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A Semi-Distributed Interior Point Algorithm
for Optimal Coordination of Automated Vehicles at

Intersections
Robert Hult, Mario Zanon*, Sébastien Gros, Paolo Falcone

Abstract—In this paper, we consider the optimal coordination
of automated vehicles at intersections under fixed crossing orders.
We formulate the problem using direct optimal control and
exploit the structure to construct a semi-distributed primal-dual
interior-point algorithm to solve it by parallelizing most of the
computations. Differently from standard distributed optimization
algorithms, where the optimization problem is split, in our
approach we split the linear algebra steps, such that the algorithm
takes the same steps as a fully centralized one, while still
performing computations in a distributed fashion. We analyze
the communication requirements of the algorithm, and propose
an approximation scheme which can significantly reduce the data
exchange. We demonstrate the effectiveness of the algorithm in
hard but realistic scenarios, which show that the approximation
leads to reductions in communicated data of almost 99% of the
exact formulation, at the expense of less than 1% suboptimality.

Index Terms—Intersection Coordination, Networked Mobile
Systems, Model Predictive Control, Distributed Optimization

I. INTRODUCTION

The last decade has seen a rapid development of Automated
Vehicles (AV) technologies, including dedicated control, per-
ception and communication strategies. Several standards have
been adopted for vehicle-to-vehicle communication, and the
use of next generation cellular communication in automotive
applications is under investigation. Consequently, the interest
in applications where the AV share information and cooperate
is increasing, and it is commonly held that Cooperative Auto-
mated Vehicles (CAV) will have positive effects on traffic.

One such case is the coordination of CAVs at intersections.
The idea is to let the CAVs jointly decide how to cross the
intersection safely and efficiently, rather than relying on traffic-
lights, road signs and traffic rules.

The literature on algorithms for coordination of CAV at
intersections was surveyed in [1], [2], and even though most
work is recent, the number of publications is growing rapidly.
While a substantial part of the literature relies completely on
heuristic approaches [3]–[5], a number of contributions that
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skapsrådet, grant number 2012-4038.

R. Hult is with Volvo Autonomous Solutions, Göteborg, Sweden. e-mail:
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employ Optimal Control (OC) [6]–[16] have been proposed
recently. However, most OC-based algorithms partially rely
on heuristics to handle the difficult combinatorial nature of the
problem, which stems from the need to determine the order
in which the vehicles cross the intersection. In a number of
contributions the problem is solved in two stages where 1) the
crossing order is found through a heuristic, typically variations
of “first-come-first-served” [7], [9], [15], [16] or through a
simplified mixed-integer optimization [14], [17], [18]; and
2) the control commands are found using OC-tools [10]–
[12], [14], [17], [18]. In this paper we propose an algorithm
intended for such applications which deals with the problem
of finding the optimal control commands for a fixed crossing
order by relying on direct methods for OC, which transcribe
the problem into a Nonlinear programming Problem (NLP).

The fixed-order crossing problem can be solved by several
approaches alternative to the one we propose in this paper, in-
cluding hierarchical (e.g., bi-level) optimization, Mathematical
Programming with Equilibrium Constraints (MPEC), mixed-
integer NLPs (MINLP), etc. The main difficulty related to
approaches based on MPEC or MINLP is the difficulty in
solving these problems, which can be significantly higher
than the one related to solving a Nonlinear Programming
Problems (NLP). Additionally, approaches based on MPEC
and MINLP are difficult to solve in a distributed fashion.
Concerning hierarchical optimization, our approach can be
seen as a hierarchical optimization problem in which, rather
than solving the lower-level problems to full convergence,
a single iterate is performed. This generally reduces the
amount of computations, but can result in a slight increase
in the amount of iterations taken in the upper-level problem,
compared to, e.g., bi-level approaches.

In [19], we introduced a Sequential Quadratic Programming
(SQP) algorithm based on a primal decomposition of the
fixed-order coordination problem, where most computations
are distributed and performed on-board the vehicles in parallel.
We considered the receding horizon application of the SQP
algorithm in [20], where we also presented experimental
results which demonstrated that the proposed formulation is
robust with respect to packet losses, state estimation errors and
unmodeled dynamics. We extended the algorithm to handle
nonlinear dynamics and economic objective functions in [21]
and to handle scenarios with turning vehicles in [22]. In
[17], we proposed an OC-based heuristic for crossing order
selection, and compared the performance of our approach to
standard traffic-lights and other algorithms in [18]. Robust-
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Fig. 1: Illustration of distribution structure

ness, recursive feasibility and optimality of the coordination
algorithm considered in this paper have been discussed in [18],
[20], while here we focus on distributing the computations and
reducing the amount of required communication.

The algorithm in [19] did not account for rear-end collisions
between vehicles on the same lane, and required the solution
of a non-smooth Nonlinear Program (NLP). In this paper,
we solve the fixed-order coordination problem by relying
on Primal-Dual Interior-Point (PDIP) algorithms. Our main
contribution is to make it possible to compute in a distributed
manner the same steps that a centralized solver would take.
As in [19], [20], this approach is partly centralized, and
relies on central units for some computations. In particular,
the algorithm uses one intersection-wide central unit and
one central unit for each lane, with communication flows as
illustrated in Figure 1. We stress that these central units need
not be physically separated from the vehicles, but a subset of
the vehicles could be selected to also perform the computations
of these central units.

Main Contributions: By building on ideas similar to
[23], [24], we propose a way to distribute computations of
PDIP schemes for nonconvex NLPs tailored to the intersection
problem and our approach can be implemented in any existing
PDIP solver. Furthermore, we analyze the communication
requirements and propose an approach to reduce them while
incurring an essentially negligible loss of optimality.

Outline: The remainder of the Paper is organized as
follows. In Section II we model and state the intersection
problem using an optimal control formalism. In Section III
we review PDIP methods and outline how the computations
can be parallelized. In Section IV we show in detail how the
Karush-Kuhn-Tucker (KKT) system can be solved by splitting
computations at the vehicle, lane and intersection level. In
Section IV-D we show how to select the step-size in a dis-
tributed fashion. In Section IV-F we state a practical algorithm
and provide a numerical example. In Section V we analyze
the communication requirements and propose an approximate
representation of the Rear-End Collision Avoidance (RECA)
constraints, which significantly reduces the amount of data to
be communicated. The paper is concluded in Section VI.

II. OPTIMAL COORDINATION AT INTERSECTIONS

We consider intersection scenarios as shown in Figure 2,
where N vehicles approach an intersection with L lanes, and

CZ 1 CZ 2

CZ 3CZ 4

Fig. 2: Illustration of the scenarios considered, Assumption 2 (black lines)
and the Conflict Zones (red boxes).

make the following assumptions:

Assumption 1. There are no non-cooperative entities.

Assumption 2. The vehicles do not change lanes.

Both assumptions are standard in the literature (see e.g.
[3]–[5], [9]). Assumption 1 is introduced for the sake of
simplicity and excludes the presence of, e.g., human-driven
vehicles, pedestrians or bicycles. It is worth stressing that
the proposed framework can be extended to accommodate
for non-cooperative agents without major changes in the
proposed algorithm: by modeling non-cooperative agents as
uncertain systems, one can introduce additional constraints
in the problem, e.g., following the approach of [25]–[28].
Assumption 2 is also introduced for simplicity and could be
relaxed. While vehicles in general are entering and leaving
the crossing area, in the following we focus on solving the
problem at a given time and, for the sake of simplicity, we
drop the dependence of some variables in time, e.g., the set
of vehicles in each lane.

