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Abstract

This research addresses distributed proportional power sharing of inverter-based Distributed Generators
(DGs) in microgrids under variations in maximum power capacity of DGs. A microgrid can include renew-
able energy resources such as wind turbines, solar panels, fuel cells, etc. The intermittent nature of such
energy resources causes variations in their maximum power capacities. Since DGs in microgrids can be re-
garded as Multi-Agent-Systems (MASs), a consensus algorithm is designed to have the DGs generate their
output power in proportion to their maximum capacities under capacity fluctuations. A change in power
capacity of a DG triggers the consensus algorithm which uses a communication map at the cyber layer to
estimate the corresponding change. During the transient time of reaching a consensus, the delivered power
may not match the load power demand. To eliminate this mismatch, a control law is augmented that consists
of a finite-time consensus algorithm embedded within the overarching power sharing consensus algorithm.
The effectiveness of the distributed controller is assessed through simulation of a microgrid consisting of a
realistic model of inverter-based DGs.
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1 Introduction

Environmentally sustainable electrical energy production depends on renewable energy resources. In this
regard, significant amount of researches have been undertaken within the past few decades [1–3]. Conven-
tionally, control of electric power systems and the main power grid was accomplished through a few central
controllers. Through emerging renewable energy plants, intelligent loads located in the demand side and
computational advances, distributed energy production and management has become viable. DGs as dis-
tributed energy production units, together with local loads which are distinct from the main power, is called
a microgrid. Microgrids operate in two different operational modes called grid-connected and islanding. A
microgrid is said to work in grid-connected mode when it is connected to the main grid via a tie line at the
point of common coupling (PCC) where there exists bidirectional power flow from or into the main grid [4].
In contrast, microgrids in islanding mode generates power for local loads [5]. To deploy small-scale DGs
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including photovoltaic (PV) cells, wind turbines, fuel cells and energy storage systems (ESSs) in microgrids,
power electronics inverters are vital interfaces which connect DGs to the power buses [6].

There have been extensive studies conducted on control of inverter-based microgrids during the past
decades [7,8]. The control strategies can be classified in different categories including frequency and voltage
control or power control [9]. Applying these methods also depends on the microgrid’s mode of operation.
For instance, in the grid-connected mode the frequency and voltage are imposed by the main grid. However,
voltage and frequency control are vital in islanding mode.

In this work, power sharing control of microgrids in grid-connected mode is studied [11]. The problem
of power sharing has been studied from the aspect of equal power sharing in [12, 13]. Since DGs possess
different capacities, the DGs with higher capacities can share more power than the DGs with lower capaci-
ties. The power sharing problem becomes challenging under intermittent nature of power resources. Inter-
mittency causes fluctuations in maximum capacity of DGs, which leads to changes in their output power.
Thereby, the total power fluctuates, and the load power may not always be maintained. These fluctuations
can be addressed by deploying electrical energy storage (EES) or managing the DGs to flexibly address the
variations in their capacities.

Other approaches proposed to address the power sharing problem in microgrids can be categorized
either as proportional power sharing [9, 10, 14], or economic dispatch problem (EDP) [15]. The studies
[14] and [16] have proposed techniques for proportional power sharing. Here, proportional power sharing
is defined as sharing the load among DGs such that each individual DG shares a fraction of the load in
proportion to its maximum capacity. A distributed droop control scheme based on nonlinear state feedback
proposed in [9] guarantees that DGs share reactive power proportionally. In [32], through a distributed
voltage control, the active and reactive power are shared proportionally, for a microgrid with inductive
impedance loads. In addition, [33] formulates the proportional power sharing as a tracking problem and
solves it for grid-connected spatially concentrated microgrids. However, [9] and [32] study islanding mode,
and none of [9, 32, 33] have covered the power mismatch during transient time of their proposed strategies.

On the other hand, EDP is a method to control the power flow among different DGs optimally, where
optimality implies minimizing a quadratic performance index assigned to each DG as the cost of their
generated power. EDP has been studied through different techniques including the population dynamic
method [17], and the lambda iteration [18]. While these methods have been formulated within a centralized
control framework, distributed version of EDP can be found in [15, 19].

Motivated by systems with cyber-physical layers, the power sharing control in this study is devised in
two layers. The physical layer that consists of DGs, loads, measurement units, etc., is where the power
control loop of each DG is established to track the input power command issued from the cyber layer. DGs
have their corresponding agents in the cyber layer. Thus, the ideas of MASs can be utilized to establish the
DGs’ controllers and their interactions. The agents communicate through a communication network in the
cyber layer.

The agents can choose different strategies to control the DGs including centralized, decentralized or
distributed formats. When the DGs are located in a small region, it is viable to apply centralized controllers.
As the number of DGs increases, while geographically scattered in a wide area, applying the centralized
controllers faces deficiencies due to some reasons; Firstly, the centralized controller is not reliable due to
the dependency of the DGs on a single controller where its malfunctions deteriorate the performance of
the microgrid or may result in instability. Besides, in centralized coordinated control, transferring data to
a control center and issuing control signals back to DGs require high bandwidth communication, which is
not economically efficient, or technically secure, and is prone to failure [20]. On the contrary, distributed
control techniques require considerably lower bandwidth which makes the communications among the DGs
economically viable. Decentralized controllers are applicable locally, however it does not exploit coopera-
tion of DGs [21]. Therefore, they may not perform efficiently where the global information and cooperation
is required. In contrast, a distributed control scheme encompasses the plug and play feature, which it makes
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it more flexible compared to centralized and decentralized controllers [22]. The centralized control scheme
depends on global information while DGs in distributed control exchange information exclusively with the
DGs in their neighborhood. In this study, the well-known consensus algorithm is utilized to design a dis-
tributed controller for the power sharing control problem.

Considering a large number of DGs scattered in a wide area, it takes agents time to transfer all the
required signals. Therefore, it is inevitable to have communication delays in the distributed controllers
[23]. The ranges of these delays are from tens to hundreds of milliseconds [24]. The delays may result
in prolonging the convergence time of consensus algorithm and potentially lead to microgrid instability
[16]. The delays can be reduced through increasing the convergence rate of consensus algorithms utilizing
approaches including multiplying the weights of the communication graph with a large constant, or through
an optimization of the weights [25].

This study considers a microgrid operating in grid-connected mode using proportional power sharing.
Proportional power sharing makes the microgrid adaptable to intermittency of power sources. The grid-
connected operation enables the microgrid to transmit excess power to the main grid, while relying on it for
frequency and voltage control. The contributions of this paper are:

1) A distributed consensus algorithm is designed, by which the DGs are able to estimate the micro-
grid’s power capacity under perturbations in the power capacity of individual DGs. Convergence rate of the
algorithm is studied and bounds on allowable perturbations are derived based on practical constraints.

2) Multiple proportional power sharing strategies are proposed, to meet the demanded power as consen-
sus is reached. The strategies are executed in a distributed manner. They ensure that the microgrid satisfies
load power variations dynamically and allow excess power to be transmitted to the main grid.

