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Nonlinear Autoregression with Convergent
Dynamics on Novel Computational Platforms

Jiayin Chen and Hendra I. Nurdin

Abstract—Nonlinear stochastic modeling is useful for describ-
ing complex engineering systems. Meanwhile, neuromorphic
(brain-inspired) computing paradigms are developing to tackle
tasks that are challenging and resource intensive on digital
computers. An emerging scheme is reservoir computing which
exploits nonlinear dynamical systems for temporal information
processing. This paper introduces reservoir computers with out-
put feedback as stationary and ergodic infinite-order nonlinear
autoregressive models. We highlight the versatility of this ap-
proach by employing classical and quantum reservoir computers
to model synthetic and real data sets, further exploring their
potential for control applications.

Index Terms—Nonlinear stochastic modeling; Convergent dy-
namics; Reservoir computing; Quantum dynamical systems.

I. INTRODUCTION

The on-going quest for modeling complex systems has moti-
vated a fruitful development in nonlinear stochastic modeling
[1l], [2]. The threshold model has been applied for ecology
and hydrology times series and the autoregressive conditional
heteroscedastic model is useful for volatility clustering [1].
Well-known nonlinear system identification models include the
Volterra series [3]], neural networks [4], nonlinear autoregres-
sive exogenous models [5] and block-oriented models [6]].

To solve tasks that are costly on digital computers, neuro-
morphic computing imitates human learning with the energy
efficiency of the human brain. An emerging neuromorphic
scheme is reservoir computing (RC) [7], [8], which exploits
nonlinear dynamics (the “reservoir”) to process time-varying
input signals. In this work, we establish a theoretical frame-
work for using reservoir computers (also abbreviated as RCs)
as infinite-order nonlinear autoregressive models with exoge-
nous inputs, or NARX(oo) models for applications such as time
series modelling and system identification. Such NARX(co)
can be also expressed as infinite-order nonlinear moving
average models with exogenous inputs, or NMAX(oo) models.
Exploiting this equivalence, we show that such NARX(co)
models are asymptotically stationary and ergodic in the sense
of Birkhoff-Khinchin [9, Theorem 24.1].

The attractiveness of our approach is that any nonlinear
reservoir dynamics with the convergence property can induce
stationary and ergodic NARX(oco). The reservoir dynamics are
often randomly chosen but fixed at the outset and do not re-
quire precise tuning, only a linear output function is optimized
to approximate target outputs. Echo-state networks (ESNs),
a pioneering software RC implementation, has demonstrated
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remarkable performance in chaotic system modeling [10] and
time series modeling [[11]. Their training efficiency enables
RCs for fast signal processing. An FPGA RC reached 160
MHz rate for chaotic dynamics prediction and a photonic
RC classified speech at a million words per second. RCs
are also used in edge computing to reduce computation and
transmission overhead; see [7l], [8] and references therein.
Quantum reservoir computers (QRCs) have recently been
proposed to harness nonlinear quantum dynamics [12f], [13],
[14]. The micro-second quantum dynamics and their low
energy requirements make them of interest as RC hardware
[15].

Central to our development is the convergence property
[L6], [17] of a dynamical system, also known as the echo-
state property [18]] in the RC literature. Roughly speaking,
a convergent dynamic has a unique reference state solution
defined and bounded both backwards and forwards in time.
All other solutions asymptotically converge to the reference
state solution, independent of their initial conditions.

References [19]], [20] investigate RCs for forecasting, re-
construction and filtering under stationary inputs. Ref. [21]]
explores RC properties that make them effective in stochastic
modeling tasks. Different from these previous works, we
develop a general theory for realizing NARX(co) models
with RCs, taking into account the stability of the model,
and conditions for the asymptotic stationarity and ergodicity.
Ref. [19] also considers optimizing the reservoir parameters
to maximize the RC’s information processing capacity via
a Taylor expansion. Although we do not consider reservoir
design problem here, it will be an interesting future research
theme continuing from this work.

To highlight the versatility of our proposal, we employ
ESNs and QRCs to model data sets collected from diverse
fields of interest. We cast parameter estimation for these RCs
as convex optimization problems. Numerical experiments indi-
cate that ESNs and QRCs with only a few tunable parameters
are able to describe these data sets.

