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Abstract—The internal states of Lithium-ion batteries need to
be carefully monitored during operation to manage energy and
safety. In this paper, we propose a thermal enhanced adaptive
interval observer for state of charge (SOC) and temperature
estimation for a battery pack. For a large battery pack with
hundreds or thousands of heterogeneous cells, each individual
cell characteristic are different from others. Practically, applying
estimation algorithms on each and every cell would be mathe-
matically and computationally intractable, since battery packs
are often characterized by combinations of differential equations
(state dynamics) and algebraic constraints (Kirchhoff’s laws).
These issues are tackled using an interval observer based on
monotone/cooperative system theory, whose novelty lies in con-
sidering cell heterogeneity as well as state-dependent parameters
as unknown, but bounded uncertainties. The resulting interval
observer maps the bounded uncertainties to a feasible set of
SOC and temperature estimation for all cells in the pack at
each time instant. The present work addresses the significant
conservatism under extreme conditions with large currents via
a thermal enhanced adaptive scheme. The proposed interval
estimation is scalable and computationally tractable since it is
independent of the number of cells in a pack, as numerically
demonstrated in a comparison with respect to a state-of-the-art
single cell state observer. Stability and inclusion of the adaptive
interval observer are proven and validated through simulations.

I. INTRODUCTION

Lithium-ion (Li-ion) batteries play a key role in achieving
energy sustainability and reduction in greenhouse gas emis-
sions. Li-ion batteries benefit from high energy density, which
has motivated their wide use in a variety of applications
including electric vehicles (EV) and grid energy storage. In
recent years, a substantial body of research on real-time
control and estimation algorithms for batteries has emerged.
However, safe and efficient operation of battery packs remains
a challenge, especially as the performance requirements of
these devices increase.

Large-scale energy storage systems require hundreds to
thousands of cells connected in series and parallel to achieve
demanded power and voltage [1]. A battery pack’s instanta-
neous power capability is crucial for on-board management
and safe operation [2]. An advanced battery management
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tem Analysis, Université Libre de Bruxelles, B-1050 Brussels, Belgium.
lcoutome@ulb.ac.be. He would like to thank the Wiener-Anspach
Foundation for its financial support.

3Sebastien Benjamin is with Saft S.A..
Sebastien.BENJAMIN@saftbatteries.com

4Wente Zeng is with Total S.A.. wente.zeng@total.com

system (BMS) implements real-time control/estimation algo-
rithms to enhance battery performance while improving safety.
One of the most crucial functions of a BMS is to perform state
of charge (SOC) estimation. However, real-time SOC estima-
tion for a pack is a very intricate task due to (i) limited sens-
ing and measurements, (ii) complex electrochemical-thermal-
mechanical physics, and (iii) high computational cost [3].

To date, different battery models oriented towards state and
parameter estimator designs for single battery cell have been
extensively proposed in the literature, which can be classified
into electrochemical white box (first principle) models [4],
[5], [6], [7], [8], equivalent-circuit gray box models [9],
[10], [11], [12] and data-driven black box models [13], [14],
[15]. Electrochemical models describe the diffusion, thermo-
dynamics, and electrochemical kinetics. Even though these
models can predict the internal states with high accuracy, e.g.,
lithium concentrations and over-potentials, their associated
complex mathematical structure makes the design of online
estimators from these models intractable. Consequently, most
estimator design approaches are constructed based on reduced-
order electrochemical models [16], [17]. On the other hand,
data-driven models normally demand a significant amount of
training data to predict the input-output behavior of battery
systems, which suffers from low physical interpretability.
Although each modeling framework has its merits and draw-
backs, equivalent circuit models (ECM) provide a reasonable
trade-off between model complexity and prediction accuracy
[9] with idealized physical elements such as resistors and
capacitors. ECMs can be made more accurate by increasing
the system order to account for additional electrochemical
phenomena [18].

An important fact often ignored during battery equivalent
circuit modeling is the time-varying electrical parameters. In
practice, internal parameters, e.g. resistances and capacitances,
are non-linearly dependent on the cell’s temperature and SOC,
motivating the inclusion of thermal dynamics in the model.
In fact, in addition to causing potential battery safety issues
[19], thermal effects have also been shown to be key factors
in the rate of battery degradation [20], [21]. Among existing
battery thermal models, high-fidelity thermal models have
more accurate predictions, but suffer from high computational
cost, rendering them of little use for on-board thermal manage-
ment [22]. First principles-based two-state thermal model for
the cell’s core and surface temperatures provide a balanced
trade-off between computational efficiency and fidelity [23].
Coupled equivalent circuit-thermal models with temperature
dependent parameters have been studied and used for state
estimation via an adaptive observer in [24].

With the aforementioned battery cell modeling strategies,
battery pack modeling approaches can typically be divided



into three categories. The first approach treats the entire
pack as one lumped single cell [25]. However, the internal
states of individual cells within the pack are often different,
due to heterogeneities arising from parametric uncertainties
and differences in cell aging levels [26]. Therefore, some
cells are more prone to violate safety-critical constraints than
others, which cannot be resolved from the lumped single cell
approach. The second modeling approach also relies on a
single cell model, but it focuses on a set of specific in-pack
cells – the weakest and the strongest ones, as representatives
of the pack dynamics [27], [28]. The last modeling approach is
based on the interconnection of single cell models [26], [29],
[30]. This approach benefits from high fidelity with cell-by-
cell resolution, but it suffers from high real-time computational
burden. Existing techniques for battery pack state estimation
include Luenberger observers [31], Kalman filters (KF) [32],
unscented Kalman filters [33], and sliding mode observers
[34], among others. However, all the previously mentioned
techniques require a state observer for each cell, which be-
comes computationally intractable for large packs.

In the aforementioned stochastic filtering framework (e.g.,
variations of Kalman filters), the process and measurement
noises are often assumed to be Gaussian. The system char-
acteristics, i.e. mean and variance, are required by filter-
ing algorithms. Nevertheless, the statistical and calibration
procedures to obtain these characteristics are often tedious
[35]. In contrast, interval estimation, a.k.a. bounded error
or the set-membership estimation approach, assumes that the
measurement and process noises are unknown but bounded
– requiring no information on the statistical distributions of
the model uncertainties [35], [36], [37]. Specifically, a state
interval observer seeks to derive a feasible set for the un-
known/unmeasured states and map the bounded uncertainties
to the state intervals at every time instant. In a battery pack
with hundreds or thousands of cells, designing and executing
state estimation algorithms based on highly nonlinear and
coupled dynamics for every single cell in real time becomes
intractable. The interval observer benefits from its scalability
by deriving only mathematically guaranteed upper and lower
bounds that enclose all unmeasured internal states for all
cells in a pack. That is, the computational complexity of an
interval observer is independent of the number of cells in
a pack. Previously, only Perez et al. examined a sensitivity-
based interval observer for single cell SOC estimation from an
electrochemical perspective [38], but did not provide provable
observer stability and inclusion properties.

In this work, we advance our preliminary work in [39] by
proposing a thermal enhanced interval observer for SOC esti-
mation in battery packs for a string of cells. This article’s main
contributions against our previous work [39] are summarized
as follows:
• The interval observer design is calibrated and enhanced

by the pack’s thermal response (more details in Fig.
5). This significantly eliminates design conservatism in
[39] and effectively renders improved estimation accuracy
under extreme conditions with large applied currents.

