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Abstract—Foot-mounted inertial sensors become popular in 

many indoor or GPS-denied applications, including but not 
limited to medical monitoring, gait analysis, soldier and first 
responder positioning. However, the foot-mounted inertial 
navigation relies largely on the aid of Zero Velocity Update (ZUPT) 
and has encountered inherent problems such as heading drift. This 
paper implements a pedestrian navigation system based on dual 
foot-mounted low-cost inertial measurement units (IMU) and 
inter-foot ultrasonic ranging. The observability analysis of the 
system is performed to investigate the roles of the ZUPT 
measurement and the foot-to-foot ranging measurement in 
improving the state estimability. A Kalman-based estimation 
algorithm is mechanized in the Earth frame, rather than in the 
common local-level frame, which is found to be effective in 
depressing the linearization error in Kalman filtering. An ellipsoid 
constraint in the Earth frame is also proposed to further restrict 
the height drift. Simulation and real field experiments show that 
the proposed method has better robustness and positioning 
accuracy (about 0.1-0.2% travelled distance) than the traditional 
pedestrian navigation schemes do. 

 
Index Terms—Zero velocity update, Observability analysis, 

Pedestrian navigation, Foot-mounted IMU, Ultrasonic ranging. 
 

I. INTRODUCTION 

he pedestrian navigation system (PNS) based on inertial 
measurement Units (IMU) in GPS-denied environment has 

abundant applications, including but not limited to medical 
monitoring and recovery [1], human motion capture for 
animation [2], industrial inspections, and first responder search 
and rescue [3]. The IMU-based PNS can generally be classified 
into the non-foot-mounted type and the foot-mounted IMU type 
[3, 4]. Generally, the non-foot-mounted PNS detects the foot 
steps, estimates the heading angle and the step length, and then 
calculate the position change. Although this method allows 
IMU to be carried at any part of the body, it relies on an ideal 
walking model and does not utilize the translational information 
provided by IMU [5]. Recently, the deep learning based PNS 
were also proposed for estimating the step length and heading 
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angle [6, 7]. While, the foot-mounted PNS tracks real-time 
position and orientation by integrating gyroscope and 
accelerometer measurements. However, an open-loop or free 
inertial navigation system (INS) will lead to cumulative error 
over time, especially for low-cost Micro Electro-Mechanical 
sensors (MEMS).  

In order to suppress the cumulative INS error, the most 
widely used technique is the Zero Velocity Update (ZUPT) 
method [8], which assumes that the foot-mounted IMU is 
stationary during the mid-stance phase of walking. Once the 
mid-stance phase is detected [9, 10], the zero velocity is treated 
as a pseudo measurement to restrain the INS by a Kalman filter. 
The ZUPT method can mitigate most of the cumulative error, 
but the heading drift, as well as the yaw gyro bias, is one of 
major obstacles for autonomous pedestrian navigation over 
extended period using the foot-mounted IMU [8, 11, 12].  

A number of methods have been proposed to solve this 
problem. These methods can be divided into the constraint-
based methods [13-19] and extra sensor-assisted methods [20-
23]. The works presented in [13, 16] attempt to correct the yaw 
gyro bias by assuming a constant heading if a person walks on 
a straight line. When the users walk back to the starting position, 
a zero position update is used in [15]. Some authors utilize an 
inequality constraint in the Kalman filter in view of the fact that 
there exits an upper bound on the maximum spatial separation 
between two feet in a system of dual foot-mounted IMUs [18, 
24]. Similarly in [17], the minimum inter-foot distance is 
assumed constant, and a soft equality constraint is applied in the 
dual foot-mounted system. 

Among the sensor-assisted methods, it is quite common to 
acquire the heading by using a magnetometer [13, 21]. The 
work in [20] proposes a PNS system aided by the signal strength 
of several active RFID tags placed at known locations in a 
building. In [22], the relative position and attitude between two 
feet are measured by a foot-mounted camera and an infrared 
LED and then used to aid the dual foot-mount IMUs. A visual-
inertial approach is presented in [23] that fuses the data from 
the dual foot-mounted IMUs and a head-mounted IMU-camera 
pair by a batch least-squares algorithm.  
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In [25], a dual foot-mounted IMUs system with the foot-to-
foot ranging measurement is presented to estimate the relative 
foot position for medical monitoring and recovery applications. 
Despite the authors assertion that their system cannot be used 
for navigation purposes, an example in [11] has demonstrated 
that dual foot-mounted tactical-grade IMUs with foot-to-foot 
ranging can indeed be used for PNS. The directional distance 
between two feet is employed to aid the PNS system in [26], 
but the positioning accuracy appears not quite satisfying. For 
easy reference, Table I summarizes current dual foot-mounted 
autonomous PNS systems and their technical features.  

In this paper, we implement a PNS system for autonomous 
navigation with dual foot-mounted consumer-grade IMUs and 
ultrasonic inter-foot ranging (named f2IMU-R hereafter) and 
demonstrate its navigation capability for potential applications. 
Compared against previous works, the major technical 
contribution rests on the global observability analysis of the 
ZUPT and the inter-foot ranging, the Earth-frame (e-frame) 
mechanization for mitigating the EKF linearization errors and 
an ellipsoid constraint for suppressing the height drift.  

The rest of this paper is organized as follows. Section II 
reviews the ZUPT-based PNS algorithm in the e-frame. Section 
III describes the f2IMU-R with the ellipsoid constraint. Global 
observability analysis and observability improvement due to the 
inter-foot ranging will be discussed. Sections IV-V report the 
simulation and the field test results. The conclusion is drawn in 
Section VI.  

