle
φ∗

20 of the target position. Moreover, Dc0 in (46) must also
be tuned according to φ∗

20. Methods with which to quickly
tune these controllers must, therefore, be developed. This is
the objective of Section V-E.

E. Fractional-Order Controller

Let us assume a generic controller C ′(s) that can be either
C ′

1(s) or C ′
2(s) and a generic L(s) which is (50) with C ′(s).

The first path of the Nyquist diagram (0 < ω < ∞)
of L(s), assuming that C ′(s) = 1, i.e., L(s) = 1/(s2 +
ω2(φ∗

20)), is shown in Fig. 4, and has a marginally stable
closed-loop system, i.e., a phase margin ϕm = 0◦. In order
to improve the relative stability, i.e., to increase the phase
margin, it is necessary to design a phase lead controller C ′(s).
An obvious strictly proper structure that verifies C ′(0) = 0
is the real differentiator C ′(s) = K · s/(1 + ρ · s)β , where
β > 1 is integer and ρ is chosen to be sufficiently small
so as to not influence the closed-loop dynamics. However,
this structure has only one parameter that can be tuned, K ,
while at least two parameters have to be tuned in order to
simultaneously achieve closed-loop damping and speed of
response.

A generalization of the previous structure is proposed here

C ′(s) = K · sα

(1 + ρ · s)β
(51)

where α > 0 is a real number. This controller has two
parameters to be tuned, K and α, which will be designed using
frequency response methods. Expression (51) implements a

fractional-order differentiator. The previous real integer-order
differentiator is a particular case of (51), making α = 1.

Controller (51) cannot be exactly represented by (17). It can,
however, be accurately approximated by a state equation or a
high-order transfer function. In this case, since (51) is eventu-
ally transformed into structure (17), it is possible to propose
the use of an IOC of high order rather than an FOC. Methods
with which to approximate fractional operators by integer-
order models can be found in [18]. This reference provides
the algorithms that can increase their accuracy at the cost of
increasing the complexity of their integer-order models.

The validity of an approximation depends on the particular
application and the control specifications required. This is
discussed as follows, in the case of our application. The the-
orem mentioned in Section IV concerns exponential stability.
The only requirements to make the closed-loop system stable
with an integer-order approximation of an FOC are, therefore,
that: 1) this approximation verifies condition (24) and 2) it
is verified that ε∗ > ε. In addition to stability, two other
features have to be considered when assessing the accuracy of
this approximation: 1) the error in the phase margin and the
gain crossover frequency must be sufficiently small and 2) the
fitting error of the frequency response of the FOC achieved
by the integer-order approximation must be enough small in
the frequency range in which the sensitivity to disturbances is
relevant.

We should stress that (51) has the advantage of being much
more easily tuned than a high-order IOC (17) because the two
parameters of (51) can be tuned in a straightforward manner,
the closed-loop frequency response of our system can be more
easily interpreted using (51) than using a high-order controller
(17), and the phase margin robustness of our system can be
easily studied using (51), which would not be the case if an
IOC were used. We should also mention that, once the two
parameters of (51) have been tuned, the conversion of this
controller into an approximate IOC (17) is a simple, almost
automatized, process [18]. However, directly tuning all the
parameters of a high-order controller (17) in order to obtain
a frequency response similar to that achieved by (51) is a
complicated and time-consuming process.

Specifications for each L(s) are defined by employing a
phase margin ϕm and a gain crossover frequency ωc, which
make it possible to tune closed-loop damping and settling time,
respectively. Fig. 4 shows the first path of the Nyquist diagram
(0 < ω < ∞) of L( j · ω) using controller (51) in the case
of ρ = 0, i.e., L(s) = K · sα/(s2 + ω2(φ∗

20)), in which the
corresponding ωc and ϕm are represented. This diagram shows
that the stability of the closed-loop system is ensured if ωc >
ω(φ∗

20), ϕm > 0, and α < 2. Converting a controller (51)
with ρ = 0 into one of the form (17) yields an improper
controller that violates the conditions stated for high-frequency
noise rejection. In what follows, an FOC (51) with ρ > 0 will
consequently be designed that will aim to reproduce the basic
properties highlighted previously.

The following will tune the controller parameters consider-
ing the slow linearized dynamics (50) and the fast dynamics
(8) jointly. Controllers are then tuned, which verify ϕm and
ωc specifications more accurately than considering the slow



22 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 30, NO. 1, JANUARY 2022

dynamics only. The open-loop transfer function is

L(s) = C ′(s)(
s2 + ω2

(
φ∗

20

)) · (1 + ε · s)2
(52)

whose Nyquist plot L( j · ω) is also shown in Fig. 4.
The tuning of the FOC is carried out by fulfilling the

following complex design condition [26]: L( j · ωc) = −e j ·ϕm .
Equating first phases and then magnitudes in this equation and
substituting ( j · ωc)

α by ωα
c · e j ·(π/2)·α yields that

π

2
· α − β · arctan(ρ · ωc) − 2 · arctan(ε · ωc) = ϕm (53)

and upon equating the magnitudes, we obtain that

K =
(
ω2

c − ω2
(
φ∗

20

))(
1 + ε2 · ω2

c

)(
1 + ρ2ω2

c

) β
2

ωα
c

. (54)

For a given value of ρ, the value of α is easily obtained from
(53) and, subsequently, K from (54).