This paper is organized as follows. Sec. [[I| introduces RCs
and the convergence property. Sec. presents NARX(c0)
models realized by convergent RCs and establishes their sta-
tionarity and ergodicity. Sec. details parameter estimation
for ESNs and QRCs as NARX(c0). Sec. presents numerical
experiments. A conclusion is presented in Sec.

Notations: R (Z) are reals (integers), Z_ = {...,—1,0}
and Z, = {0,1,...}. z € R" is an n x 1 vector and ="
is its transpose. (IR”)Z is the set of infinite sequences, i.e.,
u € (R")% with u = {uy}rez and u, € R™. (R™)%- is the
set of left-infinite sequences. P2~ : (R™M)Z — (R™)%- is the



projection. For any 7 € Z, z,, " is the time shift operator, i.e.,
for any u € (R™) and k € Z, 2, (u)|), := up_, (we drop the
subscript and superscript n when n = 1). || -|| is the Euclidean
norm.

II. RESERVOIR COMPUTING

We consider RCs described by reservoir dynamics (also
called the activation function in machine learning) f : RV x
R"™ xR — RY and output function » : RN — R, forall k € Z

Trt1 = [, un, €x), 0

Uk = h(xk)a

Here, z;, € RY is the state, u;, € R” is the input, e €
R models an external noise, and 4, € R is the RC output.
The dynamics f = f, is often parametrized by a parameter
v € RP chosen according to the task. Here, we consider an
arbitrary but fixed f by uniformly randomly choosing ~ and
fixing it at the onset. Only h is optimized to match the target
outputs. More generally, « can be optimized according to some
criterion, a problem known as the reservoir design problem
[19], as alluded to previously.

A. The convergence property

RCs described by with the convergence property [16]],
[17] induce input-output maps, mapping from u € (R")%, e €
RZ to € RZ. Let ¢(k; ko, €) be a solution to (T) parameter-
ized by w and e, starting at time ko with initial condition
g, = & That is, for all k& > ko, ¢(k + 1;k,&) =
J(@(k; ko, &), ur, er) and ¢(ko; ko,§) = & A function § :
[0,00) xZy — Ris KL if 4(0,-) = 0, continuous and strictly
increasing in the first argument, non-increasing in the second
argument with lim;_, o, B(s,t) = 0 for all s € [0, 00) [22].

Definition 1 (Convergence property [10], [17]): An RC de-
scribed by has the convergence property (or is convergent)
if for any u € (R")Z and e € RZ,

(i) there exists a unique and bounded solution z* € (RV)%
to (I) that satisfies zj,, = f(x},ux,ex) for all k € Z
and supye [l | < oo

(ii) there exists 8 € KL (independent of u, e) such that, for
any k, ko € Z with k > ko and any ¢ € RY,

oy, = ¢(k; ko, Il < B(llwg, — &Il k= ko). ()

Note that the convergence property is a property of f. The
unique and bounded solution z* in Definition || is the refer-
ence state solution (determined by w, e and f). Equation (2)
imposes that as kg — —oo, any solution ¢(k; ko, &) to (I)
asymptotically converges to the reference state solution x*,
independent of its initial condition &.

The following theorem provides sufficient conditions to
ensure that (I) is convergent, which will be employed in
parameter estimation of NARX(oco) models realized by con-
vergent feedback RC dynamics; see Sec. [[V| below.

Theorem 2: [1'7, Theorem 13] An RC with a compact state-
space described by is convergent if there exists some P =
PT,P >0 andsome 6 € (0,1) (independent of u and ¢) such
that for any u; € R”, e, € R and any x1, 25 € RY,

”f(xlauk?ek) - f(x27ukvek)”P < 0"3:1 - xQHPa 3)

where ||z||p = Vz T Pz.

B. Filters and functionals

If an RC governed by is convergent, then it induces a
unique time-invariant and causal filter Uy j, : (R™)% x RZ —
RZ such that when evaluated at any time k € Z, g =
Uf.n(u,e)|r = h(z}), where z* is the reference state solution
to (1) (see [18], [23])). There is a bijection between U t.n and
its associated functional Fyp, : (R")Z- x R%Z- — R, defined
as Fyp(uw',e') = Upp(@,é)|o [3]. Here @, ¢ are arbitrary
extensions of v/, ¢’ to (R™)% RZ. We can recover Uy, from
Fpp, via Upp(u,e)le = Fra(Pr™ o 2% (u), PP~ 0 z7%(e))
for any £ € Z. This bijection allows us to establish the
measurability of Uy by showing that F ; is measurable in
Lemma E], and the Birkhoff-Khinchin ergodicity of Uy by
showing that Fj, is integrable in Lemma @

