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Solving Chance-Constrained Optimization Under
Nonparametric Uncertainty Through Hilbert

Space Embedding
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Abstract— In this article, we present an efficient algorithm for
solving a class of chance-constrained optimization under non-
parametric uncertainty. Our algorithm is built on the possibility
of representing arbitrary distributions as functions in Reproduc-
ing Kernel Hilbert Space (RKHS). We use this foundation to
formulate chance-constrained optimization as one of minimizing
the distance between a desired distribution and the distribution
of the constraint functions in the RKHS. We provide a systematic
way of constructing the desired distribution based on the notion
of scenario approximation. Furthermore, we use the kernel trick
to show that the computational complexity of our reformulated
optimization problem is comparable to solving a deterministic
variant of the chance-constrained optimization. We validate our
formulation on two important robotic applications: 1) reactive
collision avoidance of mobile robots in uncertain dynamic envi-
ronments and 2) inverse-dynamics-based path-tracking of manip-
ulators under perception uncertainty. In both these applications,
the underlying chance constraints are defined over nonlinear
and nonconvex functions of uncertain parameters and possibly
also decision variables. We also benchmark our formulation with
the existing approaches in terms of sample complexity and the
achieved optimal cost highlighting significant improvements in
both these metrics.

Index Terms— Chance constraints, nonparametric uncertainty,
robust optimal control.

I. INTRODUCTION

CONSIDER the following optimization problem in terms
of a scalar variable u:

min g(u) (1a)

pc(u) ≥ η (1b)

u ∈ F (1c)

pc(u) = P( f (w1, w2, u) ≤ 0). (2)
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Here, g(u) is a user-defined cost function, P(.) represents the
probability and f (.) is the constraint function which depends
on the decision variable u and uncertain parameters, w1 and w2

(see Table I). It is important to note that the uncertain para-
meters, w1 and w2 are in fact modeled as random variables.
The dependence of f (.) on both w1, w2 and u could possibly
be nonlinear and nonconvex. However, we assume that f (.)
is separable in u. The inequality (1b) can be generalized
to include any number of uncertain parameters and multiple
chance constraints. Nonetheless, the case with two uncer-
tain parameters is rich enough to encompass many common
robotic applications (see Section IV). Furthermore, multiple
optimization variables can also be accommodated. However,
for easier exposition, we first restrict our analysis to the simple
case described above. Extensions to a more general case are
straightforward, and we discuss those later in the article.

The set F represents the feasible space of u and is assumed
to be convex for simplicity. Optimizations such as (1a)–(1c)
are called chance-constrained optimizations and are used
extensively for decision-making under uncertainty. In robotics
and control applications, they form the backbone of the robust
model predictive control (MPC) frameworks. For example,
see [1]–[4].

In this article, we consider two challenging motion
planning/control applications. The first application shown
in Fig. 2(a) and (b) involves navigating a mobile robot in
dynamic and uncertain environments. Herein, we consider
noise arising from both perception and ego-motion, and the
chance constraints are formulated to ensure that the probability
of collision avoidance is above the specified threshold. The
motivation for this application stems from the fact that the
prediction in dynamic environments (e.g., neighboring vehicles
in autonomous driving) would always have some uncertainty
associated with it. Furthermore, autonomous vehicles such as
cars would have noise due to lateral and longitudinal slip;
quadrotors would have wind disturbances, and so on, leading
to uncertainty in the motion model.

Our second application is shown in Fig. 2(c) and
Fig. 2(d) shows a stochastic variant of inverse-dynamics-based
path-tracking for manipulators. We assume that the manip-
ulator has noise-less motions but noisy state estimation.
Consequently, the manipulator should compute the necessary
torque commands for path-tracking while considering the state
estimation uncertainty to ensure that the probability of exerting
a torque that violates the specified bounds is under some
threshold. This requirement can be naturally put in the form
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Fig. 1. Illustration of the observations made in Remark 1. The shape of
the distribution can be manipulated by u. An appropriate shape is one where
most of the mass lies to the left of f (.) = 0.

of chance constraints. The motivation for considering this
example stems from cable-driven and soft inflatable manip-
ulators such as Raven [5] and [6] for which encoder readings
do not provide a realistic estimate of the configuration of
each link. Furthermore, for inflatable manipulators, physical
properties such as inertia may not also be known accurately.
Our formulation can act as a building block for complex torque
control with these manipulators.

Remark 1: At an intuitive level, chance-constrained opti-
mizations can be interpreted as a problem of ensuring that a
specific portion of the mass of the distribution f (w1, w2, u)
lie to the left of f (.) = 0 (refer to Fig. 1). For given uncertain
parameters w1, w2, the distribution is parameterized by the
decision variable u and therefore can be used to manipulate
the location of a specified portion of its mass. However, each
choice of u incurs a cost g(u).

Remark 2: The chance constraint probability η has a direct
correlation with the amount of mass of the distribution
f (w1, w2, u) lying to the left of f (.) = 0. A larger mass
amounts to a higher η.

A. Computational Challenge

Chance-constrained optimizations are known to be very
difficult to solve. The complexity increases further when the
uncertainty is nonparametric, that is, the analytical, functional
form of the probability distribution of w1, w2 is not known.
Chance constraints are easy to solve when w1 and w2 are
assumed to have a Gaussian distribution and the constraint
function f (.) is affine with respect to u for given w1 and w2

[7], [8]. However, in general, optimization problems where
chance constraints are defined over nonlinear and noncon-
vex functions, and the underlying uncertainty which cannot
be represented in any parametric form are known to be
computationally intractable. Thus, various approximations and
reformulations are proposed in the existing literature to tackle
chance-constrained optimization problems.

1) Scenario Approximation: A popular approximation
called the scenario approach [9], [10] starts with drawing
n samples (or scenarios) of w1, w2 from their distribution
and then replaces (1b) with n2 constraints of the form
fi (wi

1, w j
2, u) ≤ 0,∀i, j . The scenario approach has a very

interesting set of pros and cons. On one hand, it is conceptually
simple and is applicable even when the parametric form of
the distribution of uncertain parameters is not known, and
just their samples are given. On the other hand, the naive

TABLE I

IMPORTANT SYMBOLS

implementation of the scenario approach is known to be overly
conservative. To be precise, the cost g(u) increases with n,
although the solution becomes more robust at the same time.
Works like [11] provide algorithms for rejection sampling to
reduce the conservativeness of the scenario approach.

2) Surrogates for Chance Constraints: [12]–[15] proposed
to replace chance constraints with the surrogate the following
equation:

E[ f (w1, w2, u)] + �
√

Var[ f (w1, w2, u)] ≤ 0, � > 0 (3)

where E[.] and Var[.] represent the mean and variance of
f (.), respectively, taken with respect to random variables
w1 and w2. Using Cantelli’s inequality, it can be shown that
the satisfaction of (3) ensures that chance constraints are
satisfied with η ≥ (�2/(1 + �2)). However, it should be noted
that this bound can be rather loose. The attractive feature
of (3) is that it is applicable for a wide class of chance
constraints. However, its efficiency is predicated on how easy
it is to compute analytical expressions for E[.] and Var[.]. For
example, if f (.) is nonlinear or/and the parametric form of
w1, w2 is not known, then computing an accurate analytical
expression for E[.] and Var[.] becomes a very challenging
problem. A workaround has been proposed in works like [14],
[16], [17] where the analytical expressions for E[.] and Var[.]
are approximated through Monte Carlo sampling.