A final step in the design is that of verifying the stability
of the closed-loop slow subsystem according to the fourth
condition checked in the proof of Theorem (see Appendix I).

VI. RESULTS

In this section, simulations and experiments are carried
out in order to prove the advantages of the proposed control
technique. Several IOC are compared with our FOC. These
controllers are embedded in our nonlinear control scheme,
which is robust to sensor disturbances. The standard means
of removing sensor offset, based on a high-pass filter, is also
assessed.

A. Experimental Setup
The experimental platform is a 2-DOF flexible beam, which

is used as a sensing antenna in haptics applications. It has
a structure made of stainless steel with three legs to ensure
perfect stability. The system is a flexible link, which is attached
at one of its ends (denoted as its base) to two dc mini
servo actuator PMA-5A motor sets that include harmonic drive
reduction gears. These dc motors have incremental optical
encoders that measure the angular position of the motors θi .
The system also has an F-T sensor located at the base of the
flexible link that measures torques �

coup
i at this point. More

information about this platform can be found in [24].
Data acquisition and control algorithms are programmed

using Labview. Simulations are performed using
Simulink/MATLAB. The data acquisition (measurements,
control signals, and written data) sampling time is Ts = 2 ms.

Tables I and II show the parameters of the two motors and
the characteristics of the sensing antenna, respectively, where
V nlc

i is the Coulomb friction in terms of voltage.
Fig. 5 shows a photograph of the robotic sensing antenna.

It shows a camera-based system, which is used as an external
sensor to measure the position of the tip of the flexible link.

B. Identification of the Flexible Link
The dynamics of the link has been identified from its

frequency response. A chirp signal in a range of between
0.01 and 50 Hz was used as an input to the azimuthal

TABLE I

PARAMETERS OF THE MOTORS

TABLE II

FLEXIBLE-LINK CHARACTERISTICS

Fig. 5. Photograph of the sensing antenna.

Fig. 6. (a) Identification of the antenna. (b) Sensor disturbance.

movement (assuming zero attitude angle) in order to stimulate
the vibration modes and obtain the frequency response data
of the tip position. This tip position was estimated from the
motor position and the coupling torque measurements by using
(11). The magnitude and phase of the frequency response are
shown in the upper and lower halves of Fig. 6(a), respectively.
This figure shows a single vibration mode (a single resonant
peak in the magnitude and a single sharp change of 180◦ in
the phase). This experimental result supports the hypotheses
of: 1) a massless link with a mass concentrated at its tip and
2) zero rotational inertia at the tip. We note that the angular
frequency of the vibration mode of the antenna, 14.6 rad/s, is
similar to the theoretical value obtained using the parameters
of the antenna κ/(mt · l2) = 14.9 rad/s.

The upper half of Fig. 6(b) shows the signal �
coup
1 (t)

provided by the strain gauges when the system is in steady
state and the vibration has been removed. This signal
should be zero but, instead, has a noticeable disturbance
that includes the two unwanted effects: high-frequency noise
and offset. The lower half of Fig. 6(b) shows the spec-
trum of that signal after removing its average value. This
shows that significant noise is present in a wide range of
frequencies.
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C. Specifications of the Control System

The same specifications are imposed on the azimuthal and
attitude movements. A single controller C(s) will, therefore,
be designed that will be used in the 2-DOF (C(s) = C1(s) =
C2(s)). These specifications are given in the following.

1) The closed-loop system must be robust to motor friction,
i.e., it must be insensitive to uncertainties or changes
in the Coulomb and viscous friction of the motor.
In particular, steady-state errors caused by Coulomb
friction must be removed.

2) Frequency specifications ϕm = 70◦ and ωc = 20 rad/s
are tuned in order to achieve the fast and precise tracking
of a tip trajectory without exciting the first vibration
mode. These specifications were taken from [17].

3) Steady error at the robot tip caused by strain gauges
offset must be zero.

4) Effects of the high-frequency noise of the strain gauges
must be reduced.

The first specification is achieved by designing the inner
loop of the system. Its time constant is set to ε = 0.017,
i.e., the closed-loop poles at p = −60, in the two motors. The
PID controllers of the inner loop (using parameters mentioned
in Table I) are

R1,1(s) = 74.2 s2 + 8900s + 2.67 × 105

s · (s + 235.1)

R2,1(s) = 347 s2 + 8900s

s · (s + 235.1)

R1,2(s) = 22.2 s2 + 2664s + 79.9 × 104

s · (s + 224.6)

R2,2(s) = 89.7 s2 + 2664s

s · (s + 224.6)
.