Motion Models: We describe the vehicle dynamics in
continuous time as

ẋi(t) = fi(xi(t), ui(t)), (1a)
0 ≥ ci(xi(t), ui(t)), (1b)

where i is the vehicle index, xi(t) ∈ Rni and ui(t) ∈ Rmi
are the vehicle state and control and we assume that fi is
Lipschitz continuous in its first argument, such that (1) has a
unique solution. Without loss of generality, we split the vehicle
state as xi(t) = (pi(t), vi(t), x̃i(t)), where pi(t) is the position
of the vehicle’s geometrical center on the path describing the
lane it is on, vi(t) is the velocity along the path and x̃i(t)
collects (if any) all remaining states, e.g., acceleration and/or
internal states of the powertrain. Vector ci lumps together all
constraints, including, e.g., actuator limitations, lane keeping
conditions, etc. Both fi and ci are assumed to be twice
differentiable.

Side Collision Avoidance (SICA): Side collisions can
only occur between vehicles on different lanes, when these
are inside a crossing area, i.e., where the lanes intersect.
We denote these areas Conflict Zones (CZ), and note that
more than one pair (i, j) can have potential collisions at a
particular CZ. Collision avoidance consequently amounts to
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Fig. 3: Illustration of the elements used in the side collision avoidance con-
ditions. dj and Wj denotes the length and width of the vehicle, respectively.

ensuring that vehicles on different lanes occupy each CZ in a
mutually exclusive fashion. In order to enforce this constraint,
we introduce auxiliary variables for the time of entry and
departure of each CZ, implicitly defined through

pi(t
in
i,r) = pini,r, pi(t

out
i,r ) = pouti,r , ∀ r ∈ ICZ

i , (2)

where ICZ
i collects the indices of the CZ crossed by vehicle i,

and pini,r and pouti,r are the positions along the path at which
vehicle i enters and leaves CZ r, defined as shown in Figure 31.
SICA is then enforced as

touti,r ≤ tinj,r , (i, j, r) ∈ IC, (3)

where IC collects all triples (i, j, r) of vehicles i, j and CZ r
where side collisions can occur, and implicitly encodes the
crossing order, since by (3) vehicle i crosses CZ r before
vehicle j.

Rear-End Collision Avoidance (RECA): Due to Assump-
tion 2, rear-end collisions can only occur between two adjacent
vehicles on the same lane. We state the necessary condition
for RECA as

pi(t) + δi ≤ pi+1(t), i, i+ 1 ∈ Ivl . (4)

where pi, pi+1 are the first components of the corresponding
state vectors xi, xi+1 and δi > 0 accounts for the vehicle
length and introduces a safety distance between the two
vehicles and Ivl denotes the set of all vehicles on lane l, which
we assume to be ordered, such that vehicle i + 1 precedes
vehicle i.

Discretization: We employ a direct formulation of the
optimal coordination problem, using a piecewise constant
parameterization of the inputs ui(t) = ui,k, t ∈ [tk, tk+1),
k = 1, . . . ,K − 1, where K is the prediction horizon and
tk = k∆t. We consider a multiple-shooting discretization of
the dynamics (1a), enforcing

xi,0 = x̂i,0 (5a)
xi,k+1 = Fi(xi,k, ui,k,∆t), k = 0, . . . ,K − 1, (5b)

1In the event that vi(t
in
i,r) = 0, tini,r is not uniquely defined by pi(t

in
i,r) =

pini,r . In this case, one can use the slightly more involved definition tini,r =

min t s.t. pi(t
in
i,r) = pini,r . Since ṗ(tini,r) = 0 would be rarely encountered

in practice, this is avoided for ease of presentation.

where x̂i,0 is the initial state of vehicle i, and Fi(xi,k, ui,k,∆t)
denotes the solution to (1a) at time t = tk + ∆t, with initial
condition xi(tk) = xi,k and control ui,k. The state and control
trajectories xi(t) and ui(t) are thereby described by xi and ui,
which we collect in vector wi = (xi,0, ui,0, . . . , ui,K−1, xi,K).
Note that the state values at time t 6= tk can be obtained from
the same numerical routines used to evaluate (5). We denote
the position pi(t) at time t as the function

pi(wi, t) := Fi,p(xi,k, ui,k, t− tk), k = bt/∆tc, (6)

where Fi,p denotes the position component of Fi, and we
introduce pi(wi, t) for ease of notation, even though this
function only depends on xi,k, ui,k. Consequently, all times
tini,r, t

out
i,r are continuous functions of wi implicitly defined as

pi(wi, t
in
i,r) = pini,r, ∀ r ∈ ICZ

i , (7a)

pi(wi, t
out
i,r ) = pouti,r , ∀ r ∈ ICZ

i . (7b)

Finally, as customary in direct multiple shooting, we relax
constraints (1b) and the RECA constraints (4) by enforcing
them only at times tk:

ci(xi,k, ui,k) ≤ 0, k = 0, . . . ,K, (8)

hr(pi, pi+1) ≤ 0, i, i+ 1 ∈ Ivl , l ∈ IL, (9)

where hr(pi, pj) := (pi,k + δi − pi+1,k, k ∈ {0, . . . ,K}).
Optimal Control Formulation: We define the set of

all lanes IL = {1, . . . , L}; the set of all vehicles Iv =
{1, . . . , N} =

⋃
Ivl ; and denote as l(i) the lane of vehicle i.

Variables wi collect the state and control trajectory: these are
the only variables present when formulating an Optimal Con-
trol Problem (OCP) for a single vehicle. Since we formulate
the SICA using additional time variables, we further define
the in-out times Ti,r = (tini,r, t

out
i,r ), relative to vehicle i and

CZ r. Then, for each vehicle we define the vector of all in-out
times Ti =

(
Ti,1, . . . , Ti,|ICZ

i |
)
∈ RnTi , which contains the

in-out times for all CZ crossed by vehicle i. We lump all these
variables together to obtain the primal variables associated
with vehicle i as yi = (wi, Ti) and denote all primal variables
as y = (yi, . . . , yN ). The optimal intersection coordination
problem is then given by the NLP

min
y

N∑
i=1

Ji(wi) (10a)

s.t. gi(wi, Ti) = 0, i ∈ Iv, |λi, (10b)

hPi (wi) ≤ 0, i ∈ Iv, |µP
i , (10c)

hLl
(
pLl
)
≤ 0, l ∈ IL, |µL

l (10d)

hC(T ) ≤ 0, |µC, (10e)

where gi(wi, Ti) collects constraints (5) and (7) for vehi-
cle i; hPi (yi) ≤ 0 collects path constraints (8) for vehicle i;
hC(T ) ≤ 0 collects SICA constraints (3); and

hLl
(
pLl
)

:= (hr(pi, pi+1), i, i+ 1 ∈ Ivl ) ,

collects RECA constraints (9), where we define pLl = (pi, i ∈
Ivl ). At the right of each constraint, we wrote the correspond-
ing Lagrange multiplier.
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The objective function takes the form

J(y) =

N∑
i=1

Ji(wi) =

N∑
i=1

V f
i (xi,N )+

K−1∑
k=0

`i(xi,k, ui,k), (11)

with twice differentiable terminal cost V f
i and stage cost `i.