III. NARX(0c0) MODELS BY CONVERGENT DYNAMICS

We are interested in implementing NARX(oco) models using
RCs with output-feedback (also see Fig. [I), for all k € Z

“4)

Th4+1 = g(xkaulmyk)a
gk = h(ZCk;),

where 7, € RY is the state and u € (R™)Z is the input.
The target output y, € R is related to the one-step ahead
prediction 4, via yr = i +ex, where e € R is a noise source
for the model. Later on, we will consider e and © modeled
by discrete-time stochastic processes. We also consider an
equivalent representation of (@) given by (I) where w and e
are viewed as external inputs and

f(xr, ur, ex) = g(zr, ur, h(xy) + ex). (5)

We say that is convergent if and only if (1)) is convergent.
In system identification, u is often designed to be persistently
exciting [2] to excite all modes of the plant. In time series
modeling, RCs make (one-step ahead) predictions ¢ of yy
based on a single sample path y from the generating model,
and are not driven by input w. That is, becomes

Trt1 = 9(Tr, Yk)s
Uk = h(zy).

U

RC
g,h

Fig. 1. Schematic of RCs operating in an output-feedback configuration
described by (@), where 2~ is the one-step time delay operator.

This section introduces a probabilistic framework and shows
that RCs described by @) (under certain conditions on f and
h) implement NARX(co) models defined later in (9). We then
show that outputs of the NARX(co) models are stationary and
ergodic. The following result will be central.



Theorem 3: Consider a convergent RC described equiva-
lently by @) or (I). Let Uy, be the unique filter induced by
(]II). If h is uniformly continuous, then for any u € (R”)Z,
e € R” and any k € Z,

Yk = Upn(u,e)|r + ek
= ho f(zr—1,ur—1,€x-1) + €k

=ho f(f(zk—2,uk—2,€k—2), Uk—1,€k—1) + €k (6)

= F(Uk—1,Uk—2, - €k—1,€k—2;--.) + €k,

where the following point-wise limit

€k —1,€k—2,.. )

= k l_i>m h o f( c f(f(£7 uk?(ﬂ ek0)7 uk0+17 ek0+1) . ')
0 — 00

Upn(u, )| = F(tur—1,up—2,..

(7

exists and is independent of the initial condition £ € RY.
Proof. Equation (6) follows from (). To show the
point-wise limit (7) exists, fix £k € Z and ¢ €
RN, For any ky € 7Z with kg < k, consider
a solution ¢(k;ko,&) to (I). Then (7) can be written
as Uf,h(u, e)\k = ]:(uk_l,uk_g, ey Cl_1,€K—2,.. ) =
limy,—, oo R o @(k; ko, ). We show that {ho¢(k; ko, &) }ro<k
is a Cauchy sequence and thus (7)) exists. Since A is uniformly
continuous, it suffices to show {¢(k; ko, &) }i,<k is Cauchy.

Let ko > k{, and z* be the reference state solution to (I).
By (@) in Definition [T} we have

(k3 ko, &) — d(ks ko, €|

< ok — o(k; ko, O + |25 — d(k; ko, )]

< Bllzk, — &l & — ko) + Bllxg, — &l & — ko)
< B(Re, k — ko) + B(Re, k — kp),

where R¢ = max{[|zy — |, ||z}, — €|} < oo. Since B €
KL, for any ¢ > 0 there exists 74:8 € Z such that for all
ky < ko <k§, B(Re, k — ko) + B(Re, k — kpy) < e. It follows
that {¢(k; ko, &) }ro<k is Cauchy for any fixed k and &.

To show that (7) is independent of &, let ¢(k;ko, &) be
another solution to () starting at another initial condition ¢’ #
&. Mimicking the argument above gives

|9 (k; ko, &) — o (k; k‘o,fl)”
< Bk, =&l & — ko) + B(llzk, — &Il k — ko).
The limit (7) is independent of £ now follows from taking
ko — —oo and uniform continuity of h. m
In Theorem we have written xx11 = f(xg, uk, ex) as in
(1. Equivalently, we can write zj4+1 = g(2g, uk, yx) as in (@),
where ¢ and f are related via (3. This leads to the following.
Corollary 4: Consider a convergent RC described equiva-

lently by @) or (I). If & is uniformly continuous, then for any
u € (R")%, ¢ € R and any k € Z,

Yk = G(Uk—1, Uk—25 -+ s Yk—1, Yk—2, - - -) + ks

where the following point-wise limit
G(uk—1,Uk—25 -, Yb—1,Yk—2,- - )
= k lim ho g(- . '9(9(57ukoayk[))vukoJrl’ykoJrl) .- )
0—>—0Q

®)

exists and is independent of initial condition £ € RY.