3) Sample Average Approximation: Another approach for
reducing the conservativeness of the scenario approach is to
reformulate the chance constraints as (4) using the so-called
sample average approximation (SAA) given by the following
equation [18]:

p̃c(u). ≥ δ (4)

p̃c(u) ≈ 1

n2

∑
i

∑
j

I f

I f =
{

1, if f
(
wi

1, w j
2, u

) ≤ 0

0, otherwise.
(5)

Here, wi
1 and w j

2 represent the i th and j th samples of w1, w2,
and I f represents an indicator function. The variable δ is
similar but not necessarily the same as the chance constraint
probability η [18]. A strong advantage of SAA (5) is that it
automatically allows for violation of f (wi

1, w j
2, u) ≤ 0 for
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Fig. 2. Applications of chance-constrained optimization considered in this article. (a) Robot avoiding collision with a dynamic obstacle in a deterministic
noise-less setting. (b) Stochastic variant of the collision avoidance problem wherein the robot has noise in its motion commands and its perception of
the movement of the dynamic obstacle. In this setting, the chance constraints model the probability of collision avoidance. (c) Problem setup for inverse-
dynamics-based path-tracking for a two-link planar manipulator in a deterministic setting. (d) Inverse-dynamics-based path-tracking under perception uncertainty
leading to noisy estimates for the joint position (gray shaded configurations) and joint velocities. The torque that the manipulator can exert for path-tracking
depends on the joint positions and velocities. Thus, noise in these entities means that the manipulator is unsure of the maximum torque it can generate without
violating the specified bounds. We formulate chance constraints to ensure that the torque bounds are satisfied with some specified probability.

some appropriate subset of samples of wi
1 and w j

2 (depending
on specified η or δ) which in turn leads to solution with less
conservative cost g(u). A closer look would reveal that p̃c(u)
as given by (5) is in fact the sample approximation of pc(u)
[18]. A key bottleneck in using SAA is that reformulation
of (1a)–(1c) using (4) leads to a mixed integer optimization
wherein the number of binary variables would be the product
of the number of samples of w1 and w2. Thus, even if we
have 20 samples of each of them, we would have to deal
with 400 binary variables which is computationally intensive
if not practically intractable. Note that in [18], the uncertainty
is clubbed in a single parameter which is different from the
setup considered in this article.

B. Key Idea and Motivation for RKHS Embedding

Our main motivation is to perform distribution-level rea-
soning as SAA but at the same time do away with the use of
binary variables. We conjecture that this can be achieved by
working with the distribution of f (w1, w2, u) rather than the
distribution of f (w1, w2, u) ≤ 0 (as done in SAA [18]). Let
p f (u) represent the distribution of f (w1, w2, u) parameterized
in terms of u. As mentioned, earlier, for nonparametric w1, w2

and nonlinear and nonconvex f (.), it is intractable to obtain
an analytical expression of p f (u). However, it is possible
to obtain a expression for the embedding of p f (u) in the
Reproducing Kernel Hilbert Space (RKHS). Let μp f repre-
sent the RKHS embedding of p f (u) given by the following
expression [19]:

μp f (u) =
n∑

i=1

n∑
j=1

αiβ j k
(

f
(
wi

1, w j
2, u

)
, .

)
(6)

where k(.) : �n × �n → � is a positive definite func-
tion called the kernel. αi and β j are the weights associated
with w1 and w2, respectively. For example, if the samples
are independent identically distributed (i.i.d.), then αi , β j =
(1/n). An important thing to note from (6) is that for the
given samples of w1 and w2, the embedding given by (6) is
dependent on the variable u.

The expression for μp f is semianalytic in nature in the
sense that it is not possible to evaluate the right-hand side
of (6) since the second argument of the kernel is not known.

Nevertheless, the utility of (6) stems from a different perspec-
tive. To understand this further, assume that we have a known
distribution pdes

f whose RKHS embedding is given by μpdes
f

.

Now, it is straightforward to obtain an analytical expression for
the distance between the two distributions in RKHS [19], [20]

MMD︷ ︸︸ ︷∥∥μp f (u) − μpdes
f

∥∥2 = 〈
μp f (u) − μpdes

f
, μp f (u) − μpdes

f
.
〉
. (7)

The left-hand side of (7) is called the maximum mean
discrepancy (MMD) between the distributions p f (u) and pdes

f
and can serve as the measure of similarity between the two
distributions. The right-hand side (7) involves computing the
inner product of two functions embedded in RKHS and thus
can be easily computed based on the so-called “kernel trick.”
In the classic distribution matching setup of [19], [20], p f (u)
and consequently MMD is independent of u and depends only
on uncertain parameters w1 and w2. In contrast, MMD as
defined in (7) is clearly parameterized by u. That is, different
u leads to different MMD measure. We exploit this precise
feature in our formulation.

C. Contribution

In this article, we present the first result which provides a
reformulation of chance-constrained optimization as a problem
of minimizing the cost g(u) augmented with MMD of the
distribution p f (u) with a certain given distribution pdes

f , which
we will henceforth call as the desired distribution. We achieve
this by connecting two existing results: 1) Matching the tail of
two distributions can be formulated as a moment1 matching
problem [21] and 2) Moment matching can be formulated
as minimizing MMD constructed with polynomial kernels
[20], ([22], p. 15). As shown in Section III, the connecting
link is derived from our interpretation of chance-constrained
optimization in the form presented in Remark 1 and the way
we construct pdes

f .
We show that for the class of constraint function f (.) con-

sidered in this article, the reformulated optimization problem
takes the form of a nonlinear optimization problem easily

1Moment here is used in the context of distributions and should not be
confused with physical moment resulting from the application of force.
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solvable through off-the-shelf gradient-based optimizers. To be
precise, if f (.) is polynomial in u of order l, then the reformu-
lated optimization consists of a cost which is polynomial of
order 2l subject to convex feasibility constraints (1c). This
is computationally significantly simpler than mixed-integer
optimization encountered in SAA approach [18]. Furthermore,
we present a detailed derivation of MMD constructed over
p f (u) and pdes

f and put it in a form for which analytical
gradients can be easily computed.

We benchmark our formulation with the existing approaches
on the applications shown in Fig. 2(a) and (b) based on
two metrics, namely, sample complexity and obtained optimal
cost. In particular, we highlight the following results: First,
we show that our formulation significantly outperforms a
baseline scenario approximation in both the metrics. Second,
our formulation and the SAA approach based on reformulated
chance constraints (5) result in a similar optimal cost. How-
ever, our formulation leads to a simpler optimization problem
and enjoy better sample complexity. Finally, our formulation
also outperforms reformulation of chance constraints based
on expectation and variance of p f (u) proposed in works
like [13]–[15].

II. PRELIMINARIES

In this section, we summarize the prerequisites needed to
build our main results.

A. Moment Matching Problem

Our formulation relies on matching the tail of p f (u)
with certain desired distribution pdes

f to be constructed later.
Hypothesis: The Theorem 1 from [21] can allow us to interpret
tail matching as a problem of matching (or making similar)
the first d moments of p f (u) and pdes

f .
Theorem 1: 	p f (u) − pdes

f 	 ≤ B(d), B(d) → 0, d → ∞

B(d) = vT
d ( f )M−1

d vd( f ). (8)

The function B(d) ≥ 0 is a nonnegative and Md is the
so-called moment matrix [21]. The vector vd( f ) is constructed
from different powers of f up to order d [21]. The above
theorem suggests that the difference between two distributions
can be bounded by the function B(d) that decreases with
increasing order of moment d . More specifically, the authors
in [21] show that B(d) tends to zero at the rate of f −2d .