II. INS MECHANIZATION AND ZUPT-AIDED PNS 

A. INS Mechanization 

The dynamic equations for a strapdown INS in the e-frame 
are given by [27] 

 e ep ν   (1) 

   2e e b e e e
b a a ie     ν C f b n ω ν g   (2) 

  e e b
b b eb C C ω   (3) 

 ,b b b e
eb ib g e ie g   ω ω b C ω n   (4) 

where 
Te e e ex y z   p  and eν  denote the position and the 

ground velocity in the e-frame, e
bC  denotes the body’s attitude 

rotation matrix with respect to the e-frame, bf  is the specific 
force measured by accelerometers and expressed in the body 

frame (b-frame), ab  is the accelerometer bias,  0 0
Te

ie  ω

is the Earth’s rotation rate expressed in the e-frame, eg  is the 

gravity vector in the e-frame, b
ebω  is the body’s angular velocity 

with respect to the e-frame and expressed in the b-frame, the 

skew symmetric matrix    is defined so that the cross 

product  x y x y    is satisfied for arbitrary two vectors, 
b
ibω  represents the angular velocity measured by gyroscopes 

and gb  represents the gyroscope bias. an  and gn  are i.i.d zero-

mean Gaussian noises with covariance 2
3a I  and 2

3g I , 

respectively. And, nI  denotes a n-dimensional identity matrix. 

The accelerometer bias ab  and the gyroscope bias gb  are 

modeled as random walks 
 g bgb n   (5) 

 a bab n   (6) 

where bgn  and ban  are i.i.d zero-mean Gaussian noises with 

covariance 2
3ba I  and 2

3bg I . The attitude, velocity and 

position in the e-frame are calculated by integrating Eqs. (1)-
(3), following the standard mechanization in the inertial 
navigation community [27]. In addition, the position in the 
navigation frame (n-frame), designated as North-Up-East 
without the loss of generality, can be derived from the e-frame 

position ep  by an iterative calculation (e.g. [27] and [28]). And, 

the mutual transformation of attitude and velocity between the 
e-frame and the n-frame is straightforward, that is, 

 ,   b b e n n e
n e n e C C C ν C ν   (7) 

where n
eC  is the rotation matrix from the navigation frame to 

the earth frame. 

TABLE I 
 A SUMMARY OF DUAL FOOT-MOUNTED PNSS  

Year  Leading Author  Sensors Used  Major Technical Feature 

2011  Laverne [9]  IMU & Sonar 
Inter‐foot distance measured by sonar; 

Tactical IMUs 

2012  Skog [16]  IMU 
Upper bound of feet distance imposed 

by inequality‐constraint KF 

2013  Hung [20]  IMU & Camera  Relative feet pose estimated by foot‐mounted camera 

2015  Weenk [23]  IMU & Sonar  Inter‐foot ranging for gait parameter analysis 

2018  Ahmed [21]  IMU & Camera 
Google glass and two foot‐mounted IMUs used for body pose estimation 

by batch‐LS method 

2019  Niu [15]  IMU 
Minimum constant inter‐foot distance imposed 

by equality‐constraint KF 

2019  Wang [24]  IMU & Sonar  Two pairs of sonars for directional inter‐foot ranging 

2019  Zhao [17]  IMU  Inverted pendulum gait model 
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B. PNS in State-space Form 

The ZUPT-aided PNS assumes that the foot undergoes a 
stationary phase during every step of walk. A number of static 
detectors have been proposed based on 
accelerometer/gyroscope measurements [9, 10]. This paper 
uses the angular rate energy detector (ARE) to identify the 
stance phase [9]. Once the stance phase is identified, the zero 
velocity update can be fused with the above INS mechanization 
by an error-state Kalman filter. 

Define the error state as the state estimate subtracting the true 
state, i.e. ˆ  x x x . Specifically, the attitude estimate is 
defined as being related to the true attitude and the 

corresponding attitude error eψ  by  3
b b e
e e   C C I ψ , 

The error states are collectively defined as 

 ,
TeT eT eT T T

g a      x ψ ν p b b   (8) 

Derivation of the first-order error state equation of the process 
and measurement can be found in [27] and is summarized 
below. The PNS system model in the state-space matrix form is 
given by  

 
v v v

 
 

 
  

x f x dw

y H x n


  (9) 

where the dynamic noise 
TT T T T

g a bg ba   w n n n n  and vn  

denotes the measurement noise with covariance 2
3v I . The 

matrices involved are defined explicitly as 

 
3 3 3

3 3 3

3 3 3
3 3

3 3 3 3

3 3 3 3 3
3 3 3 3

6 3 6 3 6 3 6 3 6 3
3 3 3 3

2
  

e
e e b
ie b e

be b e e
b ie b

    

                           

C 0 0 0ω 0 0 C 0
0 C 0 0

C f ω 0 0 C
f d 0 0 0 0

0 I 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I

  

  3 3 3 3 3v H 0 I 0 0 0   (10) 

III. PEDESTRIAN NAVIGATION SYSTEM WITH DUAL FOOT-
MOUNTED IMUS AND INTER-FOOT RANGING 

A. PNS Algorithm for Dual Foot-mounted IMUs and Inter-foot 
Ranging 

For a dual foot-mounted PNS, two subsystems, an IMU and 
an ultrasonic ranging combo module, are attached to the 
pedestrian feet as shown in Fig. 1. The inter-foot distance is 
related to the two feet positions by  

 , ,
e e b e e b
L b L L R b R R d dd n n      p C l p C l l   (11) 

where the subscripts L  and R  denote the left foot and the right 
foot, respectively.   denotes the vector magnitude, bl  is the 

lever arm between the IMU and the ultrasonic unit on the same 
foot, dn  denotes the distance measurement noise with 

covariance 2
d . Note that the measurement equation (11) is 

much simpler than that expressed in the n-frame, which, as 
shown in later section, is beneficial to reduce the EKF 
linearization error as well as the complexity of observability 
analysis. Correspondingly, the dual-IMU joint state vector is 
defined as  