A. NARX(0o0) models

We apply Corollary [] to show that convergent RCs de-
scribed by @) or (1), such that f is continuous and h is
uniformly continuous, implement NARX(co) models defined
in @) below. By Theorem [3] such NARX(c0) models can also
be written as NMAX(co) models defined in (I0) below.

Let (2,3, P) be a complete probability space on which all
random variables are defined. We say that z is a stochastic
process if z : (Q2,%) — ((R™)Z (R™)%) is measurable,
where (R™)% is the o-algebra generated by cylindrical sets
in (R™)%; see e.g. [9, Sec. 36]. Further, for any w € €,
z(w) = {z(w) }rez is a realization of z.

Consider RCs described by @) or (1)) under R"-valued and
R-valued stochastic processes u and e. The state x; and the
one-step ahead prediction §,, are described by a stochastic RC:

Xp4+1 = g(xk7“k7Yk)7
yk = h(xk)a

where y, =¥, + ex. Stochasticity of y arises solely from the
stochasticity of u and e, and the maps ¢, h are deterministic.

For a convergent RC described by @) or (I)) with uniformly
continuous h, by Corollary EI, y;. is described by a NARX(co)
model such that for all k& € Z,

Yi :g(uk_l,uk_g,...,yk_l,yk_2,...)+ek. 9)

For each w € (), the point-wise limit @ exists and is
independent of initial condition ¢ € RY.

Equivalently, for a convergent RC described by (@) or
(I) with uniformly continuous h, by Theorem EI, y;. is also
described by a NMAX(oco) model, such that for all k € Z

Y = Usn(u,e)|p + e

(10
= F(up_1,up_2,..

For each w € (), the point-wise limit (]ZI) exists and is
independent of initial condition ¢ € RY.

We now show that if in addition, f defined by @ is
continuous, then the output y of a NARX(co) model given
by (9) is a well-defined stochastic process.

Lemma 5: Consider a convergent RC described equivalently
by @ or (). Let Usp : (R")Z x RE (R")Z x RE) —
(RZ,R%) be the unique filter induced by (I). Suppose that
h : RN — R is uniformly continuous and f : RNY x R" xR —
RY defined by (§) is continuous. Then Uy is measurable
and for any stochastic processes u and e, the output y of the
NARX(c0) model defined by (9 is a stochastic process.
Proof. Since y is also the output of the corresponding
NMAX(oco) model (T0)), it follows that y is a stochastic process
if Uy j, is measurable. Recall the bijection between Uy ;, and its
functional FY ;. This bijection implies that Uy ;, is measurable
if and only if F ;, is measurable [20, Sec. II]. Hence it suffices
to show Fyp 1 (R")Z= x RZ- (R™)2- x RE-) — (R, B(R))
is measurable. By Theorem [3| for any v’ € (R")%~ and €’ €
R, Fpp(u',€') = limg, oo ho f(... f(& up, €k)-- ),
where the limit exists and is independent of &. Fix a £ € RY,
for any ko € Z_, define F}f5, : (R")”~ x R%~ — R by

Fp(u'e') i=ho f(... f(& g €hy)---)

< €p—1,€—2,.



Then limy, oo F}f‘}l(u’,e’) = Fyp(u,€') point-wise and
F¢pn is measurable if F;f‘}l is measurable for all ky =
{...,—2,—1} [9l Theorem 13.4]. To show this, we write

Fffh(u’,e/) = ho f,(PF(u), P*(e),

where Pho = [[1, PI : (R")E- — (Rv)~Fo, Pho =

Hj;lko Pi: R%- - R~*o. Here, P} (u') = uj; and P(¢') =
e’;. Furthermore, f (R™)=Fo x R=%0 — R¥ is given by