B. Moment Matching in the RKHS

Assume that the RKHS embedding μp f and μpdes
f

are
computed through the following polynomial kernel:

k(x1, x2) = (
1 + xT

1 x2
)d

. (9)

Then, the following theorem holds.
Theorem 2: If 	μp f (u) − μpdes

f
	 → 0, then moments of

p f (u) and pdes
f up to order d become similar.

where μp f (u) and μpdes
f

are, respectively, the kernel mean
embedding of p f (u) and pdes

f constructed according to (6).
Note that p f (u) and consequently μp f (u) is a function of u.

However, since the desired distribution pdes
f is assumed to be

known, μpdes
f

is constant.
That is, decreasing the residual of MMD distance becomes a

way of matching the first d moments of the distribution p f (u)
and pdes

f . Theorem 2 suggests that the MMD distance can be
used as a measure of similarity between the first d moments
of the two distributions.

C. Reduced Set Methods

One of the strengths of RKHS embedding is that it opens
up avenues for the use of established reduced set methods
to achieve a good sample complexity. Intuitively, reduced set
method provides a systematic way of choosing a subset of
samples while still retaining as much information as possible
from the original sample size by reweighting the importance
of those samples. In other words, the reduced set methods
allow us to compute an optimal αi and β j for use in (7). Let
ŵ1

1, ŵ2
1 · · · ŵN

1 and ŵ1
2, ŵ2

2 · · · ŵN
2 represent N i.i.d. samples

of w1 and w2, respectively. Furthermore, let w1
1, w2

1 · · · wn
1

and w1
2, w2

2 · · · wn
2 represent a subset (reduced set) of the

i.i.d. samples. It is implied that n � N . Now, intuitively,
a reduced set method would reweight the importance of each
sample from the reduced set such that they retain as much
as information of the original i.i.d. samples. The weights αi

and β j associated with wi
1 and wi

2 are computed through the
following optimization problems:

arg min
αi

∥∥∥∥∥ 1

N

i=N∑
i=1

k
(
ŵ1

i , .
) − 1

n

i=n∑
i=1

αi k
(
wi

1, .
)∥∥∥∥∥

2∑
αi = 1 (10)

arg min
β j

∥∥∥∥∥∥ 1

N

j=N∑
j=1

k
(
ŵ2

j , .
) − 1

n

j=n∑
j=1

β j k
(
w j

2, .
)∥∥∥∥∥∥

2∑
β j = 1. (11)

Note that the cost functions in (10) and (11) can be easily
expressed as the inner product of two kernel functions, which
eventually simplifies through kernel trick [19].

III. MAIN RESULTS

In this section, we derive our main result, which is a
reformulation of chance-constrained optimization (1a)–(1c)
into a much simpler minimization problem. The following are
our key assumptions:

1) We assume that the uncertainty is nonparametric, which,
in our case, means that the probability distribution
functions associated with w1 and w2 are not known.
Rather, we have access to their n discrete samples. These
samples could come from a black box simulator, which
mimics a generalized distribution with arbitrary order of
moments.

2) We assume that the analytical form for the constraint
function f (w1, w2, u) is known.

1Note that if we fix u in μp f (u), then this embedding also becomes a
constant which is exactly the trick that we use in the latter sections to construct
a constant μpdes

f
.
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Fig. 3. Overview of our RKHS-based formulation.

A. Overview

Fig. 3 gives an overview of our RKHS-based formulation.
We assume access to an environment that provides samples of
uncertain parameters w1 and w2. Physically, this can represent
the possible states of the robot and the obstacles in the
environment. Our algorithm begins by computing a subset of
these samples denoted by w̃1 and w̃2 (Section II-C). We use
these subset samples to estimate a certain desired distribution
(Section III-C). Next, we compute the RKHS embedding of
the desired distribution pdes

f and p f (u) through polynomial
kernels. Subsequently, we present the minimization of the
distance between the two RKHS embedding as a tractable
substitute for our robust MPC (1a)–(1c) (Section III-E).

B. Algebraic Form of the Constraint Function

In this article, we consider the chance constraints defined
over the following class of constraint functions:

f (w1, w2, u) =
l∑

i=0

hi (w1, w2)u
i (12)

where hi(w1, w2),�n × �n → � is a generic possibly non-
linear function of w1 and w2, while ui represents a monomial
of order i . The definition (12) is very general and has the
famous affine class of chance constraints as a special case
with l = 1 and h0(w1, w2) = w2, h1(w1, w2) = w1. It can
be seen that even if the uncertain parameters w1 and w2 are
Gaussian, the chance constraints defined over f (w1, w2, u)
may still be too complex to get an analytical characterization
for the distribution of f (w1, w2, u).

For the class of constraint functions (12), the RKHS embed-
ding (7) can be simplified in the following manner:

μp f (u) =
i=l∑
i=0

μhi u
i (13)

μhi =
i=n∑
i=1

j=n∑
j=1

αiβ j k
(
hi

(
wi

1, w j
2

)
, .

)
. (14)

C. Desired Distribution

The notion of desired distribution is derived from the obser-
vations made in Remark 1. To recap, we want to ensure that
the distribution f (w1, w2, u) achieves an appropriate shape.
To this end, desired distribution acts as a benchmark for
f (w1, w2, u); in other words, a distribution that f (w1, w2, u)
should resemble as closely as possible for an appropriately
chosen u. We formalize the notion of desired distribution with
the help of the following definitions:

Definition 1: unom refers to any solution of the optimiza-
tion (1a)–(1c) that is associated with a low optimal cost
J (unom).

Definition 2: Let w̃1 and w̃2 be random variables which
represent the same entity as w1 and w2 but belong to some
known distributions pdes

w1
and pdes

w2
. Furthermore, when w̃1 ∼

pdes
w1

and w̃2,∼ pdes
w2

, then f (w̃1, w̃2, unom) ∼ pdes
f . In such a

case, pdes
f is called the desired distribution if the following

holds:
P( f (w̃1, w̃2, unom) ≤ 0) ≈ 1.0, w̃1 ∼ pdes

w1
, w̃2 ∼ pdes

w2
.

(15)

Equation (15) suggests that if the uncertain parameters
belong to the distribution pdes

w1
and pdes

w2
, then the entire mass

of the distribution, f (w̃1, w̃2, u), can be manipulated to lie
almost completely to the left of f (.) = 0 by choosing
u = unom. This setting represents an ideal case because we
have constructed uncertainties appropriately, so that we can
manipulate the distribution of the chance constraints while
incurring a nominal cost.

1) Constructing the Desired Distribution: We now describe
how distributions pdes

w1
, pdes

w2
, and pdes

f can be constructed.
While exact computations may be intractable, in this section,
we provide a simple way of constructing an approximate
estimate of these distributions. The basic procedure is as
follows.

