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Incremental Model Predictive Control Exploiting
Time-Delay Estimation for a Robot Manipulator
Yongchao Wang , Marion Leibold , Member, IEEE, Jinoh Lee , Senior Member, IEEE, Wenyan Ye ,

Jing Xie , Graduate Student Member, IEEE, and Martin Buss , Fellow, IEEE

Abstract— This article proposes a new incremental model
predictive control (IMPC) strategy, which allows for constrained
control of a robot manipulator, while the resulting incremental
model is derived without a concrete mathematical system model.
First, to reduce dependence on the nominal model of robot
manipulators, the continuous-time nonlinear system model is
approximated by an incremental system using the time-delay
estimation (TDE). Then, based on the incremental system, the
tracking IMPC is designed in the framework of MPC without
terminal ingredients. Thus, compared with existing MPC meth-
ods, the nominal mathematical model is not required. Moreover,
we investigate reachable reference trajectories and confirm the
local input-to-state stability (ISS) of IMPC, considering the
bounded TDE error as the disturbance of the incremental system.
For reachable reference trajectories, the local ISS of IMPC is
analyzed using the continuity of the value function, and the
cumulative error bound is not overconservative. Finally, several
real-time experiments are conducted to verify the effectiveness
of IMPC. Experimental results show that the system can achieve
optimal control performance while guaranteeing that input and
state constraints are not violated.

Index Terms— Incremental system, input-to-state stability
(ISS), model predictive control (MPC), time-delay estimation
(TDE).

NOMENCLATURE

R,R≥0, and R>0 Real, nonnegative, and positive sets.
I and I>0 Integer and positive integer sets.
I[a,b] I[a,b] = {x ∈ I : a ≤ x ≤ b}.
�x� ∈ I Smallest integer greater than x ∈ R.
I, O, 0 Identity matrix, null matrix, and null

vector.
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col(x1, x2) Column vectors of x1 and x2, [x�
1 , x�

2 ]�.
Q � 0 Positive-definite matrix Q.
	•	 Euclidean norm of •.
	x	Q 	x	Q = √

x�Qx for x and Q � 0.
λ(Q) Eigenvalue of Q.
λmin and λmax Minimal and maximal eigenvalues.

A continuous function α : [0, a) → R≥0, for some a > 0,
is said to belong to class K if it is zero at zero and
strictly increasing. Moreover, α(·) is said to belong to class
K∞ if it is a class K function with a = ∞ and radially
unbounded, i.e., α(x) → ∞ as x → ∞. A continuous
function σ : R>0 → R≥0 is said to belong to class L if
it decreases with limk→∞ σ(k) = 0. A continuous function
β : [0, a) × [0,∞) → [0,∞) is said to belong to class
KL if, for each fixed s, the mapping β(r, s) belongs to
class K with respect to r and, for each fixed r , the mapping
β(r, s) belongs to class L. If S1, S2, and S3 are any sets and
f1 : S1 → S2 and f2 : S2 → S3 are functions, then the function
f2 ◦ f1 : S1 → S3, defined by ( f2 ◦ f1)(·) = f2( f1(·)), is called
the composition of f1 and f2.

I. INTRODUCTION

THE major challenge in robot manipulator control, e.g.,
in manufacturing [1] or aerospace applications [2], is to

be able to accurately track reference trajectories in joint or
task space. In the last few decades, robustness properties of
these controllers have been intensively investigated to deal
with uncertainty and external disturbances [3]. Nevertheless,
optimality of controllers and accounting for input and state
constraints was not yet thoroughly addressed together, while
constraints can be used to describe safety requirements on
control and thus enable robot manipulators to also be used
in safety-critical applications, e.g., close to or in cooperation
with humans.

A. Related Works

Nonlinear control approaches, such as computed torque [4]
or backstepping [5], are able to deliver high-performance
controllers for robot manipulators. However, a precise model
is needed and performance is deteriorated in the presence
of model uncertainties and disturbances. To address the
robustness issue, disturbance observers [6], sliding mode con-
trollers (SMCs) [7], [8], and adaptive control methods [9]
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are employed and often combined with computed torque or
backstepping. Nevertheless, the nominal model of the robot
manipulator and its parameters still need to be identified.
To alleviate the need of concrete mathematical modeling and
parameter identification, intelligent control techniques, such as
fuzzy logic systems [10] and neural networks (NNs) [11], are
proposed to approximate unknown/uncertain system dynamics.
Yet, these approaches also pay more attention to robustness,
not to optimal tracking performance. In addition, input and
state constraints are usually not of interest.

Model predictive control (MPC) [12], or receding hori-
zon control [13], is an optimization-based control addressing
optimal tracking control performance and input and state
constraints, such as saturation of control inputs and physical
limits of workspace and speed. The distinct feature of MPC
lies in its capability of systematically handling input and
state constraints within the controller design. For MPC, the
constrained optimal control problem (OCP) is solved using
the state predictions generated by the nominal mathematical
model in a horizon [14]–[18], where the difference between the
nominal and real mathematical models due to uncertainties and
disturbances may degrade tracking performance [19]. Besides,
when some dynamics terms are unknown, MPC algorithms
in [14]–[19] are not able to be implemented.

A robust MPC was proposed for a helicopter in [20] where
an extended high-gain observer estimates model uncertain-
ties and disturbances. However, the nominal mathematical
model is required. Learning-based MPC methods are proposed
[21]–[23] to deal with uncertain/unknown system dynamics,
where Gaussian process (GP) and NNs are used to identify
nonlinear models online, which can reduce dependence on
the concrete mathematical model. A data-driven MPC was
developed in [24], where a nonparametric machine learning
technique is used to estimate a prediction model. Unfortu-
nately, learning and data-driven techniques further increase
the computational complexity of MPC. Other robust MPC
schemes, including min-max optimization [25], [26] and slid-
ing mode techniques [27], [28], are also employed to improve
robustness without significant increase of complexities. Alter-
natively, MPC is formulated with an incremental model, which
generates the state predictions by using both present and
previous states [29]. However, since the incremental system
is obtained from linearization of the nonlinear system, the
controller is effective only locally around equilibrium points.

Model uncertainties and disturbances not only increase
the computational complexity of MPC, but they also make
stability analysis more challenging. Due to uncertainties
and/or disturbances, the Lyapunov stability that was estab-
lished for the nominal system is not simply transferable
[17], [18], and input-to-state stability (ISS), also known as
practical Lyapunov stability, is required to be considered.
In [30] and [31], ISS of MPC with terminal ingredients was
analyzed where a feasible control sequence, which guarantees
that input and state constraints are not violated, was employed.
However, the derived cumulative error bound increases with
increasing the prediction horizon. It results in an overconserv-
ative cumulative error bound, which conveys that the tracking
error increases for increasing the prediction horizon. However,

in practice, increasing prediction horizon appropriately will
decrease tracking errors [32]. Thus, the derived overconser-
vative cumulative error bound provides a wrong guidance to
improve tracking accuracy.

For MPC without terminal ingredients, the ISS property
was investigated in [33], where time-variant sets of admissible
predicted states are used. In [34] and [35], for linear systems,
the continuity property of the value function was applied to
estimate cumulative error bounds and then verify ISS. Feasible
control sequences were not required and time-invariant input
and state constraints could be used. Unfortunately, if the
eigenvalue of the system matrix (also known as coefficient
matrix) is greater than one, it still results in the rise of the
cumulative error bound with increasing the prediction horizon.

B. Method and Contributions

In this article, an incremental model predictive con-
trol (IMPC) method is developed for a robot manipulator
modeled by Euler–Lagrange equations. To obtain optimal
performance in the presence of input and state constraints as
well as the robustness against uncertainties and disturbances,
we first design a robust incremental model in the global set of
admissible states exploiting the time-delay estimation (TDE)
technique [36], [37]. TDE is a model-free method, which
uses time-delayed input and output signals to estimate partial
dynamics of the system without concrete mathematical model,
laborious parameter identification, and linearization around
equilibrium points of the system [38]–[40]. Then, an MPC
problem is formulated, where the state predictions are gener-
ated from the discretized incremental control system derived
by TDE.

In particular, a reachable reference trajectory is defined, for
which ISS of the proposed IMPC is analyzed. Using continuity
of the value function, ISS is verified and overconservative
cumulative error bound is avoided. ISS is shown for all
horizon lengths that are larger than a specific threshold derived
recursively. The contributions are summarized as follows.

1) No Concrete Mathematical Model Required: Different
from existing MPC methods, the concrete mathematical
model of the robot manipulator is not required. This
is because the continuous-time nonlinear system model
is approximated by an incremental system using TDE,
and the state predictions are generated using the linear
discretized incremental system.

2) Optimal Performance for TDE-Based Control: The
TDE-based incremental controller is developed in the
framework of MPC without terminal ingredients, and
input and state constraints are formulated as inequal-
ity constraints. Thus, optimal control performance is
achieved, while input and state constraints are con-
sidered, which has not been considered in existing
TDE-based controllers [36]–[40].

3) No Overconservative Cumulative Error Bound: Consid-
ering the bounded error sourced from TDE as the major
disturbance, local ISS of IMPC is confirmed. Different
from existing ISS analyses for MPC, here, continuity
of the value function is used to derive the upper bound
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of the difference between two value functions, and the
resulting cumulative error bound is not overconservative.
It is theoretically inferred from this ISS and the cumu-
lative error bound that increasing the prediction horizon
enlarges the region of attraction and, at the same time,
decreases tracking errors.

