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Control of Commercial Electric Vehicles Under

Distributed Hydrogen Energy Supply
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Abstract—The transition to the zero-carbon power system is
underway accelerating recently. Hydrogen energy and electric
vehicles (EVs) are promising solutions on the supply and demand
sides. This paper presents a novel architecture that includes
hydrogen production stations (HPSs), fast charging stations
(FCSs), and commercial EVs. The proposed architecture jointly
optimizes the distributed hydrogen energy dispatch and the EV
charging location selection, and is formulated by a time-varying
bi-level bipartite graph (T-BBG) model for real-time operation.
We develop a bi-level iteration optimization method combining
linear programming (LP) and Kuhn-Munkres (KM) algorithm to
solve the joint problem whose optimality is proved theoretically.
The effectiveness of the proposed architecture on reducing the
operating cost is verified via case studies in Shanghai. The
proposed method outperforms other strategies and improves the
performance by at least 13% which shows the potential economic
benefits of the joint architecture. The convergence and impact of
the pile number, battery capacity, EV speed and penalty factor
are assessed.

Index Terms—Electric vehicle, hydrogen energy, bipartite
graph, stochastic programming

NOMENCLATURE

Indices
i Indice of FCSs
j Indice of EVs
k Indice of HPSs
t Indice of time

Matrixes
D Matrix of distance between HPSs and FCSs
Gt Matrix of the charging schedule of EVs
Ht Matrix of the dispatched hydrogen energy
L Matrix of hydrogen supply relationship
Rt Matrix of the charging options of EVs

Parameters
βe
t TOU price of electricity at time t (CNY)

∆ Step length of time
ηc Average charging efficiency
ηF Hydrogen production efficiency
aN
i Total number of charging piles at FCS i
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cd Per-unit depreciation cost (CNY/kW)
ci Per-unit idle cost (CNY/hr)
cm,PV Per-unit maintenance cost of PV cells (CNY/kW)
cm,w Per-unit maintenance cost of wind turbines

(CNY/kW)
cm Per-unit maintenance cost (CNY/kW)
ct Per-unit deliver cost of hydrogen energy (CNY/kW)
cw Per-unit waiting cost (CNY/hr)
Ec
j Battery capacity of EV j (kWh)

El Power loss per kilometer of EVs (kWh)
F Faraday constant
fPV Efficiency of PV inverters
Gr,PV Standard solar radiation intensity (W)
N ae Number of electrolyzers
N ev Number of EVs
N h Number of HPSs
N s Number of FCSs
Nw Number of the wind turbines
P b,s
i,t Base load of FCS i (kW)
P c, w Capacity of the wind turbine (kW)
P c,PV Capacity of PV cells (kW)
pH Standard pressure of gas cylinders (MPa)
P r

1 Rated charging power of no-load EVs (kW)
P r

2 Rated charging power of EVs with passengers (kW)
P b,H
k,t Base load of HPS k (kW)
R Universal gas constant
TH Standard temperature of gas cylinders (K)
U ae Rated voltage of electrolyzers (V)
UH
k Rated voltage of the full cell (V)

vci Cut-in speed of the wind turbine (m/s)
vco Cut-out speed of the wind turbine (m/s)
vH Average speed of tankers (km/hr)
vr Rated speed of the wind turbine (m/s)
vj Average speed of EV j (km/hr)

Sets
Ωt Set of trajectories of EVs requesting charging at

time t.
Θi,t Set of EVs that will depart the FCS in the next time

step
Variables
βi,t Charging price of FCS i at time t (CNY)
l̂i,j Distance between FCS i and the destination node

of EV j (km)
τj Trajectory of EV j at time t
l̃i,j Distance between EV j and FCS i (km)
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At Number of supply nodes in bipartite graph Bt
ai,t Available number of charging piles at FCS i
Bt T-BBG model at time step t
C1
τj Total operating cost of EV j with trajectory τj

(CNY)
C2
i,t Operation cost of FCS i (CNY)

C3
k,t Operation cost of HPS k (CNY)

Ccharge Charging cost of EV j (CNY)
Cdepre Depreciation cost of EV j (CNY)
CH/G/G,H Cost related to Ht/Gt/both Ht and Gt (CNY)
C idle Idle cost of EV j (CNY)
Cwait Waiting cost of EV j (CNY)
dj Destination node of EV j
di,t Estimated charging demand of FCS i (kWh)
Epot Potential charging demand of EV j (kWh)
GPV
k,t Solar radiation intensity (W)

gj,t Charging schedule of EV j at time t
Iae
k,t Current of electrolyzers (A)
IH
k,t Current of the full cell (A)
Jt Cost function at time step t
Lev
j,t Remaining charging time of EV j at time t

l0 Distance between origin node and EV j (km)
nH
k,t Number of moles of hydrogen
N ev
i,t Charging number of EVs at FCS i

oj Origin node of EV j
P a
k,t Available power at HPS k (kW)
PH
k,t Hydrogen power at HPS k (kW)
P PV
k,t Solar power at HPS k (kW)
Pj,t Charging power of EV j at time t (kW)
Pw
k,t Wind power at HPS k (kW)
QH
k,t Volume of the high pressure hydrogen (m3)

qj,t Service state of EV j at time t
SoCj,t SoC of EV j at time t
vk,t Wind speed at HPS k (m/s)

I. INTRODUCTION

AS an important development trend of the smart grid,
zero-carbon power systems have drawn much attention

around the world recently [1]. Hydrogen energy and elec-
tric vehicles (EVs) are regarded as promising solutions to
achieve this goal on the supply and demand side, respectively.
The emissions of EVs strongly depend on their electricity
generation mix for recharging and can be further reduced
through renewable energy supply such as wind, photovoltaic
and hydrogen energy. With the rapid development of EVs, the
large-scale uncontrolled EV charging loads can add great stress
to the distribution power network and cause congestion, power
losses, and voltage deviations. Since EVs have significant
elasticity in terms of charging, a reasonable scheduling control
can save the overall operating cost, increase the renewable
energy penetration and provide several ancillary services [2].

