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Distributed Demand Side Management With
Stochastic Wind Power Forecasting

Paolo Scarabaggio , Graduate Student Member, IEEE, Sergio Grammatico , Senior Member, IEEE,

Raffaele Carli , Member, IEEE, and Mariagrazia Dotoli , Senior Member, IEEE

Abstract— In this article, we propose a distributed demand-
side management (DSM) approach for smart grids taking into
account uncertainty in wind power forecasting. The smart grid
model comprehends traditional users as well as active users
(prosumers). Through a rolling-horizon approach, prosumers
participate in a DSM program, aiming at minimizing their
cost in the presence of uncertain wind power generation by
a game theory approach. We assume that each user selfishly
formulates its grid optimization problem as a noncooperative
game. The core challenge in this article is defining an approach
to cope with the uncertainty in wind power availability. We tackle
this issue from two different sides: by employing the expected
value to define a deterministic counterpart for the problem
and by adopting a stochastic approximated framework. In the
latter case, we employ the sample average approximation (SAA)
technique, whose results are based on a probability density
function (PDF) for the wind speed forecasts. We improve the PDF
by using historical wind speed data, and by employing a control
index that takes into account the weather condition stability.
Numerical simulations on a real data set show that the proposed
stochastic strategy generates lower individual costs compared to
the standard expected value approach.

Index Terms— Demand-side management (DSM), model
predictive control, sample average approximation (SAA), smart
grid, stochastic optimization.

I. INTRODUCTION

THE contemporary energy landscape includes a limited
number of industries that concentrate the electricity pro-

duction in some fossil and nuclear power plants. Moreover,
the electricity distribution system is still unidirectional and
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passive. This architecture makes it difficult to profitably coor-
dinate supply and demand. Indeed, most of the time, suppliers
have to operate expensive ancillary plants in order to satisfy
the changing power demand, with a significant environmental
impact. Moreover, the growing demand for energy drives the
formulation of plans to expand and upgrade the contemporary
electricity grids. However, energy sustainability is currently a
worldwide concern, making it difficult to use old paradigms
for these upgrades.

In this context, smart grids find their place in leading to new
features in the management of the electricity network. Among
the basic functionalities of smart grids, there exist demand-side
management (DSM), distributed generation (DG), and distrib-
uted storage (DS). As a result, smart grids allow balancing and
coping with energy peaks, improving efficiency, security, and
quality of the power distribution system [1]. Furthermore, one
of the most important advantages of smart grids is their poten-
tial to efficiently integrate renewable energy sources (RESs)
in the distribution system. In fact, in the traditional config-
uration system, this integration is difficult due to the highly
intermittent and stochastic behavior of weather conditions.

A. Literature Review

There is a considerable amount of scientific literature on
smart grids, and various approaches have been proposed to
implement DSM programs [2]–[5].

A growing body of literature studies the use of game theory
in DSM. Advantages of such an approach are in its ability
to straightforwardly model the selfish nature of users and
in its capacity to model decentralized or distributed control
strategies, which are particularly effective in the case of large-
scale systems [6], [7]. For instance, Maharjan et al. [6] propose
a Stackelberg game between the electricity provider and users:
the model is able to maximize the profit of the distribution
provider and the welfare of the users. However, the presented
approach is developed only for the deterministic case and does
not consider the presence of RESs. In [7], a pricing strategy
encourages the optimal generation and storage by the users.
The study focuses only on the day-ahead optimization prob-
lem, and unfortunately it does not include RESs. In addition,
Carli and Dotoli [8] present an optimization algorithm for the
scheduling of electrical activities of a microgrid, where users
are connected to a distributor and are allowed to exchange
renewable energy produced by individually owned distributed
resources. However, such a renewable energy production is
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modeled in a deterministic way, disregarding the presence of
uncertainty.

Essentially, the uncertainty in renewable energy production
makes it hard to choose the optimal scheduling strategy of
a smart grid. Therefore, DSM techniques can help mitigating
this variability. In the related literature, two approaches are
typically employed: updating the RES forecasts (e.g., using a
rolling-horizon approach), or employing probability distribu-
tions. In the first class of approaches, we recall a noncoopera-
tive model that includes a wind power source presented in [9].
In the model, all the potential uncertain variables are supposed
to be deterministic, and a shrinking-horizon approach is used
to handle their possible variations during the day.

Within the second class of approaches, we recall the
study [10], where the authors propose a stochastic optimization
model for the day-ahead energy scheduling, which incorpo-
rates DSM for managing the variability of RES. The proposed
stochastic day-ahead algorithm considers random outages of
system components and forecast errors for the RES. A Monte
Carlo simulation creates multiple scenarios for representing
possible realizations of uncertainty, and a mixed-integer linear
problem is employed to solve the resulting stochastic problem.
In [11], a risk-averse strategy for islanded microgrids with
a high share of RES is presented. A sampling-based Monte
Carlo forecast is chosen to handle RES variability, generating
a collection of independent scenarios with the same proba-
bility. Other models represent uncertainty in the wind power
availability, where wind power prediction errors are typically
assumed to follow a Gaussian probability distribution. On the
other hand, a number of studies suggest the use of the Weibull
and Rayleigh distribution to characterize the wind speed
[12], [13]. In [14], a Weibull distribution is used to forecast
the wind speed, and a nonlinear function is employed to
transform it into a power probability density function (PDF)
for the power output. The objective function considers the
reserve cost for overestimation and penalty cost for underesti-
mation of RES power availability. The same approach is used
in [15], where the authors investigate the effects of renewable
energy integration on the power system from a stochastic
point of view. Aghajani et al. [16] implement a stochastic
programming strategy, by using a historical curve for the wind
speed scenarios, and by validating the results using the wind
speed forecasts. However, approaches in [10]–[16] rely on a
centralized framework, that is questionable in the case of large-
scale systems. Other references [17] and [18] propose the use
of a normal distribution aimed at considering the wind speed
variability. For instance, in [19], a Monte Carlo simulation is
employed to generate a scenario tree to predict wind power
availability. Moreover, a stochastic planning approach based
on a Monte Carlo method is proposed in [20] to model the
uncertain wind behavior.

B. Contribution

In this article, we propose a smart grid model that comprises
a central unit and several interconnected demand-side users
with a wind turbine. Users can be merely energy consumers,
or they can participate actively in the grid optimization
process. We implement a DSM model where the central

unit updates the energy price based on the aggregate load
and the wind power availability. We assume that each active
user acts selfishly, trying to minimize his total expense by
updating his DG and DS strategies. However, choices have
to be made by users respecting their local preference and
the overall grid constraints. To take into account the selfish
nature of users, we model the resulting energy scheduling
problem as a Nash game, extending the approach originally
developed in [7] for the day-ahead deterministic scheduling
case and subsequently modified in [9] using a shrinking-
horizon technique in a deterministic and semi-decentralized
setting. More precisely, we present a novel receding-horizon
DSM strategy in a stochastic and semi-decentralized setting.