C. Organization

The rest of this article is organized as follows. In Section II,
the robot manipulator dynamics is introduced, and the nonlin-
ear system is approximated by an incremental system using
TDE. Section III presents the proposed IMPC. The local ISS
property of IMPC is theoretically analyzed in Section IV.
A series of real-time experiments is performed on a robot
manipulator and the effectiveness of the proposed IMPC is
verified in Section V followed by a conclusion in Section VI.

II. INCREMENTAL SYSTEM WITH TDE

A. Robot Manipulator Dynamics

The model of an n-link robot manipulator is given as [41]

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) = τ (1)

where q, q̇, q̈ ∈ Rn represent the position, velocity, and accel-
eration of joints, respectively, M(q) ∈ Rn×n is the symmetric
inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis/centrifugal
matrix, G(q) ∈ Rn contains the gravitational terms exerting on
the robot manipulator, F(q̇) ∈ Rn denotes viscous friction, and
τ ∈ Rn is the vector of torque supplied by the actuators. The
Euler–Lagrange system (1) satisfies the following property.

Property 1 [42]: The inertia matrix M(q) is uniformly pos-
itive definite and there exist constants μ1, μ2 ∈ R>0 such that
each eigenvalue of M(q), denoted by λi (M(q)), satisfies

μ1 ≤ λi (M(q)) ≤ μ2 ∀i ∈ I[1,n].
If [x1, x2] := [q, q̇] and u := τ , then (1) is rewritten as a

second-order nonlinear system in a strict-feedback form

ẋ1 = x2, (2a)

ẋ2 = f(x) + g(x)u (2b)

where f(x) := −M−1(q)(C(q, q̇)q̇ + G(q) + F(q̇)), g(x) :=
M−1(q), and x := col(x1, x2).

According to [8] and [43], M(q), C(q, q̇), G(q), and F(q̇)
are all upper bounded. Thus, the following assumption is made
for f(x) in an admissible set Dx ⊂ R2n .

Assumption 1: f(x) with f(0) = 0 is upper bounded in Dx,
with constants fmax, f0 ∈ R>0, i.e.,

	f(x)	 ≤ fmax	x	 + f0 ∀x ∈ Dx. (3)
Note that M(q), C(q, q̇), G(q), and F(q̇) are

unknown/uncertain because of unmodeled dynamics,
disturbances, and time-varying friction. Therefore, parameters
of f(x) and g(x) are considered to be unknown in this article.

B. Derivation of the TDE-Based Incremental System

The TDE technique [36], [37] is employed to approximate
the nonlinear system model and then acquire the incremental
system. Following the presentation in [44], an approximation
of the current system dynamic behavior is found from monitor-
ing the most recent states and control inputs. A linear system
model with an incremental control signal is derived.

Introducing a constant positive-definite diagonal matrix ḡ,
(2b) is reformulated as follows:

ḡ−1ẋ2 = H(x, ẋ) + u (4)

where H(x, ẋ) := (
ḡ−1−g−1(x)

)
ẋ2 + g−1(x)f(x), which

includes all uncertain/unknown model dynamics. For a suf-
ficiently small L, the value of H(x, ẋ) at time t is close to
that of H(x, ẋ) at time (t − L) [44]

H(x, ẋ)(t) ∼= H(x, ẋ)(t−L). (5)

Abbreviating ẋ2,0 := (ẋ2)(t−L) and u0 := u(t−L) yields

H(x, ẋ)(t−L) = ḡ−1ẋ2,0 − u0. (6)

From (5) and (6), one obtains the TDE of H(x, ẋ), i.e.,
Ĥ(x, ẋ) as follows [36]–[40], [44], [45]:

Ĥ(x, ẋ) = H(x, ẋ)(t−L) = ḡ−1ẋ2,0 − u0. (7)

From (7), one learns that, to obtain Ĥ(x, ẋ), the most recent
values ẋ2,0 and u0 are required instead of the complex and
uncertain robot dynamics. Thus, with the combination of (4),
(6) and (7), an incremental version of (2b) is obtained

ẋ2 = ẋ2,0 + ḡ(�u + �) (8)

where �u := u − u0 is the incremental control signal and
� := H(x, ẋ)−Ĥ(x, ẋ) is the TDE error acting as disturbances
to the incremental system.

To avoid significant mismatch between g(x) and ḡ, ḡ is
selected such that 	I − g(x)ḡ−1	 < 1 in this article and the
boundedness property analysis for the TDE error � is given in
Lemma 3.

Remark 1: For a specific robot manipulator, the princi-
ple to determine the diagonal matrix ḡ is presented as
follows. According to Property 1, λi (g(x)) is bounded by
0 < (1/μ2) ≤ λi (g(x)) ≤ (1/μ1) since g(x) = M−1(q).
Suppose that ḡi is the i th diagonal element of ḡ, and then,
∀i ∈ I[1,n], (1 − (λi/ḡi)) is an eigenvalue of (I − g(x)ḡ−1).
If |1 − (λi/ḡi)| < 1, i.e., ḡi satisfies ḡi > (λi/2), then
	I − g(x)ḡ−1	 < 1 holds. This also implies that the sufficient
condition for 	I − g(x)ḡ−1	 < 1 can be achieved by large
positive ḡi although exact expressions and eigenvalues of g(x)
are unknown [39].

III. REFERENCE TRACKING INCREMENTAL MPC

In this section, the control objective is first introduced,
which is a prerequisite to formulate the MPC problem.
Then, discretizing the incremental system derived by TDE,
an approximated discrete-time linear system is obtained. Based
on the approximated discrete-time linear system, the reference
tracking IMPC is developed through formulating a constrained
OCP.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on February 14,2022 at 13:40:58 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

A. Control Objective

The control objective is to make the robot manipulator
track the given reference signal xref and impose the following
point-wise constraints on state and input:

(x, u) ∈ Z = X × U (9)

where X, U, and Z are all compact sets containing the origin
in their interior.

Constraints are imposed on state and input in (9), i.e., x ∈
X, and u ∈ U. In the context of the robot manipulator, the
joint position, velocity, and torque are constrained by |qi | ≤
qi,max, |q̇i | ≤ q̇i,max, and |τi | ≤ τi,max with qi,max, q̇i,max, and
τi,max ∈ R>0 being specified limits.

In this article, only smooth reference trajectories xref are
considered since nonsmooth reference trajectories can cause
damage to mechanical systems due to sharp actuator changes.
Without loss of generality, reference trajectories are assumed
to be smooth and bounded.

Assumption 2 [46]: The joint position reference signal qref

is smooth and bounded, satisfying 0 ≤ r ≤ 	qref	 ≤ r < ∞,
0 ≤ ṙ ≤ 	q̇ref	 ≤ ṙ < ∞, and 0 ≤ r̈ ≤ 	q̈ref	 ≤ r̈ < ∞.

Note that according to the definition in (2), the reference
signal xref := (

x1,ref , x2,ref
) := (qref , q̇ref ).

B. Formulation of the Proposed IMPC

In this section, the IMPC is developed. First, a discrete-
time linear system is obtained by discretizing the incremental
system (8) derived by TDE.

Discretizing (2a) and (8) using the following Euler numer-
ical differentiation:

ẋ∗(k) = x∗(k + 1) − x∗(k)

Ts
+ ω∗(k)

where ω∗(k) is the dicretization error. Replacing ẋ1, ẋ2, and
ẋ2,0 by ẋ1(k), ẋ2(k), and ẋ2(k − 1), respectively, and (2) is
transformed into the discrete-time form

x1(k+1)= x1(k)+Tsx2(k) − Tsω1(k)

x2(k+1)= 2x2(k)−x2(k−1)+ḡTs(�u(k)+�)+Tsω̄2(k)

(10)

where ω̄2(k) :=ω2(k−1)−ω2(k) and Ts is the sampling period.
Note that it is reasonable to assume that discretization errors
are bounded, and the smaller Ts , the smaller are discretization
errors.

If x(k) := col(x1(k), x2(k)), then (10) is rewritten as

x(k + 1) = A1x(k) + A2x(k − 1) + B1�u(k) + �̄1 (11)

with A1 :=
[

I TsI
O 2I

]
, A2 :=

[
O O
O −I

]
, B1 :=

[
O

ḡTs

]
, and

�̄1 :=
[ −Tsω1(k)

ḡTs� + Tsω̄2(k)

]
.

If X(k) := col(x(k), x(k − 1)), (11) is then rewritten as a
first-order discrete-time system with disturbance �̄2 given by

X(k + 1) = AX(k) + B�u(k) + �̄2 (12)

where A :=
[

A1 A2

I O

]
, B :=

[
B1

O

]
, and �̄2 :=

[
�̄1

O

]
.

For �̄2 = 0, we obtain the nominal system of (12),
a discrete-time linear system

X(k + 1) = AX(k) + B�u(k). (13)

Note that the linear system (A, B) is controllable. Differ-
ent from conventional linearization methods, such as Taylor
series [29], [47] and Carleman approaches [48], the linear
system (13) is obtained without concrete mathematical model.
Besides, it is effective in the whole set Dx, not only locally
around equilibrium points.