Controllers (46) with a proportional term given by

ω2 = 222.6 · (√1 + (
0.0873 · sin

(
φ∗

20

))2 − 0.0873 · sin
(
φ∗

20

))
(55)

are used in order to achieve the third specification.

D. Simulated Results
Four controllers C ′(s) are proposed.

1) An FOC (51): A value ρ = 0.01 has been chosen as
a tradeoff between largely reducing the gain of this
controller at high frequencies and hardly degrading the
closed-loop performance. Applying the tuning rules (53)
and (54) yields controller

C ′(s) = 2.748 · s1.44

(1 + 0.01 · s)2
(56)

which verifies the desired frequency specifications.
2) An Ideal Derivative Controller C ′(s) = K · s: Its only

parameter is gain K . This signifies that ϕm and ωc cannot
be simultaneously tuned. The decision was, therefore,
made to tune ωc, which is related to the settling time,
resulting in the controller

C ′(s) = 9.81 · s (57)

which has ωc = 20 rad/s and ϕm = 53.13◦.

3) A real derivative controller that includes a second-order
low-pass filter, of the form C ′(s) = K · s/(1 + ρ · s)2.
As in the previous case, only K can be tuned. Parameter
ρ is chosen to be equal to that used in the FOC (56).
A controller is, therefore, obtained

C ′(s) = 10.2 · s

(1 + 0.01 · s)2
(58)

with specifications ωc = 20 rad/s and ϕm = 30.51◦.
4) The previous controller has the required ωc but needs

more phase in order to meet the required phase margin.
A phase-lead compensator is, therefore, added to (58) in
order to fulfill the ϕm specification. A controller of the
form C ′(s) = K ·s ·(1+σ ·s)/(1+ρ ·s)β is consequently
proposed, which is the series connection of (58) and a
phase-lead term (1+σ ·s)/(1+ρ ·s)β−2 with σ > ρ. This
term allows us to attain the phase margin specification
ϕm = 70◦, in addition to the gain crossover frequency
ωc = 20 rad/s achieved by the previous IOCs. Two
parameters now have to be tuned: K and σ . Parameters
ρ and β have the sole purpose of guaranteeing the high-
frequency noise attenuation conditions (40) and (41). ρ
is chosen to be equal to that used in the FOC (56) and
the other IOCs, and β = 3 is chosen in order to make
C ′(s) strictly proper. A controller is, therefore, obtained

C ′(s) = 6.6065 · s · (1 + 0.0613 · s)

(1 + 0.01 · s)3
(59)

which fulfills the required specifications.

Fig. 7 shows the azimuthal and attitude components of
the tip position when the antenna performs a movement
with the aforementioned controllers. It shows that the four
controllers make the system asymptotically stable and remove
the vibration effectively. However, the lowest overshoot is
provided by controllers (56) and (59) because their phase
margins have been adequately tuned since they are bigger
than the phase margins of the other controllers. Moreover, this
figure shows that FOC (56) provides slightly more damped
responses than (59).

The four previous controllers have been designed using the
same gain crossover frequency. However, the phase margins
of the controllers are different because we cannot tune the two
design specifications with only one parameter in the cases of
(57) and (58). One of the advantages of using an FOC is
that it allows us to design simpler controllers such as (56), in
which the fractional order is used to tune the phase margin.
Controller (59) also achieves the two specifications, but its
order is higher than that of (56). We could have attempted to
retune K and ρ of controller (58) in order to increase its phase
margin. However, the simultaneous achievement of ϕm and ωc

implied a negative value of ρ, which would make the closed-
loop system unstable. The highest value of the phase margin
that can be achieved with this controller is obtained with ρ =
0, yielding controller (57). IOCs with two parameters could
have been used to tune the two design specifications. However,
the condition of eliminating the strain gauge offset C ′(s) = 0
would have been violated, signifying that only controllers (56)
and (59) fulfill the four specifications.
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Fig. 7. Components φ1 and φ2 of the tip positioning.

Remark 2: The value of ρ is lower than ε. This suggests that
part 1/(1+0.01·s)2 of the controllers should be included in the
fast dynamics subsystem rather than in the slow dynamics sub-
system. This can be done by yielding an extended state model
(12) that is stable. The fifth condition given in Appendix I is,
therefore, verified and, upon repeating the process described
in the theorem, the closed-loop stability is also proven in this
case.

Finally, we should mention that simulations have been
carried out without sensor disturbances because the purpose of
this section is to illustrate the superior dynamic performance
that can be achieved using our FOC.

E. Sensitivity Analysis of the Slow Subsystem

This section studies the sensitivity functions between the
sensor disturbance, d(t), and the tip angular position, φ(t),
and between d(t) and the control signal, û(t) = θ∗(t), which
is the reference of the inner loop. This study is carried out
for the closed-loop slow subsystem, i.e., it is assumed that
θ(t) = θ∗(t). The sensitivity functions of controllers (56) and
(59), which are the only ones that fulfill the four specifications
shown in Section VI-C, are compared here.