Given n samples of w1 and w2, we construct two sets Cw̃1

and Cw̃2 , respectively, containing nw1 samples of w1 and nw2

samples of w2. For clarity of exposition, we choose w̃1 and
w̃2 to identify samples from set Cw̃1 and Cw̃2 . Now, assume
that the following holds:

f
(
w̃i

1, w̃ j
2, unom

) ≤ 0 ∀w̃i
1 ∈ Cw̃1 , w̃ j

2 ∈ Cw̃2 . (16)

By comparing (15) and (16), it can be inferred that the
sets Cw̃1 and Cw̃2 are in fact sample approximations of the
distributions pdes

w1
and pdes

w2
, respectively. Furthermore, a set C f

containing nw1 ∗ nw2 samples of f (w̃i
1, w̃ j

2, unom) can be taken
as the sample approximation of the desired distribution pdes

f .
One last piece of puzzle remains. We still do not know,

however, which nw1 samples of w1 and nw2 samples of w2

should be chosen to construct sets Cw̃1 , Cw̃2 . In particular,
we need to ensure that the assumption (16) holds for the
chosen samples. To this end, we follow the following process.
We arbitrarily choose nw1 samples of w1 and nw2 samples of
w2 and correspondingly obtain a suitable unom as a solution
to the following optimization problem:

unom = arg min g(u) (17a)
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f
(
wi

1, w j
2, u

) ≤ 0 ∀i = 1, 2, . . . , nw1 , j = 1, 2, . . . , nw2

(17b)

u ∈ F . (17c)
Note that satisfaction of (17b) ensures that the assump-

tion (16) holds. Few points are worth noting about the above
optimization. First, it is a deterministic problem whose com-
plexity primarily depends on the algebraic nature of f (.).
Second, the desired distribution can always be constructed if
we have access to sets Cw̃1 and Cw̃2 . The construction of these
two sets is guaranteed as long as we can obtain a feasible
solution to (17a)–(17c). Third, the computational burden of
solving the optimization problem can be significantly reduced
by some clever sampling. For example, in our implementa-
tion, we compute the left-hand side of (17b) for different
combinations of samples and then choose the set which
leads to the least violation of the constraints (17b). Finally,
(17a)–(17c) is precisely the so-called scenario approximation
for chance-constrained optimization (1a)–(1c). Conventionally,
scenario approximation is solved with a large nw1 , nw2 (typ-
ically 200 samples of each leading to a grid of 4 × 104

and as many constraints) to obtain a solution that satisfies
chance constraints (1b) with a high η (≈ 0.90). In contrast,
we use (17a)–(17c) to estimate the desired distribution and
thus, for our purpose, a small sample size in the range of
nw1 = nw2 ≈ 20 proves to be sufficient in practice.

The RKHS embedding of these distributions can be obtained
in the following manner:

μpdes
f

=
i=nw1∑

i=1

j=nw2∑
j=1

λiξ j k
(

f
(
w̃i

1, w̃ j
2

)
, .

)
, w̃i

1, w̃ j
2 ∈ Cw̃1 , Cw̃2

(18)
where, λi , ξ j are constants derived from the reduced set
methods described in Section II-C.

2) Notion of Low: As well-known, the number of samples
and optimal cost have an inverse relationship in scenario
approximation. So our use of the term “low” signifies that
we want to construct the desired distribution with as low
number of samples as possible. Although we do not have a
theoretical bound on the number of samples required, in our
implementation, we empirically evaluate various sample sizes.
All our implementation in the article were constructed with a
sample size of 5 − 20.

D. Chance-Constrained Optimization as a Moment Matching
Problem

In this section, we reformulate the chance-constrained opti-
mization (1a)–(1c) as a moment matching problem. Our key
idea builds upon Theorem 1. Recall that almost the entire mass
of pdes

f lies to the left of f (.) = 0. It is thus clear that as we
make the tail of pdes

f and p f (u) similar by matching higher
order moments, we ensure that more and more of the mass
of p f (u) gets shifted to the left of f (.) = 0. This in turn
would lead to the satisfaction of chance constraints (1b) with a
higher η (see Remark 2). Theorem 1 lays the foundation for the
following optimization problem which can act as a substitute
for the original chance-constrained optimization (1a)–(1c):

arg min ρ1Lmom
(

p f (u), pd
f , d

) + ρ2 g(u) (19a)

u ∈ F . (19b)

Here, Lmom(.) is a cost function that measures the similarity
between the first d moments of p f (u) and pdes

f . That is, a low
value of Lmom would imply that the first d moments of p f (u)
and pdes

f are very similar.
Accommodating Chance Constraint Probability η: Opti-

mization (19a) and (19b) accommodates the chance constraint
probability η in an implicit manner. Thus, the process of
obtaining solutions with different levels of robustness based
on η is more indirect and involved than the original optimiza-
tion (1a)–(1c). In (19a) and (19b), the similarity between the
tail of p f (u) and pdes

f not only depends on the residual of
Lmom(.) but also on the moment order d used to construct
Lmom(.). Fixing weights ρ1 and ρ2 and increasing d increase
the similarity near the tail end and thus lead to the satisfaction
of chance constraints with higher η. A similar goal can be
achieved by fixing d and ρ2 and increasing ρ1.

E. Reformulating Distribution/Moment Matching Through
RKHS Embedding

The optimization (19a) and (19b) is still challenging to
solve as it is not clear how to derive a suitable analytical
form for Lmom(.). To the best of our knowledge, there is no
mapping that directly quantifies the similarity between the first
d moments of two given distributions. Here, we present a
workaround based on the concept of RKHS embedding and
Theorem 2. Essentially, if we construct the RKHS embedding
of p f , pdes

f through polynomial kernel, then decreasing the
residual of MMD becomes a way of matching the first d
moments of the distribution p f (u) and pdes

f . In other words,
MMD with the polynomial kernel can act as a surrogate
for Lmom(.). Using this insight, we present the following
optimization problem which can act as a surrogate for (19a)
and (19b)

arg min ρ1

MMD︷ ︸︸ ︷∥∥μp f (u) − μpdes
f

∥∥2 +ρ2g(u) (20a)

u ∈ F . (20b)

F. Simplification Based on Kernel Trick

We now use the so-called “kernel trick” to obtain a simpli-
fied form for the optimization (20a) and (20b). In particular,
we put the cost (20a) in a form for which the gradient can
be easily computed. For the ease of exposition, we consider a
specific instance from the definition of constraint function (12)
with l = 2 i.e., f (.) = h0(.) + h1(.)u + h2(.)u2.

We have∥∥μp f (u) − μpdes
f

∥∥2

= 〈
μp f (u) − μpdes

f
, μp f (u) − μpdes

f

〉
= �μh0 + μh1 u + μh2 u2, μh0 + μh1 u + μh2 u2�

− 2
〈
μh0 + μh1 u + μh2 u2, μpdes

f

〉 + 〈
μpdes

f
, μpdes

f

〉
. (21)

Expanding �μh0 + μh1 u + μh2 u2, μh0 + μh1 u + μh2 u2�, we get

u4

〈
n∑

i=1

n∑
j=1

αiβ j k
(
h2

(
wi

1, w j
2

)
, .

)
,
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n∑
i=1

n∑
j=1

αiβ j k
(
h2

(
wi

1, w j
2

)
, .

)〉

+ 2u3

〈
n∑

i=1

n∑
j=1

αiβ j k
(
h2

(
wi

1, w j
2

)
, .

)
,

n∑
i=1

n∑
j=1

αiβ j k
(
h1

(
wi

1, w j
2

)
, .

〉

+ u2

〈
n∑

i=1

n∑
j=1

αiβ j k
(
h2

(
wi

1, w j
2

)
, .

)
,

n∑
i=1

n∑
j=1

αiβ j k
(
h0

(
wi

1, w j
2

)
, .

)〉

+ u2

〈
n∑

i=1

n∑
j=1

αiβ j k
(
h1

(
wi

1, w j
2

)
, .

)
,

n∑
i=1

n∑
j=1

αiβ j k
(
h1

(
wi

1, w j
2

)
, .

)〉

+ 2u

〈
n∑

i=1

n∑
j=1

αiβ j k
(
h1

(
wi

1, w j
2

)
, .

)
,

n∑
i=1

n∑
j=1

αiβ j k
(
h0

(
wi

1, w j
2

)
, .

)〉

+
〈

n∑
i=1

n∑
j=1

αiβ j k
(
h0

(
wi

1, w j
2

)
, .

)
,

n∑
i=1

n∑
j=1

αiβ j k
(
h0(wi

1, w j
2

)
, .