Then, the stage cost function will be defined in the follow-
ing. Besides xref , the reference control signal uref is required to
define a reference tracking stage cost function. For nonlinear
MPC [49], [50], uref is usually calculated from the nominal
model. Since it is assumed that prior knowledge of the nominal
model is not available (see Section II-A), the discrete-time
linear approximation (13) is used to calculate an approximated
incremental reference control signal �ûref(k)

�ûref(k) = B†(Xref(k+1) − AXref(k)) (14)

where B† :=(B�B)−1B� and Xref(k) :=col(xref(k),xref(k−1)).
Consider that the full reference trajectory of the manipulator

is predefined. The reference trajectories over a finite horizon
after time instance k are thus priorly known, and the tracking
stage cost function is defined as follows:
�(Xk+i|k ,�uk+i|k , k+i)

= 	Xk+i|k −Xref(k+i)	2
Q+	�uk+i|k −�ûref(k+i)	2

R (15)

where Q � 0 and R � 0 are weighting matrices and •k+i|k
denotes predictions of states and control inputs, in particular,
Xk|k =X(k), and Xk+i|k is calculated using (13), i.e.,

Xk+i|k = AXk+i−1|k + B�uk+i−1|k . (16)

Based on the stage cost function (15), the cost function
JN (X(k),�ū(k), k) : R4n × Rn×N × I≥0 → R with respect to
an input sequence �ū(k) := [�uk|k, . . . ,�uk+N−1|k ] at time
k is defined as follows:

JN (X(k),�ū(k), k)

=
N−1∑

i=0

�(Xk+i|k ,�uk+i|k , k+i) (17a)

s.t. Xk+i+1|k = AXk+i|k + B�uk+i|k , (17b)

uk+i+1|k =
(

u(k) +
i∑

m=0

�uk+m|k

)
∈ U (17c)

Xk+i|k ∈ X̄ (17d)

where X̄ := {X = col(x�, x��) ∈ R4n : x� ∈ X, x�� ∈ X},
i ∈ I[0,N−1], and N ∈ I>0 is the prediction horizon.

Finally, the IMPC is developed in the framework of MPC
without terminal ingredients, i.e., the reference tracking IMPC
is developed through formulating the following constrained
OCP:

VN (X(k), k) = min�ū(k) JN (X(k),�ū(k), k). (18)

The solution to OCP (18) is an optimal state and input
sequence (X̄∗

k,�ū∗
k ), where X̄∗

k := [X∗
k|k, . . . , X∗

k+N−1|k ] and
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�ū∗
k := [�u∗

k|k, . . . ,�u∗
k+N−1|k ]. The first column of the

optimal input trajectory �ū∗
k , denoted by �u∗(k) or �u∗

k|k ,
is applied to the system combined with the current control
law u(k). In other words, the feedback control law at time
k+1 is u∗(k+1) := u(k) + �u∗(k).

Remark 2: For this work, the cost function is defined in
(17), to account for the incremental control signal �u and
do not consider the absolute control signal u. Obviously, the
cost function JN (X(k),�ū(k), k) is a convex function because
of its quadratic form. Besides, (17b) is an affine system and
X̄ and U are convex sets. Therefore, OCP (18) is a convex
optimization problem, and a unique optimal solution exists
for nonempty admissible sets.

Remark 3: In existing MPC without terminal ingredients,
comparing [17] and [18], the prediction is based on a nominal
model. This requires to first identify the nominal model of
the plant with high precision, whereas the proposed IMPC
approach employs the incremental model based on TDE and,
thus, it is not necessary to identify the model of f(x) and
g(x) in (2b). Accordingly, the predictions are generated by
the discrete-time linear system (13), where only ḡ is associated
with the system model because ḡ is selected such that 	I −
g(x)ḡ−1	 < 1. As stated in Remark 1, the sufficient condition
for 	I − g(x)ḡ−1	 < 1 can be fulfilled by a large positive ḡi

even though the exact expression of g(x) is unknown.

IV. ISS ANALYSIS

In Section III, the IMPC is developed without the concrete
mathematical model, where the approximated discrete-time
linear system (13) is used to generate predictions. However,
the TDE error is inevitable and stability will be affected by
this error. Stability will be investigated in the ISS framework
and it is shown that for a large enough horizon, a bounded
TDE error will allow that the reference trajectory is stabilized
but not asymptotically reached. In this section, a definition
of the reachable reference trajectory is first given. Then, some
preliminary results are introduced, such as a local upper bound
of the value function, an upper bound of the TDE error, and
local continuity of the value function. Finally, the ISS of the
proposed IMPC in local regions around reachable reference
trajectories is investigated.

A. Reachable Reference Trajectory

In this section, a locally optimal incremental controller is
developed for the discrete-time linear system (13), which is
used to define the reachable reference trajectory.

1) Locally Optimal Incremental Controller: Let E(k) :=
X(k) − Xref(k) be the tracking error. Assuming that input and
state constraints are not violated, a locally optimal incremental
control signal �uOI(X(k), Xref(k)) is designed considering
(17a) as the cost function

�uOI(X(k), Xref(k)) = �ûref (k) + K0E(k) (19)

where K0 = −(R+B�PB)−1B�PA, and P � 0 is the solution
to the following Riccati equation:

P = A�PA − A�PB(R + B�PB)−1B�PA + Q.

To study stability, V(E(k)) := 	E(k)	2
P is considered as the

Lyapunov function. Then, the difference is

�V (E(k + 1)) = V (E(k + 1)) − V (E(k))

= 	E(k + 1)	2
P − 	E(k)	2

P

= −E�(k)
(
Q + R̃

)
E(k) ≤ 0 (20)

where R̃ := A�PB(R + B�PB)−1R(R + B�PB)−1B�PA and
R̃ � 0.

2) Definition of Reachable Reference Trajectory: Based on
the locally optimal incremental controller, the definition of the
reachable reference trajectory is introduced.

Definition 1: A reference trajectory (Xref ,�ûref) is reach-
able if Xref (k+i) ∈ X̄ and 	Ek+i|k	2

Q ≤ c implies that u(k) ∈ U,
Xk+i|k ∈ X̄

uref(k), uref (k+i +1) := u(k)+
i∑

m=0

�ûref(k+m) ∈ Uref

uk+i+1|k =
(

u(k)+
i∑

m=0

�uOI(Xk+m|k,Xref (k+m))

)
∈U

for i ∈ I[0,N−1] , Uref
⊕

Cs ⊆ U and Cs ⊆ Rn := {c ∈ Rn :
−s1 ≤ c ≤ s1}, where c, s ∈ R≥0 are positive scalars and

⊕

denotes the Minkowski sum; otherwise, it is unreachable.
Similar to the definition of the reachable reference trajectory

in [18], Definition 1 also requires that the trajectory can
be tracked and lies strictly in the tightened constraint sets.
However, it is not guaranteed that such a reachable reference
trajectory still exists when the incremental control structure is
adopted. Assuming that ḡ is selected such that 	I−g(x)ḡ−1	≤
δ < 1, Lemma 1 is given, which verifies that the reachable
reference trajectory exists and provides sufficient conditions
of reachable reference trajectories.

Lemma 1: Suppose that there exists cx ∈ R>0 such that
	Xi−Xref (k+i)	2

Q ≤cx (i ∈I[0,N−1]) implies Xi ∈ X̄. If the ref-
erence trajectory satisfies μ2

(
k1rb1+ fmaxrb2+ω2,max + f0

)
<

τmax,
(

fmaxrb2 + ¯̈r +ω2,max + f0
)
/ḡmin < (1 − δ)τmax, and

	E(k)	2
Q ≤ c, then, for i ∈ I[0,N−1] , u(k) ∈ U, Xk+i|k ∈ X̄

uref(k), uref (k+i +1) := u(k)+
i∑

m=0

�ûref(k+m) ∈ Uref

uk+i+1|k =
(

u(k)+
i∑

m=0

�uOI
(
Xk+m|k ,Xref (k+m)

)
)

∈U

and Uref
⊕

Cs ⊆ U, where c := min{cu, (cx/λ̃)},
s := min{s1, s2}, cu := min{c1, c2}, λ̃ :=
(λmax(Q)λmax(P)/λmin(Q)λmin(P)), k1 := 	K1	, K1 :=
(1/Ts)[O, I, O,−I], rb1 := 2

√
(r̄2 + ¯̇r2), rb2 :=

√
2(r̄2 + ¯̇r2),

ω2,max := maxk∈I>0	ω2(k)	, τmax := mini∈I[1,n]τi,max, and
ḡmin := λmin(ḡ).
Note that s1, c1, s2, and c2 are given in (48), (49), (61), and
(62), respectively.

Proof: Through exploring the working mechanism of
the locally optimal incremental controller in the horizon,
it is verified that reachable reference trajectories satisfying
Definition 1 exist. For details, see Appendix A.
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Note that Lemma 1 is introduced to show existence of the
reachable reference trajectory. Zooming techniques are used
to derive the sufficient conditions of the reachable reference
trajectory and it results in conservative results. In other words,
even though the sufficient conditions are not satisfied, often
some reference trajectories are nevertheless reachable. More-
over, the sufficient conditions in Lemma 1 are not related to the
prediction horizon N . Hence, if the assumption (∃cx ∈ R>0

such that 	Xi − Xref (k + i)	 ≤ cx implies Xi ∈ X̄) holds
regardless of N , then Lemma 1 still holds when a large N
is selected. In addition, it is not required to determine or
construct reachable reference trajectories when the IMPC is
implemented in practice. No matter for reachable or unreach-
able reference trajectory, the controller is obtained through
solving the constrained OCP (18). The introduction of the
reachable reference trajectory is merely a basis for local ISS
analysis.