The existing methods on control of private EVs often face
the privacy and security issues. However, the electrification
and charging scheduling of commercial vehicles for passenger
transportation (e.g., ride-hailing) are clear initial markets for
EV fleet operation and operating cost reduction. The cost
reduction can be done by two ways, one is to improve the

electrification rate of vehicles, the other is to take fully usage
of cheaper renewable energy. Many cities in China, America,
and Europe have gradually achieved the electrification of taxis
or other commercial vehicles [3]. Therefore, it is of great
practical interest for the transportation network companies to
schedule a fleet of commercial EVs for passenger transporta-
tion under hydrogen energy supply in their businesses.

This paper studies the operation problem of transportation
network companies, solving two major sub-problems jointly
including the hydrogen energy dispatch and EV charging
location selection. This problem is challenging due to the
following difficulties. First, the size of the solution space
increases exponentially fast with respect to the number of EVs,
which makes the solving process time-consuming. Therefore,
a computationally feasible algorithm is in demand for real-
time operation. Second, many factors need to be integrated
considered with the decision-making process, including the
operating cost, road network topology, driving trajectories of
EVs, and renewable energy output. Third, the control decision
is coupled in time. And the future information is uncertain.

Research on the control of charging stations and EV fleets
have been active for years. Many works from charging station
perspective focus on the planning stage, including the siting
of charging stations [4] and the EV fleet sizing problem [5]
to study their economic advantages. On the other hand, the
charging control both for a single EV and for a fleet were
studied recently to achieve different goals, such as battery
healthy [6], peak procurement minimization [7], and valley
filling [8], just to name a few. DeForest et al. [9] solved
the charging stations management problem for the day-ahead
market based on load forecasts and randomized algorithms.
Morstyn et al. solved the problem with consideration of
battery voltage rise and maximum power limitation, which
are commonly neglected [10]. Driven by the need of state
space reduction, event-based optimization [11] and data-driven
method [12] have been developed for a large-scale EV fleet
charging operation.

Compared with day-ahead market, the real-time scheduling
of EV fleet is more realistic and challenging. Assuming the
private EVs are the price-takers, liu et al. [13] and Ghosh et al.
[14] developed the price mechanism and admission control to
motivate EVs for off peak charging. Another way to solve this
problem is to discretize the time into periods and transform the
online problem into several offline optimization problems [15].
Heuristic and rule-based methods are proposed due to the high
requirement of solving speed in real-time operation which may
lack mathematical performance guarantee [16], [17]. However,
these works assume the arrival process and charging location
of EVs are uncontrollable, while the controllable part is the
charging power and time. Zhang et al. [18] studies the PEV
routing problem using a second order cone programming
model. Different from our paper, this work schedules the
private EVs from the perspective of the social coordinator and
did not consider the scheduling of renewable energy.

Compared with existing results, this paper studies the joint
optimization problem for transportation network companies
and advances the relevant literature by the following main
contributions:
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First, we propose a novel architecture where a company
owns the hydrogen production stations (HPSs), fast charging
stations (FCSs) and commercial EVs for passenger transporta-
tion. The proposed architecture jointly optimizes the hydrogen
energy dispatch and EV charging location selection at the same
time. Compared with the architecture that considers only one
of these issues, the HPS-FCS-EV architecture can obtain better
performance on reducing the operating cost.

Second, we propose a time-varying bi-level bipartite graph
(T-BBG) model to formulate the architecture for the real-
time urban charging scenarios. Based on the receding-horizon
control framework, a bi-level iteration optimization algorithm
is developed to solve the problem. The linear programming
(LP) and extended Kuhn-Munkres (KM) algorithm are used
for the hydrogen energy dispatch and EV charging location
selection, respectively. The optimality of the proposed method
is proved theoretically.

Third, case studies based on real data in Shanghai are
conducted to demonstrate the effectiveness of the proposed
method. Compared with other strategies, the total operating
cost of the proposed method is reduced by at least 13%
which shows the potential economic benefits of the joint
architecture. The convergence and influences of various factors
are analyzed.

The remainder of this paper is organized as follows. Section
II gives the description and mathematical models of the HPS-
FCS-EV architecture. We develop the T-BBG model in Section
III-A and introduce the proposed bi-level iteration algorithm
in detail in Section III-B. Numerical experiments are presented
in Section IV. Section V concludes the paper.

II. PROBLEM FORMULATION

The proposed HPS-FCS-EV architecture for joint hydrogen
energy schedule and EV coordinated charging is depicted in
Fig. 1. The main stakeholder of the architecture is a company
operating several EVs, FCSs and HPSs who wants to minimize
the total operating cost by scheduling the hydrogen power
dispatch and EV charging location. The company can be a
private enterprise such as Uber [19] and DiDi [20] that invests
in renewable energy and controls the charging plan of EV
assets to achieve corporate benefits. It may also represent the
municipality which makes efforts to achieve a zero-carbon
economy. The detailed relationship between the interconnected
elements of the CPES can be found in Fig. 2. EVs are
operated as commercial vehicles to provide passenger services
and charged at the FCSs. HPSs and the power grid jointly
support the stable operation of FCSs. The hydrogen energy
is generated by wind and solar power in decentralized HPSs
and transported through tankers. Tankers and EVs share the
same transportation network where we distinguish them in Fig.
1 and 2 for clearly explanation. In this paper, we divide the
time into equal-length steps and the length of steps is ∆. We
make the following assumptions in this paper unless stated
otherwise.
A1. EVs will update some basic (not private) information to

the company, such as the charging demand, the state of charge
(SoC) and the destination.

A2. EVs will get fully charged at FCSs and depart at once.
A3. EVs with passengers will choose higher charging power.
A4. The charging schedule will not affect the traffic.
Assumption A1 is reasonable since EVs are operated by the

company and it is necessary to get some basic (not private)
information to make the schedule. Given that the fixed time
cost for an EV to charge is usually significant, it tends to
get fully charged each time and leave as soon as possible.
And for EVs with passengers, the waiting time affects service
satisfaction. Thus assumption A2 and A3 hold. Assumptions
A4 is reasonable since the number of EVs is tiny for urban
traffic. In what follows, we present the models of EV, FCS
and HPS in detail.