The functions appearing in the cost are intentionally left un-
defined, since our approach can handle any cost function, the
definition of which is problem dependent. Examples of a pos-
sible cost function include tracking costs, as in Section IV-G
and costs related to fuel consumption, as in, e.g., [21]. We
observe that, since the SICA and RECA constraints are in
general nonconvex, (10) is a nonconvex NLP. In the following,
we assume that all functions are twice differentiable, such that
derivative-based optimization algorithms can be applied. Note
that this is a mild assumption in the case of CAVs.

Remark 1. We present Problem (10) without turning vehicles
for simplicity, but the same formalism can be deployed also
in that case, as shown in [22]. Additionally, both (3) and (4)
can also be defined with state-dependent safety margins. Such
details are omitted for the sake of simplicity.

Remark 2. In order to solve the nonconvex NLP using
derivative-based approaches, we assume that all functions
in (10) are continuously differentiable. Twice continuous differ-
entiability is usually assumed for simplicity but is not strictly
necessary.

III. PRIMAL-DUAL INTERIOR POINT METHOD

In this paper, we focus on PDIP algorithms, which solve
NLPs by relying on a smooth approximation of the KKT
conditions. By driving the smoothing (barrier) parameter to
zero, a sequence of primal-dual approximations is obtained
which converges to a local minimum of the NLP under mild
conditions [29]. Since our contribution consists in proposing
a way of distributing the computations of each PDIP iteration,
we briefly recall next how PDIP methods solve an NLP.

Collecting (10b) in g(y) and (10c)-(10e) in h(y), the PDIP
KKT conditions of Problem (10) are

∇yL = 0, (12a)
g(y) = 0, (12b)

h(y) + s = 0, (12c)
D(s)µ− 1τ = 0, (12d)

µ ≥ 0, (12e)
s ≥ 0, (12f)

where, s is a slack variable associated with h, D(s) is a
diagonal matrix built from s, τ ∈ R+ is the barrier parameter,
and ∇yL is the gradient of the Lagrangian function

L(y, λ, µ, s) = J(y) + λ>g(y) + µ>(h(y) + s), (13)

where λ and µ are the Lagrange multipliers associated with
constraints g and h respectively. Collecting primal-dual vari-
ables in z = (y, λ, µ, s), we write (12a)-(12d) as rτ (z) = 0.

Starting from an initial guess z[0] strictly satisfying
(12e), (12f), the sequence of primal-dual solution candidates
is generated through the iteration

z[ξ+1] = z[ξ] + α[ξ]∆z[ξ], (14)

where ξ is the iteration index, α[ξ] the step size and ∆z[ξ] the
search direction, obtained as the solution of the KKT-system

M
(
z[ξ]
)

∆z[ξ] = −rτ [ξ]

(
z[ξ]
)
. (15)

The KKT matrix M(z) is constructed from ∇zrτ , evaluated
at z[ξ]. Typically one replaces the Lagrangian Hessian ∇2

yyL
with an approximation B to ensure that the reduced Hessian is
positive-definite [29]. The step size α[ξ] is selected such that
the updated solution candidate z[ξ+1] strictly satisfies (12e),
(12f) and provides sufficient decrease for a suitably selected
merit function φ(z). Finally, as the algorithm converges, an
update strategy ϕ, enforcing τ [ξ] → 0 is used to update the
barrier parameter as

τ [ξ+1] = ϕ
(
τ [ξ], z[ξ]

)
. (16)

If the PDIP algorithm is applied in a fully centralized
setting, the linear system (15) is solved using a standard linear
algebra routine. The information needed to assemble M

(
z[ξ]
)

and rτ [ξ]

(
z[ξ]
)

must thus be made available centrally before
the search-direction ∆z[ξ] can be found.

The focus of this paper is on the solution of (15) in a
distributed fashion, by exploiting the structure of Problem (10)
to perform most computations independently for each vehicle
and for each lane. Additionally, also the evaluation of the merit
function can be split, allowing also the step size α[ξ] to be
selected in a distributed fashion. In the following sections,
we detail how computations are distributed and how the
information is exchanged between the vehicles, lane centers
and intersection center.

IV. SOLVING THE PDIP-SYSTEM

In this section, we construct rτ [ξ]

(
z[ξ]
)

and M
(
z[ξ]
)

for
Problem (10) in a way which makes it possible to perform the
iterates of PDIP solvers in a distributed way which is tailored
to the optimal coordination of CAVs at intersections. Since the
dimension of each slack variable s is intrinsically related to a
specific multiplier µ, we label and index s in the same way
as µ. For the sake of simplicity we omit in the following the
iteration index ξ and dependence on τ .

A. KKT Residual r

We arrange the KKT residual as r =
(
rv, rL, rC

)
and

partition the optimization variable as z =
(
zv, zL, zC

)
, where

v, L, C refer to the vehicles, the lane centers and a central
node. Though all components of the vector depend on each
other, one can intuitively think of rv as the KKT conditions
relative to all vehicles; rL as the KKT conditions relative to
the lanes, enforcing RECA; and rC as the KKT conditions of
the central node, enforcing SICA and defining the schedule.
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We define zv = (zv1 , . . . , z
v
N ), with zvi :=

(
yi, λi, µ

P
i , s

P
i

)
,

and write rv = (rv1 , . . . , r
v
N ), with

rvi :=
(
∇zvi L, µ

P
i + D

(
sPi
)−1

1τ
)
.

If all vehicles were on separate lanes and there were no
intersection, then all rvi could be solved independently and(
rL, rC

)
would have dimension 0. The coupling between

vehicles is due to multipliers µL, µC, which appear inside
∇zvi L. Note that ∇yvi L =

(
∇wv

i
L,∇T v

i
L
)

with

∇wiL = ∇wiJi +∇wigiλi +∇wihPi µP
i +∇wihLµL, (17a)

∇TiL = ∇Tigiλi +∇TihCµC, (17b)

where ∇wihL and ∇TihC are sparse matrices composed of 1
and 0.

We define zL :=
(
zL1 , . . . , z

L
L

)
, with zLl :=

(
µL
l , s

L
l

)
, and

rL :=
(
rL1 , . . . , r

L
L

)
with

rLl :=
(
hLl
(
pLl
)

+ sLj , µ
L
l + D

(
sLl
)−1

1τ
)
, (18)

Essentially, rLl imposes the RECA constraint on lane l.
Finally, we define zC :=

(
µC, sC

)
, and

rC :=
(
hC(T ) + sC, µC + D

(
sC
)−1

1τ
)
, (19)

imposing the SICA constraints.

B. KKT Matrix M

The KKT matrix is displayed schematically in Figure 4 and
an example is displayed in Figure 6; it reads as

M =

Mv MvL MvC

MLv ML

MCv MC

 , (20)

where all 0 entries are left empty for the sake of readability.
The top left block is Mv := blockdiag (Mv

1 , . . . ,M
v
N ),

with

Mv
i =


Bi ∇yigi ∇yihi
∇yigi>
∇yihi

> I
I D(si)

−1D(µi)

 ,
where Bi, ∇yigi and ∇yihi are highly sparse with the struc-
ture typical of NLPs arising in direct OC. Consequently, each
block Mv

i can be factorized independently from the others and
efficient solvers tailored to direct OC can be used [30], [31].

The block below Mv is

MLv := ∇zvrL =
(
∇zvrL1 , . . . ,∇zvrLL

)
=
(
MLv

1 , . . . ,MLv
L

)
,

which is block sparse, since

MLv
l =

[
MLv
l,1 , . . . ,M

Lv
l,N

]
, with MLv

l,i = 0 if i /∈ ILl .