3) Items (1) and (2) enable proportional power sharing. However, during convergence of the consensus
algorithm, a power mismatch occurs between the generated and demanded power. Although the rate of
convergence can be increased, the transient power mismatch remains inevitable. To eliminate this mismatch,
a fully distributed finite-time consensus algorithm, based on [27], is additionally augmented.

4) A realistic simulation is conducted, using MATLAB’s Simscape toolbox, with a clear primary con-
troller scheme and corresponding parameters. Grid and DG parameters used in simulations are also given.
The simulations and the results can be reproduced by readers, allowing further enhancements in future
research.

The rest of this paper is organized as follows. The preliminary definitions of technical terms are ex-
plained in section two. Then, proportional power sharing is defined in the third section. In the fourth
section, the consensus algorithm is developed through which the DGs are able to update their information
about the total microgrid power capacity following a change in a DG’s capacity. The overarching consensus
algorithm and the embedded transient controller are proposed and elaborated in the same section. Fifth
section discusses the cyber and physical layers which control the output power of DGs. Next, simulation
results are provided in section six to illustrate the effectiveness of the proposed control plan in response to
different variations in capacity of a DG. Finally, concluding remarks are provided and references are listed.

2 Preliminary Definitions

We define the graph G as the set pair (ν,ε) having vertices set ν and edge set ε. Let the number of vertices
in G be N, and let the set ε consist of the vertices pairs (i, j) for which there exists an edge that connects j
to i, with i, j = 1,2, · · · ,N and i 6= j. The intended graph in this study is undirected or bidirectional graph,
where the signals flow along edges in both directions, i.e. if (i, j) ∈ ε, then ( j, i) ∈ ε. The adjacency matrix
associated with the graph is A = [ai j] ∈ RN×N where each element ai j > 0 if (i, j) ∈ ε, otherwise ai j = 0. As
stated above, in the bidirectional graph G , if (i, j) ∈ ε, then ( j, i) ∈ ε, and ai j = a ji. Then A is symmetric,
i.e. A = AT . We define the degree matrix D = [dii] ∈ RN×N as a diagonal matrix as such
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dii =
N

∑
j=1

ai j (1)

The matrix L = [li j] = D−A is denoted as the Laplacian Matrix of G . As mentioned above, A = AT , and
considering D is a diagonal matrix, it follows that L = LT . The neighbor set corresponding to each vertex i
is defined as N i = { j|(i, j) ∈ ε}. Additionally, N +

j denotes the set of outgoing neighbors of node j, i.e., the
set of nodes receiving signals form the node j, and N −

j is the set of nodes which sends signals to the node
j. For the bidirectional graph G , N +

j = N −
j . A graph is connected if there exists a path between any two

distinct vertices [26]. We assume that G is connected.
Next, consider Fig. 1 which shows a sample localized microgrid with four DGs, denoted by DGi, i =

1,2,3,4. In this figure, the dashed lines show signaling between the cyber layer and physical layer, i.e.
the communications between the DGs and their corresponding agents in the cyber layer. The lines with
bidirectional arrows represent communications among the corresponding agents of DGi located in the cyber
layer. The solid lines are electrical connections. Based on the weights shown in Fig. 1 and the explanations
above, the adjacency and degree matrices are defined as,

A=


0 0 a13 0
0 0 a23 a24

a31 a32 0 0
0 a42 0 0

,D=


a13 0 0 0
0 a23 +a24 0 0
0 0 a31 +a32 0
0 0 0 a42

 (2)

Based on the definition of Laplacian matrix, the corresponding Laplacian matrix to the adjacency and diag-
onal matrices defined in (2) is

L =


a13 0 −a13 0
0 a23 +a24 −a23 −a24
−a31 −a32 a31 +a32 0

0 −a42 0 a42

 (3)

3 Problem Definition

We consider a microgrid in the grid-connected mode, where the microgrid’s voltage and frequency are
imposed by the main grid, i.e. the microgrid’s frequency and voltage are fixed. Hence, the goal in this mode
is to control the output power of the DGs. The cyber-physical systems considered in this paper is similar
to the one shown in Fig. 1. The proposed control emerges from consensus control of Multi-Agent Systems
(MAS). The control objective is sharing load power in proportion to the maximum power capacity of the
DGs, under variations in maximum capacities. We assume that there exists N DGs in a microgrid which are
labeled as DGi where i = 1,2, · · · ,N. The maximum power capacity and instantaneous output power of each
DGi are defined as Pi,max and Pi, respectively. Let PL be the load power, which is proportionately shared
among the DGs, i.e.

PL =
N

∑
i=1

Pi, s.t. r =
P1

P1,max
=

P2

P2,max
= · · ·= PN

PN,max
(4)

where r is the proportional power share ratio. Thus, the output power of DGi is Pi = rPi,max. Let PT be the
total power capacity of the microgrid defined as the accumulation of the maximum power capacity of all the
DGs in the microgrid. Then, one can conclude that

r =
∑

N
i=1 Pi

∑
N
i=1 Pi,max

=
PL

PT
(5)

and the output power of DGi is Pi = (PL/PT )Pi,max. Note that a fluctuation in the maximum capacity of a
DG Pi,max or a change in PL will cause a change in r. The proposed power sharing control will, in response,
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Figure 1: Schematic of a microgrid comprising cyber and physical layers

manage the output power of the DGs flexibly. Throughout this study, the goal is to manage the variations
of Pis while meeting the requirement PL = ∑

N
i=1 Pi. It is assumed that all DGs have a knowledge of PL at all

times. The power demand PL can vary with time.
We next explain two scenarios for which different controllers are designed. At the core of these con-

trollers is a consensus algorithm which is inherently distributed. Recall that an underlying assumption is
that the communication graph among the DGs is connected. Before any change happens to the renewable
energy resources, we assume all DGs have the knowledge of PT by which they are able to compute r from
(5) and thereby generate their appropriate proportional power share Pi = rPi,max, i = 1,2, · · · ,N.

In the first scenario, assume the maximum capacity of DGk which is Pk,max, changes. Then PT changes
accordingly and all DGs are required to update their value of PT to be able to recalculate the new r based
on (5). The only DG that can generate accurate power immediately after a fluctuation happens is the DGk
since it is aware of the change in Pk,max. Let δ be the change such that P̃k,max = Pk,max + δ, where P̃k,max,
is the updated value of Pk,max. Thus, DGk can compute the updated capacity of the microgrid as P̃T where
P̃T = PT + δ and recalculate r and the delivered power Pk. A consensus algorithm is devised to have other
DGs compute the P̃T and thereby reach the new value of r, distributively.