)〉
. (22)

Using the kernel trick [19] on (22) reduces it to the following
expression:
u4cαβKh2h2 cT

αβ + 2u3cαβKh2h1 cT
αβ + 2u2cαβKh2h0 cT

αβ

+ u2cαβKh1h1 cT
αβ + 2ucαβKh1h0 cT

αβ + cαβKh0h0 cT
αβ (23)

where as (24) and (25), shown at the bottom of the page.
Following a similar process, the second term 2�μh0 + μh1 u +
μh2 u2, μpdes

f
� reduces to

2
(
cαβKh2 f cT

λξ u2 + cαβKh1 f cT
λξ u + cαβKh0 f cT

λξ

)
(26)

where

cαβ

= [α1β1, α1β2, α1β3, . . . , αnβn]1X (n∗n)

cλξ

= [λ1ξ1, λ1ξ2, λ1ξ3, . . . , λnw1
ξnw2

]1X (nw1 ∗nw2 )

Khi f

=

⎛⎜⎜⎜⎜⎜⎝
K11

hi , f K12
hi , f K13

hi , f · · · · · · K
1nw1
hi , f

K21
hi , f K22

hi , f K23
hi , f · · · · · · K

2nw1
hi , f

. . . . . . . . . .

. . . . . . . . . .

Kn1
hi , f Kn2

hi , f Kn3
hi , f · · · · · · K

nnw1
hi , f

⎞⎟⎟⎟⎟⎟⎠
n2×(nw1 ∗nw2 )

.

(27)

Finally, the last term, �μpdes
f

, μpdes
f

� in (21) can be handled in
a similar manner, and thus, optimization (20a) and (20b) can
be expressed as the following nonlinear optimization problem:

min ρ1(a1u4 + a2u3 + a3u2 + a4u + a5) + ρ2 g(u) (28a)

u ∈ F
a1 = cαβKh2h2 cT

αβ, a2 = cαβKh2h1 cT
αβ

a3 = 2cαβKh2h0 cT
αβ + cαβKh1h1 cT

αβ − 2cαβKh2 f cT
λξ

a4 = 2cαβKh1h0 cT
αβ − 2cαβKh1 f cT

λξ

a5 = cαβKh0h0 cT
αβ − 2cαβKh0 f cT

λξ + cλξ K f f cT
λξ . (28b)

Computational Complexity: The computational complexity
of our proposed algorithm has two specific parts. The first part
stems from the complexity of constructing the kernel matrix-
like (25) used to formulate the cost function (28a). This,
in turn, depends on the number of samples of the uncertain
parameters w1 and w2. In the worst case, we require n2

samples. However, as explained in Section II-C, the value of n
can be optimized using the reduced set methods. The second
part of the complexity stems from how difficult it is to solve
the optimization (28a) and (28b). The optimization consists
of a polynomial cost and convex feasibility constraints and
thus can be solved with gradient-based techniques such as
projected gradient descent and sequential quadratic program-
ming (QP). Furthermore, there exists a variety of software
libraries like Scipy, which implement these optimization tech-
niques. Contrast this with the mixed-integer optimizations

cαβ = [α1β1, α1β2, α1β3, . . . , αnβn]1Xn2 (24)

Khi h j =

⎛⎜⎜⎜⎜⎜⎝
K11

hi ,h j
K12

hi ,h j
K13

hi ,h j
· · · · · · K1n

hi ,h j

K21
hi ,h j

K22
hi ,h j

K23
hi ,h j

· · · · · · K2n
hi ,h j

. . . . . . . . . .

. . . . . . . . . .

Kn1
hi ,h j

Kn2
hi ,h j

Kn3
hi ,h j

· · · · · · Knn
hi ,h j

⎞⎟⎟⎟⎟⎟⎠

Kab
hi h j

=

⎛⎜⎜⎝
k
(
hi

(
wa

1, w1
2

)
, h j

(
wb

1, w1
2

))
, · · · k

(
hi

(
wa

1, w1
2

)
, h j

(
wb

1, wn
2

))
k
(
hi

(
wa

1, w2
2

)
, h j

(
wb

1, w1
2

))
, · · · k

(
hi

(
wa

1, w2
2

)
, h j

(
wb

1, wn
2

))
. . . , . . . , . . .

k
(
hi

(
wa

1, wn
2

)
, h j

(
wb

1, w1
2

))
, · · · k

(
hi

(
wa

1, wn
2

)
, h j

(
wb

1, wn
2

))
⎞⎟⎟⎠

n×n

. (25)
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obtained with SAA approach [18], which are not amenable to
gradient-based techniques. Furthermore, in [18], the number
of binary variables is equal to the number of samples of
uncertainty parameters.

IV. APPLICATIONS

In this section, we consider two robotic/control applica-
tions and model them in the form of the chance-constrained
optimization (1a) and (1c) and also present their RKHS
reformulations. The motivation for this application has already
been explained in Section I.

A. Dynamic Obstacle Avoidance Along a Given Path

Here, we consider dynamic collision avoidance between
a disk-shaped robot and nonreactive moving obstacles with
similar shapes [Fig. 2(a)]. Both the robot and the obstacles
are assumed to have a single-integrator motion model, that is,
they can instantaneously change their velocities. Furthermorw,
we consider a variant of the problem where the path of the
robot is fixed, and the robot achieves collision avoidance
simply by varying the magnitude of its forward velocity.
As shown in our earlier works [23], [24], the more general
collision avoidance like [25], [26] can be conveniently built
from this special case.

Let (x, y) and (ẋ, ẏ) be the position and velocity vector
of the robot, respectively, at some specific time instant when
the robot detects an imminent collision with the obstacles.
Similarly, let (xo, yo) and (ẋo, ẏo) represent similar vectors for
the moving obstacle. It is clear that if the velocity vector of the
robot is modified as (uẋ, u ẏ), then it continues to move along
its current path, although the magnitude of its forward velocity
gets scaled by a factor u. For u > 1, the robot would increase
its forward velocity, while for u < 1, it would slow down to
avoid collisions. Therefore, the dynamic collision avoidance
constraint can be written in the following form (refer to [24]
for details):

(rT v)2

	v	2
− 	r	2 + R2 ≤ 0 (29a)

R = R + Ro (29b)

r =
[

x − xo

y − yo

]
, v =

[
uẋ − ẋo

u ẏ − ẏo

]
. (29c)

Here, R and Ro represent the radius of the footprint of the
robot and the obstacle, respectively. Inequality (29a) can be
put in the following more compact form, which resembles (12)
with l = 2:

f (w1, w2, u) : h0(w1, w2) + h1(w1, w2)u + h2(w1, w2)u
2

≤ 0 (30)

where w1 = (x, y, ẋ, ẏ) and w2 = (xo, yo, ẋo, ẏo).

1) Uncertainty: Assume that the robot has both perception
and ego-motion uncertainty in which case w1 and w2 become
random variables with some unknown distribution. The colli-
sion avoidance under uncertainty can be formulated through
the following chance-constrained optimization:

min g(u) = (u − 1)2 (31a)

P( f (w1, w2, u) ≤ 0) ≥ η (31b)

u ≥ 0. (31c)

The cost (31a) minimizes the deviation from the current
forward velocities. Optimization (31a)–(31c) fits in the form
described by (1a)–(1c). After solving the above optimization
problem or rather the RKHS-embedding-based reformulation
of it, the robot draws a sample from its current velocity
distribution ẋ and ẏ and executes it after scaling by a factor
u to avoid collisions.