 
TT T

L R     X x x   (12) 

The dynamic equation is expressed as 

 , 3 15 ,

, 3 15 ,

, ,

v L v v L

v R v v R

d L d R dd n

 


  







  


    
            
         

X F X DW

y H 0 n

y y 0 H X n

H H



  (13) 

where the dynamic noise 
TT T

L R   W w w  and the matrices 

involved are defined as 
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H l C l 0 l 0 l
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f 0 d 0
F D

0 f 0 d

  (14) 

B. Ellipsoid Constraint 

Given that the state is estimated in the e-frame, we next 
propose a new Earth ellipsoid constraint to mitigate the height 
drift. Specifically, if one of the foot-mounted IMUs’ height 
variation is less than a prescribed threshold   between two 
adjacent stance phases, expressed as  

    k m kh t h t      (15) 

where k mt  and kt  are the times of previous and current stance 

phase, respectively, then it is reasonable to assume that the foot 
lies on a common ellipsoid surface during the neighboring 
stance phases, that is, 

 
   
 

 
  

2 2 2

2 2
2

1
1

e e e

ec

E E

x y z
n

R h R f h


  

  
  (16) 

where f  denotes the earth eccentricity, ER is the transverse 

radius of curvature. ER  and h  correspond to the state at k mt  , 

and ecn  denotes the ellipsoid constraint noise with covariance 
2
ec . 

Certainly, the two feet are both subject to their own ellipsoid 
constraints and the first-order linearized measurement equation 
is collectively given as  

 , , 1 15 ,

, 1 15 , ,

ec L ec L ec L

ec R ec R ec R

y n

y n









     
      

     

H 0
X

0 H
  (17) 

where  

 
Fig. 1.  Pedestrian navigation system with dual foot-mounted IMUs and inter-
foot ranging (circle: ultrasonic ranging modules; square: IMU modules). 
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H 0 0  

 (18) 
Figure 2 displays the information flow of the proposed PNS 

estimation algorithm. A user remains stationary for a few 
seconds to perform system initialization. The initial position is 
by a user input, the initial velocity and the accelerometer bias is 
assumed to be zero, the initial gyroscope bias is approximated 
by averaging the stationary gyroscope outputs and the initial 
attitude is obtained by accelerometer and magnetometer 
measurements [27]. Then the initial state and the corresponding 
covariance in the n-frame is converted to the e-frame [27]. 
Finally, the estimated state by the EKF is transformed to the n-
frame.  

C. Observability Analysis 

Many previous works have demonstrated that all states 
(except the position, the heading angle and the gyroscope bias 
about the gravity direction) are observable under the ZUPT 
measurement, see e.g. [8, 11]. Herein, we provide a global state 
observability analysis, proposed by the authors in [29, 30], of 
ZUPTs and inter-foot ranging, which highlights the 
observability benefit of the inter-foot ranging. The main idea of 
the global observability analysis is to constructively develop a 
sufficient condition for the initial state determination by making 
use of all inputs and outputs over the whole time interval under 
investigation. In contrast, the traditional observability methods 
based on the corresponding linearized system only use the local 
system information. Interested readers are referred to [29, 30] 
for details. 
1) Observability with ZUPT Measurement  

It should be noted that the observability with ZUPT is 
performed in the n-frame so as to yield observability conclusion 
that is intuitive and for direction comparison with the previous 
literature. 

Theorem 1: The level angles, gyroscope bias and the 
accelerometer bias are observable if and only if K  has full 
column rank ( K  is defined in (29)).  

Proof: Ignoring the Earth’s rotation and measurement noise, 
the time derivative of body’s velocity in n-frame is given as 

  n n b n
b a  ν C f b g   (19) 

where  0 0
Tn g g . Assume the foot remains still at both 

the initial time zero and the time t . It means the velocity 
changes from time zero to t  is zero, i.e., 

  
0

t n b n
b a dt   C f b g 0   (20) 

By the chain rule of the attitude matrix and ignoring the changes 

of n-frame, n
bC  at time t satisfies 

    
 

 
 

 
 

 
     

 0 0 0

0 0 0n t n t n b bn n
b bb t n b b t b tt   C C C C C C C   (21) 

where  
 0b

b tC denotes the attitude changes of the b-frame and 

 0n
bC is the initial attitude. Substituting (21) into (20) yields 

 

   
   

 

0

0

(0)
( )0

0 0

sin
cos cos 0
sin cos

b
b

t bn b n
b ab t

nbt b
a nb nb

nb nb

t

dt t

dt gt


 
 

  

 
    
  





C

f bC

C f b g

  (22) 

where nb  and nb  are level angles. The yaw is eliminated 

above implies that it is unobservable by ZUPT. The integral 
term in Eq. (22) can be approximately calculated to the first 
order as (See details in Appendix B) 

  (0)
( )0

t b
a g

b
b t adt    f b χ γC b b α   (23) 

where χ , γ  and α  are expressed as  
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χ
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C v
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 (24) 

where (0)
( )k

b
b tC  denotes the erroneous rotation matrix from the 

initial time to kt  computed by the error-contaminated body 

angle velocity b
ibω . M  is the number of samples in the time 

interval [0, ]t , 1θ , 2θ are the first and the second samples of 

the gyroscope-measured increment angle and 1v , 2v are the 

first and the second samples of the accelerometer-measured 

 
Fig. 2. Information flow in proposed pedestrian navigation system. Arrowed lines indicate information flow directions and associated symbols mean that their 
computation needs to feed on the source information. 
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incremental velocity, respectively, during the update interval 

 1,k kt t  . The quantities v , θ and rJ  are defined as  

 

   
1 2

1 2 1 2 1 2 1 2

1 2

2 3

   