The fact that most entries are 0 is best understood by noting
that MLv encodes RECA constraints (9). Therefore, each row
has only two nonzero elements equal to ±1, corresponding
to position variables from 2 vehicles on that lane, see also
Equation (18). We will exploit this fact when analyzing the
communication requirements, see Table I. Finally, MvL :=

Vehicles

V
eh

ic
le

s
R

E
C

A
SI

C
A

RECA SICA

MLv

MCv

MvL MvC

MC

ML
1

ML
2

Mv

Fig. 4: Illustration of the KKT-matrix of (10). Blue and green differentiate
vehicles on different lanes.

∇zLrv = MLv>. We will also index this matrix by vehicle,
i.e., MvL

i :=
[
MvL
i,1 , . . . ,M

vL
i,L

]
only includes the rows of MvL

corresponding to rvi .
Block MCv := ∇zvrC is also block sparse with all nonzero

elements equal to either 1 or −1, since it encodes the SICA
constraints (3): we will exploit this fact when analyzing the
communication requirements, see Table I. The sparsity pattern
of MCv depends on the CZ crossed by each vehicle and the
crossing order. In the simple case of 1 CZ, and an appropriate
vehicle ordering, this matrix can be made block diagonal with
the introduction of auxiliary variables, see, e.g., [32]. Finally,
MvC := ∇zCrv = MCv>. We will denote MvC

i the rows
corresponding to vehicle i, i.e., to rvi .

The two remaining blocks on the diagonal are ML =
blockdiag

(
ML

1 , . . . ,M
L
L

)
, with

ML
l =

[
0 I
I D(sl)

−1D(µl)

]
;

and

MC =

[
0 I
I D(sC)−1D(µC)

]
.

C. Solving the KKT-system

We show next how the computations involved in solving the
KKT systemMv MvL MvC

MLv ML

MCv MC

∆zv

∆zL

∆zC

 = −

rvrL
rC

 , (21)

can be split between the vehicle, lane and intersection levels
of the problem. Note that this computation is common to
all PDIP solvers, such that our approach can in principle be
implemented in any existing solver.

Proposition 1. The KKT system (21) can be solved as the
following sequence of equations(
M̄C − M̄LC

(
M̄L

)−1
M̄CL

)
∆zC = −r̄C + M̄LC

(
M̄L

)−1
r̄L,

(22a)

M̄L
l ∆zLl = −r̄Ll − M̄LC

l ∆zC, ∀ j ∈ IL,
(22b)

Mv
i ∆zvi = −rvi −

[
MvL
i MvC

i

] [∆zL

∆zC

]
, ∀i ∈ Iv, (22c)
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where we define

M̄L := blockdiag
(
M̄L

1 , . . . , M̄
L
L

)
, (23a)

M̄L
l := ML

l −
∑
i∈Ivl

MLv
l,i (Mv

i )
−1
MvL
i,l , (23b)

M̄LC :=
[
M̄LC

1 , . . . , M̄LC
L

]
, (23c)

M̄LC
l := −

∑
i∈Ivl

MLv
l,i (Mv

i )
−1
MvC
i , (23d)

M̄C := MC −
N∑
i=1

MCv
i (Mv

i )
−1
MvC
i , (23e)

r̄C := rC −
N∑
i=1

MCv
i (Mv

i )
−1
rvi , (23f)

r̄L := (r̄L1 , . . . , r̄
L
L), (23g)

r̄Ll := rLl −
∑
i∈Ivl

MLv
l,i (Mv

i )
−1
rvi , (23h)

and

M̄LC
(
M̄L

)−1
M̄CL :=

L∑
l=1

M̄LC
l

(
M̄L
l

)−1
M̄CL
l , (23i)

M̄LC
(
M̄L

)−1
r̄L :=

L∑
l=1

M̄LC
(
M̄L
l

)−1
r̄Ll . (23j)

Proof. We proceed by first solving the KKT system with
respect to ∆zv, which yields

Mv∆zv = −rv −
[
MvL MvC

] [∆zL

∆zC

]
.

Since Mv is block-diagonal, we further split this equation
per vehicle to obtain (22c). Since these equations require
knowledge of ∆zL, ∆zC, they will have to be solved last.

We now use (22c) to replace

∆zvi = −Mv
i

−1

rvi −Mv
i

−1 [
MvL
i MvC

i

] [∆zL

∆zC

]
(24)

in the remaining equations. The first term in the right hand side
of (24) yields (23f)-(23h). The second term in the right hand
side of (24) yields (23a)-(23e). In equations (23b) and (23e)
the sum is restricted to i ∈ Ivl since MvL

i,l = 0 for all i /∈ Ivl .
We can now write (21) as[

M̄L M̄LC

M̄CL M̄C

] [
∆zL

∆zC

]
= −

[
r̄L

r̄C

]
. (25)

We can then obtain (22b) by eliminating ∆zL to obtain

M̄L∆zL = −r̄L − M̄LC∆zC.

Since by (23a) M̄L is block diagonal, we can solve this
equation separately for each lane, therefore obtaining (22b).

Finally, Equation (22a) is obtained by replacing

∆zL = −M̄L
−1

r̄L − M̄L
−1

M̄LC∆zC

in the second row of (25). Note that also in (23i)-(23j) we
exploit the block-diagonal structure of M̄L.

Proposition 1 states that (21) can be solved hierarchically,
by first solving the intersection level, then the lane level and

finally the vehicle level. We will discuss next where all compu-
tations are performed, since parts of the matrices and vectors
are formed locally and assembled later. This is necessary both
for communication and computational efficiency.

Each vehicle i needs to factorize matrix Mv
i , which has the

structure typical of direct OC. This factorization can be done
efficiently using, e.g., [30], [31]. Therefore, computing

Dvi,Ll :=
(
MLv
l,i (Mv

i )
−1
MvL
i,l , M

Lv
l,i (Mv

i )
−1
rvi ,

MLv
l,i (Mv

i )
−1
MvC
i

)
, (26)

Dvi,C :=
(
MCv
i (Mv

i )
−1
MvC
i , MCv

i (Mv
i )
−1
rvi

)
(27)

can be done cheaply and efficiently. Each vehicle can then
communicate Dvi,C to the central node and Dvi,Ll(i) the lane
center l(i). Note that for l 6= l(i), Dvi,Ll is structurally zero.
Afterwards, each lane center can compute

DLl,C :=
(
M̄LC
l

(
M̄L
l

)−1
M̄CL
l , M̄LC

l

(
M̄L
l

)−1
r̄Ll

)
. (28)

Note that also these computations are relatively cheap, since
the factorization of M̄L

l is needed in any case. Additionally,

M̄L
l =

[
SL
l I
I D(sl)

−1D(µl),

]
where all blocks are diagonal except SL

l , which are dense.
Once this information has been sent, the intersection center

can start to solve the linear system by solving (22a). At
this point, the intersection center needs to broadcast ∆zC

to the lanes and vehicles. However, the sparsity of M̄LC
l

entails that only the components of ∆µS relative to SICA
constraints involving vehicles in lane l are required, since all
other components of ∆zC are multiplied by 0: we denote
these variables by ∆µCL

l , which consist of nTL
l

floats, where
we define nTL

l
:=
∑
i∈ILl

nTi . The same can be stated about
vehicle i, which only needs the components of ∆µS relative to
SICA constraints involving vehicle i: we denote these variables
as ∆µCv

i , which consist of nTi floats.
Once each lane center receives ∆µCL

l , it can solve (22b).
Afterwards, each lane center needs to broadcast ∆zLl to all
vehicles on lane l. Similarly to the previous case, only the
components of ∆µL relative to the RECA of vehicle i are
required: we denote these variables as ∆µLv

i . Since each
vehicle has a rear and a front RECA at all times, this amounts
to 2(K + 1) floats. Once this information is available to the
vehicles, they can solve (22c).