Fig. 1: The CPES system of a smart grid.

Fig. 2: The relationship between interconnected elements of
the CPES.

A. EV model

Consider there are N ev EVs on services. In this paper, we
extend the OD flow [21] to describe the EV trajectories under
different service states qj,t = {0, 1}. qj,t = 1(0) means the
EV j is with (no) passengers on board at time t.

Fig. 3 illustrates the typical trajectories of EV j under
different service states. A trajectory τj ∈ Ωt of EV j, which
requests for charging at time t, is composed by a set of nodes
including an origin node oj and a destination node dj (if it
has one) and a set of arcs denote the road links between two
adjacent nodes. oj denotes the node where the last recharge
was completed. dj represents the destination of passengers on
board. Ωt is the set of trajectories of EVs at time t.

There are several suitable FCSs (s1 and s2 in Fig. 3) nearby
with different prices and distances. The charging schedule for
EV j can be defined as gj,t ∈ {0, 1, ..., N s} where N s is the
number of FCSs. For instance, EV j will be scheduled to be
charged at the second FCS if gj,t = 2. For EVs do not request
charging at time t, we set gj,t = 0. Different charging schedule
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Fig. 3: Trajectories of EV j under different service states

will result in different path and distance to the destination
node dj . For a no-load EV in Fig. 3(a), distance and price are
the main factors to be considered. However, for an EV with
passengers in Fig. 3(b), different charging schedules will not
only affect the charging cost, but also change the path to the
destination dj . Thus, the cost function for EV j with τj is as
follows,

We assume EV j requests for charging at the node s0 at
time t. The state-of-charge is SoCj,t which means the charging
demand is (1− SoCj,t)Ec

j , where Ec
j is the battery capacity.

There are several suitable FCSs (s1 and s2 in Fig. 3) nearby
with different prices and distance. The charging schedule for
EV j can be defined as gj,t ∈ 0, 1, ..., N s where N s is the
number of FCSs. For instance, EV j will be scheduled to be
charged at the second FCS if gj,t = 2. For EVs do not request
charging at time t, we set gj,t = 0. Different charging schedule
will result in different path and distance to the destination
node dj . For a no-load EV in Fig. 3(a), distance and price are
the main factors to be considered. However, for an EV with
passengers in Fig. 3(b), different charging schedule will not
only affect the charging cost, but also change the path to the
destination dj . Thus, the cost function for EV j with τj is as
follows,

C1
τj = Ccharge + Cwait + C idle + Cdepre, ∀τj ∈ Ωt (1)

where
Ccharge = Epotβgj,t,t (1a)

Cwait = qj,tc
w(
l̃gj,t,j + l̂gj,t,j

vj
+

Epot

Pj,tηc ) (1b)

C idle = (1− qj,t)ci E
pot

Pj,tηc (1c)

Cdepre = cd[qj,t(l0 + l̃gj,t,j+l̂gj,t,j)+

(1− qj,t)(l0 + l̃gj,t,j)]
(1d)

Epot = (1− SoCj,t)Ec
j + El l̃gj,t,j (1e)

Eq. (1a) describes the charging cost of EV j where Epot is
the potential charging demand and βgj,t,t denotes the charging
price of FCS gj,t. Epot in Eq. (1e) includes the current demand
and the power consumption to the FCS where l̃gj,t,j denotes
the distance to FCS gj,t and El is the power loss per kilometer.
Since waiting time is critical for service evaluation, Eq. (1b)
illustrates the waiting cost where cw denotes the per-unit time
cost. The waiting time includes the travel time and charging
time where vj is the speed of EV j, Pj,t is the charging power,
and ηc denotes the charging efficiency. For those no-load EVs,

charging incurs an unavoidable idle cost given by Eq. (1c)
since they cannot operate during that time, where ci is the per-
unit idle cost. Related to the driving distance, the depreciation
cost is expressed in Eq. (1d), where cd denotes the per-unit
depreciation cost.

Let Gt denotes the charging schedule matrix, where
Gt(i, j) = 1 means gj,t = i, and it satisfies,∑

i

Gt(i, j) = 0, ∀τj /∈ Ωt;
∑
i

Gt(i, j) ≤ 1, ∀τj ∈ Ωt (2)

Constraint (2) guarantees only EVs requesting for charging
will be scheduled to one FCS. Since EVs will not consider the
FCSs far away for charging (even if their prices are relatively
cheaper), EV j is assumed to only consider FCSs can be
reached within ∆, which means,

Gt(i, j) ≤ Rt(i, j), i = 1, 2, ..., N s, j = 1, 2, ..., N ev (3)

where matrix Rt denotes the available FCS options of EVs,
which is defined as follows,

Rt(i, j) =

{
1, l̃gj,t,j ≤ vj∆
0, otherwise

(4)

B. FCS model

The FCS utilizes the dispatched hydrogen energy from
HPSs and electricity from the state grid to charge the EVs
parking in the FCS. Let aN

i denotes the total number of
charging piles in FCS i and the number of EVs charging
at FCS i is denoted by N ev

i,t. Thus, the number of available
charging piles ai,t = aN

i −N ev
i,t. Basic information of EVs like

SoCj,t will be reported to the FCS. Then we have,

SoCj,t+1 = SoCj,t + Pj,tη
c∆/Ec

j , j = 1, 2, ..., N ev
i,t (5)

Levj,t = (1− SoCj,t)Ec
j/Pj,tη

c, j = 1, 2, ..., N ev
i,t (6)

ai,t+1 = ai,t −
∑
j

Gt(i, j) + |Θi,t|, i = 1, 2, ..., N s (7)∑
j

Gt(i, j) ≤ ai,t ≤ aN
i , i = 1, 2, ..., N s (8)