              

θ θ θ

v v v θ v v θ v v θ
 

  (25) 

 3

sin sin 1 cos
( ) 1 T

r

  
  

  
      

 
J θ I aa a   (26) 

where  θ ,  a θ θ and rJ  is the right Jacobian of 

the special orthogonal whose determinant is +1, denoted 

 3SO , as given in [31]. Therefore, Eq. (22) can be 

approximated to the first order as  

  
a

g



 
 
 
  

α χ γ η
b
b kX
x

   (27) 

where  

 
 

3

sin cos cos sin cos
T

nb nb nb nb nb

gMT

     



 

η I

x
  (28) 

For n+1 ZUPTs, n constraints of the initial states can be 

similarly established. Let 1

TT T
n   y α α  and  

1

TT T
n   K k k , where nα and nk  are the α  and k  in the 

n-th constraints given in (27). The initial state X  can be 
uniquely determined if and only if K  is a column full rank 
matrix. 

   1T T
X K K K y   (29) 

Thus, the state X is observable if K  is a column full matrix. ■ 
The complexity of K  does not allow a tractable rank 

analysis. Thus, we turn to a numerical investigation in the 
Section IV, which will show that K  has full column rank if the 
foot-mounted IMU undergoes straight walking and a turning. 
Note that the requirement of straight walking and a turning is 
quite modest, that is to say, the requirement is almost certainly 
satisfied in practice. However, there exists a relatively small 
eigenvalue of TK K  and the estimation of the gravity-direction 
gyroscope bias is not satisfying. These observations 
collectively lead us to conclude that the heading gyroscope bias 
is just weakly observable.  
2) Observability with Inter-foot Ranging  

The observability with the inter-foot ranging measurement is 
analyzed based on the premise of (two IMUs) known body’s 
velocity, accelerometer bias, level angles and level gyroscope 
bias by ZUPT. 

Lemma 1 [30]: Given known points ka , 1,2,...,k m , in 

three-dimensional space satisfying k r a x , where x  is an 

unknown point. If points ka  do not lie in any common plane, 

then x  has a unique solution. 

Theorem 2: For the case of small lever arm of the ultrasonic 
unit, the dual-IMUs’ relative position in the e-frame ,

e
L Rp  is 

observable. 
Proof: Ignoring the measurement noise and the small lever 

arm, the distance measurement in (11) is given as  

      e e
L Rd t t t p p   (30) 

where the feet position at time t  are calculated respectively by 
integrating (1) 

 
   

   
0

0

0

0   

te e e
L L L

te e e
R R R

t d

t d





 

 




p p ν

p p ν
  (31) 

Substituting the above equations into (30) yields 

      , 0
0

te e e
L R L Rd t d  p ν ν   (32) 

where      , 0 0 0e e e
L R R Lp p p  denotes the initial relative feet 

position expressed in the e-frame. Because the feet velocities 
are observable by the ZUPT measurement, Eq. (32) reveals that 

the solution of  , 0e
L Rp  can be any point on the sphere surface 

with radius  d t  and centering at  
0

t e e
L R d ν ν . According to 

Lemma 1,  , 0e
L Rp  can be uniquely determined if 

 
0

t e e
L R d ν ν  for all times do not lie in any plane. The 

condition is quite moderate for normal walks that change 

directions now and then. Therefore, ,
e
L Rp  is observable. ■ 

Theorem 3: The dual-IMUs’ relative heading is observable. 
Proof: For both feet, we have with (1) and (2)  

 
 
 

,

,

2

2

e e b e e e
L L L a L ie L

e e b e e e
R R R a R ie R

    

    

ν C f b ω ν g

ν C f b ω ν g




  (33) 

Attitude transformation does not change the magnitude of a 
vector, so subtracting the above two equations and taking the 
norm give 

    , , , ,2 =e e e b R b
L R ie L R L a L L R a R    ν ω ν f b C f b   (34) 

where ,
e e e
L R R L ν ν ν , ,

e e e
L R R L ν ν ν   , R e T e

L R LC C C . Because 

the level angles decoded in R
LC  and the accelerometer bias are 

observable/known under the ZUPT measurement (according to 
Theorem 1), the heading angle is the only unknown variable in 

(34). Thus, the heading angle in R
LC  can be readily determined 

from the equality in (34). It means the dual-IMUs’ relative 
heading is observable. ■ 

Theorem 4: The dual-IMUs’ relative gyroscope bias is 
observable. 

Proof: Taking time derivative of R
LC  yields 

  , , , ,
R R L R b L b
L L RL L ib L g L R ib R g R

        C C ω C ω b C ω b  (35) 

Define the relative gyroscope bias in the left foot frame as  
 , , ,

L L
L R R g R g Lb C b b   (36) 

(35) can be expressed as  
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 , , ,
L L b R b L R
L R R ib R L ib L R L    b C ω C ω C C   (37) 

As R
LC  is observable from Theorem 3, ,

L
L Rb  can be uniquely 

determined, so is the relative gyroscope bias in the right foot 

frame by , ,
R R L
L R L L Rb C b . Thus, the dual-IMUs’ relative 

gyroscope bias is observable. ■ 
As shown by the above analysis in Theorems 2-4, the inter-

foot ranging can make the relative heading, position and 
gyroscope bias in the gravity direction observable. However, 
the absolute heading and heading gyroscope bias are still 
unobservable or weak observable. The Theorem below predicts 
that the full observability might be acquired by the inter-foot 
relative position vector. Note that the relative position 
measurement implies the relative ranging. 

Theorem 5: If the dual-IMUs’ relative position is measured, 
then the attitudes and the gyroscope biases of the dual-foot 
IMUs are totally observable. 