In the second scenario, we address the mismatch between load and supplied power before consensus
is reached. As was discussed in scenario (1), only DGk can generate an accurate amount of power instan-
taneously after a fluctuation in DGk. Although the other DGs are able to update Pi following a change in
Pk,max, the consensus algorithm takes time to converge, and hence during the transient time ∑

N
i=1 Pi would

not necessarily be equal to PL. The reason is that the other DGs do not have the correct value of P̃T instan-
taneously. However, since instantaneous matching of load power is a priority, a control law is augmented
with the consensus algorithm to practically remove power mismatch during transients.
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4 Distributed Microgrid Control

4.1 Consensus on Total Power Capacity under Perturbation

We consider a scenario where the individual DGs know the power ratio r and generate accurate Pi based
on proportional power sharing, as shown in (4). Hence, each DG has correct knowledge of PT , as per (5).
Next, consider a change in Pk,max to P̃k,max = Pk,max + δ. Following this change, all agents are required to
compute P̃T = PT +δ, the updated value of PT . We define si(t) as the estimate of P̃T by DGi. The vector of
estimate variables is then, S(t) =

[
s1 s2 · · · sN

]T , where N is the number of the DGs in the microgrid.
As mentioned above, all the DGs know PT before any change happens. Therefore, the initial value of S is,
S(0) = PT 1 where 1N =

[
1 1 · · · 1

]T . Thereafter, we propose the following consensus dynamics in
the cyber layer, through which all DGs update their value of PT and converge to P̃T .

ṡk(t) =−h
(
sk(t)− P̃T

)
−∑

j∈N k

ak j (sk(t)− s j(t))

ṡi(t) =−∑
j∈N i

ai j (si(t)− s j(t)) , i =1,2, ...,N, i 6= k
(6)

where sk(0) = PT and si(0) = PT . In (6), ai j > 0 and it denotes the weight of the communication link
between agents i and j, where i, j = 1,2, · · · ,N, i 6= j, and h > 0 is a parameter chosen by the kth agent.
The parameter h represents a measure of the convergence rate of si(t) towards P̃T . Since the communication
graph is bidirectional, therefore ai j = a ji, and this implies that the Laplacian matrix is symmetric, i.e. L= LT

(see example in (3). From (6), the following matrix equation is obtained

Ṡ =−(L+∆)S+hdkP̃T (7)

where

dk =



σ1,k
σ2,k

...
σk,k

...
σN,k


=



0
0
...
1
...
0


∈RN×1,∆ = hdkdT

k ∈RN×N (8)

In (8), σi,k is the Kronecker Delta function, implying the kth element of dk is one and rest are zero. Also,
∆k,k = h and all other elements are zero. We now propose and prove the following Lemma.

Lemma 1. The linear dynamic system defined in (7) and (8) is input-to-state stable (ISS), and S→ P̃T 1
given the graph of communication among the agents is connected.

Proof. The linear system of (7) and (8) is ISS if −(L+∆) is Hurwitz [28]. The input is P̃nom which is
constant and bounded, thus, if −(L+∆) is Hurwitz the proof is complete. Since L = LT , and by definition
∆ = ∆T , the matrix −(L+∆) is symmetric. Hence, it is Hurwitz if −(L+∆)< 0, i.e. negative definite. To
prove this, it is required to show that for any vector u ∈ RN , uT [−(L+∆)]u is strictly less than zero unless
u = 0. From Eq. (8),

uT [−(L+∆)]u =−uT Lu−uT
∆u =−uT Lu−huk

2 (9)

where h = ∆kk > 0, and uk is the kth element of the vector u. As the communication graph is connected,
L is positive semi-definite with a single zero eigenvalue [26, 29], and it is diagonalizable [30], with all real
eigenvalues. Let λi, i = 1,2, · · · ,N be the eigenvalues of L in descending order, λ1 ≥ λ2 ≥ ·· · > λN−1 >
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λN = 0. The canonical form of L is L =V ΛV T , where Λ is a diagonal matrix consisting of the eigenvalues
of L, and V is the right eigenvector-matrix,

Λ=


λ1 0 0
0 λ2

. . .
0 λN

, V=
[

v1 v2 · · · vN
]

(10)

Since vN is the eigenvector corresponding to λN = 0, following the definition of L, vN = c1N where c 6= 0 is
a real value. Substituting L =V ΛV T into (9) and taking (10) into account, the following holds:

−uT Lu−huk
2 =− zT


λ1 0 0
0 λ2

. . .
0 λN

z−huk
2

=−
N

∑
i=1

λiz2
i −huk

2

(11)

where z =V T u. Since V T is a nonsingular matrix it is invertible, and its inverse matrix is V and u =V z. For
any z=

[
z1 z2 · · · zN

]T and uk, the right hand side of (11) is negative, except zi = 0 ∀ i= 1,2, · · · ,N−1

and uk = 0. The remaining condition is z =
[

0 · · · 0 zN
]T . As V is not singular, u = V z 6= 0 while

zN 6= 0. According to (11) and since vN = c1N ,

u =V z =
[
v1 v2 · · · c1

][
0 · · · 0 zN

]T
= czN1 (12)

Now that u = czN1 and c,zN ∈ R are non-zero, uk = czN 6= 0. However, this is in contradiction with the
assumption made before which is uk = 0. Thus, (11) is negative for any vector z and since u = V z, (9)
is negative for any u 6= 0 which proves −(L+∆) is negative definite. We define y = S− P̃T 1, therefore,
S = y+ P̃T 1 and Ṡ = ẏ. By substituting y and ẏ into (7), we obtain

ẏ =−(L+∆)y, y = S− P̃T 1, y(t0)=PT 1− P̃T 1=−δ1 (13)

As−(L+∆) is Hurwitz the dynamics of (13) is exponentially stable. It means y→ 0 and therefore S→ P̃T 1.
This completes the proof.

We assume that at any time, only one DG can change its power capacity. Thereafter, any subsequent
change in power capacity can be done once the consensus algorithm described above has converged.

4.2 Observations on Rate of Convergence

From Weyl’s theorem on eigenvalue inequalities for sum of two Hermitian matrices [30], the properties of
Laplacian matrices in a connected network [29], and Lemma 1, we have

λN−1(−L)≤ λN(−(L+∆))< λN(−L) = 0

assuming the eigenvalues of −L are ordered as λ1(−L) ≤ λ2(−L) ≤ ·· · ≤ λN−1(−L) ≤ λN(−L) = 0, and
those of −(L + ∆) are ordered as λ1(−(L + ∆)) ≤ λ2(−(L + ∆)) ≤ ·· · ≤ λN−1(−(L + ∆)) ≤ λN(−(L +
∆)) < 0 for all h > 0. The eigenvalue λN(−(L+∆)) is the dominant eigenvalue of −(L+∆) and hence it
determines the rate of convergence of consensus. To explain the effect of h on convergence rate, we provide
the following lemma.
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Lemma 2. The rate of convergence of the consensus algorithm, given by (7) and (8), increases with increas-
ing values of h > 0.