The azimuthal and attitude sensitivity functions Sφ1(s) and
Sφ2(s), between d1(t) and φ1(t), and between d2(t) and φ2(t),
respectively, are obtained in Appendix III for the dynamic
model linearized around the target position φ∗

0 and θ∗
0. Assum-

ing that C ′
1(s) = C ′

2(s) = C ′(s), expression (80) yields that

Sφ1(s) = �1(s)

D1(s)
= − C ′(s)

s2 + C ′(s) + ω2
(
φ∗

20

) = Sφ2(s). (60)

This sensitivity, which is the same in the 2-DOF, is represented
by Sφ(s).

The azimuthal and attitude sensitivity functions Su1(s)
and Su2(s), between d1(t) and u1(t) and between d2(t) and
u2(t), respectively, are also obtained in Appendix III for
the linearized dynamic model. Signals ui(t), i = 1, 2, are
the differences between ûi(t) and their values in the target
position. Taking (60) and (83) into account yields that

Su1(s) = U1(s)

D1(s)
= s2 + ω2

(
φ∗

20

)
ω2

(
φ∗

20

) · Sφ(s) (61)

Fig. 8. Sensitivity functions |Sφ( j · ω)| and |Su1( j · ω)|.

Su2(s) = U2(s)

D2(s)
= Ka · cos

(
θ∗

20 − φ∗
20

)
ω2

(
φ∗

20

) · Su1(s). (62)

Since (62) shows that Su2(s) is proportional to Su1(s), any
of these two functions can be used to compare controllers.
Moreover, (61) shows that the frequencies at which one
controller has a higher sensitivity than the other coincide in
Sφ(s) and Su1(s) and, because of (62), in Su2(s).

Fig. 8 shows the magnitudes of Sφ( j · ω) and Su1( j · ω)
yielded by controllers (56) and (59). These functions are
represented in a frequency range whose upper limit is the
Nyquist frequency π/Ts and whose lower limit is 4 decades
below. This figure shows that the following holds.

1) |Sφ( j · ω)| and |Su1( j · ω)| are lower with controller
(56) than with controller (59) in most of the frequency
range. Only in the small interval (7.1, 14.9) rad/s (14.9
is ω(φ∗

20)), and at very high frequencies (over 435.5
rad/s), does controller (56) have slightly higher sensi-
tivity than (59).

2) The sensitivity at low frequencies is significantly lower
with (56) than with (59). For each of these controllers,
|Sφ( j · ω)| and |Su1( j · ω)| almost coincide at low
frequencies. This can easily be seen by substituting
s = j · ω in (61) and then making the limit ω → 0.

3) The slope of |Sφ( j ·ω)| and |Su1( j ·ω)| at low frequencies
is 28.8 dB/decade with controller (56) and 20 dB/decade
with (59). Low-frequency disturbances are, therefore,
rejected by (56) much better than by (59). In fact, while
both controllers yield tip position zero steady-state error
to step disturbances, controller (56) yields tip position
zero steady-state error to ramp disturbances, unlike (59),
which yields a constant steady-state error. These last
two features can be proved by applying the final value
theorem of the Laplace transform to (60).

As a consequence, (56) rejects the disturbances better than
(59) at most frequencies, and this feature is significant at low
frequencies.

A disturbance in the azimuthal degree of freedom is simu-
lated in order to assess the time behavior of the control system
using controllers (56) and (59). Fig. 9 shows the disturbance,
d1(t). It mimics the real disturbance registered and shown
in Fig. 6(b). An offset of 0.0034 is suddenly applied at 0 s
and, after 4 s, we make this offset grow linearly for 6 s up to
a value of 0.045. This offset is then maintained for 4 s. The
high-frequency noise shown in Fig. 6 is added to the offset in
the entire time interval.
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Fig. 9. Disturbance d1(t) applied to the sensor.

Fig. 10. Simulated results with controllers (56) and (59).

Fig. 10 shows the responses φ1(t) and û1(t) to the above
disturbance. There is a transient behavior at the beginning
caused by a sudden change in the value of the offset from
0 to 0.0034. The upper plots in this figure show that both
controllers (56) and (59) efficiently remove the tip position
steady-state error caused by the constant offset. However, FOC
(56) removes the error caused by the linear variation in the
offset, while (59) does not (it yields a steady-state error).

The lower plots in Fig. 10 show that both controllers
moderately amplify the sensor high-frequency noise, produc-
ing control signals û1(t) that do not saturate the actuators,
although the control signal yielded by (56) has a high-
frequency noise of slightly less amplitude than that yielded by
(59). These simulations validate the results predicted by the
previous analysis of the sensitivity functions. Similar results
are obtained for the elevation degree of freedom.