• Rigorous demonstration of the practical implementation
improvements via a comparison study with respect to the
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Fig. 1. The schematic of an equivalent circuit model for a single cell.

state-of-the-art extended Kalman filter (EKF).
• The study is carried out on a string of cells (or a string

of parallel modules), which represents a much wider and
general class of topology in a pack. The previous study
in [39] only considers parallel-connected cells.

The remainder of this paper is organized as follows. A
coupled electro-thermal model is developed in Section II, for
a battery pack with cells connected in series. Next, a brief
motivation of the problem is presented in Section III. For the
reader’s convenience, interval observer preliminaries are given
in Section IV. The observer design for the battery pack is
pursued in Section V, and followed by a numerical assessment
of its performance in Section VI. Conclusions and future works
are discussed in Section VII.

Notation. Throughout the manuscript, the symbols Idn
denotes the identity matrix with dimension n × n. For a
matrix A ∈ Rn×n, ‖A‖max = maxi, j=1,2,··· ,n

∣∣Ai, j
∣∣ (the element-

wise maximum norm). The relation Q � 0 (Q ≺ 0) means
that the matrix Q ∈ Rn×n is positive (negative) definite. We
denote as L∞ the set of all x with ‖x‖ ≤ ∞, where ‖ · ‖
is the infinity norm. The inner product between x,y ∈ Rn is
given by 〈x,y〉=∑

n
i=1 xiyi. For vectors x1,x2 ∈Rn and matrices

A1,A2 ∈ Rn×n, the relations x1 ≤ x2 (x1 ≥ x2) and A1 ≤ A2
(A1≥A2) denote element-wise less (greater) than or equal. For
a matrix A ∈Rn×n, define A+ = max{0,A} and A− = A+−A.
For a vector x ∈ Rn, define x+ = max{0,x} and x− = x+− x.

II. MODEL DEVELOPMENT

This section reviews an equivalent-circuit model coupled
with a two-state thermal model for a single battery cell, which
is then electrically and thermally interconnected with other
cell models to form a series arrangement of cells. It is note-
worthy that although the estimation algorithm development
in this work is based on equivalent circuit type models, this
framework could be generalized to battery packs characterized
by other models, e.g., electrochemical models.

A. Single Battery Cell

The ECM for a single cell k (k = 1,2, · · · ), consisting of
an open circuit voltage (OCV) in series connection with an
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Fig. 2. A battery pack configuration with m heterogeneous cells (or parallel modules) connected in series. Cell (module) current and local voltages and
temperatures can be measured, but only the maximum and minimum values are accessible to BMS algorithms. See Assumption 1.

ohmic resistance and an R−C pair in parallel, is shown in
Fig. 1 and mathematically described by

żk(t) =
1

Qk
Ik(t), (1)

V̇c,k(t) =−
1

R2,k(zk,Tk)Ck(zk,Tk)
Vc,k(t)+

1
Ck(zk,Tk)

Ik(t), (2)

Vk(t) =Voc(zk(t))+Vc,k(t)+R1,k(zk,Tk)Ik(t), (3)

where zk(t) represents the SOC for the k-th cell, Tk is the cell
temperature (to be defined), and Vc,k(t) denotes the relaxation
voltage across the R2,k −Ck pair. Symbol R1,k is an ohmic
resistance. Moreover, Ik(t) is the current, and the convention is
maintained such that positive current is charging and negative
current indicates discharging. The electrical model parameters,
namely R1,k, R2,k, and Ck, are dependent on cell SOC and
temperature, and such dependency can be explicitly character-
ized via an offline experimental procedure. For instance, for
a LiFePO4/Graphite cell, it is observed that R1,k has minimal
dependence on SOC and strong dependence on temperature,
and its value decreases as the temperatures rises [40]. The
temperature dependence in general follows an Arrhenius-like
behavior. Moreover, R2,k and Ck have notable dependence on
both SOC and temperature. The output equation (3) for the k-th
cell provides the voltage response characterized by a nonlinear
open circuit voltage (Voc) as a function of SOC, relaxation
voltage from the R2,k−Ck pair, and voltage associated with
the resistance R1,k.

A two-state thermal model for a cylindrical cell is adopted
for the dynamics of core and surface temperatures [40].
However, in a battery pack, the cells are thermally coupled
through coolant flow and heat exchange with adjacent cells.
These effects are modeled by the following dynamical system
for the k-th cell in the pack [41]:

Cc,kṪc,k(t) = q̇k(t)+
Ts,k(t)−Tc,k(t)

Rc,k
, (4)

Cs,kṪs,k(t) =
Tf ,k(t)−Ts,k(t)

Ru,k
−

Ts,k(t)−Tc,k(t)
Rc,k

,

+
Ts,k−1(t)+Ts,k+1(t)−2Ts,k(t)

Rcc
, (5)

q̇k(t) = Ik(t)
[
Vk(t)−Voc(zk(t))

]
, (6)

Tk(t) =
1
2
(
Ts,k(t)+Tc,k(t)

)
, (7)

where Tc,k and Ts,k are the core and surface temperatures for
the k-th cell. Symbols Rc,k, Ru,k, Cc,k, and Cs,k represent heat
conduction resistance between core and surface, convection
resistance between ambient and surface, core heat capacity,

and surface heat capacity, respectively. Herein, Cc,k and Cs,k
depend on the cell material thermal properties and the mass of
the rolled electrode assembly and the casing of a cylindrical
cell [23], [42]. Meanwhile, Ru,k is affected by the coolant flow
rate. Additionally, Rc,k can be computed from the conductivity
and dimensions of the wound cell electrode assembly and cell
casing, and contact thermal resistance between electrodes and
the casing [23]. Symbol q̇k(t) ≥ 0 is the internal heat gen-
eration rate including joule heating and energy dissipated by
electrode over-potentials. Moreover, in (5), the heat conduction
between adjacent cells is modeled as heat flow over conduction
resistance Rcc, which is driven by the surface temperature
differences between the cells. In this work, the coolant flow
temperature Tf ,k at cell k is assumed uniform across all cells
and will be simply denoted by Tf subsequently. For each
cell k, the average temperature between core and surface is
represented by Tk in (7), which is the temperature used to
schedule the parameters in (1)-(3). It is worth noting that
the electrical model (1)-(3) and the thermal model (4)-(7) are
coupled via q̇k(t) and parameters R1, R2, and C in a nonlinear
fashion.

The measured quantities for the coupled electro-thermal
model (1)-(7) are the cell voltage and surface temperature:

yk(t) =
[
Vk(t), Ts,k(t)

]>
. (8)

B. Series Arrangement of Battery Cells

When battery cells are connected in series (Fig. 2), all cells
share the same input current according to Kirchhoff’s current
law. In this study, we consider the scenario where the cells
are heterogeneous. Namely, they may have different model
parameters (cell capacity, internal resistance etc.), different
SOC levels, and different temperature distribution. The above-
mentioned heterogeneity among cells can be caused by manu-
facturing, temperature variability along the string, and battery
degradation [43]. Results from [44], [45] even show that there
exists considerable variability for batteries manufactured from
the same procedure. For a string of m cells in series, the overall
voltage supplied by the string is given by

V (t) =
m

∑
k=1

Vk(t). (9)

We are now positioned to make the following assumption on
the hardware sensing of the battery string, oriented towards an
interval state estimation design.