2) Multiple Moving Obstacles: If there are multiple moving
obstacles in the environment, then the parameter w2 needs to
be computed specifically for each moving obstacle. That is,
we have

i w2 = (i xo,
i yo,

i ẋo,
i ẏo).

Consequently, we will also have multiple collision avoidance
constraints

f (w1,
i w2, u) : h0(w1,

i w2) + h1(w1,
i w2)u + h2(w1,

i w2)u
2

≤ 0. (32)

The chance-constrained optimization would now have multiple
chance constraints and take the following form:

min g(u) = (u − 1)2 (33a)

P( f (w1,
i w2, u) ≤ 0) ≥ η ∀, i = 1, 2, . . . , m (33b)

u ≥ 0. (33c)

Our RKHS-embedding-based reformulation would now have
the following form:

min ρ1

∑
i

MMD︷ ︸︸ ︷∥∥μp fi
(u) − μPdes

fi

∥∥2 +ρ2g(u) (34a)

u ∈ F . (34b)

Here, μp fi
(u) represents the RKHS embedding of the i th

chance constraints (i.e., with respect to each obstacle) and μpdes
fi

represents the RKHS embedding of the desired distribution
corresponding to the i th chance constraints. Note that the first
term in (34a) can be obtained using the derivations presented
in Section III-F.

Kab
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, · · · k

(
hi

(
wa

1, w1
2

)
, f

(
w̃b

1, w̃
nw2
2 , unom
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. . . . . . . . .
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B. Inverse-Dynamics-Based Path-Tracking

In this application, we consider the task of tracking a
reference trajectory xd(t) by a manipulator [Fig. 2(c)], which
can be framed as the following QP problem:

arg min
q̈(t)

1

2
	J(q(t))q̈(t) + J̇(q(t), q̈(t))q̇(t) − ẍ(t)	2

2 (35a)

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) ≤ τmax (35b)

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) ≥ −τmax (35c)

|q̈(t)| ≤ q̈max. (35d)

Here, ẍ(t) = k p(x(t) − xd(t)) + 2
√

k p(ẍ(t) − ẍd(t)) + ẍd(t)
and k p is a constant feedback gain. q(t) and q̇(t) represent
the joint angle and velocities at time t , respectively. Let
the degree of freedom of the manipulator be m, that is,
q(t) = (q1(t), q2(t), . . . , qm(t)). J is the manipulator Jacobian
matrix. Inequalities (35b) and (35c) ensure that the result-
ing q̈(t) is achievable without violating the torque bounds.
QP (35a)–(35d) is solved in a one-step receding horizon
setting for trajectory tracking. To be precise, the QP is solved
for joint accelerations at each instant considering the current
joint position and velocities. The state is evolved with the
current acceleration and the process is repeated for a specific
time duration.

Constraints (35b) and (35c) represent 2m affine inequalities,
each of which can be represented in the following familiar
form:

fi (w1, w2, u1, u2, . . . , un) =
j=m∑
j=1

h j
i (w1, w2)u j(t)+ hi (w1, w2)

≤ 0 ∀i = 1, 2, . . . , 2m (36)

where

w1 = (q1(t), q2(t), . . . , qm(t))

w2 = (q̇1(t), q̇2(t), . . . , q̇m(t))

(u1, u2, . . . , um) = (q̈1(t), q̈2(t), . . . , q̈m(t)).

Trajectory Tracking Under Perception Uncertainty: As
mentioned earlier, unlike industrial manipulators, the link
configuration of cable-driven [5] and inflatable manipulators
[6] cannot be precisely known by just the encoder read-
ings. To perform torque-based path-tracking for these manip-
ulators, we formulate a variant of inverse-dynamics-based
path-tracking where the manipulator has perfect motion capa-
bility but imperfect sensing for the joint angles q(t) and
velocity q̇(t) [Fig. 2(d)]. In such a case, q(t) and q̇(t) and
functions h j

i (.) and hi(.) can be modeled as random variables.
With this insight, we now formulate a stochastic variant
of the inverse-dynamics-based path-tracking problem as the
following chance-constrained optimization:

arg min
q̈(t)

1

2
	J(q(t))q̈(t) + J̇(q(t), q̇(t))q̇(t) − ẍ(t)	2

2 (37a)

P( fi (w1, w2, u1, u2, . . . , un) ≤ 0) ≥ η (37b)

|q̈(t)| ≤ q̈max. (37c)

Here, J(q(t)) and J̇(q(t), q̇(t)) represent the Jacobian matrix
formed with the mean variables q(t) and q̇(t), respectively.

Inequality (37b) ensures that the resulting q̈(t) can be achieved
without violating the torque bounds with at least probability η.
It can be seen that (37a)–(37c) is an extended variant of
the original chance-constrained optimization (1a)–(1c). Specif-
ically, we now have multiple decision variables along with
multiple chance constraints.

Remark 3: There is a subtle difference between
multiple chance constraints in optimization (33a)–(33c)
and (37a)–(37c). In the former, multiple chance constraints
arise because the parameters i w2 were different for each
obstacle while the function f (.) remained the same for each
constraint. In contrast, in the latter, the functions fi (.) were
different for each constraint, but the parameters w1, w2

remained the same across different constraints.
The RKHS-embedding-based reformulation of (37a)–(37c)

takes the following form:

min ρ1

∑
i

MMD︷ ︸︸ ︷
	μp fi

(u1, u2, . . . , un) − μpdes
fi

	2

+ ρ2g(u1, u2, . . . , un) (38a)

|q̈(t)| ≤ q̈max. (38b)

Here, μp fi
(.) represents the RKHS embedding of the i th

chance constraints and μpdes
fi

represents the RKHS embedding
of the desired distribution corresponding to the i th chance
constraint.

V. RESULTS

In this section, we present simulations obtained by
applying our formulation to the examples derived in
Section IV. During each application, we also separately
benchmark our formulation with some of the existing
approaches for chance-constrained optimization. Extra deriva-
tions and simulation videos for the results can be found
in the supplementary material http://robotics.iiit.ac.in/uploads/
Main/Publications/Bharath_journal/.

A. Collision Avoidance Results

1) Three Obstacle Benchmark With Non-Gaussian Uncer-
tainty: Here, we consider a benchmark where the robot needs
to avoid collisions with three obstacles under non-Gaussian
perception and motion uncertainty. Fig. 4(a) represents the
configuration of the robot and the moving obstacles. At some
specific time instant, Fig. 4(b) and (c) represents the uncer-
tainty in the robot’s and the obstacle’s positions and velocities.
Note the non-Gaussian nature of the position and velocity
uncertainty. As shown in Section IV-A, the uncertainty in
position and velocity can be mapped to uncertain parame-
ters w1 and w2 and consequently to functions h0(w1, w2),
h1(w1, w2), and h2(w1, w2). We subsequently use this infor-
mation to compute the collision avoidance velocity for the
robot. The solution process and results are summarized
in Fig. 5(a)–(f). As described previously, the solution process
starts with the construction of the desired distribution pdes

fi

constructed corresponding to chance constraints formulated
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Fig. 4. (a) Collision avoidance scenario where the robot needs to avoid collision with three moving obstacles. (b) Position samples of robot and obstacles
at some specific time instant when the robot detects an imminent collision with the obstacles. (c) Uncertainty in velocities of robot and obstacles. It is clear
from the plots that they are non-Gaussian in nature, and the Gaussian approximations of these distributions are also shown. The main intent of displaying the
Gaussian distributions is to show how poorly they approximate the original non-Gaussian distributions.