Eq. (5) represents the SoC dynamics at time t. The remain-
ing charging time Lev

j,t of EV j is given in Eq. (6). Thus,
the number of available charging piles at time t + 1 can be
calculated via Eq. (7) where Θi,t = {j|Lev

j,t+1 = 0} denotes
the set of EVs that will depart at time t + 1. Inequality (8)
ensures that the charging EVs will not exceed the number
of available charging piles. Under Assumption A3, EVs with
passengers will choose higher charging power to reduce the
charging time, that is,

Pj,t =

{
P r

1, qj,t = 0
P r

2, qj,t = 1
(9)

where P r
2 > P r

1. The charging price of FCS i is a function
of dispatched hydrogen energy

∑
kHt(k, i), k = 1, 2, ..., N h

from all Nh HPSs and the charging demand di,t, that is,

βi,t = max(
P b,s
i,t + di,t −

∑
kHt(k, i)

P b,s
i,t + di,t

, 0)× βe
t (10)
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where βe
t is the TOU price of electricity and P b,s

i,t is the base
load of the FCS i. Since the charging demand is difficult to
know accurately in advance, it can be estimated by the his-
torical data. The cost of FCS i only includes the maintenance
cost of the charging piles C2

i,t, that is,

C2
i,t = cm

∑
j∈N ev

i,t

Gt(i, j)Pj,t, i = 1, 2, ..., N s (11)

where the cm is the per-unit maintenance cost.

C. HPS model

In order to ensure the cleanness of hydrogen energy pro-
duction, wind turbines and photovoltaic cells (PV cells) are
considered to produce H2 from water by electrolysis. The wind
power generation Pw

k,t of HPS k at time t can be calculated
using the following equations [22],

Pw
k,t =

 NwP c, w vr ≤ vk,t ≤ vco

NwP c, w(
vk,t

vr )3, vci ≤ vk,t ≤ vr

0, otherwise
(12)

where k = 1, 2, ..., N h. vci, vr, vco and P c, w are the core
parameters of the wind turbine. Nw is the number of wind
turbines and vk,t denotes the wind speed at HPS k. The power
generated by PV cells P PV

k,t can be modeled as [22],

P PV
k,t = P c,PVfPV(GPV

k,t/G
r,PV) (13)

where P c,PV is the capacity of PV cells. fPV denotes the
efficiency of PV inverters. GPV

k,t and Gr, PV are the current
and standard solar radiation intensity, respectively. Thus, the
available renewable power of HPS k at time t is,

P a
k,t = Pw

k,t + P PV
k,t − P

b,H
k,t (14)

where P b,H
k,t is the base load of HPSs. The HPS uses alkaline

electrolyzer to produce hydrogen, that is [23],

nH
k,t = ηFIae

k,tN
ae/2F = ηFP a

k,tN
ae/(2U aeF ) (15)

where nH
k,t is the number of moles of hydrogen. ηF denotes

the production efficiency and N ae denotes the number of
electrolyzers. Iae

k,t and U ae are the current and voltage of
electrolyzers. F denotes the Faraday constant. High-pressure
gas cylinders are used for hydrogen storage and the conversion
of hydrogen energy to electricity is completed by the full cell,
whose models are shown as follows [23],

QH
k,t = nH

k,tRT
H/pH (16)

IH
k,t = 2QH

k,tF (17)

PH
k,t = IH

k,tU
H
k = 2QH

k,tFU
H
k (18)

where Eq. (16) is the Clapyron equation. PH
k,t denotes the

equivalent hydrogen power at HPS k. The total cost of HPSs
is shown as,

C3
k,t = cm,wPw

k,t + cm,PVP PV
k,t + ct

∑
i

Ht(k, i) (19)

where the first two terms represent the maintenance cost of PV
cells and turbines. cm,w, cm,PV denote the per-unit maintenance

cost of turbines and PV cells. The third term denotes the
hydrogen delivery cost through tankers, which is related to the
dispatch strategy Ht(k, i) and per-unit delivery cost ct. Similar
to constraint (3), the HPSs can only supply FCSs within a
certain distance, which means,

Ht(k, i) =

{
[0, PH

k,t], L(k, i) = 1

0, otherwise
(20)

where matrix L denotes the supply relationship between HPSs
and FCSs, that is,

L(k, i) =

{
1, D(k, i) ≤ vH∆
0, otherwise (21)

where D is the distance matrix of HPSs and FCSs, vH is the
average speed of tankers. Since the total dispatched power
from HPS k can not exceed the hydrogen power, we have,∑

i

Ht(k, i) ≤ PH
k,t (22)

D. Optimization problem

Based on the models of the HPS-FCS-EV architecture given
above, the objective function of the joint problem at time t is,

Jt = (
∑
τj∈Ωt

C1
τj +

N s∑
i

C2
i,t +

N h∑
k

C3
k,t + nncγ) (23)

where the last term denotes the penalty. Specifically, nnc

indicates the number of EVs that have failed to get charging
services due to the limitation of charging piles, and γ is the
penalty factor. Thus, the optimization problem of operating
cost minimization can be summarized as follows,

min
Ht,Gt

T∑
t

Jt

s.t. (2)− (10), (12)− (18), (20)− (22)

(24)

We denote this problem as P1 where it is a MILP. Several
commercial optimization solvers such as IBM ILOG CPLEX
can be used to solve P1. However, Solving P1 directly will
encounter the following difficulties. First, P1 assumes that the
EV trajectories and renewable energy supply in the future
are known in advance, which is unrealistic in the real-time
market. Limited information including the current state and
the predictable future can be used by the company to make
the scheduling control decision. Second, the existence of
numerously discrete variables, high dimensionality, and great
solution spaces, may lead to the explosion of combination
which can take hours to solve it [24]. Heuristic algorithms
may speed up this process, but the performance is difficult
to guarantee. However, super-time optimization and decision-
making with reliable performance is the key to a company’s
profitability in the real world.

Based on the above considerations, we propose a T-BBG
model in the next section which can be solved online and a
bi-level receding-horizon optimization method with the per-
formance guarantee is developed.
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Fig. 4: The T-BBG at time step t.