Algorithm 1 summarizes the procedure outlined above. Note
the high degree of parallelizability: Lines 2 and 6 are separable
between the vehicles, and Lines 3 and 5 are separable between
the lanes. Additionally, the factors of matrices Mv

i , ∀ i ∈ Iv
and M̄L

l , ∀ l ∈ IL computed on Lines 2 and 3 are stored and
reused on Lines 6 and 5, respectively.

D. Distributed Computation of the Step Size

In this section, we discuss the selection of the step size α
through a backtracking line search on a merit function where
most computations can be separated between, and computed
in parallel within, the problem levels.
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Algorithm 1 Distributed solution of KKT system.

1: procedure SEARCHDIRECTION(z,τ )
2: ∀ i: Compute Dvi,C,Dvi,Ll(i) , and pass to C, Ll(i)
3: ∀ l: Compute DLl,C and pass to C
4: C: Solve (22a), pass ∆µCL

l , ∆µCv
i to all Ll, vi

5: ∀ l: Solve (22b), pass ∆µLv
l,i to all vi, i ∈ ILl

6: ∀ i: Solve (22c)
7: end procedure

To ensure that s[k+1] > 0, µ[k+1] > 0, we employ the
commonly used fraction from the boundary rule, i.e., we select
α ≤ αmax satisfying:

s+ αmax∆s ≥ κs, µ+ αmax∆µ ≥ κs, (29)

where κ > 0 is a parameter [29]. Due to the problem structure,
(29) can be evaluated separately for each vehicle, giving αmax

v1
,

∀ i ∈ Iv, for the RECA constraints on a lane, giving αmax
Ll

,
∀ l ∈ IL and for the SICA constraints αmax

C . The maximum
allowed step size for the search direction ∆z is thereby

αmax = min
(
αmax
v1

, . . . , αmax
vN , αmax

L1
, . . . , αmax

LL , αmax
C

)
.
(30)

Additionally, for nonconvex NLPs one must ensure that α ≤
αmax yields an improvement in the solution, typically by a
backtracking line search on a suitable merit function [29]. In
the following we consider the `1 merit function

φ(y, s) =

N∑
i=1

φvi
(
yi, s

P
i

)
+

L∑
l=1

φLl
(
p, sLl

)
+ φC

(
T, sC

)
,

(31)
where

φvi
(
yi, s

P
i

)
= Ji (wi) + ν

(
‖gi(wi, Ti)‖1 + ‖hPi (wi) + sPi ‖1

)
− τ1> log

(
sPi
)
,

φLl
(
p, sLl

)
= ν‖hLl

(
pLl
)

+ sLl ‖1 − τ1> log
(
sLl
)
,

φC
(
T, sC

)
= ν‖hC(T ) + sC ‖1 − τ1> log

(
sC
)
,

with ν ≥ ‖(λ, µ)‖∞ and the logarithm taken elementwise.
We use the Armijo condition to accept a step α when

φ(y+α∆y, s+α∆s) ≤ φ(y, s)+αγDφ(y, s)[∆y,∆s], (32)

where γ ∈]0, 0.5] is a parameter, and Dφ(y, s)[∆y,∆s] is the
directional derivative of φ multiplied by step (∆y,∆s) [29].

Evaluation of φ, Dφ can be separated between the vehicles,
lanes and intersection. We define Φ(α) := φ(y + α∆y, s +
α∆s) (Φv

i , ΦL
l , ΦC are defined equivalently) and summarize

the procedure in Algorithm 2.

E. Hessian Regularization

In order to ensure that (∆y,∆s) is a descent direction for
the merit function, i.e., that the step converges towards the
solution, one must use a Lagrangian Hessian (approximation)
whose reduced Hessian is positive-definite [29]. If one uses
the exact Hessian, a regularization of the Lagrangian Hessian
is necessary every time this condition is violated. The regular-
ization procedure can be nontrivial, unless some simplification
is introduced.

Algorithm 2 Distributed selection of step-size α, first level.

1: procedure STEPSIZESELECTION(z,∆z,τ )
2: ∀ i: Compute and pass αmax

vi , Φv
i (0), DΦv

i (0), ∆Ti to
C. Pass ∆pi to l(i).

3: ∀ l: Compute and pass αmax
Ll

, ΦL
l (0), DΦL

l (0) to C
4: C: Compute αmax

C and αmax with (30), set α = αmax

5: C: Compute ΦC(0), DΦC(0); assemble Φ(0), DΦ(0)
6: loop
7: C: Pass α to all vi, Ll
8: ∀ i: Compute and pass Φv

i (α) to C
9: ∀ l: Compute and pass ΦL

l (α) to C
10: C: Compute ΦC(α), assemble Φ(α) with (31)
11: if Φ(α) < Φ(0) + αγDΦ(0) then
12: return α and accept-notice to all vi, Ll
13: else
14: α← βα
15: end if
16: end loop
17: end procedure

Algorithm 3 A Basic Distributed Primal-Dual Interior Point
algorithm for the fixed order intersection problem.

1: procedure FIXEDORDERPDIP(τ [0])
2: C : Initialize zC and send µC to all vi and Ll
3: ∀ l: Initialize zLl and send µL

l to vi, i ∈ Ivl
4: ∀ i: Initialize zvi and send T v

i to C, pvi to Ll
5: loop
6: C: Send τ to all vi, Ll.
7: ∀ i: Compute Mv

i , r
v
i , if needed regularize Hessian

8: ∆z ←SEARCHDIRECTION(z, τ )
9: α←STEPSIZESELECTION(z, ∆z, τ )

10: C: Update zC ← zC + α∆zC

11: ∀ l: Update zLl ← zLl + α∆zLl
12: ∀ i: Update zvi ← zvi + α∆zvi
13: if TERMINATE(r, τ ) then
14: return Solution found
15: else
16: τ ← UPDATEBARRIERPARAMETER(r)
17: end if
18: end loop
19: end procedure

In this paper, we propose a simplification which allows us
to perform the regularization in a fully decentralized fashion,
based on the following observation. Assume first that no
RECA nor SICA constraints are imposed: then every vehicle
is independent and can regularize its Lagrangian Hessian inde-
pendently. If RECA and SICA constraints are then introduced,
some of the directions which were free in the search space are
now constrained. Consequently, if the reduced Hessian without
RECA and SICA constraints is positive definite, it must remain
positive definite also after their introduction.

Note that, if J is of least-squares type, the popular Gauss-
Newton Hessian approximation can be employed, which is
positive-(semi)definite by construction.
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F. A Practical Algorithm

A distributed PDIP algorithm relying on Algorithms 1
and 2 is summarized in Algorithm 3. Note that this algorithm
gives exactly the same iterates and has the same convergence
properties as a fully centralized PDIP algorithm.