F. Simulated Results Using a High-Pass Filter

In this section, a high-pass filter is included in our control
scheme in order to remove the offset of the sensor. In this
case, condition (39) is not necessary and there is no constraint
in the design of matrix Dc. The controllers described in
Section IV-E3 are used here, signifying that gains λ1 to λ4

can be freely tuned. The high-pass filter removes the dc
component of the measured moments. In the steady state,
�

coup
1 = �

coup
2 = 0 and (11), therefore, yield that φe = θ .

Control signal (17) is consequently v = diag(λ1, λ2)·(θ−φ∗).
Upon substituting v in (16) and considering (2), û is obtained.
Upon substituting û in (10), considering that θ∗ = θ in
the steady state and operating, the conditions that allow the
attainment of the references for the motor angles are yielded

θ∗
1 = φ∗

1 ; λ2 · (φ∗
2 − θ∗

2

) + Kg · cos
(
θ∗

2

) = 0. (63)

Fig. 11. Component φ1 of tip positioning using filter Hh-p(s).

The fictitious input μ is obtained from (3) by substituting
the real values φ of the tip position and considering that
θ∗ = θ . Upon substituting μ and the value of (2) in (1),
considering the steady-state condition and using the real values
φ, the conditions that make it possible to obtain the tip position
are yielded

φ1 = φ∗
1 ; Kg · cos(φ2) = Ka · sin

(
θ∗

2 − φ2
)
. (64)

The error in the component φ1 is, therefore, zero. However,
the combination of the right-hand side equations of (63) and
(64) (eliminating θ∗

2 between these two equations) shows a
significant deviation of φ2 with respect to φ∗

2 .
Simulations were carried out using the control scheme of

Fig. 3 and a high-pass filter between the sensor measurement
sensor and the estimators. The aforementioned frequency
specifications ϕm = 70◦ and ωc = 20 rad/s were used to
tune the controllers. The gains of (18) were λ1 = λ2 = 136.8
and λ3 = λ4 = 18.8. The high-pass filter was designed by
following the procedure explained in [27].

A third-order Butterworth filter (low-pass filter, Hl−p) with
a cutoff frequency of ωc = 0.5 rad/s (about 1 decade
lower than the gain crossover frequency) was designed and
was subsequently transformed into a high-pass filter, Hh-p,
using the transformation Hh-p(s) = 1 − Hl−p(s). It has the
form Hh-p(s) = ((s3 + s2 + 0.5s)/(s3 + s2 + 0.5s + 0.125)).
Fig. 11 shows the azimuthal and attitude components of the
tip position when the antenna performs a 3-D movement. They
show that the steady-state tip position error is e1 = φ∗

1 −φ1 = 0
and e2 = φ∗

2 − φ2 = 0.0443, i.e., a linear error of 22.37 mm.
The value of e2 coincides with the values obtained by solving
the right-hand side of (63) and (64).

G. Experimental Results

Experiments have been carried out on the platform described
in Section VI-A. The F-T sensor placed at the base of the
beam measures the components of the coupling torque, which
are feedback by the outer control loop. The camera-based
optical tracking system shown in Fig. 5 has a precision of
0.05 mm and is used as an external sensor that measures the
real tip position only to verify the effectiveness of the proposed
control system (it is not used in the closed-loop control).
The reference trajectories are curves formed of fourth-order
polynomials designed to meet the needs of driving flexible
links [20]. The maneuver was designed that it would neither
produce large link deflections nor motor saturation.
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Fig. 12. Component φ1 and φ2 of the tip positioning.

This section shows the design of an integer-order PD
controller of the form C ′(s) = (K p + Kv · s)/(1 + ρ · s)2.
This controller has two gains, K p and Kv , to be tuned.
This, therefore, allows the two frequency specifications (ωc =
20 rad/s and ϕm = 70◦) to be accomplished, but at the cost of
violating the condition C ′(0) = 0, which is necessary in order
to obtain robustness to sensor offset. Using the same ρ as in
previous controllers, we obtain that

C ′(s) = −129.8
1 − 0.0606 · s

(1 + 0.01 · s)2
. (65)

This controller is used in order to demonstrate the importance
of removing the influence of the offset of the sensor in the
precise positioning of the antenna. The response of the antenna
using the proposed FOC is also compared with controller (57)
in order to demonstrate the importance of considering the
influence of the high-frequency noise of the sensor. Controller
(58) has been discarded because simulations showed an unde-
sirable low damped behavior due to its low phase margin.
Complete controllers C(s) are tuned using expression (55)
according to the attitude angle φ∗

20 of the target position. For
φ∗

20 = π/8, they are C(s) = C ′(s) + 215.25.
Fig. 12 shows the components of the tip position measured

by the camera-based optical tracking system.
Experiments using the scheme in Fig. 3 with the following

controllers: are reported: 1) FOC (56); 2) controller (57);
3) P D controller (65); and 4) only motor control. This fig-
ure shows that (56) and (65) remove the vibration effectively,
although a little residual vibration remains. It also shows that
the FOC effectively removes the steady-state error due to the
offset of the sensor, whereas the IOC does not. The tip position
steady-state error using (65) is 6 × 10−3 rad in each of its
components. The offset of the sensor, therefore, produces an
error in the steady-state tip position of 5 mm (the distance
between the position of the tip and the reference in the steady
state). Controller (57) is not able to remove vibrations and the
system becomes unstable (the amplitude of φ2 is gradually
increasing in Fig. 12).