III. SOLUTION METHODOLOGY

A. Time-varying Bi-level Bipartite Graph Model

In the HPS-FCS-EV architecture, the company should make
scheduling decisions for the hydrogen energy supply and EV
charging demand at each time step. The bipartite graph model
effectively represents the supply and demand relationship [25].
At time t, the HPS-FCS-EV architecture can be formulated as
a T-BBG Bt, which is shown in Fig. 4. The upper level graph
(left part) is to dispatch the hydrogen energy to the FCSs, while
the lower level graph (right part) denotes the charging location
selection problem between EVs and FCSs. Fig. 5 illustrates
the relationship between the T-BBG and timeline. Note that
Bt is a static slice taken from the timeline when we make
decisions and is generated online by scrolling windows. In
fact, the nodes, edges, and weights are time-varying which
depend on the future supply and demand. Based on (23), we
rewrite the objective function of Bt at time t as,

Jt = CH + CG,H + CG (25)

where
CH =

∑
k

C3
k,t (26)

CG,H =
∑
j

Ccharge (27)

CG =
∑
j

(Cwait + C idle + Cdepre) +
∑
i

C2
i,t + nncγ (28)

where CH, CG, and CG,H denote the cost related to decision
variables Ht, Gt, and both, respectively. Although Ht and Gt
affect the objective function together, it can be decoupled and
solved iteratively. In what follows, we will elaborate on the
problems of the upper and lower levels at time t, respectively.

1) Upper lower: Considering any given charging schedule
Gt on the lower level (we will discuss this step in detail in
III-A2), CG can be regarded as a constant c. CH,G = Ccharge

is a piecewise linear function of Ht and CH = C3
k,t is linear

with Ht. Thus, the upper level problem can be formulated as
a LP, that is,

Fig. 5: The relationship between the T-BBG and timeline.

min
Ht

CH + CH,G + c

s.t. (2)− (10),(12)− (18), (20)− (22)
(29)

Common LP solvers can be used to optimize the upper level
problem and the optimal dispatch strategy can be found.

2) Lower level: Similarly, given any the hydrogen energy
dispatch Ht (CH and βi,t are constants), the cost related to
EV schedule Gt in (25) is relatively complex. Since the EVs
and charging piles in FCSs is a one-to-one matching problem,
it can be transferred to a maximum weight matching of an
extended bipartite graph by following steps,

Step 1: Since the FCS i can provide ai,t charging services at
time t, we duplicate ai,t copies of the supply node. Note that
there will be at least |Θi,t| available charging piles for sure at
time t+ 1, which can give additional options to EVs to wait
for one more time step with the extra waiting cost. Therefore,
we duplicate |Θi,t| copies of the supply node and generate the
extended bipartite graph which is shown in Fig. 6. Thus, the
total number of supply nodes (piles) At =

∑
i(ai,t + |Θi,t|).

Fig. 6: Extended bipartite graph on the lower level.

Step 2: Let Mt(i, j) denotes the potential total cost of EV
j charging at FCS i, which can be defined as,

Mt(i, j) = C1
τj + cmPj,t + w(i, j)cw∆ (30)

where w(i, j) is an indicator function indicating whether EV
j chooses a pile at time t+ 1.

Step 3: In order to transform the cost minimization problem
into the maximum weight matching problem, we modified
the potential total cost Mt to the weight of edges Ot in the
bipartite graph, that is,

Ot(i, j) = max
i,j

Mt −Mt(i, j) + 1 (31)

Step 4: The company needs to reduce the operating cost for
FCSs and EVs on the premise of ensuring the service rate. In
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order to meet the charging needs of EVs as much as possible,
we set the penalty factor γ in Eq. (23) as,

γ ≥ max(Epotβe
t + Cwait + C idle + Cdepre+

cmPj,t+c
w∆)×min(At,

∑
i

N ev
i,t)

(32)

then we have the following theorem.

Theorem 1. To charge the EVs as much as possible is a
sufficient condition to get the optimal solution.

The proof for Theorem 1 is given in Appendix A. Then this
problem at time t is equal to a maximum weight matching
of a bipartite graph, and KM algorithm can be used for
optimization [26].

Algorithm 1 Bi-level iteration algorithm for BBG Bt

1: Initialization: choose initial H0
t and G0

t randomly, cal-
culate the initial total cost J0 = J(H0

t , H
0
t ), initialize

∆J = inf;
2: while ∆J > ε do
3: Fix the hydrogen energy dispatch H0

t and modified the
lower level as an extended bipartite graph

4: Optimize G0
t with KM algorithm to get the updated G1

t

and the cost J1 = J(H0
t , G

1
t ).

5: G0
t = G1

t

6: Fix the EV charging schedule G0
t

7: Optimize H0
t with MILP algorithm to get the updated

H1
t and the cost J2 = J(H1

t , G
0
t ).

8: H0
t = H1

t

9: ∆J = |J2 − J0|
10: J0 = J2

11: end while
12: Output: H0

t , G0
t and J0

B. Bi-level Iteration Algorithm

Based on the T-BBG model Bt formulated in III-A, we first
propose a bi-level iteration algorithm to solve the problem at
time t. It is summarized in Algorithm 1 where ε is the stopping
threshold. Note that when we optimize the schedule of one
level, the schedule of another level remains constant as the
boundary condition. Based on Theorem 1, we can prove the
optimality of the proposed algorithm, which is,

Theorem 2. For any hydrogen energy dispatch Ht and EV
charging schedule Gt as initialization, Algorithm 1 can get
the optimum.

The proof for Theorem 2 is given in Appendix B. Con-
sidering the optimization of multiple time stages in a day,
a receding-horizon online control framework is developed as
follows and the detailed flowchart is shown in Fig. 7.

Step 1: At time t = 0, initialize the system parameters,
including the parameters of HPSs, FCSs, and EVs.

Step 2: Collect the information and prediction of the solar
and wind power supply, EV trajectories and charging piles in
time step t. Generate the T-BBG model Bt.