Assumption 1. The current, voltage, and surface temperature
of every cell in the string, i.e. Ik(t), Vk(t), and Ts,k(t), ∀k ∈



{1,2, · · · ,m}, are measurable. However, only the maximum
output signals Vmax(t)/Ts,max(t) and minimum output signals
Vmin(t)/Ts,min(t) across all cells in the pack at every time
instant t are accessible by the BMS estimation algorithms,
where

Vmax(t) = max
k=1,2,··· ,m

Vk(t), ∀t > 0, (10)

Vmin(t) = min
k=1,2,··· ,m

Vk(t), ∀t > 0, (11)

Ts,max(t) = max
k=1,2,··· ,m

Ts,k(t), ∀t > 0, (12)

Ts,min(t) = min
k=1,2,··· ,m

Ts,k(t), ∀t > 0. (13)

In spite of Assumption 1, however, we do not assume that
the extreme values of Vk(t) or Ts,k will come from the same
cells throughout the battery charging/discharging. A typical
battery pack has the hardware and power to monitor in real
time the local voltage of every cell to prevent cell over-
charging, over-discharging, and safety issues. Nonetheless,
executing a single cell based estimation and control algorithm
using local measurements would require a massive amount of
computing power and is impractical, no matter if the computer
is placed in a centralized cloud or in a decentralized manner.
Furthermore, the traffic on the communication buses that are
used to transfer the measured local data to the cloud or the
centralized computer oftentimes is heavy due to the large
number of cells and bandwidth limits, prohibiting the data
transfer in an aggregated fashion. These facts motivate the
usage of only the extreme values of voltage measurements.
Practically, the cells that provide extreme voltage values are
also the representations of the best and worst cells in a pack.

III. MOTIVATION

Even though the focus of this manuscript is on cells in
series, we illustrate in this section the heterogeneity for
cells in both series and parallel configurations via open-loop
simulation studies. Without loss of generality, we consider two
LiNiMnCoO2/Graphite (NMC) type cells with 2.8 Ah nominal
capacity. In this embodiment, the cells have identical SOC-
OCV relationship, and the heterogeneity arises from:
• Difference in SOC initialization.
• Difference in electrical parameters due to SOC and tem-

perature variations.
• Unevenly distributed currents due to parameter variation

(applies to parallel case only).
• Difference in temperature due to current variation (applies

to parallel case only).
A transient electric vehicle-like charge/discharge cycle
generated from the urban dynamometer driving schedule
(UDDS) is applied. Specifically, for the parallel case, the total
applied current (summation of local currents) is plotted in Fig.
3(a). The current applied to the series case is appropriately
scaled and shown in Fig. 4(a).

Figures 3 and 4 portray the cases for cells in parallel and
series, respectively. In both cases, the cells are initialized with
different SOCs. In the case of the parallel arrangement in
Fig. 3, it can be observed that even though the applied total
current is small initially (around zero, see Fig. 3(a)), Cell 1

(b)

(c)

(a)

Fig. 3. Simulation results of two cells in parallel using coupled electro-
thermal dynamics with temperature and SOC dependent electrical parameters.
In (b)-(c), cells are initialized at different SOCs. The total current distributes
unevenly due to both parameter and initialization heterogeneities.

(a)

(b)

(c)

Fig. 4. Simulation results of two cells in series using coupled electro-thermal
dynamics with temperature and SOC dependent electrical parameters. In (b)-
(c), the initial cell SOCs are distinct. This discrepancy will persist because
all cells accept the same input current.

takes a large negative current (around −10 A) and Cell 2
positions itself at a large positive current (around +10 A).
This occurs because z1(0) is initialized higher (see 3(b)). In
such cases, notice how single cells can be violating safety
constraints (e.g. maximum current, see Fig. 3(c)) but the pair



of parallel cells is not, whereas the latter is the one that is often
supervised. In the long run, however, the values for z follow
a similar trend while seemingly approaching. This behaviour
can be ascribed to the parallel connection that forces a natural
voltage balance, and not SOC balance, between the cells. In
the more extreme and realistic situations where the cells are
completely different, i.e. in terms of OCVs and parameters,
the SOCs never converge and cells accept different current
rates, which promote different aging patterns and increase cell-
to-cell variation in positive feedback. The case of the series
arrangement shown in Fig. 4, where cell 1 has a higher internal
resistance, can be considered as a milder scenario compared
to the parallel case in terms of current behaviour (see Fig.
4(c)). However, SOC discrepancy is worse and more persistent
in time (see Fig. 4(c)), since the z values for the two cells
will never synchronize – a bias will always exist – unless an
external active action is taken, such as cell balancing.

In a battery pack composed of hundreds or thousands of
heterogeneous cells, executing state estimation algorithms in
real time based on a highly nonlinear and coupled model
consists of differential-algebraic equations accounting for ev-
ery single cell in the pack is intractable and not scalable.
This motivates our subsequent study on interval observers
to increase algorithm scalability and reduce computation and
design complexity.

IV. INTERVAL OBSERVER BACKGROUND

The development of finite-dimensional interval observers
based on monotone system theory closely follows the work in
[35], [36], [37]. In this section, we discuss the preliminaries
and provide theoretical insights.

Consider the following nonlinear model dynamics [37]:

ẋ = f (x)+B(θ)u+δ f (x,θ), x(0) = x0, (14)
y = h(x)+δh(θ)u, (15)

where x ∈Rn is the state vector, and u ∈R and y ∈R are the
system input and output, respectively. The considered system
is a single-input-single-output (SISO) type. The functions f (x)
and h(x) are deterministic and smooth, and δ f is uncertain
and assumed to be locally Lipschitz continuous with respect
to x. It is noted that the nominal terms f (x) and h(x) can
be freely assigned by the designer via the modification of δ f
and δh. The parameter vector θ is unknown and potentially
state-dependent and time-varying. Suppose that the values
of the uncertain parameter vector θ are not available for
measurements, and only the set of admissible values Θ is
known, where θ ∈ Θ ⊂ Rp and p denotes the number of
uncertain parameters in the model. The initial conditions of
the states belong to a compact set x0 ∈ [x0,x0], where x0 and
x0 are given. The objective of the interval observer is to design
a system with state vector x(t) and x(t) such that

x(t)≤ x(t)≤ x(t), ∀t > 0, (16)

and x, x ∈L n
∞ .

A. Preliminaries

Interval observer designs in literature builds on the proper-
ties of cooperative (monotone) systems. A matrix A ∈Rn×n is
Hurwitz if all its eigenvalues are located in the left half of the
complex plane. It is Metzler if all off-diagonal elements are
non-negative. Any solution of the system

ẋ(t) = Ax(t)+w(t), (17)

where w(t) is not necessarily linear, with x∈Rn, and a Metzler
matrix A ∈ Rn×n, is element-wise non-negative for all t ≥ 0,
provided that w(t) ∈ Rn

+, ∀t ≥ 0, and x(0) ≥ 0 [46]. System
(17) is also known as an internally positive system [47].