Fro (PR (@), PR(e) = F(. €ty hy) -

Since h,P,’fo and PFo are measurable, it remains to
show that ?ko is measurable. To this end, to sim-
p/hfy notation, for any ¢,; € . Zy, let u%oij:flii and
€ko—j:—1_; denote the concatenation of {u;%_j,...,u’_l_i}
and {ep _;,...,e_;_,} into a column vector, respectively. We
can define f} recursively via fj i (up,_q._1,€4_1._1) =
J(f (W 1. 95 €k —1.-2)su_1,€1). Using this recursion
and continuity of f, an inductive argument on kg shows that
fk, is continuous. Hence F and Uy, are measurable, and
y defined by (9) is a stochastic process. m

B. Stationarity and ergodicity

In this section, we derive conditions under which y defined
by () is stationary and/or ergodic given that u, e are stationary
[1, Definition 2.2] and/or ergodic [9, Sec. 24&36]. We equip
R™ with the Borel o-algebra B(R™). An R-valued process z
is Birkhoff-Khinchin ergodic if limy, % Zf;& Z;, = Ep[zo]
almost surely (a.s.), where Ep[-] is the expectation over P.

To establish statistical properties of the output of a
NARX(o0) model defined by (9), we again exploit the bi-
jection with its associated NMAX(co) model given by (10).

Lemma 6: Consider a convergent RC described equivalently

by @) or (I). Under the assumptions of Lemma 5] the process
y defined by (9) is stationary (resp. ergodic) if u and e are
stationary (resp. ergodic). Furthermore, suppose that h o x§
and e( are integrable, where x* is the reference state solution
to (I). Then under the assumptions of Lemma[5] y is Birkhoff-
Khinchin ergodic if u, e are stationary and ergodic.
Proof. By (I0), we have y, = Ujfn(u,e)|p + e, where
Uy, is the unique filter induced by (I). By Lemma [3
Uy, is measurable. Now y is stationary (resp. ergodic),
given that u,e are stationary (resp. ergodic), follows from
[9, Theorem 36.4]. To show the second part of the Lemma,
by discussions on [9, p. 526] and the Birkhoff-Khinchin
ergodic theorem [9, Theorem 24.1], it suffices to show that
Frn(Poy(u), P2~ (e)) + e : (2,%,P) — R is integrable,
where F j, is the functional induced by (). Recall that

/Q |Fy (P2 (u(w)), PP (e(w))) + eo(w)| P(dw)
< [ (x5 + leo(w) Pld).
Q

Integrability of Ff$h(P% ~(u), P~ (e)) + e now follows from
integrability of hox; and e;. m

Remark 7: When h is uniformly continuous (as required in
Theorem [3), a sufficient condition for integrability of h o xj)
is that there exists 0 < M < oo such that ||xj]| < M a.s..

Remark 8: A similar argument as in the proof of Lemma [6]
shows that under the assumptions of Lemma [6} the one-step
ahead prediction y and y* are Birkhoff-Khinchin ergodic if u,
e are stationary and ergodic.

We conclude this section by imposing the following stan-
dard assumptions on u and e:

Assumption 9: u and e are independent, and e is identically
and independently distributed (iid). This implies that e is
stationary and ergodic [9, Sec. 36].

Remark 10: Assumption [9] lays the basis for analyzing the
RC residual e, =y, —¥,; see [1]] for further detail. If the RC
prediction y describes the target data y adequately, € should be
a proxy for e. To test this, we test if € are uncorrelated using
sample autocorrelation (ACF) via the “ggAcf” R command
[24], and test if e is Gaussian using the Lilliefors test [25]
and Q-Q plot (via the “lillietest” and the “qqplot” Matlab
commands). In system identification, we further test if e is
independent of u based on their sample cross-correlation via
the “ggCcf” R command [24].

IV. PARAMETER ESTIMATION

This section presents parameter estimation of ESNs and
QRCs as NARX(co) models. These RCs are described by @)
or (I), where f and h satisfy the assumptions in Lemma [6]
Further, Remark holds since ESNs and QRCs admit a
compact state-space. By Lemma [6] and Remark [§] if these RCs
are convergent, then they realize NARX(co) models whose
output y and one-step ahead prediction y are stationary and
ergodic. Here, y,, = W T h(x))+W., where W € RN W, € R
are output parameters and h is not parametrized.