Proof. The characteristic equation of −L can be expressed as p(λ) = 0. The roots of p(λ), i.e. λ1(−L) ≤
λ2(−L)≤ ·· · ≤ λN−1(−L)≤ λN(−L) = 0, are all real. It can be verified that the characteristic equation of
−(L+∆) takes the form p(λ)+hq(λ) = 0. Further, p(λ) and q(λ) are both monic polynomials, with p(λ)
and q(λ) being polynomials of order N and (N−1) respectively. From Lemma 1, we know that the roots of
p(λ)+hq(λ) satisfy λ1(−(L+∆))≤ λ2(−(L+∆))≤ ·· · ≤ λN−1(−(L+∆))≤ λN(−(L+∆))< 0, ∀ h > 0.
Considering the characteristic equation of −(L+∆) in root-locus form, i.e.

1+h
q(λ)
p(λ)

= 0, h > 0,

we deduce that all roots of q(λ) are real and negative. Otherwise, increasing h will eventually cause some
eigenvalues of −(L+∆) to become complex conjugates and/or unstable, thereby contradicting Lemma 1.
This observation is in accordance with the rules of root locus. We further deduce that the largest root of
q(λ), namely λmax(q(λ)), must satisfy

λN−1(−L)≤ λmax(q(λ))< λN(−L) = 0

Violating the above condition would also contradict Lemma 1. Since λN(−L) = 0 and λmax(q(λ)) < 0 are
the largest roots of p(λ) and q(λ) respectively, there is one branch of root locus that originates from λN(−L)
and ends at λmax(q(λ)) for 0 ≤ h < ∞. This branch is also the closest to the origin of all N branches of
the above root locus (which are all strictly along the negative real axis), and hence contains the locus of
the dominant eigenvalue of −(L+∆). With increasing h, this eigenvalue moves further to the left of the
origin, thereby increasing the rate of convergence to the consensus proposed in Lemma 1. This completes
the proof.

4.3 Proportional Power Sharing Strategies

The consensus algorithm of Section 4.1 enable the DGs to compute the updated capacity of the microgrid
under perturbation. In this section, we propose methods by which individual agents command power to
the physical layer based on consensus. Subsequent to a capacity variation such as δ in Section 4.1, three
slightly different strategies are proposed through which the DGs meet the load demand PL. The first and
third strategies are discussed in detail. The second strategy is similar to the first and hence its details are
omitted. Assuming at t = t0, Pk,max changes to P̃k,max = Pk,max +δ, the first strategy to generate Pis is

Strategy1:


Pk =

PL

sk
P̃k,max

Pi =
PL

si
Pi,max for i = 1,2, · · · ,N i 6= k

(14)

where si, i = 1,2, · · · ,N, are the estimates of P̃T , as discussed in Section 4.1, and limt→∞ si = P̃T according
to Lemma 1. A potential issue may arise when si(t) crosses or approaches zero for some t > t0 such that Pi

diverges. In this regard, we state and prove the following Lemma:

Lemma 3. Considering the LTI system defined in (7), if |δ|< θPT/(1+
√

N) with 0 < θ < 1− (PL/PT ), the
following holds

(1−θ)PT≤ si(t)≤(1+θ)PT , Pi(t)<Pi,max, ∀ t> t0 (15)

8



The proof of Lemma 3 is given in the Appendix. From Lemma 3, it may appear that as the number
of DGs, N, increases, there will be a bigger restriction on δ, since |δ| < θPT/(1+

√
N). However, it can

be shown that the above inequality is not restrictive, mainly because as N increases, PT also increases. An
analysis of this aspect is given in the Appendix. From Lemma 3, it may also appear that the constraint on
δ is restrictive as θ→ 0, which happens as PL → PT . This restriction is however justified, since PL ≈ PT

practically implies that the grid is already close to maximum capacity. Hence, further perturbation in DGs
may prevent it from meeting the load demand. So far, it is proved that strategy 1 is valid provided changes
in δ satisfy the conditions in Lemma 3. Defining the total instantaneous output power of the microgrid as
PO(t), from (14),

PO(t) =
PL

sk
P̃k,max +

N

∑
i=1,i 6=k

PL

si
Pi,max (16)

Therefore,

PO(t) =
PL

sk
δ+

N

∑
i=1

PL

si
Pi,max (17)

Thus, defining the instantaneous error E(t) = PO(t)−PL, we have,

E(t) = PO(t)−PL =
PL

sk
δ+

N

∑
i=1

PL

si
Pi,max−PL (18)

At t = t0, si = PT for i = 1,2, · · · ,N. Thus,

E(t0) = PL

[
δ

PT
+

N

∑
i=1

Pi,max

PT
−1
]

(19)

Since ∑
N
i=1

Pi,max
PT

= 1, therefore

E(t0) = PL
δ

PT
(20)

Equation (20) shows that E(t0) 6= 0, and since E(t) is continuous, it implies that a perturbation δ causes a
transient mismatch between the delivered power PO(t) and the load PL. The error E(t)→ 0 at steady-state,
as proven in Lemma 1. Therefore, Strategy 1 given in (14), causes a temporary mismatch of power following
a perturbation. This issue is addressed in Section 4.4.

The second strategy, which is slightly different from the first one, is as follows:

Strategy2:


Pk =

PL

P̃T
P̃k,max

Pi =
PL

si
Pi,max for i = 1,2, · · · ,N i 6= k

(21)

As before, the total instantaneous output power of the microgrid PO(t) is

PO(t) =
PL

PT +δ
(P̃k,max)+

N

∑
i=1,i 6=k

PL

si
Pi,max (22)

We again evaluate the error E(t) = PO(t)−PL for t ≥ t0, yielding

E(t) =
PL

PT +δ
(Pk,max +δ)+

N

∑
i=1,i 6=k

PL

si
Pi,max−PL (23)
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Upon simplifying, we obtain

E(t) = PL

[(Pk,max +δ)

PT +δ
+

N

∑
i=1,i 6=k

Pi,max

si
−1
]

Since at t = t0, si = PT for i = 1,2, · · · ,N, and ∑
N
i=1,i 6=k Pi,max = PT −Pk,max,

E(t0) = PL
δ(PT −Pk,max)

PT (PT +δ)
(24)

Equation (24) shows that E(t0) 6= 0, and since E(t) is continuous, it implies that similar to Strategy 1, a
perturbation δ causes a transient mismatch between the delivered power PO(t) and the load PL in Strategy 2.
The error E(t)→ 0 at steady-state, as proven in Lemma 1.