Fig. 13 shows control signals q1 and command signals û1

of the three controllers and the effect of the high-frequency

Fig. 13. Control signals and command signals.

TABLE III

CONTROLLERS

sensor noise (the other components q2 and û2 are similar and,
then, are not shown).

The residual vibration shown in Fig. 12, and using (56) and
(65), is caused by the high Coulomb friction of the motors (see
Table I). The residual vibration in component φ2 (amplitude
of 0.2 mm at the tip) is considerably lower than that in φ1

(amplitude of 2 mm at the tip) because the Coulomb friction
of Motor 2 is lower than that of Motor 1. Although the
inner loop almost removes the effects of nonlinear and time-
varying frictions, small errors in the positioning of the motors
caused by high Coulomb frictions still remain. These errors
are integrated by the integral term of the PID controllers and
produce a periodic signal similar to a sawtooth wave (see
Fig. 13 for t > 1.6 s), which produces this small amount
of residual vibration in the positioning of the end-effector.
This error is negligible in φ2 but, for the foreseen application,
φ1 error is probably not acceptable. It can be reduced by
passing the error signal through a static block with a dead
zone and lowering the motor controller gains. A methodology
with which to design them will be studied in the future.

The effect of high-frequency noise is much higher in
controller (57) than in the other two controllers. Moreover,
the signal provided by (57) surpasses the saturation limit of
the motor, causing the aforementioned instability. Table III
shows the frequency specifications achieved with all the con-
trollers designed. In this table, ω′

c and ϕ ′
m are the frequency

specifications that would be attained if the fast subsystem
dynamics were ignored. Values ε∗ are also provided, which are
the lowest values among the ones obtained after performing
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simulations with a set of trajectories that cover all the robot
workspace. Since they are higher than our ε, the condition
required to apply our stability theorem is fulfilled.

H. Implementation of the FOCs

The implementation of FOC (56) used in simulation
and experimentation is now outlined. Since C ′(s) has been
designed in the frequency domain, the method based on fitting
the frequency response of the FOC by means of an integer-
order transfer function has been chosen. The approximation is
carried out in the frequency range ω ∈ [1, 300] rad/s, which
includes the frequency of the vibration mode of the antenna
and more than a decade over and below the design frequency
ωc. A third-order transfer function has been fitted to ( j ·
ω)0.44 in the desired range of frequencies using the MATLAB
invfreqs() function (see [18] for more information about the
software packages used to carry out these implementations)

ĉ(s) = s0.44 � 19.6s3+2636s2+4.254 × 104s+3.905 × 104

s3+402.7s2 + 1.655 × 104s + 6.869 × 104

(66)

and (56) is approximated by a fifth-order controller

C ′(s) � 2.748 · s

(1 + 0.01 · s)2
· ĉ(s). (67)

In order to assess the suitability of approximation (66) and
(67) to our application, the issues listed in Section V-E are
checked: 1) stability condition (24) is verified; 2) ε∗ is calcu-
lated and it verifies that ε∗ > ε (this ε∗ is very close to that
obtained for (56) in Table III); 3) the errors produced by using
(67) rather than (56) in the phase margin and the gain crossover
frequency are 0.2◦ and −0.1 rad/s, respectively, which are
considered negligible; and 4) the maximum error produced in
sensitivity functions (60)–(62) by using (67) rather than (56)
is 2 dB, in the frequency range ((π/(10 000 · Ts)), (π/Ts))
rad/s of Fig. 8, which is regarded as very small.
The integer-order approximation is, therefore, considered
appropriate.

Remark 3: The FOC is used in the design of the linearized
closed-loop system using frequency-domain techniques. How-
ever, at the final stage of the design process, it is con-
verted into the approximate IOC of fifth order (66) and (67).
Theorem 1, which deals with IOCs of arbitrary order, was
subsequently applied using this IOC to verify the stability
of the closed-loop system that results with this controller.
Consequently, the application of this theorem does not involve
any approximation, and the result of the stability analysis is
certain.

Remark 4: It is apparent that tuning our FOC and, after,
converting it into an approximate IOC using one of the
well-established FOC to IOC conversion methods is much
easier than directly tuning the fifth-order IOC (66) and (67),
which involves tuning at least nine parameters. Moreover,
Section VI-E has shown that trying to design an IOC of
intermediate complexity like (59) using simple frequency-
domain tuning rules would yield a controller that does not
reach the disturbance rejection properties achieved by (66)
and (67).

VII. CONCLUSION

This article proposes a two nested loop scheme combined
with FOCs in order to account for motor friction and strain
gauge disturbances in the control of very lightweight 2-DOF
single-link flexible robots.