Given time series data y,,u; for k = 0,..., L, the first
L, data are for washing out the effect of the RC’s initial
condition, the next Ly = Lo — L data are for training and the
remaining data are for validation. We apply Theorem [2] to (1)
to ensure the RC’s convergence, the resulting optimization of
W, W, becomes a convex constrained least squares problem,
minyy, w, L% ZéiLﬁl Iyr — ¥i|?, subject to G(W) < 0.
Note that if y? and yy are Birkhoff-Khinchin ergodic, then
parameter estimation is consistent, i.e., as L; — oo, the above
cost function becomes miny. w, Ep[|y, — ¥o|?] as..

A. Echo-state networks (ESNs)

An ESN with state ;, € RY is governed by
Zgt1 = tanh(Azy + Bug + Cyy), (11
Je=WTae+ W,

where tanh(-) applies to a vector elementwise. Elements of
A, B, C are drawn independently and uniformly from [—1, 1]
(for time series modeling, we set C' = 0). To apply Theorem [2]
We re-express in the form of by substituting y =
Ok +ex = W zp + W, + e into (TI):

Try1 = fesN(Tr, Uk, ex)
= tanh((A + CW "y + C(W, + ex) + Bu).



Since ESNs admit a compact state-space, by Theorem 2] an
ESN is convergent if for any x;, 25 € RY and any k € Z,

| fEsn (@1, uk, ex) — fesn (@2, ur, ex)||p
< am(A—FC'WT)Hxl — J?QHP < Hl‘l — .%‘QHP,

where oy, (+) is the maximum singular value. That is, an ESN
is convergent if o,(A + CWT) < 1. We optimize W, W,
for the ESN using YALMIP [26] by passing the non-strict
inequality constraint:

A+CWT

T )
[(A+CWT)T [ |z

12)

B. Quantum reservoir computers (QRCs)

Consider an N-qubit QRC proposed in [14] described by

Pr+1 = (1 — )T (up, yr) pr + €px, (13)
Uk —ZZ 1VVTI"(Z(Z k) + We,
where py, is a 2%V x 2V density operator (a positive semidefinite
Hermitian matrix with trace one), p, is a fixed density operator
whose (1, 1)-th element is one and all other elements are zero,
Z® is the Pauli-Z operator on qubit i and ¢ = 0.9. The
dynamics T'(ug, yx) is a completely positive trace-preserving
(CPTP) map determined by wuy and yx = g + ex. A CPTP
map sends a density operator to another density operator [14].
We consider

T T T,

(ks Yi) nrl Zg + 9(yk) o1
+ln+1- §:g I~ glye) | Tusz | -

where u,(cj ) is the j-th component of u; € R"™. We choose

g(s) = m with a globally Lipschitz constant L, =
1/4. Generally, different g’s can be applied to u,(j ) and Yk
(for time series modeling, we set g(yy) = 0). The CPTP
maps 1; for [ = 1,...n + 2 are governed by arbitrary but
fixed unitary matrices U; such that T;(p) = U, pkUlT, where
1 denotes the adjoint; see [27] for the details. Such QRCs can
be implemented on current quantum machines [14].

Let ||A|ly == Tr(V At A) for any matrix A. For any CPTP
map T, let ||T[j1-1 = supjuy,=1 [|T(A)1. Since QRCs
admit a compact state-space, by in Theorem [2| (Theorem [2]
also applies to || - ||1), a QRC is convergent if for any density
operators p;(j =1,2), any k € Z, u € (R")Z and e € RZ,

11— )T (uk, yr1)p1 + €px — (1 — €)T (uk, yi,2)p2 + €px) |1
N
2L4(1 —¢)
< <(1 - 6) + ni—i-l ; |W1|> le - p2||1
< 0p1 — p2ll1,

where the first inequality follows from || T}, 4+1 —71,

J\?+2H171 <2
[14] and |g(y1) — 9(y2)| < Lglyr —y2| < Lg > ;2 [Willlp1 —

p2]|1. Hence, a QRC described by (13) is convergent if there
exists some 6 € (0,1) such that

Zin

Throughout, we set § = 0.99. We optimize W using the
“fmincon” command in Matlab.

We remark that (I2) and (I4) are only sufficient. Never-
theless, numerical experiments suggest that ESNs and QRCs
under these constraints are adequate in describing the data. It
is a future direction to find relaxation of these constraints.