B. Preliminary Results

In this section, some preliminary results to analyze the
ISS of IMPC are developed. Considering the locally optimal
incremental controller (19) as the auxiliary control law, a local
upper bound of the value function VN (X(k), k) is derived
for a reachable reference trajectory. Then, an upper bound
of the TDE error is determined. Finally, the continuity of
VN (X(k), k) is proposed, which is used to avoid an overcon-
servative cumulative error bound during the ISS analysis.

1) Local Upper Bound of Value Function: Considering
a reachable reference trajectory, a local upper bound of
VN (X(k),k) is determined in Lemma 2.

Lemma 2: For a small enough tracking error 	E(k)	2
Q ≤ c,

there exists κ ∈ R>0 such that VN (X(k), k) is bounded by

VN (X(k), k) ≤ κ	E(k)	2
Q. (21)

Proof: Given a reachable reference trajectory, a small
enough tracking error 	E(k)	2

Q ≤ c will allow to apply the
locally optimal incremental controller (19) without violation of
input or state constraints. Besides, due to optimality principle,
VN (X(k), k) ≤ JN (X(k), ū(k), k). Thus, if it is shown that the
cost function JN (X(k), ū(k), k) is bounded under the function
of the locally optimal incremental controller, then boundedness
of the value function VN (X(k), k) is also found.

For the locally optimal incremental controller (19), upper
bounds for the tracking errors are obtained (cf. (58) in Appen-
dix A), and for the control signals in the prediction horizon

	�̃uk+i|k	2
R = 	�uOI(Xk+i|k ,Xref (k+i))−�uref(k+i)	2

R

≤ Kmax	Ek+i|k	2
Q (22)

where i ∈ I[0,N−1] and Kmax := (λmax(R)	K0	2
R/λmin(Q)).

Thus, one has

VN (X(k), k) ≤ JN (X(k),�ū(k), k)

=
N−1∑

i=0

(	Ek+i|k	2
Q + 	�̃uk+i|k	2

R

)

0<ρ<1≤ κ	E(k)	2
Q (23)

where κ := ((1 + Kmax)λmax(Q)λmax(P)/(1 − ρ)λmin(Q)
λmin(P)).

2) Upper Bound of TDE Error: In the sequel, an upper
bound for the difference between state predictions using the
approximated nominal dynamics (13) and the real state tra-
jectory that results from (12) is quantified. To determine this
upper bound, an upper bound of TDE error is first determined.

In [36]–[40], [44], and [45], the TDE error is verified to
be bounded if a TDE-based controller is employed. How-
ever, in our approach, the incremental controller �u(k) is
obtained by solving the constrained OCP (18), and an analytic
expression for �u(k) is not available. In Lemma 3, the local
continuity of uncertain functions and the input constraint will
be used to analyze the boundedness of the TDE error.

Lemma 3: There exists 
∗ ∈ R>0 such that 	�	 ≤ 
∗ for a
sufficiently small sampling period.

Proof: See Appendix B.
Remark 4: Note that 
∗ derived in Lemma 3 is overesti-

mated. H(x, ẋ)t−L is used to approximate H(x, ẋ) and L is
usually selected as the sampling period. In practice, a dig-
ital control system can be regarded as a continuous system
when the sampling rate is faster than 30 times the system
bandwidth [51]. Thus, the smaller the sampling period, the
smaller is the TDE error. In other words, for any choice of 
̄∗,
a sufficiently small sampling period can be chosen such that
	�	 ≤ 
̄∗.

Thus, using (12) and (13) and Lemma 3, one obtains that

	X(k+1)−X∗
k+1|k	 ≤ 	�̄2	 ≤ 
̄∗ (24)

where 
̄∗ :=
√

2
(
ω2

1,max + (
ḡmax
∗ + 2ω2,max

)2
)

Ts and

ω1,max := maxk∈I≥0	ω1(k)	.
3) Continuity of Value Function: In the following, conti-

nuity property of the value function will be verified, based
on local controllability of the system (13). At first, a set D
(D ⊆ X̄) will be introduced in Lemma 4, to show that if
X ∈ D, then the optimal solutions lie strictly in the tightened
constraint sets.

Lemma 4: There exist constants Vmax, s̃, r̃1 ∈ R>0 such
that optimal solutions starting from X (X ∈ D, D := {X ∈ X̄ :
VN (X, k) ≤ Vmax}) satisfy tightened constraints, i.e., X∗

k+i|k ∈
X̄� and u∗

k+i|k ∈ U� for all i ∈ I[0,N−1], where X̄� ⊕Br̃1 ⊆ X̄
and U� ⊕Cs̃ ⊆ U.

Proof: First, it is verified that the reachable reference
trajectory lies in the tightened constraint sets. According to
the definition of the reachable reference trajectory (Definition
1), 	Ek+i|k	2

Q ≤ c implies Xk+i|k ∈ X̄ for all i ∈ I[0,N−1].
Thus, Xref(k + i) ∈ Xref and Xref

⊕
Br̃ ⊆ X̄, where Br̃ ⊆

R4n := {b ∈ R4n : 	b	 ≤ r̃} denotes a unitary ball with the
radius r̃ , and r̃ = √

(c/λmax(Q)). Besides, uref (k + i) ∈ Uref

and Uref
⊕

Cs ⊆ U. Thus, the reachable reference trajectory
lies strictly in the tightened constraint sets.

Then, the possibility that optimal solutions X∗
k+i|k and u∗

k+i|k
also lie strictly in the tightened constraint sets is demonstrated
using an extreme value. When 	E(k)	2

Q ≤ ξ (ξ ≤ c), the
system is controllable. If ξ is sufficiently small, then the
optimal solutions X∗

k+i|k and u∗
k+i|k converge and get close

to the reference trajectory. Thus, it is reasonable to assume
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that when 	E(k)	2
Q ≤ ξ , X∗

k+i|k and u∗
k+i|k strictly lie in the

tightened constraint sets, i.e., there exist s̃, r̃1 ∈ R>0 such
that X∗

k+i|k ∈ X̄� and U∗
k+i|k ∈ U� where X̄� ⊕Br̃1 ⊆ X̄ and

U� ⊕Cs̃ ⊆ U.
In addition, when 	E(k)	2

Q ≤ c, VN (X(k), k) is a decrescent
function, i.e., 	E(k)	2

Q ≤ VN (X(k), k) ≤ κ	E(k)	2
Q (cf.

Lemma 2). Thus, VN (X(k), k) ≤ ξ guarantees that 	E(k)	2
Q ≤

ξ . Therefore, Vmax ∈ R>0 exists.
Lemma 4 implies that if X ∈ D, then the optimal solutions

lie strictly in the tightened constraint sets. Besides, the trajec-
tory constituted by the optimal solutions starting from X can be
tracked. Thus, the optimal solutions starting from X (X ∈ D),
can be regarded as a reachable reference trajectory. If the initial
error between X and Y is sufficiently small, then predictions
starting from Y generated by the locally optimal incremental
controller lie in feasible sets, in accordance with Definition 1.
Thus, it is reasonable to make the following assumption.

Assumption 3: For X ∈ D and Y ∈ R4n , 	Y − X	2
Q ≤ cd

(cd ∈ R>0) implies that ∀i ∈ [0, N − 1], Yk+i|k ∈ X̄ and
uY

k+i|k ∈ U, where Yk+i|k and uY
k+i|k are predictions generated

by the locally optimal incremental controller �u(Yk+i , X∗
k+i|k)

�u(Yk+i , X∗
k+i|k ) = �u∗

X,k+i|k + K0(Yk+i − X∗
k+i|k) (25)

where �u∗
X,k+i|k is the optimal control signal corresponding

to X.
Based on Lemma 4 and Assumption 3, Lemma 5, about

continuity of value function, is proposed, which will be used
to determine the cumulative error bound when ISS is analyzed.

Lemma 5 (Continuity of Value Function): If X ∈ D, Y ∈
X̄, and 	X − Y	2

Q ≤ cd , then

VN (Y, k)−VN(X, k) ≤ K�(1 + 	K0	P)

1 − √
ρ

√
λmax(P)

λmin(Q)
cd (26)

with a constant K� ∈ R>0.
Proof: Since the stage cost (15) is quadratic, one obtains

the following Lipschitz property of the stage cost function with
a constant K� ∈ R>0:

|�(Xk+i|k,�uX,k+i|k , k + i)−�(Yk+i|k,�uY,k+i|k , k + i)|
≤ K�

(	Xk+i|k −Yk+i|k	P + 	�uX,k+i|k −�uY,k+i|k	P
)
(27)

where �uX,k+i|k and �uY,k+i|k are predicted control signals
corresponding to X and Y, respectively.