In this context, we consider the uncertainty in wind power
availability, and our policy to manage this significant issue is
twofold. First, we model the DSM model in a rolling-horizon
fashion, considering updatable wind speed forecasts. Second,
we propose a stochastic distributed optimization strategy.
We propose a framework where each user could consider a
Weibull distribution based on historical wind speed data and
a Gaussian distribution to locally model the uncertainty in
the wind speed forecasts. Furthermore, we first apply to the
smart grid context an instability index that evaluates the overall
atmospheric conditions and modifies the latter distribution.
Consequently, each user could generate a PDF for the wind
power availability by adopting an approximated nonlinear
relation between wind speed and power. By merging the
historical and forecast PDF, we address the cases where the
wind speed forecasts are particularly uncertain. We obtain
a number of samplings from the aforementioned PDFs and
use the sample average approximation (SAA) to generate an
average cost function that takes into account several different
wind power availability scenarios.

Finally, we show the effectiveness of the proposed mech-
anism on a realistic case study, using real forecasts and
real historical measured data. In particular, we examine the
advantage that a single user obtains by adopting the proposed
stochastic approach with respect to other competitors that
employ a deterministic counterpart for the problem.

C. Positioning of Our Contribution Within the
Related Literature

Summing up, many attempts have been made to design
DSM strategies for smart grid management [6], [7]. However,
the majority of works focuses only on the day-ahead optimiza-
tion problem, while considering the supply side exclusively.
In our work, instead, we propose a model that includes a wind
turbine, and we perform a long-term analysis employing real
wind speed forecasts. Moreover, we validate the results with
real on-site measured wind speed data.

Regarding the RES presence in the grid, the majority of the
studies in the related literature, see for instance [3], [8], [9],
considers the RES power availability as a deterministic vari-
able, disregarding the stochastic nature of these sources.
The few approaches considering uncertainty in wind power
availability typically define a discrete PDF for the possible
outcomes or assume the wind power prediction errors to follow
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Fig. 1. Scheme of energy flows and connections in the smart grid.

a Gaussian probability distribution [10], [11]. However, these
approaches rely on a centralized framework which has evident
computational and privacy limitations. In addition, one of the
significant drawbacks of these methods is the incorrect repre-
sentation of wind power uncertainty due to the nonlinearity in
the wind power generation process. Hence, to overcome this
issue, in this work we consider the wind power availability as
a stochastic variable, and describe its uncertainty by defining
a PDF based on the real forecast and real historical data,
assessing all the parameters values. Moreover, we use this PDF
to perform a stochastic programming approach and improve
the performance of the model.

D. Article Organization

The rest of this work is structured as follows. In Section II,
we present the smart grid model, with the demand side,
generation, and storage models; lastly, we define the cost and
the pricing market. Section III comprehends the wind power
characterization, a model to obtain a PDF for the wind power,
and a methodology to combine information coming from the
forecasts and the historical data. In Section IV, we define
the non-cooperative game, and the algorithm to reach an
equilibrium. In Section V, we show the numerical results of
the simulation. Finally, in Section VI, we conclude this article
and discuss an outlook for future work.

II. SMART GRID MODEL

The focus of this section is to present the smart grid model,
where we consider as a starting point the smart grid introduced
in [7]. The model in [7] considers a day-ahead optimization
process for a group of active users regulated by a central
unit. The active users modify their energy scheduling profile
aiming at decreasing their total cost by using some distributed
energy sources or energy storage devices. A related approach
is employed in [9], improving the model in [7] including a
RES in the supply side and implementing a shrinking-horizon
approach on a daily basis to cope with the uncertainty in wind

power availability. The model includes an algorithm to reach
an equilibrium between the active users while respecting the
overall grid constraints.

For the purpose of a long-time simulation, we modify the
approaches presented in [7] and [9] considering a receding-
horizon strategy on an hourly basis. We suppose that the
control and the prediction horizon have a fixed length H , and
they are moving ahead at every time slot (hence, eventually
straddling two days). Moreover, we define the control horizon
at the generic time slot k as H = {k, . . . , k + H − 1}.

The scheme of the considered smart grid is represented
in Fig. 1. The smart grid is composed of a central unit,
and several users that share a wind turbine. Users are also
connected to the distribution system from/to which they can
buy or sell electricity, and they are also connected to a central
unit, which is able to keep the overall smart grid electricity
consumption inside a fixed range. In our setting, the central
unit broadcasts the hourly price coefficients and forecasts the
wind speed for the wind turbine location. Each active user has
an energy controller that decides a consumption, generation
and storage strategy, based on its devices’ status, the wind
speed forecasts, and the aggregate grid load.

A. Flexible Demand-Side Model

We consider a group of demand side users D, divided into
two subsets of passive P and active N users (prosumers),
where D = P ∪ N and P ∩ N = ∅, with cardinality D,
P , and N , respectively. Each user i ∈ D has a per-slot non-
controllable energy consumption ei(h), ∀, h ∈ H. Let us define
the non-controllable energy consumption scheduling vector
ei = (ei (h))h∈H. Passive users i ∈ P are merely energy
consumers while active users i ∈ N participate in the grid
optimization process by modifying their, controllable energy
consumption, distributed production, or storage strategies. We
assume that each active user is connected bidirectionally
to the power grid, and to a communication infrastructure
that enables a two-way communication between the user’s
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energy controller and the central unit. In addition to the
non-controllable energy consumption, all active users have a
per-slot controllable energy consumption di(h) for h ∈ H
(e.g., a heating system or a boiler), that they can modify based
on the market condition. We assume a first constraint on the
controllable energy consumption as follows:

dmin
i ≤ di (h) ≤ dmax

i ∀h ∈ H ∀i ∈ N . (1)

Moreover, we assume that the controllable energy demand
must be satisfied on a daily basis, therefore, let us include
an additional constraint on the daily energy demand. Since in
our model the control horizon can straddle on two days, it is
useful to define H1 as the set that comprehends the remaining
time slots of the preceding day, and consequently, H2 the time
slots of the subsequent day included in the control horizon.
By naming h̄ the last time slot of the preceding day, we can
write more formally

H1 = [k, h̄] ∩ Z, H2 = [h̄ + 1, k + H −1] ∩ Z (2)�
h∈H1

di(h) = ξ left
i,1 ,

�
h∈H2

di(h) = ξi,2 ∀i ∈ N (3)

where ξi,2 is the controllable energy demand in the second
day, and ξ left

i,1 is the remaining controllable energy demand in
the first day, i.e., the remaining part of the daily controllable
energy demand of the first day that must be satisfied by the
end of the day. Let us define for each prosumer i ∈ N
the controllable energy consumption scheduling vector d i =
(di(h))h∈H and a set of feasible strategies

�d i = �
d i ∈ R

H
≥0

�� (1), (3) hold
� ∀i ∈ N . (4)

Moreover, a prosumer can be either a dispatchable energy
producer i ∈ G with a per-slot energy generation gi(h), and/or
an energy storage user i ∈ S with per-slot energy storage
profile si (h). Note that in general G ∩S �= ∅ and G∪S = N .
The per-slot load profile li (h), ∀h ∈ H, ∀i ∈ D is hence

li(h) =
�

ei(h), if i ∈ P
ei(h)+ di(h)− gi(h)+ si (h), if i ∈ N (5)

which expresses the energy flow between the grid and user
i ∈ D. For every user i ∈ D let us then define for the control
horizon H, the energy load scheduling vector l i = (li(h))h∈H.
Obviously, for all the passive users i ∈ P it holds l i = ei .