0+ e—
N

In+1
<0. 14
2L, — (14

V. NUMERICAL EXAMPLES

We employ convergent ESNs and QRCs to model time
series. For each time series, we randomly generate 50 ESNs
with N = 2,...,10, and 50 QRCs with qubit number
N = 2,...,5. The fitted ESNs and QRCs are selected via final
prediction error (FPE) criterion using validation data defined

as FPE = é”f%ﬁ) MSE and MSE = - Zf:LQ_H &,
where L, = L — Lo and e; is the residual. We remark
that FPE assumes W, W, are unbiased [28]. Although this
cannot be ensured in general, the decrease in MSE is small
as NN increases and FPE prefers the lowest order N = 2.
It is a future research theme to develop model selection
methods for the proposed scheme. We employ the root mean-
squared error (RMSE) to compare among different models,
where RMSE := v MSE; see [29]] for further discussions. We
report the selected RC’s RMSE and the average RMSE of
50 randomly generated RCs with the same dimension N (or
qubit number) as the selected RC.

We estimate Tr(Z (i)pj) by averaging M, measurements
on quantum machines, whose variance decreases as 1/M,,
[14]. Here, we assume that the sampling error is negligible
by taking M, sufficiently large. To investigate the effect of
decoherence when QRCs are implemented on current quantum
machines, we simulate the selected QRCs under dephasing and
generalized amplitude damping (GAD) channels as in [30].

For all detailed numerical settings, see [27].

A. Nonlinear quantum optics

This example demonstrates that RCs can act as nonlinear
Wiener filters to extract the signal component of a highly noisy
time series from nonlinear quantum optics. We consider a
low-photon-number Kerr cavity with two input-output ports
(Fig. Eka) or [31} Fig. 2(a)]), whose internal mode is governed
by a Hamiltonian Hy = Aafa + x(af)?a?, where a is
the annihilation operator, A = 100 is the detuning from a
reference frequency, and y = —5 governs the nonlinearity. The
caVity is coupled to two incoming fields «y,;(t) via operators

L; = —L/R;a, where ¢« = v/—1 and r; = 25 for j = 1,2.
Here, «i,1(t) is a coherent field with a constant amplitude
7 = 21.5 and aiy2(t) is in the vacuum state.

We obtain a discretized trajectory S = Tr((Ls +L;) )+
N from homodyne measurement on the second output port
with sampling time 10~2 on Qutip [32]. Here, p;, is the state
at time k£ and 7 is a quantum Gaussian white noise. Our
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Fig. 2. (a) Kerr-nonlinear cavity with two input-output ports. The top mirror is
fully reflective (without loss) and the other mirrors are partially transmitting.
(b) The simulated trajectory of 8j and the data employed.
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Fig. 3. The noisy time series B, the signal oy, = Tr((L2 + L;)pk,), (a) the
ESN prediction and (b) the QRC prediction on the first 100 validation data.
(c) The ESN residual sample ACF (horizontal blue lines show the 95% CI).
(d) The ESN residual Q-Q plot. (¢) The QRC residual sample ACF. (e) The
QRC residual Q-Q plot.

TABLE I
DIMENSION (OR QUBIT NUMBER) N, p-VALUE, RMSE AND AVERAGE
RMSE (RMSE) OF RCS FOR STOCHASTIC MODELING.

| Optics | Meteorology | Coupled electric drive
ESN | QRC | ESN | QRC | ESN QRC
N 2 2 2 2 2 2
p-value 0.5 0.5 0.5 0.23 0.5 0.44
RMSE 1.12 1.12 0.047 | 0.049 | 0.10 0.11
RMSE 1.12 1.12 0.055 | 0.058 | 0.12 0.14

goal is to employ RCs to separate the “signal part” ap =
Tr((Ly + LY)py) from the highly noisy 8. We simulate 53
starting in the vacuum state on a truncated Hilbert space of
dimension 1000 for 6.4s and employ the data after 5s until py
reaches a steady state, see Fig. [2|b).

We set L, = 99, L; = 1000 and L, = 300. ESN and
QRC with N = 2 achieve comparable RMSE and average
RMSE, their residual sample ACFs show no autocorrelation
within 95% CI and pass the Lilliefors test; see Table |I| and
Fig. 3] We report 0.5 for p-values> 0.5. In Fig. B[a)(b), we
observe that the ESN and QRC predictions follow the signal
ay with a normalized root mean-squared error between them
of M = 0.0047 and 0.0048, respectively.
Zk=L2+1 A
These suggest that QRC can act as a nonlinear Wiener filter,
separating the signal oy, from the noisy time series .