The last candidate strategy is proposed as

Strategy3:


Pk =

PL

sk
(Pk,max + sk−PT )

Pi =
PL

si
Pi,max for i = 1,2, · · · ,N i 6= k

(25)

The Strategy 3 allows DGs to update their output power more smoothly compared to the first two strategies.
In this case,

PO(t) =
PL

sk
(Pk,max + sk−PT )+

N

∑
i=1,i 6=k

PL

si
Pi,max (26)

Therefore,

E(t) = PL

[
−PT

sk
+

N

∑
i=1

Pi,max

si

]
(27)

Since si = PT for all i = 1,2, · · · ,N, at t = t0, E(t0) = 0. However, E(t) still undergoes transient fluctuations.
Based on (27),

Ė(t)
PL

=
PT ṡk(t)

s2
k(t)

−
N

∑
i=1

Pi,maxṡi(t)
s2

i (t)
(28)

Equation (28) can be further simplified using (7) as follows,

Ė(t)
PL

=
PT ṡk

s2
k
−[

P1,max

s2
1

P2,max

s2
2
· · · PN,max

s2
N

]
× [−(L+∆)S+hdk(PT +δ)]

(29)

Since at t = t0, si = PT for all i = 1,2, · · · ,N, S(t0) = PT 1 and (29) becomes

Ė(t0)
PL

=
PT ṡk(t0)

P2
T
−[

P1,max

P2
T

P2,max

P2
T
· · · PN,max

P2
T

]
× [−L1PT −hdkPT +hdkPT +hdkδ]

(30)

Simplifying (30) yields
Ė(t0)

PL
=

PT ṡk(t0)
P2

T
−

hPk,maxδ

P2
T

(31)
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Referring to (7), at t = t0, the term ṡk(t0) in (31) is

ṡk(t0) = h(PT +δ)−hPT = hδ (32)

Therefore, from (31) and (32),
Ė(t0)

PL
= hδ

PT −Pk,max

P2
T

(33)

where from (6), h is a positive scalar chosen by kth agent. Thus, although E(t0) = 0, Ė(t0) 6= 0. Therefore,
as E(t) is continuous, similar to Strategies 1 and 2, a change δ results in a transient mismatch between
PO and PL. It is shown that the three strategies proposed above match the load power PL at steady-state
while producing transient deviations. This transient issue is resolved in the next section, where a strategy is
proposed to practically maintain PO = PL at any time.

4.4 Proportional Power Sharing with Transient Power Match

Upon a perturbation in Pk,max, which results in a change in PT , the agents estimate P̃T = PT +δ through (7).
Among the DGs, only DGk has a knowledge of P̃T = PT + δ. The other DGs in the microgrid converge
to P̃T through consensus only at steady-state. This leads to the transient power mismatch discussed in
Section 4.3. To remove this transient mismatch, we propose a strategy where DGk modulates its power
delivery as follows, while the other DGs maintain the same strategy as in Section 4.3:

Pk =
PL

sk
P′k,max

Pi =
PL

si
Pi,max for i = 1,2, · · · ,N i 6= k

(34)

where P′k,max is an auxiliary dynamic variable required to modulate the instantaneous power of DGk. Hence,
at t = t0, P′k,max(t0)=Pk,max(t0), and it is required to converge to (Pk,max+δ) while si converges via consensus.
With the goal of maintaining PO(t) = PL for all t > t0, we must have

PL = PO(t) =
PL

sk
P′k,max +

N

∑
i=1,i 6=k

PL

si
Pi,max (35)

Thus,
P′k,max

sk
+

N

∑
i=1,i6=k

Pi,max

si
−1 = 0 (36)

Therefore, P′k,max is

P′k,max(t) = sk(t)
[
1−

N

∑
i=1,i 6=k

Pi,max

si(t)

]
(37)

The algorithm for updating P′k,max and si for i = 1,2, · · · ,N in (34) is as follows:

P′k,max(t) = sk(t)
[
1−

N

∑
i=1,i6=k

Pi,max

si(t)

]
(38a)

Ṡ =−(L+∆)S+hdkP̃T where S(t0) = PT 1 (38b)

Based on (34) and (38), we state and prove the following lemma:
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Lemma 4. The dynamic system of (38) is stable, i.e. the terms P′k,max, Pi,max
si

and S remain bounded if
|δ| < θPT/(1+

√
N), where 0 < θ < 1− (PL/PT ). Furthermore, P′k,max → P̃k,max and S→ P̃T 1, while the

instantaneous delivered power satisfies (35) for all t ≥ t0.

Proof. Since (38b) is equivalent to (7), per Lemma 1, the dynamic system of (38b) is ISS. Therefore S is
bounded. Additionally, as (38b) and 7) have the same initial conditions, i.e. S(t0) = PT 1, thus S→ P̃T 1.
Following |δ| < θPT/(1+

√
N), from Lemma 3 we have (1− θ)PT ≤ si(t) ≤ (1+ θ)PT with 0 < θ < 1−

(PL/PT ). Thus,
Pi,max

(1+θ)PT
≤ Pi,max

si
≤ Pi,max

(1−θ)PT
(39)

Therefore, Pi,max
si

is bounded for all i = 1,2, · · · ,N. It demonstrates that (38a) represents a viable way to
update P′k,max. By plugging P′k,max from (38a) into (34), PO(t) simplifies to

PO(t) =
PL

sk
sk

[
1−

N

∑
i=1,i6=k

Pi,max

si

]
+

N

∑
i=1,i 6=k

PL

si
Pi,max = PL (40)

for all t ≥ t0. Since S converges to P̃T 1, from (38a) we therefore deduce

P′k,max(t)→ P̃T

[
1−

N

∑
i=1,i 6=k

Pi,max

P̃T

]
= P̃k,max (41)

This completes the proof.

The controller designed in (38a) and (38b) maintains PO(t) = PL following a variation in the power
capacity of a DG, namely Pk,max. However, to compute the term

N

∑
i=1,i6=k

Pi,max

si
(42)

in P′k,max, as given in (38a), the kth agent requires additional information. The following approach is proposed
to enable the kth agent to attain this information distributively. This approach is based on the distributed
finite-time average consensus studied in [27]. According to [27], each agent i, shares Pi,max

si(t)
to its outgoing

neighbors N +
i where, following Section 2, N +

i stands for the set of nodes which receives signals from
node i. Accordingly, based on what follows the agents are able to distributively compute the instantaneous
average of all Pi,max

si(t)
where i = 1,2, · · · ,N, i.e.

Ca(t) =
∑

N
i=1

Pi,max
si(t)

N
(43)

Then, the kth agent can compute (42) via

N

∑
i=1,i 6=k

Pi,max

si
= NCa(t)−

Pk,max

sk
(44)

One example of applying this distributed finite-time average consensus is presented in [31]. Similar to [31],
the steps of executing the finite-time algorithm is as following:

gi(m+1) = piigi(m)+ ∑
j∈N −

i

pi jg j(m)

gi(m+1) = piigi(m)+ ∑
j∈N −

i

pi jg j(m)
(45)
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where gi(0) =
Pi,max

si
and gi(0) = 1 for i = 1,2, · · · ,N. Additionally, pi j =

1
1+|N +

j |
for i∈N +

j ∪{ j}, otherwise

is zero. Let us define the vectors

gT
i,2m=[gi(1)−gi(0),gi(2)−gi(1), · · · ,gi(2m+1)−gi(2m)]

gT
i,2m=[gi(1)−gi(0),gi(2)−gi(1), · · · ,gi(2m+1)−gi(2m)]

(46)

and the following Hankel matrices

Γ{gT
i,2m},


gi,2m(1) · · · gi,2m(m+1)
gi,2m(2) · · · gi,2m(m+2)

...
. . .