B. Flexible Energy Generation Model

Let us consider the group of prosumers i ∈ G equipped
with dispatchable energy devices (e.g., internal combustion
engines, gas turbines, or fuel cells). These active users can
thus: produce energy to satisfy their demand, charge their
battery, or sell to the grid during the peak time slots when
the energy request is higher. We assume that each energy
producer is subject to variable production costs (e.g., fuel
cost, maintenance) and fixed cost. Let us define an energy
production cost function Wi (gi(h)) for all the users i ∈ G,
comprehending the variable production costs, i.e., the fuel and
the maintenance costs. We assume that Wi is linear with a
coefficient ηi , i.e., Wi (gi(h)) = ηi gi(h). These prosumers are
interested in optimizing their production strategies to obtain

the highest advantage while respecting their local preferences.
We assume so a first constraint in the generation capacity;
besides a non-negative minimum, a maximum per-slot energy
generation can take into account the devices’ technological
restrictions

0 ≤ gi(h) ≤ gmax
i ∀h ∈ H ∀i ∈ G. (6)

In order to prevent the device’s overuse, we include
additional constraints on the maximum production over H
consecutive time slots

h�
z=h−H+1

gi(z) ≤ ψi ∀h ∈ H ∀i ∈ G (7)

where ψi is the maximum amount of energy that active user
i ∈ G can generate in a period of H time slots. Note that,
in (7) we also consider the energy generated in the time slots
that precede the control horizon; therefore, these constraints
depend on the previously implemented strategies.

Obviously, at each time slot h we have that gi(h) = 0 for
all the prosumers i /∈ G. Let us define for each producer i ∈ G
an energy production scheduling vector gi = (gi(h))h∈H and
a set of feasible strategies

�g i = �
gi ∈ R

H
≥0

�� (6), (7) hold
� ∀i ∈ G. (8)

C. Flexible Energy Storage Model

Let us now model the group of energy storage devices
(e.g., batteries, flywheels, fuel cells) owned by the prosumers
i ∈ S. Disregarding the actual different storage technology,
without lack of generalization, we can characterize these
devices by charging efficiency, discharging efficiency, leak-
age rate, maximum capacity, and maximum charging rate,
as modeled in the sequel. Hence, for each user i ∈ S, it is
useful to define: the charging and discharging inefficiencies
0 < β(+)i ≤ 1 and β(−)i ≥ 1, the leakage rate 0 < αi ≤ 1,
the maximum capacity ζi , and the maximum hourly charging
rate smax

i . The current charge level in the device equals the
previous slot charge level decreased by the leakage rate and
corrected by the energy storage profile. However, the latter
is altered through the charging and discharging inefficiency.
As in [7], we define it as

qi(h) = αi qi(h − 1)+ β	
i si (h) ∀i ∈ S (9)

where the vector si (h) = [s(+)i (h), s(−)i (h)]	 collects the
battery charging and discharging profile at time slot h, and
βi = [β(+)i ,−β(−)i ]	 collects the charging and discharging
inefficiencies. While Atzeni et al. [7] and Estrella et al. [9]
perform an isolated daily optimization process and consider
a constraint on the charge level for the last time slot of one
day, here we employ a rolling-horizon approach and introduce
a minimum charge level qmin

i for each time slot, designed to
prevent damages on the devices

qmin
i − αi qi(h − 1) ≤ β	

i si (h) ≤ ζi − αi qi(h − 1) ∀i ∈ S.
(10)
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Furthermore, the maximum charging and discharging rate must
be respected [21], that is

−smax
i ≤ β	

i si (h) ≤ smax
i ∀h ∈ H ∀i ∈ S. (11)

As for the DG, at each time slot h we have that s(+)i (h) =
s(−)i (h) = 0 for all the prosumers i /∈ S. Moreover, it is
possible to define for each producer i ∈ S an energy storage
scheduling vector si = ((s(+)i (h))h∈H, (s(−)i (h))h∈H) and a set
of feasible strategies

�si = �
si ∈ R

2H
≥0

�� (9), (10), (11) hold
� ∀i ∈ S. (12)

D. Energy Cost and Pricing Market

Let us now denote by ω(h) the power generated at time slot
h by the wind turbine connected with the grid and L(h) the
total aggregate grid load for time slot h, with

L(h) =
�
i∈D

li(h) ∀h ∈ H. (13)

As in [22], we consider a function Ch to model the cost per
unit of energy bought from the distribution system as

Ch(L(h), ω(h)) = Kh(L(h)− ω(h)) ∀h ∈ H (14)

where Kh > 0 is the fixed price coefficient at the hth slot
(so that price results are time-varying). According to (14),
the generic user i ∈ D per every time slot h pays to
the distribution system the amount Kh(L(h) − ω(h))li (h) to
receive li (h). Furthermore, as in [9], we include a global
constraint on the aggregate per-slot energy load

Lmin ≤ L(h) ≤ Lmax ∀h ∈ H (15)

where we define Lmax as the maximum aggregate load that the
grid can afford before a blackout occurs and Lmin as a lower
bound to prevent the turning off of some primary power plants.

We suppose that the central unit defines the global grid
constraints taking into account its energy production facilities.
Hence, we should include the availability of wind power;
however, for the sake of simplicity, we assume that the wind
power availability influences only the energy price and is not
affecting the limitations on the aggregate load. Lastly, it is
important to remark that (15) is a constraint that couples
together all the prosumers’ decisions.

In Section III, we characterize the wind power availability.

III. WIND POWER CHARACTERIZATION

A. Wind Speed and Wind Power Generation

Wind power is one of the most important RESs, and it has
been widely developed in recent years. The high fluctuations
in the wind power output may lead to a mismatch between
power production and electricity demand. The traditional
approaches to cope with this issue rely on the hypothesis
that the wind power forecasting error follows a normal dis-
tribution. However, this assumption neglects the nonlinear
relation between wind speed and the generated power. Here,
we consider the availability of wind power for the smart
grid, under uncertainty on the wind speed, assuming that the
relation between the generated power and the wind speed is

Fig. 2. Manufacturer and approximate power curve for the NedWind-40 wind
turbine [26]. The turbine power curve has characteristic parameters: vin =
4 m/s, vrated = 15 m/s, vout = 25 m/s, and ωrated = 500 kW.

nonlinear [23]. More precisely, the relation between the wind
speed value v and the output power ω(v) in a conventional
wind turbine is a function of several factors. In the turbine,
if the wind speed is lower than a cut-in wind speed value vin,
the wind cannot defeat the mechanical friction in the system.
After this threshold, the output power increases rapidly with
the wind speed, following the Betz law until a rated wind speed
value vrated [24]. The turbines are equipped with a braking
system, that after this value of rated wind speed, keeps the
output equal to the turbine rated power ωrated. Once the wind
speed exceeds a safety cutoff value vout, the turbine stops
producing energy and is secured by completely stopping the
rotor. A reliable yet simple piecewise linear approximation for
this relationship is the following [16]:

ω(v) =

⎧⎪⎪⎨
⎪⎪⎩
ωrated

v − vin

vrated − vin
, if v ∈ [vin, vrated]

0, if v ∈ [0, vin] ∪ [vout,∞)

ωrated, if v ∈ [vrated, vout].
(16)

In Fig. 2 we show the reliability of the proposed approx-
imate power curve (16), by comparing the power curve
provided by the manufacturer and the proposed approximate
power curve for a typical wind turbine. By using in (16)
the expected value v̄(h) obtained by the central unit, it is
possible to calculate the wind power production at the expected
wind speed value ω̄(h) = ω(v̄(h)). As an alternative to the
expected value approach described overhead, we can describe
the behavior of the wind speed v with a PDF that reflects
the expectation of the wind speed over a period of time and
guides the wind power availability assessment. A PDF can
adequately describe the wind speed, based on historical data or
wind speed forecasts; the PDF can be either a single function
or a combination of two or more functions. The Weibull
distribution, Rayleigh distribution, and normal distribution
are widely used distributions for modeling the wind speed.
We refer to [25], for an extensive review of the PDFs used for
wind speed assessment.

B. Historical Distribution

The Weibull and Rayleigh distribution is believed to best
describe the wind speed variations over a long term period.
Therefore, we assume that the wind speed in a given location
follows the Weibull distribution [27], with the λw scale and kw
shape parameters. Specifically, we assume that these parame-
ters vary with the turbine location and the period in the year
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Fig. 3. Weibull distributions with (a) λw = 6 and different kw values and
(b) kw = 2 and different λw values.

(e.g., for every month). By naming v the wind speed value,
we may express, for some given scale and shape parameters,
the Weibull wind speed PDF as

fW (v) =

⎧⎪⎨
⎪⎩

kw
λw

�
v

λw

�kw−1

exp

�
−

�
v

λw

��kw

, if v ≥ 0

0, if v < 0.
(17)

Fig. 3 shows some examples of the Weibull distribution
with different λw and kw parameters. A high value of kw,
e.g., 3.5, indicates that the difference between the hourly mean
wind speed (MWS) and the annual MWS is little. Vice versa,
a low value of kw, e.g., 2, means a high divergence from the
annual MWS. The value of λw reflects the average wind speed
of the wind farm. When a location has a high value of λw ,
it has a high average wind speed; however, this indicates also
a significant variation from the annual MWS.

We now characterize the wind power PDF f (ω) by mod-
ifying the approach presented in [17]. Due to the turbine
performance curve, the probability that the output power ω is
null can be calculated considering the cumulative probability
Fv (vin) that v < vin and the cumulative probability Fv (vout)
that v > vout, and is therefore

f (0) = P[ω = 0] = Fv (vin)+ (1 − Fv (vout)). (18)

Moreover, the probability that ω = ωrated can be calculated
considering the cumulative probability that v ∈ [vrated, vout],
and is

f (ωrated) = P[ω = ωrated] = Fv (vout)− Fv (vrated). (19)

In the interval [0, ωrated], the PDF of the generated power
ω can be obtained via a one-to-one mapping with the
wind speed [28]. By denoting A = (vrated/vin) − 1 and

Fig. 4. Wind power historical PDF (21) for different Weibull parameters,
calculated for the NedWind-40, with vin = 4 m/s, vrated = 15 m/s, vout =
25 m/s, and ωrated = 500 kW. (a) λw = 6 and kw = 2. (b) λw = 9 and
kw = 2.

C = (vin/ωrated), we have that

f (ω) = kwAC

λw

⎛
⎝

�
1 + Aω

ωrated

�
vin

λw

⎞
⎠

kw−1

× exp

⎛
⎜⎝−

⎛
⎝

�
1 + Aω

ωrated

�
vin

λw

⎞
⎠

kw
⎞
⎟⎠. (20)

Summing up, given the turbine parameters, the location, and
period in the year, we can define the historical PDF for the
generated wind power as shown in (21), at the bottom of the
next page.

The scale λw and the shape kw parameters of the Weibull
distribution have a significant impact on the wind power
historical PDF. Indeed, for a particular turbine, a different
period of the year leads to different Weibull parameters λw
and kw, and consequently, to a different power PDF. In Fig. 4
we show two examples of the historical PDF with different
values for the Weibull parameters.

C. Forecast Distribution

The previous methodology to define a PDF for wind
power is based on historical data, and therefore describes
the uncertainty of wind speed in the long term. However,
it neglects the availability of updatable wind speed forecasts,
i.e., a series of forecasts which may be updated at each time
shift of the predictive control horizon. Conversely, in this
article, we assume to have a series of wind speed forecasts
for the whole control horizon and that the forecasting error
is a random variable following a normal distribution [17].
In detail, we assume that to every forecast wind speed value μ
it is possible to assign a standard deviation σ based on the
prediction reliability.

By following the aforementioned framework to compute
the historical PDF, we calculate the probability that ω = 0
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by considering the cumulative probability that v < vin and
that v > vout, as in (18). Moreover, the probability that
ω = ωrated can be calculated as in (19), considering the
cumulative probability that v ∈ [vrated, vout].

In the interval [0, ωrated], the PDF of the generated power,
by denoting again A = (vrated/vin)− 1 and C = (vin/ωrated), is

f (ω) = C√
2πσ 2

exp

⎛
⎜⎝−

��
1 + A ω

ωrated

�
vin − μ

�2

2σ 2

⎞
⎟⎠. (22)

Summarizing, let us define a forecast PDF for the generated
power, given a forecast wind speed value μ and a standard
deviation σ , in (23), as shown at the bottom of the page.

Fig. 5 shows that the wind power forecast PDF cannot
be expressed by the normal distribution due to the nonlinear
relation between wind speed and wind power. Indeed, the wind
power forecast PDF has an asymmetric distribution, with
different peak values.

The range for the wind power PDF varies from 0 to the
rated power, consisting of a continuous part and two impulse
functions. When the wind speed is lower than the cut-in wind
speed or higher than the cut-out wind speed, the PDF of the
wind power concentrates at 0, with a higher impulse function
[see Fig. 5(a)]. When the wind speed is between the rated
wind speed and the cut-out wind speed, the wind power PDF
focuses on the rated power, with a high impulse function
[see Fig. 5(b)]. Lastly, when the wind speed is between the
cut-in wind speed and the rated wind speed, the PDF of
the wind power can be described by the normal distribution
[see Fig. 5(c)].

We remark here that in the wind power forecast PDF
we assume that the wind speed forecasting errors follow
the normal distribution. Nevertheless, an evaluation of the
Gaussian parameter should be made to characterize the fore-
casts correctly. The standard deviation of a wind speed forecast

Fig. 5. Wind power forecast PDF (23) for different wind speed values.
Calculated for the NedWind-40, with vin = 4 m/s, vrated = 15 m/s, vout =
25 m/s, and ωrated = 500 kW. (a) μ = 5 m/s and σ = 2 m/s. (b) μ = 14 m/s
and σ = 2 m/s. (c) μ = 10 m/s and σ = 2 m/s.

can be calculated from the past forecasting error distributions.
However, it is difficult to assess accurately these values in the
range in which the wind speed is extremely high because the
number of sample data is limited. The literature shows that
many factors contribute to the uncertainty in the wind speed
forecast, the most important being.