Start

Set initial parameters including

0t 

Collect solar and wind information and prediction, EV 

charging requests and charging piles information during 

the time step   , and generate the T-BBG model

Optimize       with MILP solver to get the updated      

                and the cost                        , set

Fix       and solve the upper level problem in Section III-A1

Apply the strategies      and       ; 

System dynamics

1t t 

No

t tB

Initial       and      randomly, set                            

                 and  

0

tH 0

tG

 
0 0

0 = ( , )t tJ J H G

infJ 

Transfer the problem as a maximum weight matching 

of a bipartite graph by the steps in Section III-A2 and 

solve it with KM algorithm to get the updated      and 

            the cost                       , set 

Fix       and solve the lower level problem in Section III-A2
0

tH

1

tG

 

0 1

1= ( , )t tJ J H G 0 1=t tG G

 
0

tG

 0

tH
1

tH
1 0

2 = ( , )t tJ J H G
0 1=t tH H

 

                             , set2 0| |J J J  
0 2J J

J   ？

Yes

0

tH 0

tG

 

  Move to the next time step, set

No

Algorithm 1

Stop?

End

Yes

Fig. 7: The flowchart of the online control framework.

Step 3: Optimize the strategy including hydrogen energy
dispatch Ht and EV charging schedule Gt through Algorithm
1.

Step 4: Implement the optimized strategy and the system
changes dynamically.

Step 5: Set t = t+ 1 (∆ passes in the real time) and jump
to Step 2.

IV. NUMERICAL RESULTS

A. Case Overview and Parameter Settings

In this section, a 26-node transportation network with 20
FCSs and 6 HPSs in Shanghai (see Fig. 8 (a)) is considered to
illustrate the proposed architecture. Distance between different
nodes is given in the unit of km. For each HPS, one SANY
SE13122 wind turbine [27] and PV cells with the capacity
of 1000 kW are deployed. The real wind speed and solar
radiation intensity data in Shanghai collected by the National
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Meteorological Information Center [28] are used to generate
renewable energy. Detailed parameter settings of the HPSs are
shown in Table I.

(a) Tranportaion network (b) Heat map of tranportation

Fig. 8: A 26-node HPS-FCS-EV architecture in Shanghai.

TABLE I: Parameter settings of HPSs [29], [30]

Parameter Value Parameter Value
P c,w 2200kW vr 12m/s
vco 22m/s vci 2.5m/s
P c,PV 1000kW fPV 0.88

Gr,PV 800W P b,H
k,t 400kW

ηF 0.98 N ae 8
U ae 60V F 96485.34
R 8.314 TH 300K
pH 15MPa cm,w 0.018CNY/kW
UH
k 400V cm,PV 0.018CNY/kW
vH 48km/h ct 0.04CNY/kW

TABLE II: Parameter settings of FCSs and EVs [11], [31]

Parameter Value Parameter Value
aN
i 20 P b,s

i,t 200kW
P r
1 44kW P r

2 88kW
ηc 0.92 cm 0.018CNY/kW
Ec
j 75kWh El 0.014kWh/km
cw 17.2CNY/h ci 21CNY/hr
cd 0.025CNY/kW vj 60km/h
γ 300CNY

There are 20 Mennekes charging piles with two charging
modes (P r

1 = 44kW and P r
2 = 88kW) at each FCS [32]. The

TOU price of electricity in [11] is used. Real commercial taxi
data from [33] in Shanghai is used to generate time-varying
EV trajectories (See Fig. 8 (b)). The company manages 4,000
commercial EVs with about 12,350 charging requests per day.
The waiting cost cw and idle cost ci are highly connected with
passengers’ and drivers’ income levels which are equal to 70%
of the average hourly earnings of non-supervisory employees
and taxi drivers in shanghai [34]. Note that the parameters
above are for illustration purposes which should be adjusted
in practice. The parameters of the FCSs and EVs are shown
in Table II.

The schedule time interval ∆ is set to 15 minutes and we
consider the control for 24 hours (T = 96). The threshold for
each time step ε = 2CNY. We solve this bi-level scheduling
problem on a laptop with an 8 core Intel i7-6700HQ processor
and 8 GB RAM. To validate the efficacy of our method, 20
sample paths are generated and the following strategies will
be compared:

1) MinDistance: Choose the available nearest FCS on the
lower level successively and use LP on the upper level.

2) MinPrice: Choose the available FCS with the cheapest
charging price successively on the lower level and use
LP on the upper level.

3) MinCost: Choose the available FCS with the minimum
cost function C1

τj successively on the lower level and
use LP on the upper level.

4) NearDis: Dispatch all the hydrogen energy of HPSs to
the available nearest FCS on the upper level and use KM
algorithm on the lower level.

5) AveDis: Equally dispatch the hydrogen energy of HPSs
to all the available FCSs on the upper level and use KM
algorithm on the lower level.

6) BI-BBG: Algorithm 1 which jointly optimizes the hy-
drogen energy dispatch and EV charging location selec-
tion.

B. Results Analysis

The optimization results of different strategies in the case
are summarized in Table III. In general, for a company with
6 HPSs, 20 FCSs and 4,000 EVs, the operating cost for a day
is more than 500,000 CNY. And for one charging request, the
average charging cost, waiting cost, idle cost, and depreciation
cost of EVs are more than 15.26 CNY, 8.57 CNY, 9.48
CNY and 0.19 CNY, respectively. At the same time, it also
causes about 0.65 CNY maintenance cost of FCSs, 0.78 CNY
maintenance cost and 0.85 CNY delivery cost of HPSs.

As shown in Table III, the proposed strategy BI-BBG
performs best on reducing operating costs as expected. Com-
pared with MinDistance, MinPrice, MinCost, NearDis and
AveDis strategies, BI-BBG can reduce the required total cost
by about 18%, 15%, 13%, 33%, 24%, respectively. For the
long-term operation of the company, this cost reduction is
significant. Moreover, it demonstrates that the joint optimiza-
tion of the HPS-FCS-EV architecture (BI-BBG) can achieve
better performance than the architectures that only optimize
a single problem (MinDistance, MinPrice, MinCost, NearDis
and AveDis).