1) Termination Criterion: The algorithm is terminated on
line 13 when∥∥∥rτ [k]

(
z[k+1]

)∥∥∥
∞
< ε and τ [k] < ε, (33)

for some tolerance ε. While termination must be decided
centrally, we can exploit the fact that

‖r‖∞ = max
(
‖rv‖∞ ,

∥∥rL∥∥∞ ,
∥∥rC∥∥∞) ,

‖rv‖∞ = max (‖rv1‖∞ , . . . , ‖rvN‖∞) ,∥∥rL∥∥∞ = max
(∥∥rL1 ∥∥∞ , . . . ,

∥∥rLL∥∥∞) .
2) Barrier Parameter Update: While any update scheme

can be used at line 16, in this paper we use the simple Fiacco-
McCormick rule [29]: τ [k+1] ← ητ [k], with η ∈]0, 1[, when∥∥rτ [k]

(
z[k+1]

)∥∥
∞ < τ [k].

G. Example

As an example, we consider a scenario with three vehicles
on each lane. Because we solve the problem to full con-
vergence, the solution is independent of the used algorithm.
Consequently, we do not investigate here the robustness of our
approach with respect to packet losses, state estimation errors
and unmodeled dynamics which we discussed in [20], where
we have also shown that linear dynamics can be sufficient to
perform trajectory tracking, though nonlinear dynamics have
been used in [21] to optimize fuel consumption. While the
difficulty of any OCP depends on many aspects, including
the initial guess and nonlinearity of the dynamical model, a
discussion on which model is best is beyond the scope of this
paper. Assuming that all vehicles are electric, their motion can
be described by

ṗi(t) = vi(t), (34a)

v̇i(t) =
1

mi

(
cEEi(t)− FB

i − cdvi(t)
2 − cr

)
, (34b)

E(t) ≤ min (Emax
i , Pmax

i /ωi(t)) (34c)
0 ≤ ωi(t) ≤ ωmax

i , (34d)

where Ei(t) is the motor torque, FB
i (t) the friction brake

force, ωi(t) = cωvi(t) the motor speed and xi(t) =
(pi(t), vi(t)), ui(t) = (Ei(t), F

B
i (t)). The parameters

cE , cω, cd, crr, ωmax
i ,Emax

i and Pmax
i are selected as in [21].

We use K = 100 and an explicit Runge-Kutta integrator of
order 4 with ∆t = 0.2. The objective function is

Jvi(yvi) = Qf
i(vi,K − vr)2+

K∑
k=0

Qi(vi,k − vr)2 + (ui,k − uri)>Ri(ui,k − uri), (35)

where vr is the reference speed, and uri is an input which
maintains the reference speed vr. The cost weights are
Qi = 1/(vri)

2, Ri = diag((1/Emax
i )2, 1/FB,max

i )2), with Qf
i

the cost-to-go associated with the Linear-Quadratic Regulator
(LQR) computed with Qi, Ri and the linearization of (34b)
around vri .

The vehicles’ initial states are selected randomly between
80 m and 120 m before the intersection, with vi,0 = vri =

70 km/h. The initial solution candidate w
[0]
i , T

[0]
i has all

vehicles driving at vr at all times k = 0, . . . ,K, and Lagrange
multipliers and slacks λ[0] = 0, µ[0] = s[0] = 1, with τ [0] = 1.

The evolution over the iterates of
∥∥r(z)[ξ]∥∥∞ and τ [ξ] is

shown in Figure 5a, and the step size is shown in Figure 5b.
As an illustration of the algorithm’s progression in the

primal variables, Figure 5c shows the velocity profile of one
of the 12 vehicles, at each iterate. We observe that the final 15
iterates all are similar enough to the solution to be considered
identical in a practical context.

For illustration, the sparsity-pattern of M is given in
Figure 6. The size of M is 25832 × 25832, where Mv is
24176 × 24176, ML

l is 404 × 404 and MC is 40 × 40.
Besides evaluating the involved functions and their derivatives,
the main computational effort is therefore the factorization of
the vehicle blocks Mv

i , each roughly sized 2010×2010, where
the variation in size depends on the fact that the vector of times
Ti is different for each vehicle i. Note that the factors for all
Mv
i can be computed in parallel between the vehicles (Line 2

in Algorithm 1), and M̄L
l can be factorized in parallel between

the lanes (Line 3), therefore greatly reducing the computation
time through parallelization.

However, the computational time does not necessarily dom-
inate the time it takes to perform one iterate. In [20] the
time required to communicate between the vehicles, lane-
centers and intersection-center was observed to be orders of
magnitude larger. While that was partially implementation-
dependent, there are some intrinsic limitations (e.g., packet
losses, communication being serial or only partially parallel)
which suggest that communication would be the bottleneck in
a practical context. In the next section, we analyze the com-
munication requirements, and discuss some modifications to
the scheme which decrease both the number of transmissions
and the amount of data communicated.

V. COMMUNICATION REQUIREMENTS

In this section, we discuss the communication requirements
of Algorithm 3. We first analyze the data flow between the
vehicles, lane centers and intersection center in Section V-A,
and discuss how the data exchange required by the proposed
algorithm can be reduced in Sections V-B and V-D.

A. Analysis of Communication Requirements

Most data is exchanged during the solution of the KKT-
system in Algorithm 1 and the selection of the step-size in
Algorithm 2. Descriptions of the data involved as well as the
number of floats communicated are summarized in Table I.

Most often K � nTi , whereby most communication occurs
during Line 2 of Algorithm 1 when the vehicle sends Dvi,Ll(i) .
Besides the communication between the lane-centers and the
intersection-center and an initial round of communication



9

(a) Progress Metrics, tolerance in dashed line. (b) Maximum step size satisfying the positivity
constraints (29) and selected step size.

(c) The velocity component of the solution for one
of the 12 vehicles over the iterates ξ.

Fig. 5: Data from a 12-Vehicle Example. In (a) the increases in ‖r(z)‖ follow decreases in τ . In (c) the initial guess is displayed in red, the optimal solution
in thick green, and the intermediate iterates in intermediate hues.

Fig. 6: KKT-matrix M(z) from a 12-vehicle scenario. The large upper left
hand block is Mv, consisting of the sub-blocks Mv

i , i ∈ N . The smaller
blocks in the lower right corner are ML

l , while MC is so small that it is
essentially not visible. The lines demarcate the sections of MvL and MvC

associated with the RECA constraints on each lane and, essentially not visible,
the SICA constraints

where the initial guess is sent to the vehicles (lines 2-3),
the communication required for the remaining parts (i.e., the
indication of a new iteration, the current barrier parameter
value, termination of line-search or algorithm completion)
consists of single floats and logicals. As illustrated in Figure 7,
these can be sent together with the search direction and step
size results.

Communication in the Example: In the example K = 100,
whereby each vehicle sends more than 5000 floats per iterate
(more than 320000 bits) to their respective lane-center. Even if
all vehicles communicate in parallel, the physical transmission
will take at least 58.7 ms using the 802.11p protocol, i.e., the
current standard for vehicular communications. The time per
bit is computed assuming double precision and using [33]

50 + 8 ceil((ndata bits + 22)/48) µs. (36)

During 33 iterations, at least 1.94 s would be spent com-
municating to construct ∆z, which would be too high in a

practical setting. Next, we discuss how the data exchange can
be reduced.