When provided with a point payload, these robots have
only one significant low-frequency vibration mode. Since an
inner loop is closed with a high gain controller in order to
remove motor friction effects, this dynamics is faster than
the link dynamics and prevents the application of the singular
perturbation theory to flexible link robots, as has been done in
previous research works. This article consequently develops a
new control approach that combines state feedback lineariza-
tion with a singular perturbation method in a different way to
that which is usually employed: the motors are considered to
be the fast subsystem and the link the slow subsystem.

The main novelty of this article is introducing an FOC
in the control system of robotic antennas that outperform
the strain gauge disturbance rejection of IOCs. However,
another important contribution is condition (39), which allows
removing offset sensor disturbances of unknown amplitudes by
just tuning adequately the matrix Dc0 of the controller. This
avoids the use of filters that differentiate the sensor signals
(C ′(s) has a pure derivative in its numerator, but the complete
controller C(s) does not) or controllers that include integral
terms that reduce the relative stability of the control system.

The implementation of an FOC often requires its approxi-
mation by a high-order IOC. This compelled us to develop a
version of the singular perturbation theorem [5] for IOCs of
arbitrary order.

Simulations and experiments are reported, which shows that
our FOC behaves better than other IOC of similar complexity
(only one or two parameters have to be tuned). Our future
research will extend this controller to flexible robots with
several links.

APPENDIX I
PROOF OF THEOREM

The conditions of [5, Th. 11.4] are verified in order to prove
the stability of the closed-loop system.

By making x = xc = z = 0 in expressions (20)–(23) and
operating, the first and second conditions are easily verified.

Making g(t, x, xc, z) = 0 in expression (23), considering
that A is always invertible and equating z, it yields that

z = h(t, x, xc) = A−1 · B · μ−1(K −1
a · (φ̈

∗ − P(x̂∗)),φ∗)
− A−1 · B · μ−1(K −1

a · (φ̈∗ − Cc · xc − Dc · x − P(x̂))φ
)

(68)

which shows isolated roots z. Moreover, it is easy to verify
that h(t, 0, 0) = 0. The third condition is, therefore, fulfilled.

The fourth condition is verified next. By making ε = 0 in
(12), we obtain that A · ẑ = −B · û, while substituting û for
the control law (16) and (17) yields that

ẑ = −A−1 · B · μ−1(K −1
a · (φ̈

∗ − Cc · xc − Dc · x − P(x̂)),φ
)
.

(69)
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Premultiplying both sides of this equation by C and consider-
ing that −C · A−1 · B = I2 gives that

θ = μ−1(K −1
a · (φ̈

∗ − Cc · xc − Dc · x − P(x̂)),φ
)

(70)

A similar relationship is obtained for the reference trajectories

θ∗ = μ−1
(
K −1

a · (φ̈∗ − P(x̂∗)),φ∗) (71)

where it has been considered that x and xc are zero
when the closed-loop system exactly follows the reference.
By substituting (70) and (71) into (21) and considering that
μ(μ−1(a, b), b) = a, P(x̂) is canceled by P(x + x̂∗) because
x = x̂ − x̂∗ and, operating, gives the dynamics of the reduced
system

ẋ =
⎛
⎝ x3

x4

−Cc · xc − Dc · x

⎞
⎠

ẋc = Ac · xc + Bc · x (72)

which can be expressed as(
ẋ
ẋc

)
= � ·

(
x
xc

)
(73)

where � is, therefore, the matrix (24). The origin of the
reduced system (73) is, therefore, globally exponentially stable
if all the eigenvalues of this matrix have a negative real part.
In this case, the fourth condition is verified.

The fulfillment of the fifth condition is verified as follows.
Substituting (68) in ẇ = g(t, x, xc, w + h(t, x)) and operating
easily yields that ẇ = A · w. Since system (12) is stable, its
state matrix A/ε has all its eigenvalues in the real negative
complex half-plane. This signifies that A is a time-invariant
matrix that also has all its eigenvalues in the real negative
complex half-plane, and system ẇ = g(t, x, xc, w + h(t, x)) is
exponentially stable, uniformly in (t, x, xc).

Functions f, g, and h and their derivatives up to order 2 are
bounded for z − h(x, t) ∈ Bρ , with the exception of the states
in which cos(x̂2) = 0 or cos(ẑ2) = 0. These correspond to
the vertical configuration of the robot. The sixth condition is,
therefore, fulfilled in all the state space, with the exception of
the points mentioned in the statement of the theorem.