...
gi,2m(m+1) · · · gi,2m(2m+1)

 (47)

and

Γ{gT
i,2m},


gi,2m(1) · · · gi,2m(m+1)
gi,2m(2) · · · gi,2m(m+2)

...
. . .

...
gi,2m(m+1) · · · gi,2m(2m+1)

 (48)

Each agent i runs the steps in (45) for 2N+1 times and keeps the values gi(m) and gi(m) for m= 1,2, · · · ,2N+
1. Having gi(m) stored for the 2N + 1, each agent i establishes the vectors gT

i,2m and gT
i,2m defined in (46)

starting from m = 0. At the same time, all individual agents construct their Hankel matrices Γ{gT
i,2m} and

Γ{gT
i,2m} defined in (47) and (48), respectively. Additionally, they calculate the ranks of the Hankel ma-

trices for each m and repeat the same procedure for the next m+ 1 until for a specific m either Γ{gT
i,2m}

or Γ{gT
i,2m} becomes a defective matrix. Assume Γ{gT

i,2Mi
} or Γ{gT

i,2Mi
} is the first matrix which loses its

full rank where βi = [βi,0, · · · ,βi,Mi−1,1]T is its corresponding kernel. Having the kernel βi, the ith agent
computes the average of all gi(0) =

Pi,max
si

for i = 1,2, · · · ,N defined as Ca in (43) through the following

Ca(t) =
1
N

N

∑
i=1

gi(0) =
[gi(0),gi(1), · · · ,gi(Mi)]βi

[gi(0),gi(1), · · · ,gi(Mi)]βi
(49)

Thereby, the kth agent achieves Ca(t), distributively. At this step, the kth agent obtains the term in (42) via
(44). By plugging (42) back to (37) the kth agent is able to compute P′k,max.

To implement the proposed strategy practically, the mentioned procedures are required to be discretized
firstly, since in practice the signals and algorithms update, digitally. We define an index w, starting from w =
0, that represents the discrete instants at which the overall consensus algorithm is executed. At w = 0, the ith

agent, i = 1,2, · · · ,N, has the value of si(w) = PT . Therefore, they can compute Pi,max/si(w), individually.
Following the finite-time algorithm, they implement the procedure in (45)-(49). Now that all the agents,
including the kth agent, obtains Ca(w) from (49), then using Ca(w), the kth agent computes

P′k,max(w) = sk(w)
[
1−

N

∑
i=1,i 6=k

Pi,max

si(w)

]
(50)

The command signals to DGs are as follows

Pk(w) =
PL(w)
sk(w)

P′k,max(w)

Pi(w) =
PL(w)
si(w)

Pi,max for i = 1,2, · · · ,N i 6= k
(51)
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(a)

(b)

(c)

Figure 2: Physical layer control scheme
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Figure 3: Power circuit diagram of a DG

Figure 4: Simulated microgrid bus system

Thereafter, the agents compute si(w+1) through

S(w+1) = S(w)+dt[−(L+∆)S(w)+hdkP̃T ] (52)

Set w = w+ 1, and repeat the above strategy with the updated value of the si(w) defined in (52). We end
this section with the following two observations:

Remark 1. The consensus algorithms proposed are independent from the load demand PL and its changes,
referring to 4.1 and 4.4.

Remark 2. All agents in the cyber layer have access to the instantaneous value of PL. The power generation
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command for strategies 1, 2 and 3 introduced in 4.3 and the control scheme in 4.4 incorporate PL and si(t)
in the commanded power. Therefore, during consensus the power demand is met, irrespective of whether PL

changes or not.

5 Controller Layout of Physical Layer

The proposed power control methods for DGs introduced in this study are required to be implemented on
both cyber and physical layer of microgrids. The physical layer which includes DGs is where controllers
are designed to control the output power of DGs. In this study, the problem of proportional power sharing
is addressed in the grid-connected mode, hence the frequency and voltage of DGs are imposed by the main
grid. Therefore, frequency and voltage control methods, such as droop control, are not considered in this
study. Furthermore, the reactive power control in the grid-connected mode is not studied for the practical
reason of availability of reactive power in the main grid. Therefore, the required reactive power of the
microgrid can be maintained from the main grid.

The desired active power command of each DGi, i.e P∗i for i = 1,2, · · · ,N is calculated by its corre-
sponding agent, i.e ith agent in the cyber layer. Then, this signal of P∗i is sent to the power control block
of DGi located in the physical layer. The power control block of DGs is represented in Fig. 2a. This block
receives the voltage Vabc and current Iabc from the voltage and current measurement units installed on the
output of each DG, as shown in Fig. 3. Figure 3 also shows that each DG is connected to the main grid via a
dedicated transformer to match the voltage between the DG and the main grid, as the output voltage of the
main grid is significantly higher than the output voltage of DGs. To control the generated power of a DGi,
i.e, Pi, it is required to control its output current since Vabc and the frequency of the microgrid are fixed by
the main grid. To achieve this, the desired active power command P∗i issued from ith agent is also considered
as the other input in Fig. 2a. Using the Phase-Locked-Loop (PLL) block, the signals in Fig. 2a are converted
to their equivalent values in the dq0 reference frame, i.e. Vdq and Idq.

Next, the outputs of the Vdq and Idq are fed as inputs to Fig. 2b. The parameters C1, C2 and the PI
controllers coefficients together with the upper and lower bounds of the saturation blocks in Fig. 2b are all
defined in Section 6. The outputs of the Fig. 2b, regarded as the imaginary and real values of a complex
number, are the inputs of the Fig. 2c. These inputs are converted to the amplitude and phase angle of the
same complex value. The amplitude and the phase signals, together with the voltage angle ω t, obtained
from the PLL in the Fig. 2a, constitute the three phase signal fed to the PWM in Fig. 2c. Finally, each PWM
sends the switching signals to the three level inverter of its corresponding DG which is illustrated in Fig. 3.

6 Simulations

In this section, the performance of the proposed control methods explained in Section 4.4 is evaluated
through the simulation of a microgrid consisting of six inverter-based DGs shown in Fig. 4. The model
layout in Fig. 4 is inspired from Matlab-based example available in [35] and the studies in [32, 34]. Then,
the performances of the strategies 1 and 3, provided in (25) and (14) respectively, are juxtaposed with the
performance of the controller in Section 4.4. The simulations are accomplished using the Simscape toolbox
of Matlab. The simulated DGs are numbered from 1 to 6 and are connected to the main grid in parallel as
depicted in Fig. 4. Each DG has a corresponding agent in the cyber layer where the updated value of the
desired output power is computed by the agents using the information obtained through their bidirectional
communication structure, as shown in Fig. 5. Note that the communication graph of the DGs in Fig. 5 is
connected per its definition in Section 2.
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Figure 5: Communication graph of the simulated DGs

As the communication graph in Fig. 5 is a bidirectional graph, per Section 2, the adjacency matrix of
the graph is symmetric. The adjacency and degree matrices are chosen as