Historical PDF: f (ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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⎠
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⎛
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⎠
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�
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�
−

�
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��
δ(ω), if ω = ωrated

0, if ω > ωrated

(21)

Forecast PDF: f (ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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2πσ 2

exp

⎛
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exp
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�
δ(ω), if ω = ωrated
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(23)
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1) The uncertainty related to the weather prediction models.
2) The wind farm location, since the weather prediction

models are not performing with the same accuracy for
all the locations.

3) The wind farm geography and morphology.
4) The forecast wind speed value, since the uncertainty

increases with this value. This relation is not linear,
especially with high-speed value.

5) The forecasting horizon, because a long term forecast
has a higher uncertainty.

6) The weather “stability,” i.e., stable weather conditions
have more reliable forecasts.

Iizaka et al. [29] shows that uncertainty is strongly related
to the wind speed value and the forecasting horizon. These
relations, together with the uncertainty related to a specific
weather prediction model and the wind farm location and
geography, can be estimated using historical data.

D. Instability Index

The weather conditions are not always the same; a more
stable atmospheric situation empowers better forecasts, reduc-
ing uncertainty in the wind power forecast. To evaluate the
weather condition, Pinson and Kariniotakis [30] introduces
a methodology to assess the risk of short-term wind power
forecasts by using a meteorological risk index. The index
relies on the ensemble forecasting methodology. Instead of
making a single prediction of the most likely weather, a set
of forecasts is produced. The set aims at indicating the range
of possible future states of the atmosphere. This is usually
made by changing the initial condition of the model and
observing how the results are perturbed. Differently from [30],
we define an instability index obtained by evaluating the error
made by forecasts of different time instances.

In detail, let us evaluate the stability of the weather condi-
tions at the generic time slot k. Hence, we denote with vr the
registered wind speed at the previous time slot k − 1, and vt

the forecast wind speed value for time slot k − 1 obtained at
time slot (k − 1) − t , i.e., the forecast made at the time slot
(k −1)− t for the time slot k −1. By collecting the previously
recorded and forecast data, each user calculates the instability
index as

n =
T�

t=1

τt |vr − vt | (24)

where T is the number of previous forecasts employed to cal-
culate the index, and τt are weights that give less importance to
the error made by the older predictions, i.e., the error |vr −v1|
should has a stronger impact than |vr − vT | in evaluating the
index. Moreover, we assume that

�T
t=1 τt = 1.

As we show in the numerical experiments, the forecasting
error increases linearly with the instability index. At every
time slot k, we calculate the instability index employing the
data related to the previous time slot k −1, and we modify the
standard deviation for the subsequent forecasts. For instance,
when the index is low, we assume that the forecast is accurate,
and therefore, we reduce the standard deviation of the next
time slots’ forecasts. However, as the weather conditions

Fig. 6. Composed wind power PDF (25) with different standard deviation
values. Calculated for the NedWind-40, with vin = 4 m/s, vrated = 15 m/s,
vout = 25 m/s, ωrated = 500 kW, μ = 10 m/s, λw = 8, and kw = 2.
(a) σ = 0.5 m/s. (b) σ = 2 m/s.

typically change within a few hours, we do not employ the
instability index to modify the standard deviation value for
the forecast of the entire control horizon H .

E. Composed Distribution

Highly uncertain forecasts are caused by high wind speed
values, long prediction horizon, or unstable weather condi-
tions. In some cases, uncertainty can be considerably high,
leading to an overestimation in the forecast PDF. A combina-
tion of the information contained in the historical and the fore-
cast PDFs can reduce this problem. Clemen and Winkler [31]
present several ways to combine PDFs. In particular, let us
employ the logarithmic method

f (ω) = c f1(ω)
w1 f2(ω)

w2 (25)

where f1(ω) is the historical PDF, f2(ω) the forecast PDF,
w1 and w2 are weights with w1 + w2 = 1, and c a nor-
malizing constant. It is worth pointing out that the weight
indicates the PDF’s influence. For the sake of simplicity, in the
rest of this article, we employ the same weight to all the
PDFs, i.e., w1 = w2 = 0.5. In Fig. 6 we show an example
of this methodology. In the first figure, the forecast PDF has
a smaller standard deviation value, which indicates a more
accurate and reliable prevision. The composed PDF, in this
case, is comparable to the forecast PDF. On the other hand,
in the second figure, the forecast has high uncertainty, and the
composed PDF is corrected by the information contained in
the historical PDF.

IV. DISTRIBUTED STOCHASTIC CONTROL

ALGORITHM FOR DEMAND

SIDE MANAGEMENT

The objective of this section is to define the overall
optimization problem for the smart grid model described
in Section II.
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A. Game Model

Game theory describes and analyzes scenarios with inter-
active decisions. Noncooperative game theory is a branch of
game theory employed to solve conflicts between interacting
players [32]. Considering our smart grid model, and bearing
in mind the users’ selfish behavior and the aforementioned
cost function, for a generic user the price of energy depends
on the other users’ strategy. Hence, it is meaningful to model
the optimization problem as a noncooperative game, as pro-
posed in [7].

In the noncooperative game, each player behaves selfishly
to optimize its own welfare, generally quantified through a
cost function. A noncooperative game is usually defined by
its three components.

1) The players, that in our case are all the prosumers i ∈ N
participating in the grid optimization process.

2) A cost function Ji for each player.
3) The strategy of each player xi = (di , gi , si)

	, which
corresponds to a specific consumption, generation and
storage profile.

In the model, according to (14), the energy price at each
time slot is a function of the aggregate load and the wind
power generation; the latter is here regarded as a stochas-
tic variable. Accordingly, for each active user i ∈ N we
can define the cost function as the monetary exchange with
the distribution system over the control horizon H. Let us
define the strategy vector for the generic prosumer i ∈ N
at the generic time slot h as xi(h) = (di(h), gi(h), si (h))	,
the strategy scheduling vector xi = (di , gi , si)

	 and the local
feasible strategy set that takes into account the individual user
preferences as

�xi = {xi ∈ R
4H | d i ∈ �d i , gi ∈ �gi

, si ∈ �si } ∀i ∈ N .
(26)

Then, by using the pricing model in (14) and by naming with
x−i the collection of the strategy scheduling vectors x j of all
users j ∈ D \ {i}, the total expense for a generic prosumer
i ∈ N over the control horizon H is

Ji (xi , x−i ,ω) =
�
h∈H

Kh(l−i (h)+ ei(h)+ δ	xi(h)− ω(h))

· (ei(h)+ δ	xi(h))+
�
h∈H

Wi
�
δT

g xi(h)
�

(27)

where l−i (h) = �
i∈D\{i} li (h) is the aggregate per-slot load

of all the players j ∈ D \ {i}, while δ = (1,−1, 1,−1)	
and δg = (0, 1, 0, 0)	 are auxiliary vectors. In our setting for
the generic time slot h, the available wind power ω(h) is a
stochastic variable that reveals its value ex-post. Therefore,
users cannot calculate the exact value of Ji in advance.