When the NearDis and AveDis strategies are adopted, only
the EV charging scheduling problem is optimized. The hydro-
gen energy dispatch is based on heuristic rules and ignores
the dynamic matching of supply and demand sides, which is
reflected in the higher charging cost and total cost than other
strategies. However, due to the scheduling optimization of
EVs, the waiting cost and penalty cost are reduced compared
with MinDistance, MinPrice, and MinCost strategies.

When the MinDistance strategy is adopted, EVs tend to
choose FCSs closest to the current location. Thus, the idle
cost of MinDistance strategy is the least among all strategies,
and the waiting cost is relatively less (because the closest FCS
may not be in the same direction as the destination, resulting
in additional costs). However, since it overlooks other costs
(especially the charging cost), its overall cost is relatively
high. This cost increase will be more significant in the market
dominated by electricity price cost leading to a 22% increase
of the total costs compared with the BI-BBG strategy.
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TABLE III: Optimization results of different strategies

Strategy EV cost FCS cost HPS cost Total cost StdCharge Wait Idle Depreciation Penalty Uncharged Maintenance Maintenance Delivery
MinDistance 272111.4 109152.6 114781.9 2292.5 16500.0 55 8034.7 9648.5 10642.6 543164.0 5419.3

MinPrice 228979.4 128371.1 120186.7 4901.0 13200.0 44 8419.15 9648.5 10603.1 523615.1 4772.1
MinCost 235991.0 116091.4 117047.3 3117.9 12300.0 41 8204.1 9648.5 10598.9 511812.9 4493.6
NearDis 413347.0 100400.3 116176.5 2482.7 2700.0 9 8134.9 9648.5 10642.4 663532.5 7255.9
AveDis 324982.32 108372.0 116609.1 2612.0 2700.0 9 8161.6 9648.5 10642.6 583728.1 6437.5
BI-BBG 188473.0 105784.2 117178.0 2761.5 2700.0 9 8192.4 9648.5 10511.7 445244.1 3598.6
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Fig. 9: Distribution of charged EVs of BI-BBG strategy under different index orders.

Since the EVs will choose the cheapest charging price
under the MinPrice strategy, its charging cost is less than
the MinDistance strategy while the waiting and idle cost are
higher. Concurrently, it also increases the depreciation cost
significantly due to the neglect of the distance factor.

The Mincost strategy finds a balance between the distance,
charging price and other factors. EVs make the charging
decisions by considering all possible costs, which makes its
total cost is less than the MinDistance and MinPrice strategies.
However, However, due to the lack of cooperation between
EVs in Mincost strategy, some FCSs with relative price advan-
tages will be quickly occupied, resulting in that the remaining
EVs have to choose FCSs with the expensive cost to complete
the charging process. The lack of fleet coordination of the
above three strategies also increases the uncharged number of
EVs, which brings more penalty costs.

By ointly scheduling and coordinating the hydrogen energy
and EV charging location, the proposed strategy BI-BBG
significantly reduces the overall operating cost of the company
at the slight expense of individual optimality, which can be
seen from Fig. 9. Although most of the EVs are arranged
to the FCSs with a shorter distance and lower cost, a small
number of EVs are still scheduled to the FCSs with a longer
distance and higher cost for the overall performance of the
company. Note that in Fig. 9 (b), the distribution of charged
EV number in the FCSs with a lower charging price is almost
the same. This is because some FCSs with intensive charging
demand are dispatched more hydrogen energy through the
upper scheduling. Therefore, their hydrogen energy supply
is relatively sufficient and the charging price is basically the
same. This shows that the proper schedule of hydrogen energy
to achieve the balance of regional matching of supply and
demand can bring huge economic benefits, while the delivery
cost differences between different schedules may be marginal.
It is worth to mention that the BI-BBG strategy not only

brings operating cost advantages but also increases the overall
service rate (fewer uncharged EV and penalty cost) through
the collaborative optimization of two levels of HPS-FCS-EV
architecture. This can help the company to spend less on the
investment of FCSs and charging piles, which can be a big
expense.

C. Sensitivity Analysis

In this subsection, we analyzed some key parameters of the
HPS-FCS-EV architecture, including the pile number, battery
capacity, EV speed, and penalty factor. The results can assist
the investment decision of the company.

1) Pile number: We change the charging pile number in
FCSs from 17 to 24 to analyzed the impact on the operating
cost, and the results are shown in Figure 10. In general, the
total cost is significantly reduced at the cost of additional in-
vestment in more charging piles. When the number of charging
piles increases, more charging demand can be satisfied in the
same time. Thus, the service rate gradually rises to 1 and
the penalty cost decreases accordingly. Meanwhile, more EVs
can be scheduled to the FCSs with relatively cheaper charging
price and shorter distance, resulting in smaller charging cost
and waiting cost.

2) Battery capacity: The impact of battery capacity is
analyzed in Fig. 11. Assuming that the charging requests are
fixed in a day in this setting and change the battery capacity
from 20kWh to 140kWh. The increase of battery capacity
will lead to more charging loads and longer charging time.
Thus, the charging, waiting, idle cost and maintenance cost
of FCSs all increase, while the service rate and other costs
remain constant. In fact, larger battery capacity may support
a longer driving distance and therefore reduce the charging
frequency, which is not discussed in this paper.

3) Speed: We change the EV speed from 30km/h to
100km/h and the impact is evaluated in Fig. 12. The total cost
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Fig. 10: Optimization results with different charging pile number.
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Fig. 11: Optimization results with different battery capacity.
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Fig. 12: Optimization results with different EV speed.

falls as the increase of EV speed. As expected, with higher
speed, the waiting cost is reduced. Similar with the impact of
pile number, EVs with higher speed have more flexibility in
scheduling, which means there are more accessible FCSs with
lower price and shorter distance. Thus, the charging cost and
penalty cost decrease significantly.

4) Penalty factor: To illustrate the impact of penalty factor
γ, we conduct the simulation with penalty factors from 100
to 800 and the results are shown in Fig. 13. The total cost
increases with the increase of penalty factor, which is mainly
caused by the increase of penalty cost, while other costs
remain almost the same. Since the service rate does not
change, the uncharged number of EVs is not affected by the
penalty factor. Therefore, the penalty factor actually does not
affect the charging scheduling and energy dispatch.