A =


0 6 0 6 6 0
6 0 0 6 0 0
0 0 0 6 6 0
6 6 6 0 6 6
6 0 6 6 0 6
0 0 0 6 6 0

, D =


18 0 0 0 0 0
0 12 0 0 0 0
0 0 12 0 0 0
0 0 0 30 0 0
0 0 0 0 24 0
0 0 0 0 0 12

 (53)

From Section 2, the correlated Laplacian matrix L = A−D is defined as

L =



18 −6 0 −6 −6 0
−6 12 0 −6 0 0
0 0 12 −6 −6 0
−6 −6 −6 30 −6 −6
−6 0 −6 −6 24 −6
0 0 0 −6 −6 12

 (54)

For the simulations, we set h = 10 in (7), (38b) and (52). Let the maximum capacity of the DGs Pi,max for
i = 1,2 · · · ,6 be

P1,max = 600kw P2,max = 450kw P3,max = 300kw

P4,max = 150kw P5,max = 750kw P6,max = 150kw
(55)

Thus, the maximum capacity of the whole microgrid is PT = ∑
6
i=1 Pi,max = 2400kw, and assume the load

demand is PL = 1600kw. According to Section 3, the agents have knowledge of PL at all times and PT at
initial time. Therefore, each agent is able to compute the proportional power share ratio r = PL

PT
defined in

(5), independently, which is 2
3 , initially. Therefore, the output power of each DGi for i = 1,2, · · · ,6, based

on the proportional power sharing, must be,

P1 = 400kW P2 = 300kW P3 = 200kW

P4 = 100kW P5 = 500kW P6 = 100kW
(56)
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Output powers Pi, i = 1,2, · · · ,6, under a variation in P1,max are depicted in the figures a, b, c, d, e
and f, respectively.
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Figure 7: Microgrid total output power PO obtained from the proposed control method of Section 4.4

(a) (b)

Figure 8: Consensus trajectories of agents on P̃T from (38b) and trajectories of ri, i = 1,2, · · · ,6, from (34).
(a) Consensus trajectories on P̃T (b) The signals ri
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Figure 9: Individual Pi,max/si(t) and the average Pi,max/si(t) at each time step, as defined in (42) and (43)

During t = [0,3]sec, the power capacity of each DG remains unchanged and hence, each of the DGs gen-
erates its active power share as calculated in (56). At t = 3sec the power capacity of DG1 undergoes a step
change, thereby PT has an increment of 300kW , and at t = 9sec we introduce a decrement of 600kW to the
capacity of DG1.

The simulated microgrid consists of several components such as inverters, output filters of inverters,
transformers, PWM, PI controllers, line impedance, loads, DC resources, measurement units, PLL and
abc/dq0 converters. To emulate the main grid a dispatchable generator is considered in the simulation as
shown in Fig. 4. The parameters of the transformer that connects the main grid to the distribution system
and those of the transformers which connect the DGs to the distribution system are given in Table 1. The
parameters of the distribution system are provided in Table 2. The PI controllers depicted in Fig. 2b are
identical. The PI controllers of all DGs are also identical, meaning they all have the same P and I gains,
chosen as kP = 0.3 and kI = 30, respectively.

The energy resource of each DG is simulated as a DC power source, then by utilizing an inverter, the
DC current converts to the AC current, as shown in Fig. 3. In the same figure, to remove the harmonics
from the output power of the inverter, an output filter is applied and then connected to the main grid via
a transformer, as illustrated in Fig. 3. The output filter consists of RL and RC branches. The resistive
and inductive elements of each RL component are set as R1 = 5.4946× 10−4Ω and L= 1.4575× 10−4H,
respectively. The RC components for the output filters of each individual DGi arranged in the delta format
have Pi(W ) and reactive power Qi(kVar) as given in Table 3. In Fig. 2b, C1 = 0.0039, C2 = 0.21, and the
upper and lower limit of the saturation blocks are +1.5 and −1.5, respectively. The power control of each
DG established in the physical layer is depicted in Fig. 2.

Starting from t = 3sec, P1,max increases from 600kW to 900kW . Therefore, the microgrid maximum
power capacity increases from 2400kW to 2700kW . Based on the approach explained in Section 4.4, the
finite-time algorithm in (45)-(49) is embedded in the consensus algorithm (38b) to have DGs apply the
proposed control law in (34) and (38), distributively. The results of the simulations are shown in Fig. 6
where P1 increases and Pi, i = 2,3,4,5,6, decreases. During t = [3,9]sec, the microgrid output power
PO remains almost equal to PL = 1600kW , as shown in Fig. 7. The slight difference between PO and
PL is due to resistive losses in the DGs due to the resistor elements shown in Fig. 3. Considering (38b),
the six estimation variables si for all i = 1,2, · · · ,6 are updated through the information exchange until
they reach a consensus concerning P̃T = 2700kW as demonstrated in Fig. 8a. The ratios of ri =

PL
si,max

, for
i = 1,2, · · · ,6, are shown in Fig. 8b, where before reaching a consensus during t = (3,8)sec, these ratios
are different, however they become almost identical during t = [8,9]sec. Figure 6 illustrates that after the
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Table 1: Parameters of the Transformers

Transformer Connected to DGs
Parameter Value

Nominal Power (kVA) 100
Nominal Frequency (Hz) 60

winding 1
V1,rms,ph−ph,kV 25

R1(pu) 0.0012
L1(pu) 0.03

winding 2
V1,rms,ph−ph,V 270

R2(pu) 0.0012
L2(pu) 0.03

Magnetization resistance Rm (pu) 200
Magnetization inductance Lm (pu) 200

Transformer Connected to Dispatchable Generator
Prameter Value

Nominal Power (kVA) 47000
Nominal Frequency (Hz) 60

winding 1
V1,rms,ph−ph,kV 1200

R1(pu) 0.0026
L1(pu) 0.08

winding 2
V2,rms,ph−ph,kV 25

R2(pu) 0.0026
L2(pu) 0.08

Magnetization Resistance Rm (pu) 500
Magnetization Inductance Lm (pu) 500

Table 2: Parameters of the Grid

Parameter Value
Load 1 Nominal Voltage (kVph−ph) 25

Load 1 Active Power P (kW) 250
Load 2 Active Power P (kW) 2000

Load 3 Power S (kVA) 30000+j2000

Line 1 Z1
Positive and

Zero Sequence

Length (km) 8
R(Ω/km) [0.1153 0.413]
L(H/km) [1.05e-3 3.32e-3]
C(F/km) [11.33e-009 5.01e-009]

Line 2 Z2
Positive and

Zero Sequence

Length (km) 14
R(Ω/km) [0.1153 0.413]
L(H/km) [1.05e-3 3.32e-3]
C(F/km) [11.33e-009 5.01e-009]

Nominal Frequency (Hz) 60

Table 3: Active and reactive powers of RC components of each output filter

DG Number Active Power(W) Reactive Power(kVar)
1 400 20
2 200 10
3 600 30
4 500 25
5 300 15
6 400 20
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(a) (b)

Figure 10: (a) Output power P1 according to Strategies 1, 3 and the proposed controller of Section 4.4 and
(b) Their corresponding microgrid total power PO

consensus algorithm converges, the steady state values of the output powers of DGs are P1 = 533.33kW ,
P2 = 266.66kW , P3 = 177.77kW , P4 = 88.88kW , P5 = 444.44kW and P6 = 88.88kW . Recalling the finite-
time average consensus algorithm is embedded in the consensus algorithm, at each time step of evolution
of consensus algorithm, the finite-time algorithm is applied. Through this approach, the agents compute the
average of Pi,max

si(t)
for i = 1,2, · · · ,6 in a distributed way where its corresponding result is illustrated in Fig. 9.