Lemma 1 ([36]). Let x ∈ Rn be a vector variable and
x≤ x≤ x for some x, x ∈ Rn. Let A ∈ Rn×n be a matrix
variable, and A≤ A≤ A for some A, A ∈ Rn×n. Then

A+x+−A+x−−A−x++A−x−

≤ Ax≤
A+x+−A+x−−A−x++A−x−. (18)

B. Model Coordinate Transformation

One can obtain a nominal system of (14)-(15) by setting
B = 0, δ f = 0, and δh = 0,

ẋ = f (x), (19)
y = h(x). (20)

According to [35], [48], a time-varying nonlinear and invert-
ible state transformation, based on the Lie derivatives, yields a
partial-linear dynamics in the new state coordinate. Denote the
gradient of a scalar field h by dh, and the Lie derivative of h
along a vector field f is given by the inner product L f h(x) =
〈dh(x), f (x)〉. High-order Lie derivatives are computed with
the iteration Lk

f h(x) = L f (Lk−1
f h(x)) where L0

f h(x) = h(x). The
nominal system (19)-(20) is locally observable around x = xe
if the observability matrix

O(xe) =
[
dh(xe) dL f h(xe) · · · dLn−1

f h(xe)
]>

(21)

has full rank, i.e., rank(O) = n. Under this scenario, the row
vectors dh, dL f h, · · · , dLn−1

f h are linearly independent and the
vectors h(x), L f h(x), · · · , Ln−1

f h(x) form the new coordinate
for the states in a neighborhood of x = xe defined by

Φ(x) =


φ1(x)
φ2(x)

...
φn(x)

=


h(x)

L f h(x)
...

Ln−1
f h(x)

 , (22)

and the transformation map ξ = Φ(x) defines a local diffeo-
morphism, where a diffeomorphism is known as a contin-
uously differentiable map with a continuously differentiable
inverse. Thus the inverse transformation x = Φ−1(ξ ) is well
defined. Using this diffeomorphism, the nominal system (19)-
(20) can be written as

ξ̇ = Ãξ + b̃ϕ(ξ ), (23)

y = C̃ξ , (24)



where

Ã =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 0 · · · 1
0 0 0 · · · 0

 , (25)

b̃ =
[
0 · · · 0 1

]>
, (26)

C̃ =
[
1 0 · · · 0

]
, (27)

ϕ(ξ ) = Ln
f h(x)

∣∣
x=Φ−1(ξ )

. (28)

The coordinate transformation obtained from the locally ob-
servable nominal system (19)-(20) is then utilized to transform
the original uncertain system (14)-(15) into a partial-linear
expression:

ξ̇ = A0ξ +δA(θ)ξ +b(ξ ,θ ,u), (29)
y = Hξ +δh(θ)u, (30)

Let v = δh(θ)u. The matrix A0 ∈ Rn is deterministic and the
matrix δA(θ)∈Rn represents the uncertain part inherited from
the uncertain nonlinear system (14)-(15). Symbol b(ξ ,θ ,u)
indicates a lumped uncertain nonlinear function.

C. Bounding Functions and Interval Observers

The following assumptions will be used to facilitate the
interval observer designs.

Assumption 2. δA ≤ δA(θ) ≤ δA for all θ ∈ Θ and some
known δA, δA ∈ Rn×n.

Assumption 3. b(t) ≤ b(ξ ,θ ,u) ≤ b(t),
∣∣v(θ , t)∣∣ ≤ V , for all

θ ∈Θ and t ≥ 0 and some known b, b ∈L n
∞ and V > 0.

Remark 1. Assumption 2 constrains the uncertain matrix δA
to the interval [δA,δA], where δA and δA can be directly
computed using the knowledge of Θ in the case of a boxed
set. In (30), the term v = δh(θ)u can be viewed as the
measurement noise that has an upper bound V .

According to Assumption 2 and Lemma 1, for a vector
variable ξ ∈ Rn and ξ ≤ ξ ≤ ξ for some ξ , ξ ∈ Rn, we can
conclude that

δA+
ξ
+−δA

+
ξ
−−δA−ξ

+
+δA

−
ξ
−

≤ (δA)ξ ≤

δA
+

ξ
+−δA+

ξ
−−δA

−
ξ
++δA−ξ

−. (31)

For any vector L ∈ Rn, it is followed from (30) that L(y−
Hξ −v)≡ 0. Thus, (29) can be reformulated by adding a zero
term to the right hand side as

ξ̇ = A0ξ +δA(θ)ξ +b(ξ ,θ ,u)+L(y−Hξ − v)

= (A0−LH)ξ︸ ︷︷ ︸
D

+δA(θ)ξ +b(ξ ,θ ,u)+Ly−Lv︸ ︷︷ ︸
U

. (32)

In the second equality of (32), the system consists of a
deterministic linear part denoted by D and an uncertain part
represented by U . Denote by ξ (t) and ξ (t) the upper and lower

bound estimates of the state ξ (t), respectively. The essence and
main steps of an interval observer design are summarized as
follows:
• Select observer gain L such that the matrix (A0−LH) is

both Hurwitz and Metzler.
• In the dynamics of ξ and ξ , the uncertain term U is

replaced by its (deterministic) bounding functions U and
U , where U ≤U ≤U for all θ ∈Θ and t ≥ 0.

• The system states ξ and ξ are initialized such that ξ (0)≥
ξ (0) and ξ (0)≤ ξ (0).

With that, the monotone system based interval observer struc-
ture is proposed as follows [36],

ξ̇ = (A0−LH)ξ +(δA
+

ξ
+−δA+

ξ
−−δA

−
ξ
++δA−ξ

−)

+b(t)+Ly+
∣∣L∣∣V, (33)

ξ̇ = (A0−LH)ξ +(δA+
ξ
+−δA

+
ξ
−−δA−ξ

+
+δA

−
ξ
−
)

+b(t)+Ly−|L|V. (34)

The following theorem provides a sufficient condition for
stability and enclosure of the interval observer design.

Theorem 1 ([36]). Let Assumptions 2 & 3 be satisfied and the
matrices (A0−LH) and (A0−LH) are Hurwitz and Metzler.
Then ξ (t)≤ ξ (t)≤ ξ (t), ∀ t ≥ 0 is satisfied provided that ξ

0
≤

ξ0 ≤ ξ 0. Furthermore, if there exists P ∈ R2n×2n, P = P> � 0
and γ > 0 such that the following Riccati matrix inequality is
verified

G>P+PG+2γ
−2P2 + γ

2
η

2Id2n +Z>Z ≺ 0, (35)

where η = 2n‖δA−δA‖max, Z ∈ Rs×2n, 0 < s≤ 2n and

G =

[
A0−LH +δA+ −δA−

−δA
−

A0−LH +δA
+

]
, (36)

then ξ , ξ ∈L n
∞ . Moreover,

x = inf
(

Φ
−1(η)

)
, x = sup

(
Φ
−1(η)

)
, (37)

where η ∈ [ξ ,ξ ].

The enclosure property, i.e. ξ (t)≤ ξ (t)≤ ξ (t), ∀ t ≥ 0, is
verified by examining the dynamics of estimation errors,

ė = (A0−LH)e+(U−U), (38)
ė = (A0−LH)e+(U−U). (39)

The monotone system property introduced in Section IV-A
guarantees that e(t), e(t)≥ 0 for all t ≥ 0 if the matrices (A0−
LH) and (A0−LH) are Hurwitz and Metzler, given that e(0),
e(0)≥ 0.

Remark 2. One of the crucial conditions to design an interval
observer based on (32) is to select gains L and L such
that the matrices (A0−LH) and (A0−LH) are Hurwitz and
Metzler. However, as pointed out in [35], the Metzler condition
is usually unfeasible for observability-based forms. If such
observer gains may not be found, no interval observer could
be designed based on the monotone system. In this unfortunate
case, an extra coordinate transformation relying on solving a
Sylvester equation can be used to overcome this issue [35].



The proof for Theorem 1 is omitted here. Interested readers
may refer to Theorem 7 of [36] for more details. We translate
this theory to battery pack state estimation next.