Proof: The relationship between ,
e
L Rp  and ,

L
L Rp  is expressed 

as 

 , , ,
e e L
L R b L L Rp C p   (38) 

The level angles in ,
e
b LC  are known by ZUPT and the dual-

IMUs’ relative position in the e-frame, ,
e
L Rp  is known by the 

inter-foot ranging according to Theorem 2. Thus, if the dual-

IMUs’ relative position in the left foot-IMU frame ,
L
L Rp  is 

known by measurement, then the heading angle of the left-foot 

IMU can be solved by (38). Taking time derivative of ,
e
b LC  and 

ignoring the Earth rotation yield 

  , , , ,
e e b
b L b L ib L g L  C C ω b   (39) 

So the left-foot IMU’s gyroscope bias can be calculated by (39) 

 , , , ,
b e T e

g L ib L b L b L  b ω C C   (40) 

Apparently, the above analysis also applies to the right foot. 
Hence, the attitudes and the gyroscope biases of the dual-foot 
IMUs are observable, if the dual-IMUs’ relative position are 
available. ■ 

Theorem 5 presents a picture of a promising improvement of 
the dual foot-mounted IMUs system. And, the inter-foot 
relative position might be measured by using a camera on one 
foot to observe the known points on the other foot. 

IV. SIMULATION RESULTS 

In this section, the performance of ZUPT and ZUPT+RNG 
are compared by simulating a person walking around a square 
with two feet mounted IMU and inter foot ranging. The 

Fig. 3.  Simulated states of a person walking from south to north in the first 6
seconds. (a): two feet displacement in north direction, (b): two feet
displacement in up direction, (c): two feet pitch angle (solid blue line: left foot, 
dash green line: right foot) 
  

Fig. 4.  Simulated velocity of a person waking from south to north in the first 
6 seconds. (solid blue line: velocity in the north direction, dash green line: 
velocity in the up direction, dotted red line: velocity in the east direction.) 
  

Fig. 5.  Heading angle during a 90-degree right turn. 

TABLE II 
PARAMETER SETTING IN SIMULATION 

Stride length ( sl )  1.3m  Ranging noise ( dn )  0.02m 

Max height ( hl )  0.14m  Max pitch ( max )  0.55rad 

Swing time ( ut )  0.8s  Gyro noise ( bn )  0.5 deg h  

Stance time ( st )  0.4s  Acc. noise ( an )  0.001 2m s hz

Turning time ( ot )  0.2s   

Lever arm 
b
Ll =[0.02,0.05,‐0.03] 

b
Rl =[0.03, ‐0.03,0.04] 
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observability of ZUPT as well as ZUPT+RNG analyzed in 
Section III are also verified by simulation.  

A. Simulation Settings 

Assume one walks along a straight line in the horizontal 
plane with the heading angle 0 . The initial position, velocity 

and Euler angle of the left foot in the n-frame are 

   0 0 00
Tn

L L hp ,    0 0 0 0
Tn

L ν  and 

 , 00 0
Tb

n L θ , respectively. 

For simplicity, each walking step is divided into two phases: 
swing phase and stance phase (with time durations ut  and st ) 

and the period of one step is u sT t t  . In the thk ( 0k  ) 

swing phase, the relative position of the left foot with respect to 

the last stance phase  Tn u ep p p p  is set to 

 

    

  
    

0

0

1 cos cos 2

1 cos 2 2

1 cos sin 2

n s u

u h u

e s u

p l t kT t

p l t kT t

p l t kT t

 



 

    

    

    

  (41) 

where np , up  and ep  are relative displacements in north, up 

and east directions, respectively. sl  denotes the length of one 

stride and hl  denotes the maximum vertical displacement in 

each step. The absolute position of the left foot is calculated by 

     ,n n
L Lt f kT p p p   (42) 

where  f   is a function to calculate the position in the n-

frame according to a known position in the n-frame and the 
relative position (See detail in Appendix A). The velocity of the 

left foot  Tn
L n u e  ν  can be calculated by taking time 

derivative of (41) 

 

   
 

   

0

0

sin cos 2

sin 2

sin sin 2

n s u u

u h u u

e s u u

l t kT t t

l t kT t t

l t kT t t

   

  

   

   
   
   

  (43) 

Fig. 6.  Accelerometer bias estimate by least square in (29) (solid line:
estimated value, dash line: truth value; blue line: accelerometer bias in X-axis 
direction, green line: accelerometer bias in Y-axis direction, red line:
accelerometer bias in Z-axis direction) 

 

Fig. 7.  Gyroscope bias estimate by least square in (29) (solid line: estimated 
value, dash line: truth value; blue line: gyroscope bias in X-axis direction,
green line: gyroscope bias in Y-axis direction, red line: gyroscope bias in Z-
axis direction) 
 

Fig. 9.  Eigenvalue of TK K in (29) 
 

Fig. 8.  Level angles estimate by least square in (29) (solid line: estimated 
value, dash line: truth value;) 
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And the attitude of the left foot  ,

Tb
n L nb nb nb  θ  is 

expressed as 

 
  

0

max

0         

1 cos 2 2   

nb nb

nb ut kT t

  

  

 

    
  (44) 

where max is the maximum pitch during walking. As for the 

stance phase, the position, velocity and attitude are equal to 
those at the end time of the last swing phase.  

In order to get a close-loop trajectory, we also simulate a 
person making turns of 90 degrees with zero position change. If 
the heading at the start of the turning is 0 , then the attitude of 

the left foot is given by 

 
   0

0     0  

1 cos 4 +     

nb nb

nb o rt t t

 

   

 

    
  (45) 

where rt is the duration of turning and ot  denotes the start time 

of turning. The position during the turning remains unchanged 
and the velocity is set to zero. 