Fig. 5. Simulation results for collision avoidance with three moving obstacles shown in Fig. 4(b) under non-Gaussian uncertainty. In this example, we have
multiple chance constraints P( fi (w1,

i w2, u) ≤ 0) ≥ η because the uncertain parameter w2 was different for each obstacle. Thus, as shown in (a)–(c), we need
to construct three different desired distributions pdes

fi
corresponding to chance constraints formulated with respect to each obstacle. It can be seen that an

increase in the degree of the polynomial kernel d leads to the increase in the portion of the mass of p fi to the left of f (.) = 0. (d)–(f) validates the reduction
of the colliding samples with an increase in d.

with respect to each obstacle.2 Subsequently, we ensure that
the tail of the distribution of p fi (u) is similar to pdes

fi
by

choosing an appropriate u and the degree of the polynomial
kernel d . The following key points should be particularly noted
from the plots, Fig. 5(a)–(c). As d increases, more and more
mass of p fi (u) gets shifted to the left of fi (.) = 0 leading to an
increase in η. This can be further validated through the CDF
plots. This validates our main idea of reformulating chance

2Recall that the parametric form for the desired distribution or even p f (u)
is not known. But for illustration purposes, we can use the Kernel Density
Estimation and empirical cumulative distribution function (CDF) methods to
graphically represent the distribution in our plots.

constrained optimization as a moment matching problem in
RKHS (see Section III-D). The improvement in collision
avoidance probability with an increasing value of d is also
presented in Fig. 5(d)–(f) via a comparison of the position
samples from where the robot can either collide with (black) or
avoid (red) the obstacles. Snapshots from collision avoidance
simulations are shown in Fig. 6(a)–(h). It is easy to relate
these snapshots to the position samples from Fig. 5(d)–(f).
As the value of d increases, the robot chooses a velocity
that results in more and more clearance with the obsta-
cles. This is what results in reduction of colliding samples
in Fig. 5(d)–(f).
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Fig. 6. Snapshots of collision avoidance simulation for (a) and (b) d = 3 and (e)–(h) d = 5. Note how increase in d results in increase in clearance between
the robot and the obstacles. The increased clearance translates to improvement in probability of collision avoidance.

TABLE II

SAMPLE COMPLEXITY FOR COLLISION AVOIDANCE APPLICATION

2) Cost-Robustness Tradeoff: As mentioned in
Section III-D, ρ1 and ρ2 tradeoff robustness with cost. For a
given ρ1, increasing ρ2 would bias the optimization toward
minimizing the primary cost g(u) and thus decreasing η.
This is shown in Fig. 7(a)–(c). Alternately, for a fixed ρ2,
increasing ρ1 would prioritize minimizing the MMD cost
which in turn improves the robustness or η value.

3) Quantitative Benchmarking on Collision Avoidance:
Table II shows a comparison of the number of samples
required by different approaches to compute an optimal solu-
tion such that the chance constraints are satisfied with a
specified η. The following points can be noted from the table

1) As expected, a naive implementation of the scenario
approach shows the worst sample complexity. For
η ≈ 0.7, we required 200 samples each of w1, w2 lead-
ing to a grid of size 4 × 104. For η ≈ 0.9, we required
500 samples each of w1, w2.

2) The SAA approximation proposed in [18] required a
sample size almost half of that required by the scenario
approach. For η ≈ 0.7, we needed 100 samples each of
w1, w2. This requirement increased to 200 for η ≈ 0.9.

3) The approach of [13], [14] which is based on surrogate
constraints (3) shows an interesting trend. The sample
complexity is worse than the scenario approach for η ≈
0.7. However, the sample size does not vary with η.

This is because the samples of the uncertain parameters
are used to obtain an estimate of E[ f (w1, w2, u)] and
(Var[ f (w1, w2, u)])1/2, and importantly, this estimation
is independent of η.

4) As can be seen from Table II, our proposed formulation
based on RKHS embedding has significantly better sam-
ple complexity than all the above-discussed approaches.
It required 20 samples each of w1 and w2 to construct a
reasonable estimate of the desired distribution. An addi-
tional 20 and 40 samples were required to construct the
RKHS-embedding-based reformulations at η ≈ 0.7 and
η ≈ 0.9, respectively.

Fig. 8(a) and (b) shows the comparison of the optimal
cost obtained through different formulations. The following
important observations can be drawn from it.

1) Our proposed formulation results in lower cost solutions
than approaches based on scenario approximation and
surrogate constraints (3) [13], [14]. The difference is
more pronounced for non-Gaussian uncertainty and at
higher η. In fact, at a higher η, the approach based on (3)
often runs into infeasibility.

2) Interestingly, the SAA approach of [18] results in very
similar costs to those of our proposed formulation for
both Gaussian and non-Gaussian uncertainties. This is
not surprising as SAA proposed in [18] is indeed a very
tight approximation of the chance constraints.
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Fig. 7. Illustration of the effect of ρ1 and ρ2 on η for collision avoidance application. (a)–(c) Effect for increasing values of d.

TABLE III

COMPUTATION TIME (S) FOR COLLISION AVOIDANCE APPLICATION: P( f (W1, W2, u) < 0) ≈ 0.7

TABLE IV

COMPUTATION TIME (S) FOR COLLISION AVOIDANCE APPLICATION: P( f (W1, W2, u) < 0) ≈ 0.9

Computational Time: Tables III and IV show that our
proposed formulation outperforms the existing works in terms
of computation time as well. The best factor of improve-
ment comes with respect to the approach based on surro-
gate constraints (3). Furthermore, our formulation shows a
moderate increase, with the number of obstacles. Note that
since the considered collision avoidance application has just
one decision variable u (increase or decrease of forward
speed), we sampled u within some fixed bounds to solve SAA
based formulation. This allowed us to avoid the mixed-integer
optimization proposed in [18].

B. Path-Tracking Results for a Two-Link Manipulator

Recall that in this application, we repeatedly solve the
chance-constrained optimization (37a)–(37c) or rather the
reformulation of it (38a) and (38b) and evolve the joint angles
and velocities according to the computed acceleration control
input at each iteration. Moreover, we have multiple chance
constraints P( fi (w1, w2, u1, u2) ≤ 0) ≥ η, and thus, a desired
distribution pdes

fi
needs to be constructed corresponding to each

of them. Fig. 9(a) and (b) shows the distributions pdes
fi

and
p fi (.) (for one of the chance constraints) at iterations 60 and
69 for d = 2. Fig. 9(c) shows the torque values obtained at
each iteration. The lines in black represent the mean torque
values, while cyan shows the uncertainty around it in the form
of samples. Fig. 9(d) shows the tracking performance in terms
of path deviation and optimal cost values at each iteration.

Comparing p fi (.) and pdes
fi

at both the iterations, it can be
seen at iteration 60, the tails of the two distributions are more
closely matched, and as a result, a larger portion of p fi (.) lies
to the left of f (.) = 0. A direct consequence of this can be
observed in the torque plots. At iteration 60, we observe fewer
samples of torque that violate the torque bounds compared
with what we observe at iteration 69.