B. Reduction of Data exchange per iterate

Most of the communication is due to the dependence on
K2 in the number of communicated floats on Line 2 of
Algorithm 1 and corresponds to the enforcement of RECA.
Unfortunately, reducing the horizon length K to contain this
issue would result in a significant performance loss. As an
alternative to tackle this problem, we propose to replace all
RECA constraints (9) with the approximation

pi,k + δi/2 ≤ ρi,k(θi), k = 1, . . . ,K (37a)
ρi,k(θi) + δi/2 ≤ pi+1,k, k = 1, . . . ,K, (37b)

where ρi,k(θi) is a function of k, and coupling parameters
θi ∈ Rq , introduced as additional decision variables in
the fixed order problem (10). Equation (37) enforces RECA
constraints indirectly, by requiring that function ρi,k(θi) be
between pi,k and pi+1,k at all k. In this case, the amount
of data to be exchanged scales with q2 rather than on K2,
therefore allowing one to significantly reduce the amount of
data to be exchanged. The parameterized RECA coupling can
be included in the distributed scheme in two different ways,
as we detail next.

The “Primal” Approach: The first alternative is to handle
the coupling parameters θi at the lane-centers, and constraints
(37a), (37b) on-board the vehicles, i.e., the problem to be
solved becomes

min
y

N∑
i=1

Ji(wi)

s.t. gi(wi, Ti) = 0, i ∈ Iv, |λi,
hPR
i (wi, θi−1, θi) ≤ 0, i ∈ Iv, |µPR

i ,

hC(T ) ≤ 0, |µC,

with

hPR
i (wi, θi−1, θi) =

 ci(xi,k, ui,k)
pi,k + δi/2− ρi,k(θi)

ρi−1,k(θi−1) + δi−1/2− pi,k

 .
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vi vi vi vi

Ll Ll Ll Ll Ll

C C C C

Dvi,C

Dvi,Ll(i)

DLl,C

∆µCv
i

∆µCL
l

∆µLv
l,i ∆pi

∆Ti, α
max
vi

φvi (0), Dφvi (0)

αmax
Ll

φLl (0)

DφLl (0)

α

α

φLl (α)

φvi (α)

‖rvi ‖∞

∥∥rLl ∥∥∞
α

α

φLl (α)

φvi (α)

‖rvi ‖∞

∥∥rLl ∥∥∞
τ

τ

SEARCHDIRECTION STEPSIZESELECTION New It.

Fig. 7: Illustration of the communication flow in the problem. The horizontal direction indicates the order in which the communication is done whereas the
vertical differentiates the vehicle, lane and intersection levels. With ‖rvi ‖∞, ‖rLl ‖∞ we denote the residual norms obtained with step size α.

Link Location Data per Communication Round # Floats
SEARCHDIRECTION

vi to Ll A.1 L.2 MLv
l,i (Mv

i )−1MvL
i,l︸ ︷︷ ︸

(K+1)×(K+1), symmetric

, MCv (Mv
i )−1MvL

i,l︸ ︷︷ ︸
nTi×(K+1)

, MLv
l,i (Mv

i )−1 rvi︸ ︷︷ ︸
K+1

, pvi︸︷︷︸
K+1

1
2
K2 +

(
nTi + 7

2

)
K + nTi + 3

vi to C A.1 L.2 MCv (Mv
i )−1MvC︸ ︷︷ ︸

nTi×nTi , symmetric

, MCv (Mv
i )−1 rvi︸ ︷︷ ︸

nTi

, Ti︸︷︷︸
nTi

1
2
n2
Ti

+ 5
2
nTi

Ll to C A.1 L.3 M̄LC
l

(
M̄L

)−1
M̄CL

l︸ ︷︷ ︸
n
TL
l
×n

TL
l

, symmetric

, M̄LC
l

(
M̄L

)−1
r̄Ll︸ ︷︷ ︸

n
TL
l

1
2
n2
TL
l

+ 3
2
nTL

l

C to Ll A.1 L.4 ∆µCL
l nTL

l

C to vi A.1 L.4 ∆µCv
i nTi

Ll to vi A.1 L.5 ∆µLv
l,i 2K

STEPSIZESELECTION

vi to Ll A.2 L.2 ∆pi K + 1

vi to C A.2 L.2 αmax
vi

, Φv
i (0), DΦv

i (0), ∆Ti 3 + nTi

Ll to C A.2 L.3 αmax
Ll

, ΦL
l (0), DΦL

l (0) 3

C to vi, Ll A.2 L.7 α 1

vi to C A.2 L.8 Φv
i (α) 1

Ll to C A.2 L.9 ΦL
l (α) 1

TABLE I: Summary of the communication between the vehicles vi, lane centers Ll and intersection center C. The second column refers to the Algorithm
(A) and Line (L) where the communication occurs. The numbers under braces denote the amount of non-zeros of the object.

θi,i = θi = θi+1,i

ρi(θi,i) = ρi(θi+1,i)

µRf
i = µRr

i+1

vi vi+1

(µRf
i , sRf

i )(µRr
i , sRr

i ) (µRr
i+1, s

Rr
i+1) (µRf

i+1, s
Rf
i+1)

Fig. 8: Illustration of the relationship between the variables introduced in the
primal and dual communication reduction approaches.

The vehicle variables zvi now include additional multi-
pliers and the corresponding slack variables, as µPR

i,k =(
µP
i,k, µ

Rf
i,k, µ

Rr
i,k

)
.

The lane-center variables become zLl = (θ1, . . . , θNv
l
), and

rLl = ∇θiL =
(
∇θiρiµRr

i+1 −∇θiρiµRf
i , i ∈ Ivl

)
,

where ρi = (ρi,0, . . . , ρi,K), and µR,·
i =

(
µR,·
i,0 , . . . , µ

R,·
i,K+1

)
.

Then, the corresponding KKT matrix components become

ML
l,i = MLr

l,i +MLf
l,i

MLr
l,i =

∑
i∈Ivl

〈
∇2
θiρi, µ

Rr
i+1

〉
, ML,f

l,i = −
∑
i∈Ivl

〈
∇2
θiρi, µ

Rf
i

〉
,

MLv
l,i = ∇θi−1

ρi−1∇µRr
i
zvi −∇θiρi∇µRf

i
zvi .

In this case, if ML � 0, one might need to introduce
additional Hessian regularization at the lane center level (c.f.
the discussion in Section IV-E). This operation can be done
by each lane center independently of the other lane centers
and the single vehicles.

The size of the information assembled by each vehicle and
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sent to the lane center and central node is

MLv
l,i (Mv

i )
−1
MvL
i,l , size: q × q twice,

MLv
l,i (Mv

i )
−1
rvi , size: 2q,

MLv
l,i (Mv

i )
−1
MvC
i , size: 2q × nTi ,

∇θi−1
ρi−1µ

R,r
i −∇θiρiµ

R,f
i , size: 2q.

This amounts to q2 + (5 + 2nTi)q + 2 floats on Line 2 of
Algorithm 1. Moreover, the information sent from the lane
center to each vehicle becomes ∆θi, ∆θi−1 (2q floats). Note
that, while MLv

l,i is available at the lane center and not in
each vehicle, that matrix only has two nonzero entries equal
to plus or minus one and remains constant throughout the
iterates, such that it can cheaply be sent to each vehicle at the
beginning of each NLP solution. The same applies to MvC

i ,
which is originally in the central node.