The simulated left-foot gyroscope output is given as 
 b b b n e

ib nb n e ie g g   ω ω C C ω b n   (46) 

where b
nbω  denotes the angular rate of the left-foot IMU with 

respect to the n-frame. Because there is only one Euler angle 

changing at a time, b
nbω  can be calculated by 

 ,
b b
nb n Lω θ   (47) 

and the simulated left-foot accelerometer output is given as 

  2b b n n n n
n ie a a     f C ν g ω ν b n   (48)  

The sampling rate of IMU is 100Hz. The right-foot IMU output 
is the same as the left-foot IMU, except that the right foot is 
delayed by 2T  in time to simulate the alternate swing of the 

two feet. In addition, the initial position of the right foot in the 
n0-frame is 

    0
0 0 0 0cos sin 0 cos sin

2 2

T

n s s
R

l l
        

p  (49) 

where the superscript n0 denotes the local tangent plane frame 
with the origin at the initial position of the left foot (x-axis: 
north, y-axis: up, z-axis: east). Therefore, (49) means that the 
right foot is half stride to the right and half stride forward of the 
left foot. Then, the initial position of right foot in the n-frame 

n
Rp  can be obtained by 

     00 , 0nn n
R R Rfp p p   (50) 

Finally, the inter-foot distance is given by (11) at 10 Hz. 
Table II lists the parameter setting in our simulation. The 
trajectory profile of a person walking from south to north in the 
first 6 seconds is shown in Figs. 3-4. Figure 3 shows two feet 
displacements in the north and height directions as well as the 
pitch variation. The displacement in the east direction, the 
heading and roll angles are not given, since these values remain 
unchanged. The walking speed is plotted in Fig. 4. In the swing 
phase, the velocities in the north and height directions are 

TABLE III 
START-END ESTIMATE ERRORS FOR TWO FEET 

 
Estimated 

Position (m) 

Position Error 

(m) 

Relative 

Position Error 

(m) 

Yaw Error 

(deg) 

Relative Yaw 

Error (deg) 

Yaw Bias Error 

(deg/s) 

Relative Yaw 

Bias Error 

(deg/s) 

Left/Right (ZUPT) 
(41.71,10.72)/     

(‐4.34 25.91) 
43.05/26.42  48.58  121.25/71.16 167.6  0.132/0.075  0.207 

Left/Right (ZUPT + RNG) 
(‐0.17,0.22)/ 

(0.50, 0.85) 
0.28/0.25  0.027  2.22/2.28  0.06  0.0022/0.0005  0.0017 

Truth   Position (Left/Right): (0,0)/(0.65,0.65) m                         Yaw: 0 deg                                                    Gyro Bias: (2,2.3,1.7) deg/s 

Fig. 10.  Simulated trajectory in horizontal plane (circle: start point; square:
end point; blue line: left foot, red line: right foot.) 
 

Fig. 11.  Estimated trajectory in the horizontal plane (circle: start point; square: 
end point; solid line: ZUPT+RNG, dash line: ZUPT; blue line: left foot, red 
line: right foot. ) 
 



 
 

9

simulated by using a trigonometric function. The heading angle 
during a 90-degree turn is shown in Fig. 5 and other states are 
unchanged during the turning process. 

B. Estimation Results 

First, the ZUPT observability (in Theorem 1) is demonstrated 
by a simulated square trajectory lasting 24 seconds (taking right 
turns at 6s, 12s and 18s), for which the inter-foot ranging 
measurement is absent. The IMU’s true accelerometer and 

gyroscope bias are set to   20.2 0.1 0.2  m/s  and 

 0.05 0.05 0.06  deg/s , respectively, and the three initial 

attitudes are all zero degrees. Figures 6-8 plot the estimated 
accelerometer and gyroscope biases as well as the level angles 
obtained by (29). We see that all states, except the z-axis 
accelerometer bias (in Fig. 6) and a state related to level angles 
(in Fig. 8), converge to the corresponding truths from the very 
first swing at 0.8s. After the first turning at 6s, the two states 

converge as well. Compared with other states, the gyroscope 
bias in y-axis (gravity direction) is estimated not so well, which 
implies that the y-axis gyroscope is weakly observable. This is 
consistent with the eigenvalues of TK K , as shown in Fig. 9. 
All eigenvalues become nonzero after the first turning but there 
is an eigenvalue that stays relatively quite small throughout the 
simulation. This means that one state in X  is nearly 
unobservable or weakly observable. Note that the deviation of 
the estimates from their truths, as apparent in Figs. 6-7, is owed 
to the approximation error in formulating (27) that inevitably 
accumulates along with time, but the estimation results are a 
convincing support to the global observability analysis of 
ZUPT in Theorem 1. The weak observability of the gravity-
direction gyroscope bias is a new insight over the established 
results in the literature. 

Next, we turn to evaluate the performance of the proposed 
PNS algorithm compared with the ZUPT only method. 
Similarly, we simulate a person walking around a square (side 
length 25 sl ) for eight circles and stopping where he starts. The 

Fig. 13.  Estimate error of accelerometer bias. (solid line: ZUPT+RNG, dash
line: ZUPT; blue line: accelerometer bias error in X-axis direction, green line:
accelerometer bias error in Y-axis direction, red line: accelerometer bias error 
in Z-axis direction) 

Fig. 12.  Estimate error of gyroscope bias (solid line: ZUPT+RNG, dash line: 
ZUPT; blue line: gyroscope bias error in X-axis direction, green line: 
gyroscope bias error in Y-axis direction, red line: gyroscope bias error in Z-
axis direction) 
 

Fig. 14.  Estimated trajectory in the horizontal plane (circle: start point; square: 
end point; solid line: ZUPT+RNG, dash line: ZUPT; blue line: left foot, red 
line: right foot.) 