Considering that X∗
k+i|k and �u∗

X,k+i|k are the optimal solu-
tions starting from X and the fact that 	X − Y	2

Q ≤ cd , it is
concluded that if the locally optimal incremental controller
designed in (25) is employed, the generated predicted variables
corresponding to Y will not violate constraints, according to
Assumption 3. Thus, the following upper bound of the differ-
ence between VN (Y, k) and VN (X, k) is derived, employing
�u(Yk+i ,X∗

k+i|k) (25) as the auxiliary control law:
VN (Y, k) − VN (X, k)

≤ JN
(
Y,�uOI(Yk+i , X∗

k+i|k)
) − VN (X, k)

≤ K�

N−1∑

i=0

	Yk+i|k − X∗
k+i|k	P

+ K�

N−1∑

i=0

	�u(Yk+i , X∗
k+i|k)−�u∗

X,k+i|k	P

(25),(20)≤ K�(1 + 	K0	P)

N−1∑

i=0

(
√

ρ)i	X − Y	P

≤ K�(1 + 	K0	P)

1 − √
ρ

√
λmax(P)

λmin(Q)
cd . (28)

From (28), it is concluded that if X ∈ D, Y ∈ X̄, and
	X − Y	2

Q ≤ cd , then the difference between VN (Y, k) and
VN (X, k) is upper bounded, regardless of N .

C. ISS of the Proposed IMPC

The concept of ISS has been widely used in the stability
analysis of systems with bounded additive uncertainties [30],
[31], [52]. Definitions and criteria for ISS that will be used
later are referred to Appendix C.

Motivated by [34] and [35], the continuity of the value
function will be employed to complete the ISS analysis.
In contrast to ISS analyses in [30] and [31], feasible control
sequences are not required in this article. The continuity of the
value function has been proven in Section IV-B, which is also
different from [34] and [35]. Our approach has the advantage
that when the difference between states X and Y is sufficiently
small (i.e., 	X− Y	2

Q ≤ cd), the estimated upper bound of the
difference between VN (X, k) and VN (Y, k) does not increase
with increasing N .

In Theorem 1, considering a reachable reference trajectory,
ISS of the IMPC with respect to the TDE error is analyzed.
Finally, ISS of IMPC is proven by showing that VN (X(k), k)
is an ISS Lyapunov function.

Theorem 1: Let Assumptions 1–3 hold and suppose that 
̄∗
satisfies


̄∗ ≤
√

cd

λmax(Q)
, (29)


N := K�(1 + 	K0	P)

1 − √
ρ

√
λmax(P)λmax(Q)

λmin(Q)

̄∗ ≤ αV (Vmax).

(30)

Considering a reachable reference trajectory, there exists N1 ∈
I>0, such that for all N > N1, VN (X(k), k) with the initial
value VN (X(k0), k0) ≤ Vmax satisfies

α1(	E(k)	)≤VN (X(k), k)≤α2(	E(k)	) (31)

VN (X(k+1), k+1)−VN(X(k), k)≤−αN (	E(k)	) + 
N

(32)

where αV (·) ∈ K and αN (·) ∈ K∞, i.e., VN (X(k), k) is an ISS
Lyapunov function.

Proof: It consists of three parts. Assuming that
VN (X(k), k) ≤ Vmax, Part 1 confirms that VN (X(k), k) is a
decrescent function, and Part 2 confirms that VN (X(k), k) is
decreasing regionally. Finally, Part 3 demonstrates that, for a
large enough prediction horizon N , VN (X(k), k) ≤ Vmax holds
recursively.
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Part 1: A lower bound for VN (X(k), k) is straightforwardly
obtained from

VN (X(k), k) ≥ 	E(k)	2
Q ≥ λmin(Q)	E(k)	2. (33)

Define γVmax ∈ R>0 := max{κ, (Vmax/c)}. VN (X(k), k) is
upper bounded according to Lemma 2 and the definition of
γVmax

VN (X(k), k) ≤ γVmax	E(k)	2
Q ≤ γVmaxλmax(Q)	E(k)	2. (34)

Therefore, from (33) and (34), VN (X(k), k) is a decrescent
function, i.e., VN (X(k), k) satisfies (31), which is the first
criterion of ISS Lyapunov function in Definition 3 [compare
(70)] with α1(x) := λmin(Q)x2 and α2(x) := γVmaxλmax(Q)x2.

Part 2: In this part, the regional decreasing property
of VN (X(k), k) is analyzed, i.e., the relationship between
VN (X(k + 1), k + 1) and VN (X(k), k) is constructed. To be
able to analyze stability similar to [17] and [18], the value
function VN (X∗

k+1|k, k + 1) is selected as an auxiliary value
function, and the relationship between VN (X∗

k+1|k , k +1) and
VN (X(k), k) is investigated for a large enough N . To avoid
an overconservative cumulative error bound, the continuity
of the value function is used to upper bound the difference
between VN (X(k+1), k+1) and VN (X∗

k+1|k , k+1). Finally, the
relationship between VN (X(k +1), k +1) and VN (X(k), k) is
determined.

Following [17] and [18], the relation between VN (X∗
k+1|k , k+

1) and VN (X(k), k) is determined for a large enough prediction
horizon N (N ≥ N1):

VN (X∗
k+1|k , k+1)≤VN (X(k), k)−φNλmin(Q)	E(k)	2 (35)

where φN := 1 − ((κ − 1)M/κ M−2), M ∈ I>0 ≥
�2(ln κ/ln κ − ln(κ − 1))�, and N1 ∈ I>0 := �M + γVmax − 1�.

Note that the basic idea of the proof of (35) can be
summarized as follows. For a large enough N , there exists
a constant kx ∈ I[0,N−M] such that �(X∗

k+kx |k,�u∗
k+kx |k, k +

kx) ≤ c. Then, based on the local upper bound of the
value function established in Lemma 2 and the dynamic
programming principle, (35) is obtained (for the detailed proof,
see [17], [18]).

To construct the relation between V (X(k + 1), k + 1) and
VN (X∗

k+1|k , k + 1) using Lemma 5, Lemma 6 is introduced.
Lemma 6: Assuming that 
̄∗ ≤ √

(cd/λmax(Q)), if X(k) ∈
D and N ≥ N1, then X∗

k+1|k ∈ D and X(k + 1) ∈ X̄.
Proof: First, X∗

k+1|k ∈ D is verified. According to (35),
if N ≥ N1, then VN (X∗

k+1|k , k+1)≤VN (X(k), k).
Given that X ∈ D, i.e., VN (X(k), k) ≤ Vmax, one obtains

that VN (X∗
k+1|k , k + 1)≤VN (X(k), k) ≤ Vmax, which implies

that X∗
k+1|k ∈ D.

Then, X(k + 1) ∈ X̄ is confirmed. According to the TDE
error bound in Lemma 3, one has 	X(k + 1) − X∗

k+1|k	 ≤ 
̄∗
[cf. (24)]. Thus, 	X(k + 1) − X∗

k+1|k	2
Q ≤ λmax(Q)(
̄∗)2. Since


̄∗ ≤ √
(cd/λmax(Q)), one obtains 	X(k + 1) − X∗

k+1|k	2
Q ≤

cd . Therefore, according to Assumption 3, X(k + 1) ∈ X̄ is
obtained.

In accordance with Lemmas 5 and 6, one has

VN (X(k+1), k+1) ≤ VN (X∗
k+1|k , k+1)+
N . (36)

Finally, the relation between VN (X(k + 1), k + 1)
and VN (X(k), k) is confirmed. Substituting (35) into (36)
yields (32)

VN (X(k+1), k+1)−VN (X(k), k) ≤−αN (	E(k)	)+
N

where αN(	E(k)	) :=φNλmin(Q)	E(k)	2.
Thus, as shown in (32), VN (X(k), k) satisfies the second

criterion of ISS Lyapunov function in Definition 3 [com-
pare (71)] where α3(x) := φNλmin(Q)x2 and ϕ(x) :=
(K�(1 + 	K0	P)/1 − √

ρ)
√

(λmax(P)λmax(Q)/λmin(Q))x .
Therefore, VN (X(k), k) is an ISS Lyapunov function.
Part 3: In this part, it will be verified that VN (X(k), k) ≤

Vmax holds recursively, for a large enough N .
From (31) and (32), one has

VN (X(k+1),k+1)−VN(X(k),k)≤−αV (VN (X(k),k))+
N

(37)

where αV (·) := αN ◦ αr
−1(·) and αr (x) := λmax(Q)x2 are K∞

functions.
If X(k) ∈ D, then VN (X(k), k) ≤ Vmax. Thus, combining

with the above analysis and assumption, one has

VN(X(k+1), k+1)
(37)≤ (id− αV )(VN (X(k), k))+
N
(30)≤ (id− αV )(Vmax)+αV (Vmax)

≤ Vmax (38)

where id is the identity function, i.e., id(x) = x , for all x ∈ R.
Thus, if X(k) ∈D, then X(k +1) ∈ D. Using induction, it is
shown that VN (X(k+ j), k+ j) ≤ Vmax for all j ∈ I>0. Thus,
D is a positive invariant set. Therefore, VN (X(k), k) ≤ Vmax

holds recursively.
According to (38), VN (X(k), k) ≤ Vmax holds recursively if

N > N1. Given that VN (X(k0), k0) ≤ Vmax, VN (X(k), k) ≤
Vmax holds for all k ∈ I[k0 ,∞).