1) Comparative Results for Path-Tracking: We now com-
pare our proposed RKHS-based formulation with the sce-
nario approach and the approach based on the surrogate
constraint (3) in the context of the path-tracking application.3

Tables V and VI summarize the sample complexity for η ≈ 0.7
and η ≈ 0.9, respectively, for different values of τmax.
As can be seen, our RKHS-based formulation enjoys better
sample complexity than both the compared approaches in this
application too. The order of improvement increases with η.
Moreover, at η ≈ 0.7, an additional trend can be observed: the
order of improvement also improves as the chance-constrained
optimization becomes tighter due to a decrease in τmax.
At η ≈ 0.9, the order of improvement remains almost the same

3We do not compare with the SAA approach of [18] here because its compu-
tational complexity on this application becomes too prohibitive. The collision
avoidance application involved only one decision variable, and thus, we could
do a brute force search to solve the SAA formulated problem. However, such
an approach would not be suitable for the path-tracking application. The
authors in [18] suggest a mixed-integer reformulation, wherein the number
of integer variables would be equal to the number of samples of uncertain
parameters. But we remark that such a reformulation would be prohibitive for
high-dimensional robotic systems like manipulators.
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Fig. 8. (a) and (b) Average optimal cost obtained with different methods for collision avoidance application observed across 20 different problem
instances. Our RKHS formulation consistently results in lower cost solutions. The cost, in this case, models how much the robot needs to deviate from
its current speed for collision avoidance. Furthermore, the approach based on surrogate constraints (3) often runs into infeasibility (inequality (3) infeasible) at
higher η [Fig. (b)].

Fig. 9. Simulation results for inverse-dynamics-based path-tracking under non-Gaussian uncertainty [Fig. 2(d)]. In this example, we repeatedly solve the
optimization (38a) and (38b), formulated with polynomial kernel with d = 2. At each iteration, we need to construct a desired distribution corresponding to
each chance constraint. (a) and (b) Desired distribution constructed at iterations 60 and 69. The figures also show the distribution of fi (.) for u1, u2 obtained
as a solution to (38a) and (38b). (c) Torque plots. The solid black lines represent the mean torque values, while the cyan lines show the uncertainty around
it. (d) Tracking performance in terms of path deviation and cost plot. Refer to the text for further insight.

TABLE V

SAMPLE COMPLEXITY FOR PATH-TRACKING APPLICATION CORRESPONDING TO P( f (W1, W2, u1, u2) < 0) ≈ 0.7

for various τmax. It can also be noted that the sample complex-
ity in this application is significantly lower than that observed

in the previous collision avoidance application. We attribute
this to the fact that fi (.) for path-tracking application is affine
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TABLE VI

SAMPLE COMPLEXITY FOR PATH-TRACKING APPLICATION CORRESPONDING TO P( f (W1, W2, u1, u2) < 0) ≈ 0.9

TABLE VII

COMPUTATION TIME (S) FOR PATH-TRACKING APPLICATION CORRESPONDING TO P( f (W1, W2, u1, u2) < 0) ≈ 0.7

TABLE VIII

COMPUTATION TIME (S) FOR PATH-TRACKING APPLICATION CORRESPONDING TO P( f (W1, W2, u1, u2) < 0) ≈ 0.9

in terms of decision variable [see (36)] while in collision
avoidance application, it is a nonconvex quadratic. Fig. 10
shows the comparison of average optimal costs observed
across 20 different problem instances. As can be seen, our
RKHS-based formulation produces significantly lower cost
solutions, and the order of improvement increases with a
decrease in τmax.

Computational Time: Tables VII and VIII compare the com-
putation time of the proposed RKHS-based formulation with
approaches based on scenario approximation and surrogate
constraints (3). The improvement provided by our formulation
is clearly visible.

C. Extension to Three Random Variables
In this section, we show that our formulation can be easily

extended to include additional random variables apart from
w1, w2. In particular, we take the manipulator path-tracking
example and introduce additional random variable w3 to
include the uncertainties in link lengths, mass, and inertia
properties. Due to the lack of space, we do not present
the mathematical details, but it can be found in the sup-
plementary material. We instead focus on the results which
are summarized in Fig. 11(a) and (b). In Fig. 11(a),
we show the increase in the optimal cost upon inclusion
of more uncertainty in the problem through w3. Fig. 11(b)
shows that even with an increase with uncertainty, our
RKHS-embedding-based approach outperforms existing meth-
ods such as scenario approximation and approaches based on
surrogate constraints (3).

D. Consistency and Sample Complexity

The RKHS embedding proposed in [19], [20], [22], and [27]
is consistent, that is, it improves as the number of samples
of w1 and w2 increases. Furthermore, these works relate
estimation error with sample size. In this section, we show
that we inherit the consistency guarantees in spite of the fact

Fig. 10. Comparisons of optimal cost obtained for path-tracking application
with different approaches. A lower cost directly translates to better tracking
while minimizing the control effort.

our RKHS embedding has an additional complexity of being
parameterized in terms of control. We begin by constructing
a ground-truth embedding in the following manner:

μp f (u) = 1

N2

N∑
i=1

N∑
j=1

k
(

f
(
wi

1, w j
2, u

)
, .

)
(39)

where μp f (u) represents the same embedding as μp f (u)
(see 6) but is computed over a larger number of samples. That
is, N � n. We can analyze the consistency by constructing
the following error function from [19] for a fixed value of u:

L = 	μp f (u) − μp f (u)	2
2 (40)

and analyzing its behavior for an increasing value of n. The
results are summarized in Fig. 12(a) and (b) for (6)–(39)
constructed with unom. As can be seen, the error reduces with
an increase in the number of samples. For collision avoidance
application [12(a)], we consistently get a very small error for
samples as low as 40. For d = 5, the number of samples
required for the same level of error is higher. The sample
requirement for manipulator example [Fig. 12(b)] follows a
similar trend.
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Fig. 11. (a) Effect of incorporating w3 into the proposed RKHS formulation. It can be clearly observed that the average cost incurred is high when w3
is incorporated into the formulation. (b) In spite of the increased uncertainty, our RKHS formulation still performs better than other methods such ad the
scenario approach and that based on surrogate constraints (3).

Fig. 12. Plots showing consistency of our RKHS embedding. As the
number of samples increase, the error between the embedding constructed with
the finite sample and the ground truth embedding reduces. (a) Consistency
plots for collision avoidance application while and (b) same for manipulator
path-tracking application.

VI. CONCLUSION AND FUTURE WORK

Mathematical operations in RKHS have been the backbone
for many of the modern machine learning algorithms. Exam-
ples of these span from kernel SVM to Gaussian process.
Recent trends in data science and programming languages
widely advocate the use of probabilistic programming. Among
the many existing approaches used in probabilistic program-
ming, Hilbert space embedding of distributions has recently
gained a lot of popularity. In fact, literature along the lines of
[19] even calls it Kernel Probabilistic Programming. We have
adopted a series of recent articles [19], [20], [27] in this
field that describes what a Hilbert space embedding of a
function of random variables would actually mean. One of the
key aspects of our work is connecting the theory of RKHS
embedding of distributions to a widely studied problem of
chance-constrained optimization, which has applications in
both robotics and control.

We formulated chance-constrained optimization as a prob-
lem of matching higher order moments of two distributions.
The eventual structure that our formulation takes is that

of a nonlinear optimization problem, which can be easily
solved with the help of off-the-shelf solvers. We validated our
formulation on applications like dynamic collision avoidance
of mobile robots and path-tracking of manipulators under
torque bounds. Our benchmarking clearly establishes the
improvement that our formulation provides over the existing
approaches in terms of sample complexity and optimal cost.

At the moment, our formulation has some limitations, which
we would be looking to rectify in our future works. First,
the cost function in our formulation is assumed to be deter-
ministic, that is, it does not contain uncertain parameters. One
simple way of rectifying this would be to formulate stochastic
cost as constraints using some slack variables. We are currently
evaluating the scalability of this idea. Second, we are working
on benchmarking our formulation with approaches, which
first fits some distribution to the nonparametric uncertainty
and then performs the subsequent analysis. Examples of such
fitting techniques include Gaussian mixture model, kernel
density estimator, Gaussian process, and so on. Finally, we are
also looking at more complex applications such as multiagent
navigation and reinforcement learning.
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