Fig. 15.  Estimate error of gyroscope bias (solid line: ZUPT+RNG, dash line: 
ZUPT; blue line: gyroscope bias error in X-axis direction, green line: 
gyroscope bias error in Y-axis direction, red line: gyroscope bias error in Z-
axis direction) 
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initial heading is set to zero and the person takes a 90-degree 
right turn at every corner, and the total travelled distance is 1040 
meters with 966.4 seconds. For both IMUs, the true gyroscope 

bias is  2 2.3 1.7  deg/s and the true accelerometer bias is 

  20.1 0.2 0.2  m/s . Figure 10 plots the simulated trajectory 

in the horizontal plane. 
The initial position of the left foot is set to 

   0 121 31 0n

L E Np , and the initial right-foot position is 

computed by (50). The initial attitude errors for the left-foot and 

the right-foot IMUs are , 2 5 2
Tb

n L    θ    ,

, 2 3 4
Tb

n R      θ    , respectively. The initial velocity and the 

accelerometer bias are set to zero. The initial gyroscope bias of 

the left-foot IMU is set to  , = 1.7 1.6 1.3
T

g Lb  deg/s, while 

that of the right-foot IMU is set to  , = 2.5 2.8 1
T

g Rb  deg/s (the 

left/right heading gyro bias error is set to -0.7/+0.5 deg/s, 
respectively). The IMU noise statistics in the filter is set to be 
equal to the true noise statistics and the measurement variances 

for ZUPT and inter-foot ranging are set to 2
30.05 I  and 20.05 , 

respectively. 
Figures 11-13 plot the estimated results by the ZUPT method 

and the proposed method of ZUPT plus inter-foot ranging. As 
shown by the observability analysis in Section III, the 

accelerometer bias and the x-axis, z-axis (horizontal plane) 
gyroscope bias are correctly estimated by both methods. 
However, due to the uncorrected initial heading error and the 
weakly-observable gyroscope bias in y-axis (gravity direction), 
the heading estimation by the ZUPT method diverges gradually, 
as evidenced in Fig. 11. While, with the aid of inter-foot ranging, 
the heading drift is largely eliminated. The start-end dual feet’ 
absolute and relative estimation errors are listed in Tables III. 
Although the inter-foot ranging suppresses the heading and 
position error dramatically, the absolute error still remains. 
Table III clearly shows that the dual-IMUs’ relative heading, 
position and heading bias are largely corrected, which is 
consistent with the observability analysis in Section III.  

In order to show that the absolute heading gyro bias is weakly 
observable, we further simulate the same trajectory as above, 
but the initial gyroscope bias of the left/right-foot IMUs is set 

to  , = 1.7 2.6 1.3
T

g Lb  deg/s and  , 2.5 2.8 1
T

g R b  deg/s 

(the left/right heading gyro bias error is set to +0.3/+0.5 deg/s, 
respectively). The estimated trajectory and the gyroscope bias 
are displayed in Figs 14-15. Although the ZUPT-RNG method 
performs better than the ZUPT-only method does, the heading 
angle and the heading gyro bias in the proposed method have 
not yet been fully corrected, as shown in Table IV. 

V. EXPERIMENTS  

A. Hardware Implementation 

We designed and implemented a real-time PNS system with 
dual foot-mounted IMUs and ultrasonic ranging, as shown in 
Fig. 16. The system consists of two parts: sensor modules and 
data processing/display module. The sensor module is 

composed of an Xsens MTi-1 MEMS IMU chip with 10 h  

gyro bias stability and a ST202/CX20106A ultrasonic 
transmitter and receiver chip, while the data processing/display 

Fig. 16.  Left: System overview. Upper right: data processing/display module.
Low right: IMU and ultrasonic ranging modules 

Fig. 17.  Estimated trajectory in horizontal plane (circle: start point; square: 
end point; solid line: ZUPT+RNG, dash line: ZUPT; blue line: left foot, red 
line: right foot.). 
 

TABLE IV 
START-END ESTIMATED ERROR FOR TWO FEET  

 
Estimated 

Position (m) 

Position Error 

(m) 

Relative 

Position Error 

(m) 

Yaw Error 

(deg) 

Relative Yaw 

Error (deg) 

Yaw Bias Error 

(deg/s) 

Relative Yaw 

Bias Error 

(deg/s) 

Left/Right (ZUPT) 
(‐5.60,18.65)/      

(‐4.26 27.45) 
19.47/27.25  8.18  53.98/74.25 20.27  0.050/0.080  0.03 

Left/Right (ZUPT + RNG) 
(‐4.82,7.27)/        

(‐3.98, 7.62) 
8.72/8.37  0.36  22.85/22.92 0.07  0.020/0.022  0.002 

Truth   Position (Left/ Right): (0,0)/(0.65,0.65) m                         Yaw: 0 deg                                                    Gyro Bias: (2,2.3,1.7) deg/s 
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module includes a data receiver and a tablet computer. The data 
acquisition process is described as follows: the wireless 
synchronizing trigger signal is first transmitted by the sensor 
module, then the time-synchronized IMU and ultrasonic data 
collected via an STM32 single chip is sent to data 
processing/display module by a 2.4G wireless transmission link.  

To validate the ultrasonic ranging accuracy, the measured 
inter-foot ranging is calibrated by a Vicon system [32]. The 
calibration results show that the ranging accuracy is about 3 cm 
(RMS).  

B. Test Results 

This subsection is devoted to verifying the proposed PNS 
algorithms by both indoor and outdoor experiments. In the 
indoor experiment, the tester walks along a corridor for about 
30 seconds at the very beginning, then goes downstairs and 
upstairs by one floor, circles the corridor several times, walks 
downstairs and upstairs by two floors and finally returns to the 
starting point. The total time duration is about 700 seconds with 
walking distance of about 431m. Figure 17 displays the 
estimated trajectory in the horizontal plane, which shows that 
ZUPT cannot well compensate the heading angle, especially for 
the right foot. However, with the aid of inter-foot ranging, the 
heading error is significantly mitigated. As for the height 
estimate, unlike the overestimated height by the ZUPT-only 
method, the proposed PNS algorithm yields a quite satisfying 
height estimate, as shown in Fig. 18. Figure 19 further displays 
the 3D trajectory and Table V summarizes the start-end error 
for both methods. 