In conclusion, it is demonstrated that for all N > N1 and
initial state X(k0) with VN (X(k0), k0) ≤ Vmax, the system is
local ISS for a reachable reference trajectory.

Remark 5: The ISS analysis is based on the assumptions
(29) and (30) for the TDE error. If the combined TDE and
discretization error 
̄∗ is sufficiently small, these assumptions
can be satisfied. According to (24), the magnitude of 
̄∗ mainly
depends on the upper bound of the TDE error 
∗. As stated
in Remark 4, by reducing the sampling period, the TDE error
can be regulated as small as necessary. It is consistent with
simulations in Section V-C, which displays the influences of
the sampling period on the stability of the closed-loop system.

Remark 6: Different from the cumulative error bound(
Ls(L f

N−1 − 1/L f − 1) + Lt L f
N−1

)
d (where L f , Ls ,

and Lt are Lipschitz constants and d is the upper
bound of the disturbance) derived in [30] and [31],
the cumulative error bound in this article 
N :=
(K�(1 + 	K0	P)/1 − √

ρ)
√

(λmax(P)λmax(Q)/λmin(Q))
̄∗
does not increase as N increases. Similar to our approach,
the continuity property of the value function is also used to
investigate the local ISS of the MPC method in [34] and [35].
Unfortunately, for A in (13), its eigenvalue λ(A) > 1.
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Fig. 1. Experimental setup of the 3-DoF robot manipulator.

It still results in the rise of the cumulative error bound with
increasing N , if the method in [34] and [35] is applied.

Remark 7: Simply increasing the prediction horizon N can
enlarge the region of attraction {X ∈ X̄ : VN (X, k) ≤
Vmax}. This is because N1 := �M + γVmax − 1� increases as
γVmax := (Vmax/c) increases. It is also verified by experiments
in Section V.

Remark 8: According to Part 3, the system ultimately
converges to Dt := {X ∈ X̄ : VN (X, k) ≤ α−1

V (
N )}.
Thus, 	E(k)	 ≤

√
α−1

V (
N )/λmin(Q) according to (31). If we
increase M (or N) properly, both αN (·) and αV (·) increase.
Thus, the tracking error decreases if N increases properly.
However, it does not asymptotically converge to zero because
of the nonzero TDE error. The effects of N on the tracking
errors are also investigated by experiments in Section V.

Remark 9: To guarantee ISS of IMPC in local regions
around the reachable reference trajectory, the minimal predic-
tion horizon N1 ∈ I>0 := �M + γVmax − 1� is determined. Due
to the zooming technique, this minimal N is very conservative
(normally overestimated, compare [18]). However, a too large
prediction horizon causes heavier computation such that the
real-time control capability will be affected. Thus, a balance
between ISS and computing efficiency has to be found in
practice. To this end, based on current computing resources,
the prediction horizon is selected as large as possible.

V. EXPERIMENT

In this section, the proposed IMPC is validated on a
3-DoF robot manipulator. First, to validate the optimal control
performance of IMPC, comparison experiments with state-of-
the-art TDE-based controllers are conducted. Then, to show
capabilities to address input and state constraints, experiments
are performed where step by step, the constraints are tightened.
Finally, there is a discussion of the experimental results.

A. Experimental Setup

A custom-built 3-DoF robot manipulator is used throughout
the experimental verification as shown in Fig. 1, where the
order of the joint number is indicated. The mathematical
model of the robot manipulator can be found in [53, Tables
II–IV]. Nevertheless, note that the identified mathematical
model is not used for the proposed IMPC. The manipulator is
actuated by three torque-controlled motors (manufactured by

Fig. 2. Plots of reference trajectory for three joints.

Maxon) with a turn ratio of 1:100. Mounted on each motor,
the incremental encoders offer the joint position measurement
with a resolution of 2000. Using a peripheral component
interconnect (PCI) communication card, the sensors and actu-
ators are connected with the computer of which CPU is
Intel Core i7-8086K @4.0 GHz. The executable algorithm is
created by MATLAB 2017a in Ubuntu 14.04 LTS, using the
first-order solver with a sampling rate of 1 kHz.

The parameters for IMPC are chosen as follows: diago-
nal matrix ḡ = diag(14, 32, 80), weighting matrices Q =
diag{500I3, 10I3, 50I3, I3}, and R = diag{5, 5, 5}. Due to
the TDE technique, the nonlinear system is approximated
by a linear system (13), and then, the constrained OCP
(18) is a quadratic-programming (QP) problem. Thus, the
constrained OCP (18) is calculated by the active-set QP solver,
qpOASES [54]. The prediction horizon N = 15 unless noted
otherwise. Note that ḡ is selected by a manual tuning process,
in practice. Generally, large ḡ results in large TDE errors,
while small ḡ causes noisy responses. The constant ḡ :=
diag(ḡ1, . . . , ḡn) is selected following the procedures in [55]
(the TDE parameter ḡ is corresponding to the inverse of M̄
in [55]): 1) start with a sufficiently large positive value for ḡi

to guarantee stability (compare Remark 1) and 2) decrease ḡi

until the closed-loop system almost shows a noisy response.
Following the aforementioned procedures, the proposed IMPC
is designed by tuning the TDE parameter ḡ without any
information about the plant dynamics.

For the experimental study, six scenarios are considered.
The reference trajectories for the three joints are chosen,
as shown in Fig. 2. They are all sinusoidal reference trajec-
tories. The period is 5 s and amplitudes are 28.65◦ (0.5 rad),
11.46◦ (0.2 rad), and 45.86◦ (0.8 rad). Then, reference velocity
amplitudes are 36.11◦/s (0.63 rad/s), 14.40◦/s (0.25 rad/s), and
57.60◦/s (1.01 rad/s).

Scenario 1 (Comparison With TDE-Based Controllers):
To verify the optimal tracking performance of the proposed
IMPC, it is compared to the time delay control (TDC1) [36]
and TDC combined with SMC [40]. For simplicity, these
controllers are referred to as IMPC, TDC, and TSMC. For
IMPC, the input and state constraints are shown in Table I;
For TDC and TSMC, the design parameters kP and kD are in
general determined by the desired natural frequency ωn and
the damping ratio ζ , i.e., kP = ω2

n and kD = 2ζωn. Here,
we set ωn = 8 rad/s and ζ = 1. Thus, kP = 64 and kD = 16.

1TDC is a TDE-based controller, which is robust but not optimal.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on February 14,2022 at 13:40:58 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

TABLE I

INPUT AND STATE CONSTRAINTS OF SCENARIOS 1–5

Fig. 3. Experimental results of Scenario 1: tracking errors for the three
joints.

Besides, for TSMC, ε = [0.002, 0.001, 0.001], α = 50, and ϕ
= 2.5 × 104, where ε, α, and ϕ are all design parameters for
the SMC. To quantify the tracking performance of these three
controllers, the following average cost function is employed:

J = 1

Nt

Nt∑

k=0

(	E(k)	2
Q + 	�̃u(k)	2

R

)
(39)

where Nt = ts/Ts , with ts the terminal time.
Note that given the reference signals varying flatly lie

strictly in the state set of Scenario 1, reference signals can
be regarded as reachable reference trajectories in Scenario 1.

In Scenarios 2–5, the capability of IMPC to handle input
and state constraints is verified, through tightening input and
state constraints (see Table I). Note that 114.59◦ = 2 rad,
63.03◦ = 1.1 rad, and 45.84◦ = 0.8 rad.

In Scenario 6, Scenario 1 (only IMPC part) and Scenario 3
are repeated with N = 8, 12, and 15 to study the effect of
different prediction horizons on tracking performance.

B. Experimental Results

The experimental results of Scenario 1 are shown in
Figs. 3–5 and Table II. As shown in Fig. 3 and Table II,
tracking errors of IMPC are smaller than those of TDC and
TSMC. As shown in Fig. 4, especially the first subfigure,
torque trajectories generated by IMPC are smoother than those
of TDC and TSMC. This is because acceleration information,
which is easily affected by measurement noise, is used to
calculate torques directly for TDC and TSMC. For IMPC, the
torques are generated by solving an OCP. The costs for the
three controllers, calculated from (39), are 16.2475, 16.1185,
and 3.3716. As expected, the cost for IMPC is much smaller
than that of TDC and TSMC. Although tracking errors of

Fig. 4. Experimental results of Scenario 1: torques for three joints.

Fig. 5. Experimental results of Scenario 1: computing time.

TABLE II

EXPERIMENTAL RESULTS OF SCENARIO 1: RMS VALUES OF THE

TRACKING ERRORS OF THE THREE JOINTS (10−2deg)

TSMC are smaller than those of TDC, the related costs are
almost equal. This is because nonsmooth torque trajectories
result in large values for �u and costs for TDC and TSMC
mainly depend on variations of torque. As shown in Fig. 5,
most of the computing time for each prediction horizon is
smaller than 0.2 ms, which verifies real-time control capability.

The experimental results of Scenario 2 are shown in Fig. 6.
As shown in Fig. 6, input constraints are not violated and the
system is still stable, although the tracking errors are larger
than that in Scenario 1.