D. Convergence Analysis
We record the cost change in the iteration process at

different time steps. As presented in Fig. 14, the cost change

of all time steps shows a monotonic decreasing trend, and
finally converges to the minimum. Meanwhile, we use Monte
Carlo simulation to randomly generate 300 sample paths at
time step 87. The iteration process also converge which can
be seen from the subgraph in Fig. 14. The average iteration
number of Algorithm 1 is 4.95 while it cost about 15.4 seconds
to get the final scheduling control strategies at one time step.
This optimization time is negligible for the online scheduling
process, thus the proposed method is competent for the real-
time scheduling of a large-scale commercial EV fleet.

V. CONCLUSION

We proposed a novel HPS-FCS-EV architecture to right-
schedule the hydrogen energy dispatch and commercial EV
charging location selection jointly. This architecture shows bet-
ter performance in terms of operating cost savings compared
with the ones that consider these two issues separately. A T-
BBG model and an efficient bi-level iterative algorithm for



TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 11

100 200 300 400 500 600 700 800

Penalty factor(CNY)

4

4.5

5

T
o
ta

l 
co

st
(C

N
Y

)

10
5

0.96

1

S
er

v
ic

e 
ra

te
(%

)

Total cost

Service rate

(a) Total cost and service rate

100 200 300 400 500 600 700 800

Penalty factor(CNY)

0

0.5

1

1.5

2

C
o
st

(C
N

Y
)

10
5

Charging cost

Waiting cost

Idle cost

Penalty cost

(b) Charging, waiting and idle cost

100 200 300 400 500 600 700 800

Penalty factor(CNY)

2000

4000

6000

8000

10000

12000

C
o
st

(C
N

Y
)

Depreciation cost

Maintenance cost of FCSs

Maintenance cost of HPSs

Delivery cost

(c) Depreciation, maintenance and delivery cost

Fig. 13: Optimization results with different penalty factor.
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Fig. 14: The convergence curve at different time steps.

real-time scheduling control were proposed and the perfor-
mance was guaranteed by theoretical analysis and numerical
examples. Numerical experiments validated that the proposed
method can reduce the operating cost while increasing the
service rate. Various parameters’ impact was analyzed to help
the company make decisions more wisely.

In this paper, we assumed that EVs requesting charging at
the same time will be coordinated synchronously, which is
a mild constraint when the interval of time steps is relatively
small. However, the charging demand is updated all the time in
the real-time operation, which will make our control strategy
become conservative and sub-optimal. Our future work will re-
lax this assumption and consider the asynchronous scheduling
for EVs. Meanwhile, the main consideration of this paper is
the minimization of operating costs, but not the maximization
of revenue. In fact, when the marginal utility is positive,
an appropriate increase in operating costs can bring greater
profits. This will also be our future focus.

APPENDIX A
PROOF OF THEOREM 1

Proof. Theorem 1 is equivalent to proving that no matter what
values Ht and Gt take, as long as the number of charged EVs
satisfies n1 < n2, there will be Jn1

> Jn2
. Jn1

denotes the
total cost when the charged number is n1. From (10), we know

that regardless of Ht,

γ ≥ max(Epotβi,t + Cwait + C idle + Cdepre+

cmPj,t+c
wδt)×min(At,

∑
i

N ev
i,t)

= max
i,j

Mt(i, j)×min(At,
∑
i

N ev
i,t))

(33)

Then we prove the theorem by induction. When the first
EV is arranged (for example, G1(i, j) = 1), we have that,

J1− J0 = (M(i, j) + (
∑
i

N ev
i,t− 1)γ)−

∑
i

N ev
i,tγ < 0 (34)

Suppose when the charged number is n, it means there are
n links in the bipartite graph. When it increases to n+1, there
must be an augmented chain [35]. Consider the longest chain
which has a set of n links defined as sc to be cut, and a set of
n+1 new links defined as sg will be generated. n+1 satisfies
n+1 ≤ min(At,

∑
iN

ev
i,t), which means the maximum number

of charged EVs is limited by the charging demand and the
number of supply nodes. Without loss of generality, we have,

Jn+1 − Jn =
∑
i∈sg

Mi −
∑
j∈sc

Mj − γ

<(n+ 1−min(At,
∑
i

N ev
i,t)) max

i,j
M(i, j)−

∑
j∈sc

Mj

<0

(35)

To sum up, the proof is complete.

APPENDIX B
PROOF OF THEOREM 2

Proof. Let J0 = J(H0
t , G

0
t ). When H0

t is fixed, the problem is
equal to a maximum weight matching of bipartite graph and
KM algorithm is applied to optimize it. Define the updated
charging schedule as G1

t and J1 = J(H0
t , G

1
t ). Since the KM

algorithm can find the maximum matching of the bipartite
graph, thus

∑
i,j G

1
t (i, j) ≥

∑
i,j G

0
t (i, j), and,

1) If
∑
i,j G

1
t (i, j) >

∑
i,j G

0
t (i, j), then J1 ≤ J0 accord-

ing to Theorem 1.
2) If

∑
i,j G

1
t (i, j) =

∑
i,j G

0
t (i, j), KM algorithm ensures

to find the maximum weight of Ot, which means J1 is
the minimum, so we can derive that J1 ≤ J0.

So far, we have proved that J1 ≤ J0. And when G0
t remains

constant, the problem on the upper level can be solved by
the MILP algorithm. The updated hydrogen energy dispatch
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is defined as H1
t and J2 = J(H1

t , G
0
t ). On the basis of the

optimality preserving property of MILP, we can conclude that
J2 ≤ J1, which means,

J2 ≤ J1 ≤ J0 (36)

We prove that the objective function J is monotonically
decreasing in one iteration of Algorithm 1 and J is also
bounded. Therefore, for a monotone bounded performance
sequence of the MILP problem, it must converge to the
optimum eventually. The proof is complete.
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