Although each user acts selfishly, by choosing a strategy
included in its local feasible set �xi , the global grid con-
straint in (15) must be respected. Hence, we should con-
sider a noncooperative generalized game, where the coupling
between the players occurs not only via the cost functions
but additionally through a collective global feasible set. In our
settings, the coupling constraints are introduced by an affine
function, x �→ Ax − b, where A ∈ R2H×4H N and b ∈ R2H .

In particular, let us define b = [Lmax − L P (k), . . . , Lmax −
L P (k + H − 1), L P(k)− Lmin, . . . , L P (k + H − 1)− Lmin]	,
with L P (h) = �

i∈P li (h) the cumulative consumption of the
passive user i ∈ P , and A = [A1, . . . , AN ] = 1N ⊗�, being
� = [IH ,−IH , IH ,−IH ], IH ∈ RH×H the identity matrix
and ⊗ the Kronecker product. We remark that Ai outlines
how the active user i ∈ N is involved in the global coupling
constraints.

Thus we can now define the collective global feasible set X
as the intersection between the collection of the local feasible
sets of all the prosumers � = �N

i=1 �xi and the coupling
constraint. More formally, we have, therefore

X = � ∩ {x ∈ R
4 H N | Ax−b ≤ 02H } (28)

where x = (xi)
N
i=1 is the collective strategy scheduling vector.

Overall, we obtain N inter-dependent optimization problems
as in the following:

∀i ∈ N :
⎧⎨
⎩

argmin
xi ∈R4H

J̃i (xi , x−i ,ω)

s.t. (xi , x−i ) ∈ X
(29)

where J̃i , is the assumption that each active user i ∈ N makes
for the real cost function in (27), given the wind speed forecast
provided by the central unit. We remark that (27) is a function
of a stochastic variable, therefore, each user tries to define a
function that reflects it as much as possible.

The formulation in (29) defines a generalized Nash equi-
librium (GNE) problem that we can indicate in compact form
as G = (X , J̃), where X is the collective global feasible set
as in (28) and J̃ = ( J̃i(xi , x−i ,ω))

|N |
i=1 is the collection of

the active users’ cost function. In the game theory solving the
GNE problem in (29) means the computation of a GNE, which
is a collective strategy profile x∗ ∈ X with the property that
no single player can benefit from a unilateral deviation from
x∗

i , if all the other players act according [32]. More formally,
we have

Ji
�
x∗

i , x∗
−i

� ≤ inf
�

Ji
�
xi , x∗

−i

� �� �
xi , x∗

−i

� ∈ X�
. (30)

In the rest of this section, we introduce an algorithm to
compute a GNE in a semi-decentralized fashion. Moreover,
we present two variants of the cost function J̃i , i.e., the guess
made by the i th user given the stochasticity of the wind power
availability.

B. Semi-Decentralized Equilibrium Computation

Once we have defined the overall aggregated game
G = (X , J̃), let us now employ the preconditioned forward
backward (pFB) algorithm presented in [33] to compute an
equilibrium in a semi-decentralized fashion.

In Algorithm 1, at every time slot, the central unit broadcasts
an initial value for the so-called incentive signal λ. At each
iteration, every user attempts to reduce his cost function,
given the current value for the grid coefficients, the wind
forecast, and the aggregative load on the grid, taking a
gradient step of length γ projected into the feasible local
set. Next, the central unit collects all the users’ strategies x,
then it calculates the incentive signal λ+ for the subsequent
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Algorithm 1 Preconditioned Forward Backward (pFB)

iteration taking into account the expected constraint violation.
Moreover, the central unit broadcasts to each prosumer i ∈ N
the vector l−i = (

�
i∈D\{i} li (h))h∈H. This is directly related

to the strategies of all the other users x−i , however, due
to the aggregation does not contain any private information.
Finally, the central unit terminates the iterative process when
an adequate termination criterion is reached, i.e., when all
the strategies and the incentive signal λ converge. Note that
the pFB algorithm guarantees the convergence to the unique
variational GNE, therefore, all agents are penalized in the
same way in order to satisfy the shared constraints. This
approach is economically fair because the cost for fulfilling
the common constraints is fairly shared, i.e., all agents are
subject to the same dual variables (λi = λ j , ∀i, j ) [33].

C. Expected Value Formulation

In the proposed pricing scheme, the energy price is a
function of an aleatory variable, such as the wind power
availability. Moreover, we suppose that active users know
the characteristic turbine parameters and that the central unit
broadcasts at every time slot the wind speed forecast for the
entire control horizon. Therefore, each active user decides
how to manage the uncertainty in the wind speed forecasts.
The most straightforward way to approach the problem is
to consider the wind power availability as a deterministic
variable by employing the expected value of the wind speed
forecast v̄(h). By using (16), it is then possible to calculate
the expected value for the wind power production ω̄(h).
Calling ω̄ = (ω̄(h))h∈H the wind power expected produc-
tion vector, we can now formally define the cost function
for a generic active user that employs the expected value
approach as

J̄i (xi , x−i , ω̄) =
�
h∈H

Kh(l−i (h)+ ei(h)+ δT xi(h)− ω̄(h))

· (ei(h)+ δT xi(h))+
�
h∈H

Wi
�
δT

g xi(h)
�
. (31)

It is worth pointing out that (27) determines how much
a generic user actually pays to the grid after the realization
of the stochastic variable (the so-called wait-and-see value),
while (31) indicates how much the user is presuming to pay by
employing this approach, which is different from the expected
value of the cost function.

D. Approximated Stochastic Programming

The main issue in employing the expected value approach
is that the presence of a stochastic variable may lead to
a non-optimal energy schedule; this opens the door to a
wealth of different approaches to cope with this problem.
Stochastic programming is a framework used to solve models
with uncertainty, taking advantage of the fact that the PDF
ruling the random variable is known or can be in some way
estimated. More specifically, we suppose that the cost function
of a generic user is a stochastic variable itself [34], with
expected value

Ji(xi , x−i ,ω) = Eω[Ji(xi , x−i ,ω)]. (32)

Determining the exact solution of (32) is complicated; an
alternative solution methodology replaces the random variable
by finite random samples and solves a resulting deterministic
optimization problem [35]. This methodology is often called
SAA. This technique is mainly based on having a prior
known PDF, from which M independent and identically dis-
tributed (IID) random samples of the stochastic variable are
obtained. In our case, by using M samples obtained through
one of the aforementioned wind power PDFs, (21) or (23)
or (25), we can define an approximated cost function for a
generic active user i ∈ N , as

Ĵi (xi , x−i , ω̂i ) = 1

Mi

Mi�
m=1

J m
i

�
xi , x−i ,ω

m
i

�
(33)

where ωm
i is one of the samples for the wind power production

vector, Mi is the number of samples that the generic user
decides to perform, J m

i is the cost function defined with the
mth samples, and ω̂i = (ωm

i )
Mi
m=1 is the collection of all

the wind power production vector samples. Note that ωm
i =

(ω(h)mi )h∈H is one of the sampled scenarios for the whole
control horizon; however, it should be noted that each ω(h)mi
is sampled from a time slot specific PDF.