V. INTERVAL OBSERVER FOR BATTERY PACK

In this section, the interval observer design introduced in
Section IV is applied to the Li-ion battery pack state estimation
problem. We examine the case of a string of heterogeneous
battery cells, shown in Fig. 2, with each cell modeled by ECMs
with temperature and SOC-dependent electrical parameters.
The objective here is to determine the guaranteed upper and
lower bounds, z(t) and z(t), for SOCs in a string of battery
cells in real time. Mathematically,

z(t)≤ zk(t)≤ z(t), ∀k ∈ {1,2, · · · ,m}, t ≥ 0. (40)

The lower bound on SOC z(t) must be considered in a pack for
cell-level protection during discharge, while an upper bound
on SOC z(t) plays a similar role when the battery is being
charged. This is why both estimated SOC bounds are useful
and necessary during regular battery operation.

One practical advantage of using an interval observer for
a group of cells is its scalabilty. An interval observer, com-
posed of only two dynamical systems, i.e., system (33)-(34),
estimating upper and lower bounds for all unmeasured state
trajectories, significantly reduces computation and design ef-
forts. Due to cell heterogeneity, an interval observer constructs
two trajectories that upper and lower bound all SOC trajec-
tories, without dealing with the differential-algebraic nature
of the circuit dynamics. It is also worth highlighting that the
width/tightness of the estimated intervals is dependent on the
magnitude of model uncertainties, and our knowledge of the
uncertainties when selecting the bounding functions U and U .

A. Model Set-up

It is stressed again that the voltage and current of each cell
on the string is measured, but only the maximum and minimum
voltages at each time t are accessible to the BMS estimation
algorithm (See Assumption 1). For a battery cell electrically
modeled by an ECM given by system (1)-(3), let

θk(t) =
[
R1,k(zk,Tk) R2,k(zk,Tk) Ck(zk,Tk) Qk

]
∈Θ⊂R4,

(41)
so that Θ is a four-dimensional polytope. Ideally, a determinis-
tic state observer could be proposed for the state estimation of
the coupled nonlinear electro-thermal system (1)-(8). However,
this approach is intractable due to the system nonlinearities
like electro-thermal coupling, state-dependent parameters and
nonlinear voltage output function. To counteract this issue, we
suppress the electrical parameters’ dependence on the internal
states, and treat these parameters as model uncertainties with
known upper and lower bounds. In particular, suppose that
the following upper and lower bounds are imposed on the
uncertain parameters,

θ ≤ θk(t)≤ θ , ∀k ∈ {1,2, · · · ,m}, (42)

where

θ =
[
R1 R2 C Q

]
, θ =

[
R1 R2 C Q

]
. (43)

These inequalities require the knowledge of the extreme val-
ues of model parameters in the battery string. The extreme
values could be found in practice through offline parameter
identification. For instance, the work in [40] identifies the
values of resistances and capacitance under various SOC and
temperature conditions and constructs a multi-dimensional
matrix for such mappings, for an LiFePO4/Graphite battery
(LFP type). The extreme values for the state-dependent pa-
rameters can be taken as the maximum and minimum possible
values of the mappings across all temperatures and all SOCs.
Moreover, the objective is to design a robust interval observer,
using these extreme parameter values and extreme real-time
measurements, to determine the set of admissible values for
cell SOC at each time instant, when the plant model is subject
to bounded uncertainties in the model parameters and states’
initial conditions.

Let τk = 1/(R2,kCk), which is associated with the time
constant of the system, and consider a known nominal value
τk,0 such that τk = τk,0 + δτk, in which τk,0 can be freely
assigned by the designer. In this set-up, τk,0 is a deterministic
scalar and δτk represents the uncertain component. From (43),
the constant upper and lower bounds of δτk can be computed
as

δτ ≤ δτk ≤ δτ, ∀k ∈ {1,2, · · · ,m}, (44)

where
δτ =

1
R2C
− τk,0, δτ =

1
R2C
− τk,0. (45)

To facilitate the SOC interval observer design for a string
of cells, we start with the general single cell electrical system
(1)-(3) for a random cell k, where k ∈ {1,2, · · · ,m}. Although
model (1)-(3) is specific to each cell, we explore the fact
that all cells are dominated by the same model structure
(only with different parametric and initial condition features).
The estimated SOC intervals account for all uncertainties
associated with each cell k, and generate a feasible envelope to
enclose all possible SOC trajectories in the pack. In particular,
model (1)-(3) can thus be formulated in terms of the uncertain
system (14)-(15), with

ẋk = f (xk)+B(θk)u+δ f (xk,θk), (46)
Vk = h(xk)+δh(θk)u, (47)

where

xk =

[
x1,k
x2,k

]
=

[
zk

Vc,k

]
,

f (xk) =

[
0

−τk,0x2,k

]
, δ f (xk,θk) =

[
0

−δτkx2,k

]
,

B(θk) =

[
1

Qk
1

Ck

]
, u = Ik(t),

h(xk) =Voc(x1,k)+ x2,k, δh(θk) = R1,k. (48)

The local observability matrix for the nominal system is then
given by

O(xk) =

[
dh(xk)

dL f h(xk)

]
=

[
dVoc
dx1,k

(x1,k) 1
0 −τk,0

]
, (49)



whose rank is 2 if and only if the first derivative of the
OCV function with respect to SOC is non-zero around an
equilibrium point x1,k = x1,e and τk,0 6= 0, i.e.,

dVoc

dx1
(x1,e) 6= 0, τk,0 6= 0, (50)

which aligns with existing results on local observability for
battery ECMs [3]. Hence, the coordinate transformation based
on Lie algebra

Φ(xk) =

[
ξ1,k
ξ2,k

]
=

[
Voc(x1,k)+ x2,k
−τk,0x2,k

]
(51)

transforms the system (14), (15), with (48) to the nonlinear
parameter-varying system

ξ̇k = A0ξk +δA(θk)ξk +b(ξk,θk,u), (52)
Vk = Hξk +δh(θk)u, (53)

with ξk =
[
ξ1,k ξ2,k

]> ∈ R2, and

A0 =

[
0 1
0 −τk,0

]
, δA(θk) =

[
0 δτk

τk,0

0 −δτk

]
,

b(ξk,θ ,u) =

 1
Qk

ϕ

(
ξ1,k +

1
τk,0

ξ2,k

)
+ 1

Ck

− τk,0
Ck

 I,

H =
[
1 0

]
, δh(θk) = R1,k, (54)

where
ϕ(·) = dVoc

dx1,k

(
V−1

oc (·)
)
. (55)

In the coordinate transformation (51), x1,k is the SOC for cell
k and x2,k is the relaxation voltage from the R2,k−Ck circuit.
From a physical point of view, the variable ξ1,k (whose unit is
Volt) can be interpreted as the summation of cell open circuit
potential and overpotentials, or equivalently the cell voltage
excluding the ohmic voltage, whereas ξ2,k represents a scaled
version of the R2,k −Ck voltage. The interval observer can
be designed based on (52)-(55) utilizing Theorem 1. Subse-
quently, we will demonstrate the procedures for (i) selecting
observer gains, and (ii) obtaining the bounding functions for
the uncertain terms given by (54)-(55).

Remark 3. The interval observer design in Theorem 1 de-
mands an invertible coordinate transformation Φ. An inverse
transformation based on (51) yields

Φ
−1(ξk) =

[
x1,k
x2,k

]
=

V−1
oc

(
ξk,1 +

1
τk,0

ξk,2

)
− 1

τk,0
ξk,2

 . (56)

The inverse transformation is feasible provided that the open
circuit voltage curve is invertible. Hence, the invertibility of
the open circuit voltage plays key roles in both model local
observability and the feasibility of interval estimates in the xk
domain.