APPENDIX II
DERIVATION OF THE PERTURBED MODEL

OF THE SLOW SUBSYSTEM

The first term in the Taylor series expansion of (29) is

û ≈ μ−1
(
K −1

a · (φ̈
∗ − Cc · xc − Dc · x − P(x + x̂∗)),φ

)︸ ︷︷ ︸
û0

+ ∂ û
∂x

∣∣∣∣
χ

· δ + ∂ û
∂φ

∣∣∣∣
χ

· d︸ ︷︷ ︸
�û

. (74)

The computed inverse of (29) is

μ(û0 + �û,φ + d)

≈ K −1
a · (φ̈

∗ − Cc · xc − Dc · (x + δ) − P(x + δ + x̂∗)). (75)

If �û, d, and δ are small when compared to û0, φ, and x,
respectively, (75) can be linearized with respect to �û, d, and
δ around the trajectory χ(t), which yields that

∂μ

∂ û0

∣∣∣∣
χ

· �û ≈ − ∂μ

∂φ

∣∣∣∣
χ

· d − K −1
a ·

(
Dc + ∂P

∂ x̂

∣∣∣∣
χ

)
· δ. (76)

Making ε = 0 in (28) and substituting (15) and (74) yields

z = A−1 · B · (θ∗ − û0 − �û). (77)

Note that substituting the differential equation (28) for (77)
does not modify the effect of d on the steady-state error of x̂.
However, since (28) acts as a low-pass filter, substituting this
for (77) amplifies the effect of the high-frequency components
of d on x̂. A control system designed to attenuate the effects
of these high-frequency disturbances in a closed-loop system
with the algebraic equation (77) will, therefore, attenuate them
better in the original system that has dynamics (28).

Since −C·A−1 ·B = I2, (77) can be expressed as C·ẑ = θ =
û0 +�û. Substituting this in (21) and subsequently linearizing
μ(û0 + �û,φ) with respect to �û gives that

f3,4(t, x, z) ≈ P(x̂) − P(x̂∗) + Ka · μ(û0,φ) + Ka · ∂μ

∂ û0

∣∣∣∣
χ

· �û − Ka · μ(θ∗,φ∗). (78)

The inversion of û0 defined in (74) gives μ(û0,φ) = K −1
a ·

(φ̈
∗ − Cc · xc − Dc · x − P(x̂)). The inversion of (15) gives

μ(θ∗,φ∗) = K −1
a · (φ̈

∗ − P(x̂∗)). Substituting these two
expressions in (78) and operating yields

f3,4 ≈ −Cc · xc − Dc · x + Ka · ∂μ

∂u0

∣∣∣∣
χ

· �û. (79)

Substituting (76) into (79) and the result in (20), substituting
(26) into (27), and combining these results yields the dynamic
model of the perturbed slow subsystem.

APPENDIX III
OBTENTION OF THE SENSITIVITY FUNCTION OF THE SLOW

SUBSYSTEM BETWEEN D(t) AND θ∗(t)

Consider (48). According to Section V-C, our control system
has been tuned to make �(χ) = 0 in the target position. This
implies that �(s) = 0. Moreover, let us assume that C′(s) is
diagonal. Equation (48) can, therefore, be split into two scalar
equations that yield transfer functions

�i (s)

Di (s)
= − C ′

i (s)

s2 + C ′
i (s) + ω2

(
φ∗

20

) , i = 1, 2. (80)

The relationship between φ and θ is given by the dynamic
nonlinear model (1). Since we are studying the sensitivity to
small disturbances d(t) in the steady state, this equation can
be linearized around the target position φ∗

0, θ∗
0, yielding that

ẋ =
⎛
⎜⎝

x3

x4
∂P
∂ x̂

· x + Ka · ∂μ

∂ x̂
· x + Ka · ∂μ

∂ ẑ
· z

⎞
⎟⎠ (81)

Jacobian ∂P/∂ x̂ is given by (38), in which x̂20 is made
equal to φ∗

20. Jacobian (∂μ/∂ x̂) is ((∂μ/∂φ) 02×2), in which
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(∂μ/∂φ) is given by (37), and angles φ20 and θ20 are made
equal to φ∗

20 and θ∗
20, respectively. Considering that φ∗

10 =
θ∗

10 and operating, we obtain that (∂μ/∂ ẑ) = −(∂μ/∂ x̂).
Substituting all this in (81) and considering (44) and that
Ka · ((cos(θ∗

20))/(cos(φ∗
20))) = ω2(φ∗

20) yields(
ẍ1

ẍ2

)
= −ω2

(
φ∗

20

) ·
(

x1

x2

)
+

(
ω2

(
φ∗

20

) · z1

Ka · cos
(
θ∗

20 − φ∗
20

) · z2

)
(82)

which can be expressed by the transfer functions

X1(s)

Z1(s)
= ω2

(
φ∗

20

)
s2 + ω2

(
φ∗

20

) ,
X2(s)

Z2(s)
= Ka · cos

(
θ∗

20 − φ∗
20

)
s2 + ω2

(
φ∗

20

) .

(83)

Since we are seeking the sensitivity function of a linearized
model, variables �i(s), i = 1, 2, can be substituted in (80)
for their corresponding incremental values Xi(s), i = 1, 2,
respectively. Upon combining (80) and (83) and considering
only the slow subsystem dynamics, i.e., Zi (s) = �∗

i (s) =
Ui(s), i = 1, 2, the sensitivity functions between Di (s) and
Ui(s) are then obtained.
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