It is well known that under relatively mild conditions,
the defined approximate stochastic solution converges to the
“true” stochastic one, as the sample size M increases (the
interested readers are referred to the discussion in [34] and [35]
on this issue which is beyond the scope of this article).

E. Rolling-Horizon DSM Algorithm

Let us now propose a novel procedure to continuously
control prosumers by embedding Algorithm 1 into the receding
horizon scheme of Algorithm 2. In particular, at each generic
time slot k, prosumers participate in the optimization process
to define the consumption, generation and storage strategies
for the next control horizon {k, . . . , k + H − 1}.

In the initialization phase of each time shift (line 2 of
Algorithm 2), the central unit broadcasts the price coeffi-
cients K k = (Kh)

k+H−1
h=k and the wind speed forecasts v̄k =

(v̄(h))k+H−1
h=k for the entire control horizon.

Now for clarity, let us divide the active users set N into
ND and NS , where N = ND ∪ NS and ND ∩ NS = ∅. The
first set comprehends the users that rely on the information
given by the central unit to calculate the expected value for the
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Fig. 7. Illustration of the DSM scheme with three prosumers.

Algorithm 2 Rolling-Horizon pFB Algorithm

wind power forecast for the control horizon ω̄k = (ω̄(h))k+H−1
h=k

(line 14). Conversely, the second set contains the users utiliz-
ing the SAA cost function (33): these users believe that the
implementation of an approximated stochastic strategy will
bring a profitable advantage. Latter users generate a different
PDF for each time slot of the whole control horizon (line 7).
The PDFs can be based only on the historical data (21),
the wind speed forecast (23), or both (25). In the last two
cases, users may also apply the instability index during the
PDFs creation phase. Consequently, they are obtaining M IID
samplings for every time slot of the control horizon from the
PDFs (line 8). Therefore, each user defines its cost function
(line 10) as

J̃ k
i =

�
J̄ k

i

�
xk

i , xk
−i , ω̄

k
�
, if i ∈ ND

Ĵ k
i

�
xk

i , xk
−i , ω̂

k
i

�
, if i ∈ NS .

(34)

TABLE I

OFFSHORE METEOROLOGICAL STATION LOCATION

We underline that the superscript k is used to indicate that the
cost functions and the variables refer to the control horizon
{k, . . . , k + H − 1}.

A new aggregated game is defined by considering the global
feasible set X k and the cost functions’ collection J̃k = ( J̃ k

i )
|N |
i=1

(line 12-13). Moreover, the optimization problem is solved for
the whole control horizon by calculating an equilibrium via
Algorithm 1 (line 14).

The solution of the GNE problem is the optimal strategy
x∗,k

i for each user i ∈ N . However, following the receding
horizon implementation, only the first step of the solution
x∗

i (k) = (g∗
i (k), s∗

i (k))
	 is implemented. Lastly, each user

updates its local feasible set �k+1 considering the implemented
strategy. Fig. 7 shows an example of the DSM scheme with
three prosumers.

V. NUMERICAL SIMULATIONS

In this section, we present the results of the proposed
methodology, obtained using real data from several offshore
platforms in the North Sea. Each of these offshore drilling
rigs includes a meteorological station that measures the wind
speed, and other hourly averaged weather data. In particular,
we chose eight platforms connected with the Meteorological
Assimilation Data Ingest System (MADIS) [36], from which
it is possible to obtain historical data and hourly current
measured data. In Table I we show the platforms’ coordinates;
it is relevant to point out that several existing wind farms
are present in the area (e.g., the Orsted Hornsea wind farm
is located approximately at 53.880 N 1.790). We collect the
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TABLE II

WEIBULL PARAMETERS FOR THE CONSIDERED STATIONS

forecasts employing a script that calls every hour within an
API several different weather providers to obtain the next
24-h wind speed forecasts for all the wind farms locations
[37], [38]. The employed wind speed forecasts data cover
a period of nine months. We underline that the forecasting
models include the data of the offshore platforms through the
MADIS.

A. Historical Weibull Parameters

As discussed earlier, the Weibull parameters have a signif-
icant impact on the historical wind power PDF. Therefore,
to take into account this issue, we estimate the parameters for
each platform and every day of the year. We calculate them by
centering a 30-day window on a specific day and by getting
all the available historical data for this window. For example,
we estimate the Weibull parameters for August 21 by getting
all the measured wind speed values in the interval between
August 6 and September 5 for all the past available years
(e.g., from 2009 to 2019). Table II shows the Weibull parame-
ters calculated employing the data of the entire year and only
for the month of May. The period of the year and the location
cause the discrepancy between the parameters. For instance,
the platforms closer to the coast hold a lower λw than the other
platforms.

B. Forecast Standard Deviation

In our model, we assume that the wind speed forecasts’
errors follow a normal distribution. Therefore, the only para-
meter to determine is the standard deviation σ . We obtain
this parameter by performing an analysis of the weather
providers’ past forecasting errors. More in detail, for each
weather provider and each station, we estimate through a
linear regression procedure the standard deviation employing
the forecast value and the forecasting horizon. The results are
comparable with the literature and show that some weather
providers are more accurate than others. Moreover, the relation
between the forecasting horizon, the forecast wind speed
value, and the standard deviation can have stronger or weaker
importance. We employ the relations mentioned above to
assign to each forecast a reasonable standard deviation value.
In Fig. 8 we show these relations for one of the meteorological
stations mentioned above.

C. Instability Index

In this work, we propose an instability index to evaluate
the overall weather conditions. We calculate it by comparing

Fig. 8. Correlation between the standard deviation of the prediction error,
the predicted wind speed value, and the forecast horizon for the station 62 121.

Fig. 9. Instability index for the station 62 121. (a) Relative percentage
variation of the forecast standard deviation. (b) Relative frequency.

the measured wind speed value in a time slot and the six past
forecasts made for it. We calculate the relationship between
the instability index and the standard deviation empirically.
In particular, we bucket the index, and we calculate the
standard deviation of the errors of the binned data.

Fig. 9(a) shows how the standard deviation changes com-
pared with its mean value. The figure indicates approximately
that for values of the index lower than one, the standard devi-
ation is lower than the average value. Furthermore, Fig. 9(b)
shows the relative frequency of the instability index. The index
is mainly concentrated between 0.5 and 1; this indicates quite
stable weather conditions, while higher values mean unstable
conditions. Lastly, in Fig. 10 we show the instability index
variability. The figure shows that the index is highly variable
on a long term analysis, while it is relatively stable within a
few hours.

At each time slot, we employ the index to increase or reduce
the standard deviation of future forecasts. However, due to the
index variability, we apply it to modify only the subsequent
three slots of the control horizon.