Remark 4. It is noteworthy to mention that the internally
positive system (38)-(39) could admit diagonal and even linear
Lyapunov functions [47], [49], which is an useful property in

scaling up the interval observer method, especially when ad-
vanced battery models (e.g. full-order electrochemical models
[50]) with a large number of states is adopted.

One of the existing strategies for battery pack modeling
and estimation relies on the weakest and strongest cells as
representatives of the pack dynamics [27], [28]. In this context,
it may be argued that instead of utilizing interval observers,
one can simply consider the cells with extreme voltages,
perform SOC estimation, and designate it as the pack SOC.
Nevertheless, it should be emphasized that when battery is un-
der operation (e.g., subject to a dynamic charging/discharging
current profile), such a practice to select the cells with the
lowest/highest voltages will not always recover lowest/highest
SOCs in a pack. As an example, we demonstrated a simulation
study using a UDDS drive cycle for two heterogeneous cells
with different initial SOC values connected in series in Fig.
4. As can be clearly observed, cell 2 SOC is greater than
that of cell 1 at all times, but the voltage of cell 2 is not
always the highest. This is a notable advantage of the interval
observers compared against the conventional voltage-based
characterization of battery packs.

B. Interval Observer Gain Selection

As stated in Theorem 1, the observer gains L and L need to
be chosen such that the matrices (A0− LH) and (A0− LH)
are Hurwitz and Metzler. Remark 2 also emphasizes that
such observer gains do not always exist. We now examine a
sufficient condition on the observer gains to fulfill this design
requirement.

Proposition 1. Let L = [L1 L2]
> ∈ R2. If τk,0 > 0, L2 ≤ 0,

and L1 >−L2/τk,0 ≥ 0, then the matrix (A0−LH) is Hurwitz
and Metzler.

Proof. The matrix (A0−LH) is computed as

(A0−LH) =

[
−L1 1
−L2 −τk,0

]
. (57)

For the off-diagonal elements to be non-negative, we require
L2 ≤ 0. In addition, the eigenvalues of the matrix (A0−LH)
can be obtained symbolically as

λ1 =
−L1− τk,0−

√
(L1 + τk,0)2−4L2

2
, (58)

λ2 =
−L1− τk,0 +

√
(L1 + τk,0)2−4L2

2
. (59)

Since L2≤ 0, the term
√
(L1 + τk,0)2−4L2 is guaranteed to be

a positive real number regardless of the values of L1 and τk,0.
Furthermore, since λ2 ≥ λ1, then λ1 is assured to be negative
if λ2 < 0, which is equivalent to

L1 + τk,0 >
√

(L1 + τk,0)2−4L2. (60)

First, the left hand side of (60) must be greater than 0, which
yields L1 > −τk,0. Squaring both sides of (60) results in
L1τk,0 >−L2. Now we consider two scenarios: (i) τk,0 < 0
and (ii) τk,0 > 0. Under (i), we have that −τk,0 < L1 <
−L2/τk,0, which is an invalid interval because L2 ≤ 0. On the



other hand, under (ii), we have L1 > max{−τk,0,−L2/τk,0}=
−L2/τk,0.

Thus, in light of Proposition 1 and (45), it is recommended
to choose τk,0 such that 0 < τk,0 ≤ 1/(R2C), in order to have
δτk ≥ 0 for all k∈ {1,2, · · · ,m} to ease the design of bounding
functions, as illustrated in the next section.

Remark 5. In our case, based on the above analysis, it
is possible to design observer gains L1 and L2 such that
the matrix (A0−LH) is Hurwitz and Metzler. Therefore, the
coordinate transformation, introduced in Remark 2, which
results in solving a Sylvester equation is not required.

C. Bounding Functions

This section provides detailed steps to determine the bound-
ing functions towards the interval observer designs. In the case
of battery ECM, the uncertain function U in (32) is represented
by

U = δA(θ)ξk +b(ξk,θ)+LVk−LR1,kI, (61)

with the respective terms given in (54). Under Assumption
2 and 3, we seek the analytic expressions of U and U by
constructing the bounding functions of each term on the right
hand side of (61).

According to Proposition 1, the fact that τk,0 > 0 yields

δA =

[
0 δτ

τk,0

0 −δτ

]
, δA =

[
0 δτ

τk,0

0 −δτ

]
. (62)

For the second term at the right hand side of (61), b(ξk,θ), the
upper and lower bounding functions are constructed based on
the sign of the applied current. Function ϕ(·) is essentially the
slope of the OCV-SOC curve, and we assume that the OCV
is strictly monotonic with respect to SOC and the slope of the
OCV curve is bounded, i.e., ϕ ≤ ϕ(·)≤ ϕ with known ϕ and
ϕ . Hence, when I(t)≥ 0,

b =

[
1
Q ϕ + 1

C

− τk,0
C

]
I, b =

[
1
Q

ϕ + 1
C

− τk,0
C

]
I. (63)

The bounding functions for the third term on the right hand
side of (61), namely LVk, is positioned based on the signs of
L1 and L2. In particular, since Vk > 0, we have L1y ≤ L1y ≤
L1y and L2y ≤ L2y ≤ L2y. Similar strategy can be applied to
determine the bounding functions for the last term of U .

D. Adaptive Bounding Functions

The aforementioned approach that utilizes the (constant) ex-
treme values of the mappings between ECM model parameters
and SOC/Temperature is conservative, because it explores the
worst-case scenario of the intervals and the resultant estimates
for the SOC bounds may be wide. To address this issue, in this
section we present an adaptive bounding function selection
framework in order to reduce the parametric uncertainties.
Before we state the main results, the following assumption
on the thermal model (4)-(7) is introduced.

Assumption 4. The relations between local ECM model
parameters and local SOC and temperature are static and
known, and are same across all cells. Mathematically, the
following two conditions hold:
• The analytic expressions of R1,k, R2,k, Ck with respect to

zk and Tk, k ∈ {1,2, · · · ,m}, do not change.
• If zi = z j and Ti = Tj for all i 6= j, then R1,i(zi,Ti) =

R1, j(z j,Tj), R2,i(zi,Ti) = R2, j(z j,Tj), and Ci(zi,Ti) =
C j(z j,Tj).

Thermally, cell-to-cell variations are dominated by
• Cell thermal parameter heterogeneity, i.e., Rc,i 6= Rc, j,

Ru,i 6= Ru, j, Cc,i 6=Cc, j, and Cs,i 6=Cc, j, for all i 6= j.
• Cell heat generation heterogeneity. In particular, dif-

ferences in cell resistances, voltages, and SOCs create
distinct levels of heat generation, thus promote different
temperature trajectories across cells.