For all decoherence strengths, QRC obtains RMSE = 1.12
as the noiseless QRC, and its residuals show no autocorrelation
and pass the Lilliefors test with p-value> 0.5. QRC under
decoherence can still effectively extract oy, from [y.
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Fig. 4. The finance time series, (a) the ESN prediction and (b) the QRC
prediction on validation data. (c) The ESN residual sample ACF. (d) The
ESN residual Q-Q plot. () The QRC residual sample ACF. (f) The QRC
residual Q-Q plot.

B. Finance

This time series describes weekly 5/1-year adjustable rate
mortgage average (2005-20) in the US [33]. After removing
trend and seasonal components using the “mstl]” R command
[24], the data is highly correlated up to 300 lags. This example
tests RCs’ ability to model highly correlated data. We set
L, = 100, L, 580 and L, = 100. All RCs achieve
comparable RMSE. The QRC average RMSE is similar to
the selected QRC’s RMSE, whereas the difference for ESN
is more pronounced. All RCs achieve uncorrelated residuals
(within 95% CI) and pass the Lillefors test; see Table |I| and
Fig. [i] These suggest that both RCs are capable of modeling
this highly correlated time series.

QRC under GAD experiences an increased RMSE. Despite
this, QRC residuals under decoherence show no autocorrela-
tion within 95% CI and pass the Lilliefors test with p-value>
0.35. This suggests that decoherence does not significantly
impact QRC’s ability to model highly correlated data.

C. Coupled electric drive system

We employ RCs on modeling a single-input (i.e., u; € R)
single-output nonlinear system consists of two electric motors
driving a pulley using a flexible belt [34]. Input data is a
pseudo-random binary sequence (persistently exciting) with
amplitude 0.5 and only L = 500 data are available, presenting
a challenge for RCs.

We exploit spatial multiplexing, see [14], where outputs of
two distinct and non-interacting RC members are combined
linearly. The first member processes both y, and uj as
described in Sec. and the second only processes ug.
We label each member’s parameters with subscripts 1, 2. For
simplicity, we set N = N; = Ny so that dimensions of both
members (or numbers of qubits) are the same, with N = 2
preferred by FPE for all RCs. For the second ESN member,
we set Cy = 0 and 01, (As) = 0.7, where the latter ensures
convergence. For the multiplexed QRC, we set ¢; = 0.5 and
€2 = 0.9, and set the second QRC’s CPTP map 7'(?) (ug) as

TP (uy) = g(u) T + (1 — g(ug)) T3,

where Tl(Q)(pk) = Ul(2),ok(Ul(2))T for some arbitrary but fixed
unitaries U, 1(2) for [ = 1, 2; see [27] for the details. The second



QRC is convergent by construction. For multiplexed RCs,
output parameters of their second member are not constrained.
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Fig. 5. The target output, (a) the ESN prediction and (b) the QRC prediction
on validation data. (c) The ESN residual Q-Q plot. (d) The QRC residual Q-Q
plot. (e) The ESN (blue) and QRC (red) sample ACF. (f) The ESN (blue) and
QRC (red) sample cross-correlation between inputs and residuals.

We set L,, = 20, Ly =400 and L, = 79. All RCs achieve
comparable RMSE and average RMSE, and they pass the
Lilliefors test. Residuals of ESN and QRC are uncorrelated
and independent of inputs (within 95% CI); see Table [I| and
Fig. El Under both decoherence channels, residuals of QRC
show autocorrelation at lag 1. Despite this, the increase in
the QRC RMSE is small, by at most 0.01 compared to the
noiseless QRC.

VI. CONCLUSION

We have introduced convergent reservoir computers with
output feedback as stationary and ergodic NARX(co) mod-
els. Our approach can harness nonlinear dynamical systems
for temporal information processing, making them versatile
for nonlinear stochastic modeling. Numerical experiments
demonstrate that these reservoir computers with a few tunable
parameters are adequate in modeling diverse data sets.

Many exciting problems remain open for future research,
such as improving the modeling performance through reservoir
design and developing model selection methods for the pro-
posed scheme. With this view, this work opens the potential for
reservoir computing paradigm to tackle traditional challenges
encountered in control and time series modeling, further
bridging these scientific disciplines.
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