D. Numerical Case Study

Once we have introduced the data set, let us now define the
smart grid model employed in the numerical simulations. The
smart grid has 500 users, 50 of which are active. We consider
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Fig. 10. Instability index for the station 62 121. (a) Variation in four weeks.
(b) Variation in 12 h.

a total simulation time of 30 days and a control horizon
of 24 h. The wind turbine is a NedWind-40 with a rated
power of ωrated = 500 kW and wind speed characteristic values
vin = 4 m/s, vrated = 15 m/s, vout = 25 m/s. The prosumers
have a consumption curve that follows the average load hourly
curve for UK households (without electric heating) [39]. The
load curve has a daily average of

�
ei(h) = 9.5 kWh and

presents a peak in the evening hours. The cost coefficient Kh

is 0.20 e/kWh for the daily hours (from 8:00 to 24:00) and
0.15 e/kWh at night (00:00 to 08:00). For the sake of sim-
plicity, the global constraints are proportional with the average
aggregate load. For the sake of simplicity, we assume for
each prosumer a null maximum controllable energy demand,
i.e., ξi = 0, ∀i ∈ N . The generation cost is supposed linear
with a coefficient ηi = 0.04 e/kWh; moreover, the maximum
hourly dispatchable generation is gmax

i (h) = 0.1 kWh while
the maximum generation is ψi = 0.8Hgmax

i (h).
The storage devices are lithium-ion batteries, with a leakage

rate α = 0.90, charging and discharging inefficiency equal

to β
(+)
i = 0.99 and β

(−)
i = 1.01, ci = 4 kW the battery

capacity, smax
i = 0.5ci K Wh the maximum charging rate

and cinitial
i = qmin

i = 0.25ci . Let us assume that all active
users hold one dispatchable generation device and one energy
storage device and that for the sake of simplicity, all the
characteristics of these devices are identical. The computations
for all the users are done in parallel. The gradient coefficient
for Algorithm 1 is γ = 0.1 and the termination criterion is
�x+ − x�2

2 + �λ+ − λ�2
2 ≤ 0.1.

We added an additional day at the end of the simulation
period with null energy demand and null wind power produc-
tion. By adding this day, keeping energy in the battery would
be a hidden cost for the prosumers. Therefore, we implicitly
have that at the end of each simulation the state of charge
of each battery equals the initial charge, thus, allowing us to
compare fairly all the different sets of simulations. In Fig. 11,
we show the average state of charge for all active users i ∈ S.
From the figure, it is evident the highly cyclic pattern and that
the state of charge at the end of the simulation period equal

Fig. 11. Results for station 62 121: Mean state of charge of all batteries.

Fig. 12. Results for station 62 121 as a function of the number of samples.
(a) Final cost standard deviation. (b) Computation time.

the initial one. Note that we also plotted the additional day to
better show this behave.

Next, we perform an analysis from a stochastic point of
view. Therefore, performing a single simulation for a defined
set of data would not be significant. Hence, for each set of data,
we repeat the simulation 50 times, which allows us to perform
a more reliable analysis. In addition, in our analysis, we aim
at evaluating the savings obtained employing the proposed
stochastic approach with respect to the standard expected
value approach. However, before doing so, one could think
of how big should the sampling size be to obtain an accurate
approximate stochastic function. Hence, in the first case of
analysis, we evaluate the results that a generic stochastic
user obtains by increasing the number of samples. Let us
remark that, for every sample size, we perform the simulation
50 times, and we evaluate the overall final results.

Fig. 12(a) plots the standard deviation of the total costs
that the stochastic user i ∈ NS pays to the grid. With the
employed set of data, we obtain the convergence to the real
stochastic value with approximately 200 samples; however,
the total simulation time increases with the number of samples
due to the increased complexity in the cost function.

Let us analyze the computational aspects of the proposed
approach. Simulations are carried out in the MATLAB envi-
ronment on a laptop equipped with a 1.3-GHz Intel Core
i5 CPU and 8-GB RAM. By employing the aforementioned
termination criterion, and analyzing the results of all the
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Fig. 13. Computational results for station 62 121. (a) Number of iterations
required for each time shift. (b) Iterations versus convergence plot.

TABLE III

ACTIVE USERS’ STRATEGY (TEST USER)

stations, Algorithm 1 required, on average, approximately
40 iterations to converge. Moreover, the algorithm did not
require more than 92 iterations with all the tested set-
tings. Concerning the simulation time, on the aforementioned
machine, Algorithm 1 required, on average, 5.45 s to converge
while the minimum and the maximum required time are
1.86 and 10.01 s, respectively. For instance, in Fig. 13(a),
we show the number of necessary iterations at each time shift
of the simulation period, moreover, in Fig. 13(b), we show
the convergence to iteration plot for the time slot that required
more iterations. Note that with 50 users, the chosen termina-
tion criterion is extremely severe.

The last case of analysis examines the performance of the
proposed stochastic approach when different PDFs for the
samples are employed. We analyze the results from the point of
view of a single active user, named “test user.” In Table III we
show a recap for the different strategies adopted by the active
user in the different sets of data. We calculate a naive cost
for the test user by using the strategy labeled Sim01; this is
the cost that the test user pays where he employs the expected
value approach, together with all its active competitors.

In Fig. 14(a), we employ a Boxplot graph to show the
savings or the losses that the test user obtains by adopting
a different strategy to handle the uncertainty in wind power
availability. In particular, using the strategy labeled Sim02,
we show the results obtained with the mere use of the historical
PDF and by neglecting the use of updatable forecasts; in this
case, we obtain a loss with respect to the use of the forecast

Fig. 14. Results for station 62 121. (a) Boxplot of the test user savings with
respect to the expected value strategy. (b) Boxplot of the total grid savings
by employing a stochastic approach.

expected value. In addition, by the strategies labeled Sim03,
Sim04, Sim05, and Sim06 we show how much the test user can
save on average by adopting the proposed stochastic strategy.
The simulation results show that the use of a better PDF,
made by employing the instability index and/or by creating a
composed PDF, increases the proposed approach performance.

Lastly, in Fig. 14(b) we show the total grid cost (the
so-called welfare) when all the users employ a stochastic
strategy, see Table IV for a recap of the strategies adopted
by all the active user. The simulations show that, when all
the active users consider a wind power PDF (i.e., in cases
Sim13, Sim14, Sim15, Sim16), obviously the savings are
lower than in the case of a single stochastic user (i.e., in cases
Sim03, Sim04, Sim05, Sim06), as shown by the comparison
of Fig. 12(a) with Fig. 12(b). On the other hand, the results
in Fig. 12(b) confirm that there is a clear saving with respect
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TABLE IV

ACTIVE USERS’ STRATEGY (ALL PROSUMERS)

to the expected value case. Finally, the higher savings are
obtained in Sim16, i.e., when the composed PDF is used
together with the instability index.

VI. CONCLUSION

We presented a novel approach to implement DSM in smart
grids with uncertain wind power availability. The evidence
from this study shows that in realistic situations, consid-
ering different wind power availability scenarios increases
the advantage of individual users against the competitors.
In addition, we show that by including historical data and by
taking into account the weather conditions with the proposed
instability index, it is possible to improve the results signifi-
cantly. Besides, the proposed approach is also able to improve
the overall grid welfare.

Future work should focus on including the wind power
availability in the global grid constraint, for instance,
by employing a penalty function or chance constraints.
Moreover, the model could be enhanced by including other
devices such as different kinds of controllable loads or individ-
ually owned energy sources and integrating additional objec-
tive functions and technical constraints affecting the operations
of system components.
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