Therefore, the interval observer for the thermal component
of the string can be realized by treating heat generation
rate as an exogenous input whose upper and lower bounds
are inherited from the estimated SOC intervals. The thermal
interval observer seeks to determine the guaranteed bounds,
T (t) and T (t), for all cell temperature trajectories in the
battery string in an online fashion, subject to uncertain model
parameters and heat generations. Namely, T (t)≤ Tk(t)≤ T (t)
for all k∈{1,2, · · · ,m} and t ≥ 0. For a battery cell k thermally
modeled by the interconnected system (4)-(7), let

θT,k =
[
Rc,k Ru,k Cc,k Cs,k

]
. (64)

We further assume that θT,k is upper and lower bounded for
all k ∈ {1,2, · · · ,m} by θ T ≤ θT,k(t)≤ θ T where

θ T =
[
Rc Ru Cc Cs

]
, θ T =

[
Rc Ru Cc Cs

]
. (65)

Note that the cell thermal model (4)-(7) is itself in the partial
linear form. Thus, it can be directly written in the form of the
partial-linear expression (29)-(30) with ξT,k = [Tc,k Ts,k]

>:

ξ̇T,k = AT,kξT,k +bT,k(t)

= AT,0ξT,k +δAT,k(θT,k)ξT,k +bT,k(t), (66)
yT,k = HT ξT,k +δhT (θT,k)u, (67)

where δAT,k = AT,k−AT,0. Suppose that the nominal values
for the thermal parameters are θT,0 = [Rc,0 Ru,0 Cc,0 Cs,0],
the compact matrices in (66)-(67) are given by

AT,k =

− 1
Rc,kCc,k

1
Rc,kCc,k

1
Rc,kCs,k

−
(

1
Ru,kCs,k

+ 1
Rc,kCs,k

+ 2
RccCs,k

) ,
AT,0 =

− 1
Rc,0Cc,0

1
Rc,0Cc,0

1
Rc,0Cs,0

−
(

1
Ru,0Cs,0

+ 1
Rc,0Cs,0

+ 2
RccCs,0

) ,
bT,k =

[
1

Cc,k
q̇k

1
Ru,kCs,k

Tf +
1

RccCs,k
(Ts,k+1 +Ts,k−1)

]>
,

HT =
[
0 1

]
, δhT = 0. (68)

It is noted that the pair (AT,0,HT ) is observable. Ultimately, in
light of the thermal system (66)-(67), three major sources of
uncertainties are considered in the thermal interval observer



design: (i) the heat generation rate q̇k as an uncertain exoge-
nous input, (ii) the parametric uncertainty δAT,k in (66), which
is assumed to be upper and lower bounded and the bounds are
known, and finally (iii) the measurement uncertainty on the
surface temperatures due to communication bus limitations
(see Assumption 1). In particular, the first one translates to
nominating a set of bounding functions for bT,k such that
bT ≤ bT,k ≤ bT for all k ∈ {1,2, · · · ,m}. Since the current
Ik(t) is measured, the extreme values of voltage (Vmax and
Vmin) are accessible, and the upper and lower bounds of zk(t)
are acquired from the ECM interval observer, the bounding
functions can be updated in real time using these quantities.
As an illustrative example, when current is positive (Ik > 0),
we have

bT =
[
Ik(Vmax−Voc(z)) 1

RuCs
Tf +

2
RccCs

T
]>

, (69)

bT =
[
max{0, Ik(Vmin−Voc(z))} 1

RuCs
Tf +

2
RccCs

T
]>

. (70)

Theorem 1 can now be applied to the system (66)-(67) for
estimating the temperature upper and lower intervals of all
cells in the pack. The details are omitted here as the procedures
are similar to that in Section V-A and V-B.

At this moment, we are positioned to state our proposed
scheme for achieving the adaptive bounding function selection
in the design of the interval observer, which is depicted in Fig.
5. The ECM-based interval observer block (purple) receives
the extreme values of cell voltages and the present upper and
lower bounds on the ECM model parameters across all cells,
and produces a guaranteed upper and lower bounds for all SOC
trajectories of the battery string, z and z. Next the thermal-
based interval observer (salmon) seeks to achieve guaranteed
upper and lower bounds on all temperature conditions in real
time by using the upstream SOC intervals as well as the ex-
treme values of surface temperature measurements. The crucial
part of the this framework is highlighted by mapping the state
(SOC and temperature) intervals to the parameter intervals
θ(t) and θ(t) in real time (green), by taking advantages
of Assumption 4. Herein, rather than using the worst-case
ECM parameter values in the pack (see (43)) which yields
conservative interval estimates (will be demonstrated in Sec-
tion VI), the bounds on the uncertain parameters are updated
simultaneously based on the current state interval estimates,
rendering an improved knowledge on the model parametric
uncertainties. Consequently, the updated bounds on the ECM
parameters act as feedback signals and in turn facilitate the
ECM-based interval observer design with a tighter interval
estimates.

VI. SIMULATION STUDIES

In order to numerically validate the interval observer de-
signs, in this section, we present results from simulations to
evaluate the performance of the proposed interval observer
for battery strings. The simulations are carried out on bat-
tery cells with 2.8 Ah nominal capacity modeled by the
lumped electro-thermal model (1)-(8). The state-dependent
electrical model parameters are taken from [40], and the
nominal values for the thermal parameters are given by

Local Online
Measurements

Data Transmission

ECM-based
Interval Observer

Thermal-based
Interval Observer

ECM Parameter
Mapping

Ik(t), Vk(t), Ts,k(t)

Ik, Vmax, Vmin, Ts,max, Ts,min

z(t), z(t)

z(t), z(t) T (t), T (t)

θ(t), θ(t)

Fig. 5. Interval observer framework for battery cells connected in series with
adaptive bounding functions.

θT,0 = [1.94 K/W 15 K/W 62.7 J/K 4.5 J/K]. To evaluate
the interval observer performance under dynamical loads, the
current applied to the battery pack is an appropriately scaled
UDDS drive cycle, shown in Fig 6(a). We examine a series
arrangement of five heterogeneous cells, i.e., m = 5 in Fig. 2.
In the plant model, to imitate the SOC imbalance, the cells
are initialized with different SOC levels, and Fig. 6(b) records
the voltage response of each cell. Moreover, we intentionally
perturb the thermal parameters of each cell by at most 10%
from the nominal values to produce thermal heterogeneity (see
Table I). In addition, suppose the cells are thermally simulated
from heterogeneous initial temperatures, whereas the ambient
environment is kept at room temperature (Tf = 25 ◦C). Under
this scenario, the lumped temperature of each cell is reported
in Fig. 6(c).

The interval observer from Theorem 1 is utilized to esti-
mate the feasible SOC and temperature intervals from only
current, max/min voltages, and max/min surface temperature
measurements. For all presented simulations, the upper and
lower interval estimates must be initialized at points that
are higher and lower than all initial conditions in the plant
model, respectively. Two scenarios are demonstrated. First, the
interval observer without the adaptive bounding functions is
tested (Section V-C). Then, the results are expected to improve
with an adaptive bounding function (Section V-D).

A. Bounding Function with No Adaptation

Let us first evaluate the effectiveness of the SOC interval
observer using bounding functions with no thermal adaptation.
The initial values on the SOC interval observers (lower and
upper bounds) are 14% and 49%. The observer gains are
chosen to be L = [10 − 0.1]> and L = [10 − 0.1]>, which



(a)

(b)

(c)

Fig. 6. The simulated plant model for a string of five heterogeneous cells
under an UDDS profile. The cells are initialized to different SOC/voltage and
temperature values. All cells have the same thermal model parameters. (a)
input current; (b) voltage; (c) temperature.