The “Dual” Approach: Alternatively, one can introduce as
optimization variables one copy of θi−1, θi for each vehicle as
θi,i−1 and θi,i. It is then also required to introduce the addi-
tional coupling constraint θi,i − θi+1,i = 0. The optimization
problem then reads as

min
y

N∑
i=1

Ji(wi)

s.t. g(wi, Ti) = 0, i ∈ Iv, |λi,
hPR
i (wi, θi,i−1, θi,i) ≤ 0, i ∈ Iv, |µPR

i ,

θi,i − θi+1,i = 0, i ∈ Ivl , l ∈ IL, |λθi ,
hC(T ) ≤ 0, |µC,

where µPR
i,k =

(
µP
i,k, µ

Rf
i,k, µ

Rr
i,k

)
and

hPR
i (wi, θi,i−1, θi,i) :=

 ci(xi,k, ui,k)
pi,k + δi/2− ρi,k(θi,i)

ρi−1,k(θi,i−1) + δi−1/2− pi,k

 .
In this approach, (θi,i−1, θi,i, µ

Rf
i , µ

Rr
i , s

Rf
i , s

Rr
i ) are in-

cluded in the vehicle variables zvi . In the lane centers, we have
zLl = (λθi , i ∈ Ivl ) and rLl = (θi,i − θi+1,i, i ∈ Ivl , l ∈ IL).
In the Dual approach, all primal variables are at the vehicle
level, and block-wise Hessian regularization needs to be done
at the vehicle level only (c.f. the discussion in Section IV-E).

The information sent from vehicle i on Line 5 of Algo-
rithm 1 is then

∂zvi
∂θi,·

>
(Mv

i )
−1 ∂z

v
i

∂θi,·
, size q × q,

∂zvi
∂θi,·

>
(Mv

i )
−1
rvi , size q,

∂zvi
∂θi,·

>
(Mv

i )
−1 ∂z

v
i

∂Ti
, size q × nTi ,

θi,·, size q,

i.e., the same data-amount as the Primal approach, since the
information needs to be sent for both θi,i−1, θi,i. Note that
in this case the same considerations made for MLv

l,i and MvC
i

Fig. 9: Illustration of a piecewise linear RECA parameterization: vehicle
trajectories in gray, ρi,k(θi) in red, θi as red dots.

in the Primal approach apply to ∂zvi
∂θi,·

and ∂zvi
∂Ti

. Moreover, we
have

∇wiL = ∇wiJi +∇wigiλi +∇wihPR
i µPR

i

+∇θi,iwiλθi −∇θi,i−1
wiλ

θ
i−1,

∇TiL = ∇Tigiλi +∇TihCµC.

Consequently, the lane-center-to-vehicle communication on
Line 5 of Algorithm 1 consists of ∆λi−1, ∆λi, i.e., 2q floats.

Since both approaches have the same communication foot-
print, they are equally valid alternatives.

C. Example

By selecting θi such that q is small, significant reductions
in the amount of data communicated are achieved at the cost
of some sub-optimality. To evaluate the trade-off between
reduction of communication and cost increase, we consider
the case shown in Figure 9, where ρi,k(θi) is the piecewise
linear function

ρi,k(θi) =
θ
(1)
i +

θ
(2)
i −θ

(1)
i

bK/3c
k, k ∈ [0, bK/3c],

θ
(2)
i +

θ
(3)
i −θ

(2)
i

bK/3c
(k−bK/3c), k ∈ [bK/3c+1, 2bK/3c],

θ
(3)
i +

θ
(4)
i −θ

(1)
i

dK/3e
(k−2bK/3c), k ∈ [2bK/3c+1,K+1],

where the superscript on θi indicates the vector element and
q = 4. When nTi = 4, no more than 60 floats are sent from
a vehicle to the lane center on Line 5 of Algorithm 1, which,
according to (36), will take at least 0.7 ms, i.e., a reduction
of almost 99% in communication time.

To assess the sub-optimality induced, we evaluated 500
scenarios with 4 vehicles per lane (16 in total), using the
models and objective functions of Section IV-G. The ve-
hicles were initialized at randomly drawn distances in the
interval [50, 150] m from the intersection, and the crossing
order was computed with the heuristic of [17]. As Figure 10
demonstrates, the sub-optimality induced by the parameterized
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Fig. 10: Distribution of the suboptimality resulting from the use of approxi-
mate RECA constraints with a piecewise linear ρi,k(θi)

Fig. 11: Difference between the optimal velocity profiles and those obtained
using the parameterized RECA constraints (37) for a 16 vehicle scenario.

constraints is below 0.1% in more than 50% of the cases.
The small impact is illustrated in Figure 11, which shows
the difference in the optimal velocity profiles for the scenario
corresponding to the median sub-optimality. Interestingly, the
difference between the optimal control commands at k = 0 in
the two solutions is smaller than 0.013% of the input range
for all vehicles. This is below the quantization error of many
actuators, such that the difference might not be noticed in
practice. Finally, more “flexible” parameterizations of ρi could
be used to reduce sub-optimality, e.g., by including additional
linear segments or by using higher-order polynomials.

D. Reduction of the number of communication rounds

We ought to stress that we intentionally selected a simple
implementation of a primal-dual interior-point algorithm when
deriving Algorithm 3. This choice has been done both for
simplicity of exposition and in order to focus on the main con-
tributions of this paper. Note, however, that more refined up-
date rules for the barrier parameter τ and Predictor-Corrector
strategies [29] could be employed to improve convergence.

A simple way to reduce the number of iterations consists in
solving the problem to a rough accuracy. As remarked in the
discussion on Figure 5c, practically acceptable solutions can
be obtained for τ larger than relevant tolerances on ‖r(z)‖,
since this entails accurately satisfying the constraints while
accepting some degree of suboptimality. In Figure 12 we dis-
play the results from the scenario considered in Section IV-G,
where τ is prevented from being smaller than τmin, for τmin

between 1 and 10−6, with ε = 10−6 for all cases. The sub-
optimality induced and the number iterations required to reach
‖r(z)‖ ≤ ε is shown in Figure 12. Note for instance that 23
iterations are required for τmin = 10−2, compared to 33 in
case of τmin = 10−6, at the expense of less than 1% sub-
optimality. The optimal velocity profiles for one vehicle for the
different values of τmin is shown in Figure 13 (c.f. Figure 5c).
The difference with respect to the optimal solution is small

Fig. 12: Sub-optimality (red) and number of iterations (blue) required to reach
‖r(z)‖∞ ≤ 10−6 for different value of τmin.

Fig. 13: Velocity profiles for ‖r(z)‖∞ ≤ 10−6: hues between red (τmin =
1) and green (τmin = 10−6).

enough to be practically irrelevant for all but the highest value
of τmin.

VI. CONCLUSIONS

In this paper we presented tailored linear algebra for Primal-
Dual Interior-Point algorithms to be deployed for the optimal
coordination of automated vehicles at intersections under a
fixed crossing order. The algorithm inherits the strong con-
vergence guarantees of centralized PDIP solvers and makes
it possible to efficiently include rear-end collision avoidance
constraints. We showed that the problem is structured so that
the KKT-system can be solved in a hierarchical way, where
most operations are parallelized and solved separately for all
vehicles and for all lanes. Additionally, the step size selection
through backtracking on a merit function can be distributed
under the same pattern. To reduce the data exchange, we
proposed a parameterized and slightly conservative reformu-
lation of the rear-end collision avoidance constraints, and
demonstrated its effectiveness in simulations.

We are currently investigating formulations of the coordi-
nation problem that allows removal of the restrictive assump-
tion of full CAV penetration. We also aim at extending our
approach to scenarios with several connected intersections.
Finally, future work will consider testing the algorithm in
challenging experimental scenarios.
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