The next variation of the microgrid maximum power capacity occurs at t = 9s where P1,max decreases for
−600kW . Therefore, starting from t = 9sec, the current capacity of the microgrid which is PT = 2700kW
changes to P̃T = 2100kW . Then, similar to the same procedure adopted in reaction to a change in a microgrid
capacity, the control method in (34) and (38) is triggered. Hence, during t = [9,18]sec, according to Fig. 8a,
the agents have reached to another consensus on the maximum power capacity of the microgrid which
is 2100kW . Figure 6a demonstrates that P1 becomes 228.57kW after the convergence during [9,18]sec.
Figure 6 also shows that the output power of the other DGs have increased due to the microgrid capacity
reduction. The power sharing ratio ri for i = 1,2, · · · ,6 are shown in Fig. 8b. The figure illustrates that,
during the transient duration of (9,15)sec, ri ratios are not equal. On the contrary, they converge to steady
state conditions in [14,18]sec. Furthermore, from Fig. 7, PO remains practically equal to PL = 1600kW .
In Fig. 10a, the results of the proposed control algorithm in Section 4.4 is compared with the results of the
strategies defined as (14) and (25) in Section 4.3. From this figure, it is clear that the output power of P1
obtained from the proposed control algorithm Section 4.4 differs from the other two ones during the transient
duration. However, after the transient durations of (3,8)sec and (9,15)sec the output power of P1 from all
three methods are the same. Figure 10b demonstrates that the approaches of (14) and (25) are ineffective
to address the load demand. They produce significant deviation in PO from PL during transient. On the
other hand, upon applying the method of Section 4.4, the deviation drastically reduces, both for increase and
decrease in maximum power capacity of DG1.

7 Conclusion

In this research, the problem of distributed proportional power sharing is studied for microgrids that operate
in the grid-connected mode. Firstly, a consensus algorithm is designed through which, under a variation in
the maximum power capacity of a DG, all DGs in the microgrid estimate the updated microgrid capacity.
Utilizing the estimations, they generate their output powers in a distributed manner. Stability and conver-
gence of the consensus algorithm are proven. While the consensus algorithm operates in the cyber layer,
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power commands are sent to the DGs at the physical layer using multiple strategies, discussed in the re-
search. In this regards, practical issues such as ensuring power commands are within acceptable bounds
during the transient time of the consensus method, are addressed. However, the consensus algorithm along
with the aforementioned strategies does not guarantee maintaining load power during the transient time.
Therefore, a modified strategy is proposed to guarantee a match between demanded and delivered power
during transient, while the DGs reach a new consensus following a perturbation in grid capacity. The dis-
tributed controller is tested in a simulated microgrid. The microgrid is modeled in Matlab/Simulink using the
Simscape toolbox. A complete description of the model along with parameters values used for simulation,
are given. Simulation results confirm the effectiveness of the proposed strategy.

Appendix

Proof of Lemma 3

Proof. From (13), we note that yi = si− P̃T . Since Lemma 1 shows that−(L+∆) is Hurwitz, therefore from
(13) we have,

y(t) = e−(L+∆)ty(t0)⇒‖y(t)‖≤ ‖e−(L+∆)t‖‖y(t0)‖ (57)

As explained in Lemma 1, −(L + ∆) is diagonalizable and all of its eigenvalues are negative and real.
Assuming λ1 < 0 is the largest eigenvalue of −(L+∆) and since y(t0) =−δ1, we have,

‖y(t)‖ ≤ eλ1t‖y(t0)‖= eλ1t
√

N|δ| ≤
√

N|δ| (58)

Hence, ‖y‖ is bounded. Since |yi| ≤ ‖y(t)‖, therefore

|yi(t)| ≤
√

N|δ| ∀ i = 1,2, · · · ,N (59)

If |δ|< θPT/(1+
√

N), then it follows that

|yi(t)| ≤
√

N|δ| ≤
√

NθPT/(1+
√

N) (60)

and since yi = si− P̃T , therefore we have

P̃T −
√

NθPT/(1+
√

N)≤ si(t)≤
P̃T +

√
NθPT/(1+

√
N)

(61)

Since P̃T = PT +δ, and from the assumption |δ|< θP/(1+
√

N), we have

PT−θPT/(1+
√

N)−
√

NθPT/(1+
√

N)≤ si(t)

≤ PT +θPT/(1+
√

N)+
√

NθPT/(1+
√

N)
(62)

Thus,
(1−θ)PT ≤ si(t)≤ (1+θ)PT (63)

Since for all t > t0, the output power of each DGi should satisfy Pi(t) = PL
si(t)

Pi,max < Pi,max, it is required
that si(t)> PL for all t > t0. For guaranteeing si(t)> PL, from (63), we can impose (1−θ)PT > PL. There-
fore, under the dynamics of S in (7), PT > PL/(1−θ) or 1− (PL/PT ) > θ ensures that Pi(t) < Pi,max. This
completes the proof.
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Observation on δ: Lemma 3 gives the condition |δ|< θPT/(1+
√

N) to prevent unfavorable transients
in si(t). To demonstrate that this condition is not restrictive as N increases, we consider a change in N to
N +1 and a corresponding change from PT to PT +PN+1,max. Further, we impose

θ(PT +PN+1,max)

1+
√

N +1
>

θPT

1+
√

N
(64)

to derive the condition under which |δ| will increase as we increase N to N +1. From (64), we have,

PN+1,max >
[√N +1−

√
N

1+
√

N

]
PT (65)

From (65), it can be observed that PN+1,max can be only a small fraction of PT to allow |δ| to increase rather
than decrease. For instance, if N = 3, then PN+1,max > 0.098PT , and if N = 8, then PN+1,max > 0.045PT

which are small fractions of PT . In addition, comparing the right hand side of (65) with the average of PT ,
PT,avg = PT/N, we obtain the minimum ratio of PN+1,max/PT,avg as following

N
[√N +1−

√
N

1+
√

N

]
(66)

Equation (66) is strictly less than 1
2 and it converges to 1

2 for large values of N. This proves that PN+1,max

is required to be PN+1,max ≥ (1/2)Pavg at the worst cases to satisfy the condition on |δ|. Therefore, the
condition on |δ| is not restrictive.
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