In the first outdoor experiment, one tester walks along a 
square and the other tester follows right behind him with a 
Samsung S10 mobile phone held in hand. The outdoor 
experiment lasts about 700 seconds and the total travelled 
distance is about 632m. Figure 20 compares the GPS 
positioning result and the estimated trajectory by averaging the 
feet position by the proposed PNS algorithm. Due to a tall 
building nearby the walking path that incurs signal blockage or 
multipath, the GPS positioning accuracy is just about 5m, while 
the start-end error of the proposed PNS reaches about 0.7m 

(0.11% of the travelled distance). A longer test is conducted 
with travelled distance about 1600m and total time 28 min. One 
tester starts from a gym and walks along the campus paths. 
After taking a few turns, the tester goes around a round square 
twice, then crosses a lake, and finally comes back to the round 
square. The test results of both methods are shown in Fig. 21. 
Comparing with the road in Google Map, the max error of the 
proposed method is about 8 m (0.5 % of travelled distance), and 
the end error is less than 3 m (0.18% of travelled distance). 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper, we have developed a pedestrian navigation 
system equipped with dual foot-mounted low-cost IMUs and 
foot-to-foot ranging. The global observability analysis shows 
that the inter-foot ranging, together with the ZUPT, can 
effectively mitigate the heading error that has been an inherent 
problem in any PNS. In specific, the relative heading, 
gyroscope bias and position between the dual IMUs are made 
observable by the inter-foot ranging. A new ellipsoid constraint 
is proposed to reduce the height drift. Simulations are designed 
to verify the observability analysis and demonstrate the PNS 
capability. Test results show that the proposed PNS algorithm 
is promising to deliver a positioning accuracy of 0.1-0.2% 
traveled distance for GNSS-denied or infrastructure-
independent applications. 

The global observability analysis also indicates a potential 
improvement of the implemented system by incorporating a 
relative vectoral position measurement of the feet. 

Fig. 18.  Height estimate. (solid line: ZUPT+RNG, dash line: ZUPT; blue line:
left foot, red line: right foot.) 
 

Fig. 19.  Estimated 3D trajectory by ZUPT + RNG PNS algorithm. (blue line: 
left foot, red line: right foot.) 
 

TABLE V 
START-END ERROR COMPARISON 

 Position Error  Left/Right (ZUPT)  Left/Right (ZUPT +RNG)

Level Plane (m)  0.55/2.25  0.14/0.31 

Percentage of 

Travelled Distance (%)
0.13/0.5  0.03/0.07 

Height (m)  6.96/7.31  0.09/0.31 
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APPENDIX A 

The function  ,n n
R Lf p p p  in (42) and (50) transforms 

the position in the tangent plane frame to the n  frame: 
Step 1: Transform p  into the relative position in the e-

frame by 

 

cos 0 sin

sin sin cos sin cos

cos sin sin cos cos

e L L L

L L L

 
 
 

 
      
  

p p   (51) 

Step 2: Transform n
Lp  to e

Lp  and calculate e
Rp by 

 = +e e e
R Lp p p   (52) 

Step 3: Transform e
Rp to n

Rp .  

APPENDIX B 

INTEGRAL APPROXIMATION IN (23) 
The integral term in the right side of (23) was approximated 

by our group in [33]. Herein, we present an alternative and more 
accurate first-order approximation of this integral on manifold 
similar to [34].  

The exponential map between rotation matrix and rotation 
vector and their first-order approximation are [31] 

   3exp    C φ I φ   (53) 

where  3SOC and  3soφ .  

For a small rotation vector φ , there exist the following 

properties [31] 

       exp exp exp r          φ φ φ J φ φ    (54) 

and 

       1
exp exp exp r      

 
φ φ φ J φ φ   (55) 

where rJ  is the right Jacobian of  3SO given in (26). 

Another useful property of exponential map is [31] 

    exp exp T    φ C C C φ   (56) 

Depending on Eqs. (53)-(56), the matrix (0)
( )

b
b tC  in the right 

side of (23) can be approximated to the first order as  
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Let  ( )
( )

b iT T
i b t r i gT ζ C J θ b , (57) can be further reduced to 
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  (58) 

where the second-order and above term about gb  are ignored. 

Assume the body angular rate and the specific force to be 
approximated in linear forms as 

 
b
ib w w

b
f f

t

t

 

 

ω α b

f α b
  (59) 

where wα , wb , fα , fb  are the coefficient vectors. The 

incremental angles are represented as 

Fig. 20. Outdoor walking trajectory beside tall buildings overplayed with
Google Earth (blue line: Samsung S10 GPS positioning; red line: ZUPT + RNG 
PNS positioning result). 
 

Fig. 21. Estimated trajectory of longer outdoor walking (blue line: ZUPT 
positioning result for left foot; red line: ZUPT + RNG positioning result) 
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from which the coefficient vectors are solved as  

 
 2

2 1

1 2

4

3
w

w

T

T

   

   

α θ θ

b θ θ
  (61) 

Similarly, the coefficients of incremental velocities are 

 
 2 1

2

1 2

4

3

f
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T
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v v
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  (62) 

Now we turn to the derivation of Eq. (23) 
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where the above incremental integral can be approximated by 
the two-sample correction using (59) and (62) 
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 (64) 
where v is defined in (25). Note that there was a coefficient 
error of gb  in [33]. Substituting (64) into (63) yields (23). 
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