The experimental results of Scenario 3 are shown in Fig. 7.
It can be observed that the reference trajectory of joint
3 does sometimes leave the admissible set. Nevertheless, the
closed-loop system is still stable. For the tracking errors, there
are no apparent differences for joints 1 and 2, in comparison
with Scenario 1. For joint 3, because of the strict state
constraint, the tracking error is larger when reference signals
are unreachable. It is also observed that during time intervals
[8, 10] s, . . ., [28, 30] s, the tracking error of joint 3 gradually
converges to a small neighborhood of the origin. There are two
reasons for this phenomenon. One is that the reference trajec-
tory is getting closer and finally approaches the feasible sets,
and the other is that when the reference trajectory becomes
reachable again, the tracking error ultimately converges to a
small neighborhood around the origin. This coincides with the
local ISS of the proposed IMPC analyzed in Section VI. For
the torques of joint 3, there are severe variations for short
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Fig. 6. Experimental results of Scenario 2: tracking errors and torques
for three joints. Note that “S1” and “S2” represent variables generated in
Scenarios 1 and 2, respectively.

periods when the positions are close to the boundary of the
constraints. This is to avoid state constraint violation. On the
other hand, joint 3 nearly stops moving, while joints 1 and 2
continue to move. The movement of joints 1 and 2 is regarded
as the disturbance to joint 3. Despite severe variations, the
whole closed-loop system is stable.

In Scenario 4, the state constraints are tightened for the
angular velocity. The experimental results of Scenario 4 are
shown in Fig. 8. For joints 1 and 2, there are no significant
differences in tracking errors and tracking velocities between
Scenarios 1 and 4. For joint 3, the velocity is limited because
of the new constraint, resulting in a larger tracking error.
As shown in the fifth subfigure of Fig. 8, the torque of joint 3
changes significantly during some time horizons, such as
[6, 7] s, [8, 9] s, . . ., [28, 29] s. During these time horizons, the
controller tries to avoid violation of the velocity constraints.

As shown in Figs. 7 and 8, especially the fourth subfigure
of Fig. 7 and the fourth subfigure of Fig. 8, state constraints
are slightly violated. This is because the TDE error and
measurement noises are not considered when predictions are
generated in the constrained OCP (18). Comparing Fig. 7 with
Fig. 8, one learns that it is more difficult to constrain veloc-
ities because velocities are easily affected by measurement
noise. Although the violation phenomenon occurs around the
constraint boundary, the proposed IMPC scheme still has the
capability to regulate states to a large extend.

The experimental results of Scenario 5 are shown in Fig. 9.
In comparison with Scenario 1, the tracking error of joint 1
increases slightly because of the tightened input constraint. For
joint 2, there are no significant differences. Joint 3 operates
stably similar to Scenario 3.

The experimental results of Scenario 6 are shown in
Figs. 10 and 11. For Scenario 1 with N = 8, 12, and 15,
experimental results are shown in Fig. 10. The tracking error
decreases for a longer horizon N . It coincides with the ISS
analysis in Section IV-C. For N = 12 and 15, there are
no significant differences in tracking errors. Due to the TDE

Fig. 7. Experimental results of Scenario 3: tracking errors, position of joint 3,
and torques. Note that “S3” represent variables generated in Scenario 3.

Fig. 8. Experimental results of Scenario 4: tracking errors, velocity of joint 3,
and torques. Note that “S4” represent variables generated in Scenario 4.

error, the tracking error does not converge to zero even if N
continues to increase.

The experimental results of Scenario 3 with different hori-
zons are shown in Fig. 11. For joints 1 and 2, the reference
is reachable and tracking errors decrease with increasing the
horizon N . The reference trajectory for joint 3 is not always
reachable. Although ISS for unreachable reference trajectories
is not considered in the presented theory, system outputs stay
close to reference signals. During the time intervals [8, 10] s,
. . ., [28, 30] s, the unreachable reference trajectory switches
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Fig. 9. Experimental results of Scenario 5: tracking errors, position of joint 3,
and torques. Note that “S5” represent variables generated in Scenario 5.

Fig. 10. Experimental results of Scenario 6: tracking errors with different
prediction horizons.

to a reachable reference trajectory. As shown in Fig. 11,
especially the fourth subfigure, as the horizon N increases,
the output is closer to the reference signal. This is because the
region of attraction increases and the tracking error decreases
with larger N , as analyzed in Remarks 7 and 8.

C. Discussion

1) Prediction Horizon N: In Section IV, the minimal pre-
diction horizon N1 := �M + γVmax − 1� can guarantee local
ISS of IMPC for reachable reference tracking. Using the
zooming technique, the method in Section IV to determine the
prediction horizon N is very conservative. This phenomenon
is illustrated using the following example. Assuming that
	E(k)	2

Q ≤ c, we obtain the theoretical minimal prediction
horizon N = 5.02×1012. However, in Scenarios 1–6, yet,
N = 8 allows for stability of the system. Thus, the minimal
prediction horizon in ISS analysis is more of a conceptual
nature.

Fig. 11. Experimental results of Scenario 6: tracking errors and positions of
joint 3 with different prediction horizons.

Besides, the statement in Remark 8 is verified by
Scenario 6, i.e., tracking errors decrease with increasing the
prediction horizon N . To this end, one would try to select
a larger prediction horizon. On the other hand, increasing N
causes heavier computation. Thus, in practice, one needs to
find a compromise between tracking errors and computing
efficiency. When the prediction horizon exceeds 15, real-
time control cannot be realized sometimes because of the
limited computational capability of our computer. As shown in
Fig. 5, for reachable trajectories, there is still room to increase
the prediction horizon. However, for unreachable trajectories,
an iterative number of the qpOASES solver increases to keep
constraints satisfaction, and it will also increase the computing
time at the same time. Taking all factors discussed above into
consideration, we find that for our application, N = 15 is a
reasonable selection because it not only allows for real-time
implementation but also guarantees precise enough tracking.

2) Reachable or Unreachable Reference Trajectory: During
the implementation, one does not need to justify whether the
reference trajectory is reachable or unreachable. We only need
to solve the constrained OCP (18).

As shown in Lemma 1, if the set of admissible states is
enlarged enough, an unreachable reference trajectory can be
changed into a reachable reference trajectory. In other words,
as shown in Scenarios 1–5, the reachable reference trajectory
in Scenario 1 is changed into unreachable reference trajectories
in Scenarios 2–4 after tighter input and/or state constraints are
introduced. Although ISS of IMPC is not theoretically proven
for unreachable reference trajectories, the reference trajectory
is tracked as close as possible and the closed-loop system is
still stable (as shown in Scenarios 2–5).

3) Limitations in Practice: To satisfy the assumptions with
respect to the TDE error mentioned in Remark 5, a small
enough sampling period is required. In our experiments,
0.001 s is used because of the setting of our experimen-
tal system, which is also commonly used in robotic sys-
tems, such as [9], [39]–[42], [45], and [53]. If the sampling
period increases, the tracking error increases, and finally, the
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Fig. 12. Simulation results: tracking errors of Joint 1 with sampling periods
Ts = 0.001, 0.005, 0.01, and 0.02 s.

closed-loop system becomes unstable. To check the influence
of the sampling period on control performance and considering
safety issues, simulations of Scenario 1 with different sampling
periods (Ts = 0.001, 0.005, 0.01, and 0.02 s) are implemented.
Because of space limitation, only tracking errors of joint 1 are
displayed. As shown in Fig. 12, when Ts = 0.001, 0.005,
and 0.01 s, tracking errors are very small. The tracking
error increases as the sampling period increases since the
TDE error increases with increasing the sampling period as
analyzed in Section IV-B. For Ts = 0.02 s, the tracking error
trajectory starts to oscillate because a larger TDE error affects
solutions of the constrained OCP (18) and the system becomes
unstable. Therefore, to receive reliable control performance,
the sampling period should be smaller than 0.01 s. Besides,
we need to consider real-time computation capability since the
smaller sampling period, the heavier the burden of computing.
In the experiment of this article, based on the simulation study,
we select 0.001 s to ensure both the real-time computation and
the tracking performance.

VI. CONCLUSION

In this article, an incremental model predictive controller
for robot manipulators was proposed. Using TDE and dis-
cretization, an approximated discrete-time linear system with
incremental control signal was derived. Based on the approx-
imated discrete-time linear system, the IMPC was developed,
and a mathematical model of the robot manipulator was no
longer required. Employing local controllability of the system,
the local ISS of IMPC was analyzed. To validate the proposed
IMPC, a set of real-time experiments was performed. The
results demonstrate the efficacy of the proposed IMPC in
realizing optimal control performance while guaranteeing that
input and state constraints are not violated, without concrete
mathematical model of the robot manipulator.

Future research will be devoted to studying IMPC with strict
constraints. The uncertain TDE error has to be addressed to
guarantee strict state constraint satisfaction, and tube-based
MPC [56] and data-driven and/or safe learning methods
[57]–[59] are clues. As another future development, an opti-
mal ḡ will be obtained online through an efficient learning
algorithm with a properly minimized dataset.