TABLE I
ELECTRO-THERMAL MODEL PARAMETERS

zk(0) Tk(0) Qk Rc,k Ru,k Cc,k Cs,k

Cell 1 28% 27 2.8 1.8 13.9 66.6 4.1
Cell 2 30% 28 2.9 2.1 14.8 67.8 4.3
Cell 3 32% 28 2.7 2.1 16.2 58.0 4.5
Cell 4 34% 28 2.65 1.9 15.9 67.9 4.9
Cell 5 36% 29 2.85 2.0 16.4 64.4 4.9

Unit [-] ◦C Ah K/W K/W J/K J/K

ensure that (A0−LH) and (A0−LH) are Metzler and Hurwitz.
From Fig. 6(c), the temperature range of the pack under
the UDDS drive cycle is approximately between 25 ◦C and
35 ◦C. Thus, the maximum and minimum ECM parameter
values within this range are extracted to form the constant
electrical parameter bounds θ and θ (see (42)-(43)). In this
case, Fig. 7(a) plots the simulated SOC temporal evolution of
five cells (colored solid lines) and the corresponding estimated
SOC upper and lower intervals (dashed lines). Ultimately, the
intervals recover instantly from large initial errors and always
enclose the true SOCs of the string at all times. These results
confirm the stability and inclusion properties of the designed
interval observer stated in Theorem 1, given uncertain initial
conditions and state-dependent electrical parameters.

However, the assumption on the exact knowledge of the

(b)

(a)

Fig. 7. The interval observer performance for five heterogeneous cells in
series, without adaptive bounding functions. The tightness of the estimated
SOC intervals increases with better knowledge on the parameter uncertain-
ties. (a) interval estimation under adequate knowledge of model parametric
uncertainties; (b) interval estimation when the parametric uncertainties are
large.

temperature range is hardly predictable in practice. Fig. 7(b)
investigates the interval observer performance with a weaker
awareness of the temperature evolution. Unlike the previous
case, the parameter mapping with a wider range of temper-
atures are involved such that the constant parameter bounds
θ and θ become more conservative. As can be expected, the
estimated SOC intervals produce highly noticeable estimation
errors. This is indeed our practical motivation to study the
bounding functions with thermal adaptation. Furthermore, note
the spikes on the estimated intervals in Fig. 7(b). These spikes
are in alignment with the spikes on the input current profile
shown in Fig. 6(a). Essentially, the large current magnitudes
magnify the uncertainties of the model in places where it is
mathematically multiplied by an uncertain parameter, e.g., see
the last term on the right hand side of (53). Ultimately, the
interval observers for battery pack application are highly sen-
sitive to high currents, so it is imperative to reduce the effects
of large currents that potentially amplify system uncertainties,
via smart bounding function selections.

B. Bounding Function with Adaptation

Now we consider the interval observer design with adap-
tive bounding functions. The design procedures follow the
framework presented in Fig. 5. This method simultaneously
estimates the SOC intervals and temperature intervals using
Theorem 1, and updates the upper and lower bounds of the
uncertain parameters according to the present state intervals.
Consequently, the numerical results are delineated in Fig. 8.
The solid curves represent the simulated state trajectories of
each cell in the plant model, and the dashed lines denote
the feasible SOC and temperature bounds for the string of



(a)

(b)

Fig. 8. The interval observer performance for five heterogeneous cells
in series, with adaptive bounding functions. The estimated SOC intervals
significantly outperforms the ones from Fig. 7. (a) temperature interval
observer; (b) SOC interval observer.

TABLE II
SOC INTERVAL ESTIMATION TIGHTNESS COMPARISON

Scenarios SOC Upper RMSE SOC Lower RMSE

Case 1 (Fig. 7a) 2.34% 2.09%
Case 2 (Fig. 7b) 3.49% 8.94%
Case 3 (Fig. 8b) 0.85% 1.11%

cells. It should be emphasized that these results are produced
under the same settings that were used to generate Fig. 7(b).
Comparing Fig. 8(b) and 7(b), the SOC/temperature intervals
computed with adaptive bounding functions effectively reduce
the estimation errors induced by the conservative bounds on
the uncertain parameters.

The root mean squared error (RMSE) between SOC inter-
vals and the real SOC trajectories are enumerated in Table II
to quantitatively evaluate the interval tightness. Specifically in
Table II, SOC upper RMSE indicates the RMSE between the
upper interval and the maximum SOC trajectory, whereas SOC
lower RMSE computes the RMSE between the lower interval
and the minimum SOC. Unsurprisingly, Case 3, in which the
bounding functions are adapted according to the present SOC
and temperature intervals, provides significantly lower RMSE
values for both upper and lower intervals compared to Case
2.

C. Comparison with EKF

Finally, the proposed interval observer for a battery pack
with cells connected in series is compared against the state-
of-the-art single cell observer, i.e., the extended Kalman filter
(EKF). We implement an EKF on each individual cell in
the battery string to estimate its local SOC, using local

Fig. 9. CPU time of an interval observer compared with CPU time of an EKF.
The interval observer is independent of the number of cells thus requiring a
constant CPU time. The time consumed by single cell-based EKF increases
linearly with cell number.

voltage and current measurements. Note that an EKF requires
accurate local cell model parameters and local measurements
for SOC estimation, whereas the interval observer only needs
maximum and minimum values of voltage and temperature
among all cells. To the best of the authors’ knowledge, most of
current on-board battery management systems for large-scale
applications, e.g. EVs, idealize battery packs by lumping the
cells together and defining a pack-level SOC. For few of those
who attempt to extract cell-level SOC information in battery
packs, Coulomb counting with voltage re-calibration is the
primary adopted strategy given its structural and computational
simplicity. Ultimately, although EKF for individual cells in a
pack is computationally heavy and generally not seen in the
on-board EV battery management systems nowadays, they are
largely considered as one of the most advanced embedded
algorithms for state estimation in future BMS’s owing to its
robustness to uncertainties and self-correcting nature. Fig. 9
compares the CPU times of i) running an EKF for each cell
with 2) running an interval observer for the entire string, with
respect to the number of cells in the string. These results
are produced with an Intel i7 2.2GHz processor with 16GB
RAM. The CPU time consumed by executing an EKF for
individual cell SOC estimation grows almost linearly with
increasing number of cells. That is, in a battery pack composed
of hundreds or thousands of cells, having a large amount of
real-time local estimators would demand a high computational
power. In contrast, regardless of the number of cells, an
interval observer only consumes a fixed CPU time since it
consistently solves only four dynamical equations, i.e., two for
SOC and two for temperature, to return the feasible intervals.
Consequently, although the interval observers may not account
for individual SOC information in a battery pack, it escalates
algorithm scalability and considerably reduces computation
and design complexities. Finally, it is noteworthy that the
estimated intervals can be treated as the worst-case and best-



case scenarios for battery pack internal states, which are
crucial for potential extended study of control/stabilization of
battery packs [51], [52].

VII. CONCLUSIONS

An interval observer based on an equivalent circuit-thermal
model for lithium-ion battery packs has been presented in
this paper. The SOC-temperature-dependent parameters are
considered as unknown but bounded uncertainties. Then, a
series arrangement of cells is used for observer design, where
cell heterogeneity is now accounted for through the uncertainty
bounding functions. Given that the nominal battery model
is locally observable, the original uncertain model can be
transformed into a partial-linear form, which enables interval
estimation based on monotone systems. By properly choosing
the observer gains, the state matrix of the estimation error is
Hurwitz and Metzler, which guarantees stability and inclusion
of the state bound estimates. Further, the bounding functions
can be adapted based on the present estimated SOC and
temperature intervals to enhance the tightness of the bounds.
A major feature of the proposed estimation approach is its
scalability, since the number of states of interval observers is
independent of the number of cells. The computational effort
required by an interval observer for a pack is significantly
lower than that of a single cell-based EKF, as demonstrated
by simulations.
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