APPENDIX A
PROOF OF LEMMA 1

Proof: First, a sufficient condition for u(k) ∈ U is derived.
The state x(k) := col(x1(k), x2(k)) satisfies the following
differential equation [see (2b)]:

ẋ2(k) = f(x(k)) + g(x(k))u(k). (40)

Discretizing ẋ2(k) with the discretization error ω2(k) yields
(
x2,k|k −x2,k−1|k

)
/Ts = ẋ2(k) + ω2(k). (41)

Replacing ẋ2(k) in (40) by (41) yields

u(k)=g−1(x(k))
[(

x2,k|k −x2,k−1|k
)
/Ts −ω2(k)−f(x(k))

]
. (42)

According to Property 1 and Assumption 1, one has

	u(k)	 ≤ μ2
(	K1X(k)	+ω2,max+ fmax	x(k)	+ f0

)
. (43)

In accordance with Assumption 2, it is obtained that

	K1X(k)	 ≤ 	K1	(	E(k)	+	Xref (k)	)≤k1(	E(k)	+rb1)

(44)

	x(k)	 ≤ 	e(k)	 + 	xref (k)	 ≤ 	E(k)	 + rb2. (45)

Substituting (44) and (45) into (43) yields

	u(k)	
≤ μ2

(
(k1+ fmax)	E(k)	+k1rb1+ fmaxrb2+ω2,max+ f0

)
.

(46)

In Section III-A, |τi | ≤ τi,max is specified. Thus, from
(46), the following sufficient conditions are derived such that
	u(k)	 ≤ τmax and 	uref (k)	 ≤ τmax − s, i.e., u(k) ∈ U,
uref(k) ∈ Uref , and Uref

⊕
Cs ⊆ U

μ2
(
k1rb1+ fmaxrb2+ω2,max+ f0

)
< τmax (47)

s ≤ τmax − μ2
(
k1rb1+ fmaxrb2+ω2,max+ f0

)
︸ ︷︷ ︸

s1∈R>0

(48)

	E(k)	2
Q

≤ λmin(Q)

(
τmax−μ2

(
k1rb1+ fmaxrb2+ω2,max+ f0

)

μ2(k1 + fmax)

)2

︸ ︷︷ ︸
c1∈R>0

.

(49)

Second, incremental control signals and predicted states in
the horizon are calculated by recursion.

Introducing ḡ, u(k) is expressed as follows using (40):

u(k) = ḡ−1[ẋ2(k)−f(x(k))−(g(x(k))−ḡ)u(k)
]
. (50)

Replacing ẋ2(k) in (50) by (41) yields

u(k) = ḡ−1[(x2,k|k − x2,k−1|k
)
/Ts −ω2(k)−f(x(k))

]

− ḡ−1(g(x(k))−ḡ)u(k). (51)

Recall �uOI(X(k), Xref(k)) in (19), (19) is rewritten as

�uOI(X(k),Xref(k))= ḡ−1(q̈ref (k+1)− ˆ̇x2(k)+K2E(k)
)

(52)

where ˆ̇x2(k) := (
x2,k|k − x2,k−1|k

)
/Ts is the approximated

derivative and K2 := ḡK0 + K1. Thus, uk+1|k is

uk+1|k = u(k)+�uOI(X(k), Xref(k))

= ḡ−1
[−f(x(k))+K2E(k)+q̈ref(k+1)−ω2(k)

]

− ḡ−1[g(x(k))−ḡ]u(k). (53)

Applying �uOI(X(k), Xref(k)) to (13), ẋ2,k+1|k is

(x2,k+1|k −x2,k|k)/Ts
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= (
x2,k|k −x2,k−1|k

)
/Ts +ḡ�uOI(X(k), Xref(k))

(40),(41)= f(x(k))+ḡuk+1|k +(g(x(k))−ḡ)u(k)+ω2(k). (54)

From (54), uk+1|k is expressed using x2,k+1|k and x2,k|k

uk+1|k = ḡ−1
[(

x2,k+1|k −x2,k|k
)
/Ts −ω2(k)−f(x(k))

]

− ḡ−1(g(x(k))−ḡ)u(k). (55)

Similarly, at time k+i , the predicted control signal is

uk+i|k = ḡ−1(−f(x(k))+K2Ek+i−1|k +q̈ref(k+i)− ω2(k)
)

− ḡ−1(g(x(k))−ḡ)u(k). (56)

Finally, sufficient conditions for that input and state con-
straints in the horizon are not violated are determined.

As assumed, ḡ is selected such that 	I − g(x)ḡ−1	 ≤ δ <
1. Besides, according to (20), the following inequalities are
obtained:

	Ek+i|k	2 ≤ λ̄ρi−1	E(k)	2 (57)

	Ek+i|k	2
Q ≤ λ̃ρi−1	E(k)	2

Q (58)

where λ̄ := (λmax(P)/λmin(P)) and ρ := 1 −
(λmin

(
Q + R̃

)
/λmax(P)) < 1.

In accordance with Assumptions 1 and 2, (45), (56), and
(57), one has

	uk+i|k	

≤
(

fmax+kmax

√
λ̄
)
	E(k)	+ fmaxrb2+ ¯̈r +ω2,max+ f0

ḡmin
+δτmax

(59)

where kmax := 	K2	. According to (59), a sufficient condition
for uk+i|k ∈ U and uref (k + i) ∈ Uref is obtained
(

fmaxrb2 + ¯̈r +ω2,max+ f0
)
/ḡmin < (1 − δ)τmax (60)

s ≤ τmax − (
fmaxrb2 + ¯̈r +ω2,max+ f0

)
/(ḡmin(1 − δ))︸ ︷︷ ︸

s2∈R>0

(61)

	E(k)	2
Q

≤ λmin(Q)

(
(1−δ)ḡminτmax− fmaxrb− ¯̈r −ω2,max− f0

fmax+kmax

√
λ̄

)2

︸ ︷︷ ︸
c2∈R>0

.

(62)

From (47), (49), (60), and (62), it is concluded that if the
reference trajectory satisfies (47) and (60) and 	E(k)	2

Q ≤ cu ,
then ∀i ∈ I[0,N ], uk+i|k ∈ U and uref(k + i) ∈ Uref .

Besides, if 	E(k)	2
Q ≤ cx/λ̃, according to (58), then

	Ek+i|k	2
Q ≤ cx ,∀i ∈ I[0,N−1], that is, Xk+i|k ∈ X̄.

Therefore, if the reference trajectory satisfies (47) and (60),
	E(k)	2

Q ≤ c guarantees local controllability of (13).

APPENDIX B
PROOF OF LEMMA 3

Proof: According to (6) and (7), � is rewritten as

� = (
ḡ−1− g−1(x)

)
(ẋ2−ẋ2,0)+

(
g−1(x0)−g−1(x)

)
ẋ2,0

+ g−1(x)f(x)−g−1(x0)f(x0). (63)

Since ẋ2 = f(x) + g(x)u, one has

ẋ2 − ẋ2,0 = f(x) − f(x0)+g(x)�u+(g(x) − g(x0))u0. (64)

Substituting (64) into (63) yields

� = (
ḡ−1g(x)−I

)
�u+(

ḡ−1g(x)−I
)
g−1(x)r1+r2 (65)

where r1 := f(x) − f(x0) + (g(x)−g(x0)) u0 and r2 :=(
g−1(x0)−g−1(x)

)
ẋ2,0+g−1(x)f(x)−g−1(x0)f(x0).

For a sufficiently small sampling period, r1 and r2 are all
bounded, i.e., there exist r1, r2 ∈ R>0 such that 	r1	 ≤ r1 and
	r2	 ≤ r2 [45].

According to Property 1 and the fact that g−1(x) =
M(q), one obtains 	g−1(x)	 ≤ μ2. Moreover, as stated in
Section II-B, ḡ is selected such that 	I − g(x)ḡ−1	 ≤ δ < 1.
Thus,

	�	 ≤ 	(ḡ−1g(x) − I
)		�u	

+ 	(ḡ−1g(x) − I
)		g−1(x)		r1	 + 	r2	

≤ δ	�u	 + δμ2r1 + r2. (66)

For IMPC, �u is obtained solving the constrained OCP (18)
such that u ∈ U. As stated in Section III-A, 	u	 ≤ umax. Thus,
�umax := max	�u	 = max	u − u0	 ≤ 2 umax. Therefore, the
TDE error is bounded by

	�	 ≤ 2δumax + δμ2r1 + r2 := 
∗. (67)

APPENDIX C
DEFINITIONS AND CRITERIA FOR ISS

Definition 2 [30], [52]: Consider a system given by

x(k+1) = F(x(k), w(k)) (68)

where x(k) ∈ Rn and w(k) ∈ Rm (m ≤ n) are the state and
disturbance of the system (68), respectively. Besides, there
exists a constant γ ∈ R>0 such that 	w(k)	 ≤ γ for all k.
Then, the system (68) is input-to-state stable if there exist
β(·, ·) ∈ KL and η(·) ∈ K such that

	x(k)	 ≤ β(x(0), k) + η(γ ) (69)

where x(0) is the initial value.
Definition 3 [30], [52]: A continuous function V (·) is an

ISS Lyapunov function for the system (68) if there exist
functions α1(·), α2(·), α3(·) ∈ K∞ and ϕ(·) ∈ K such that

α1(	x(k)	) ≤ V (x(k)) ≤ α2(	x(k)	) (70)

V (F(x(k), w(k)) − V (x(k)) ≤ −α3(	x(k)	) + ϕ(γ ) (71)

where ϕ(γ ) is the cumulative error bound.
Proposition 1 [30], [52]: If the system (68) admits an ISS

Lyapunov function, then it is ISS.
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