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Safety-Augmented Operation of Mobile Robots

Using Variable Structure Control
Azad Ghaffari and Seyed Amir Hosseini Dastja

Abstract—The design process and complexity of existing safety
controls are heavily determined by the geometrical properties of
the environment, which affects the proof of convergence, design
scalability, performance robustness, and numerical efficiency of
the control. Hence, this paper proposes a variable structure
control to isolate the environment’s geometrical complexity from
the control structure. A super-twisting algorithm is used to
achieve accurate trajectory tracking and robust safety control.
The safety control is designed solely based on distance measure-
ment. First, a nominal safety model for obstacle avoidance is
derived, where realistic system constraints are considered. The
nominal model is well-suited for safety control design for obstacle
avoidance, geofencing, and border patrol with analytically proven
stability results. The safety control utilizes distance measurement
to maintain a safe distance by compensating the robot’s angular
velocity. A supervisory logic is constructed to guarantee the
overall stability and safety of the system. Operational safety and
precision tracking are proven under parametric uncertainty and
environmental uncertainty. The proposed design is modular with
minimal tuning parameters, which reduces the computational
burden and improves the control scalability. The effectiveness of
the proposed method is verified against various case studies.

I. INTRODUCTION

Obstacle avoidance is an integral part of safety control

for nonholonomic mobile robots, self-driving cars, unmanned

aerial vehicles, and surface vehicles [1]–[6]. The literature

includes various techniques such as potential field [7]–[12],

collision cone [13]–[17], path planning [18]–[21], model pre-

dictive control [22]–[25], and sliding-based method [26], [27].

Among early works, one can refer to the papers by Khatib [28],

Krogh [29], Aggarwal, Leitmann, Skowronski [30], [31], and

Borenstein and Koren [32]. Recent developments include the

usage of barrier certificates and control barrier functions to

design safety controllers [33]–[38].

Control design for autonomous vehicles needs to satisfy at

least two objectives, such as trajectory tracking and obstacle

avoidance. Thus, methods based on artificial potential field,

kinodynamic motion planning, model predictive control, and

barrier functions have been used in safety control design.

However, it is known that the number, distribution, and

shape of obstacles and mobile robots affect the analytical

and computational complexity of the control design. For

example, geometrical properties and spatial distribution of the

obstacles directly affect the control structure and dramatically

complicate proof of global convergence for such algorithms.

Azad Ghaffari is with the Department of Mechanical Engineering, Wayne
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Popular methods such as artificial potential field and barrier

functions require careful modeling of each object in the

operational environment as a field or barrier function. In the

case of artificial potential fields, the designer must foresee

trap situations. On the other hand, barrier certificates must

satisfy Lyapunov-like conditions, which render the application

of the method very limited. Moreover, methods based on

kinodynamic motion planning do not lead to exact solutions

and are computationally intensive.

Sliding-based methods have been proven effective in the

design of safety-augmented control of autonomous robots [2],

[12], [26], [27]. Therefore, this paper provides control-oriented

models and standardized design instructions based on a super-

twisting algorithm to obtain a variable structure control with

guaranteed safety features. The proposed design isolates the

properties of the environment from the control design. The

proposed control has a predefined structure with minimal

control parameters, which conveniently handles multiple safety

control problems, including obstacle avoidance, geofencing,

and border patrol. The super-twisting algorithm is chosen as

the primary control module to achieve precision trajectory

tracking and safe operation. The super-twisting algorithm is

robust, guarantees finite-time convergence, has a minimal set

of parameters with explicit stability bounds, and features

smooth transient and perfect tracking behavior.

This work focuses on nonholonomic mobile robots, which

are driven by a differential drive. It is assumed that the thrust

and torque are limited, and the linear velocity is positive. Thus,

the robot always moves forward. The angular velocity, on the

other hand, can take positive or negative values. Feedback lin-

earization and the super-twisting algorithm are used to achieve

accurate, robust trajectory tracking. The reference trajectory

is known a priori and may cross obstacles or other robots.

Also, in geofencing applications where a virtual safety net

is introduced, the reference trajectory may leave the geofence

for some periods. Moreover, only distance measurements, from

obstacles, robots, or geofence boundaries are available to each

mobile robot.

A framework based on distance measurement is presented

for control design with augmented safety. Two system mod-

els have been obtained, one for trajectory tracking and one

for safety control. The model used to design the trajectory

tracking control is obtained using feedback linearization, with

maximized control actuation along the transformed axes. Then,

the super-twisting algorithm is used to guarantee precision

trajectory tracking. Convergence is proven analytically. The

safety control is designed using the dynamic model of dis-

tance variation. Actual system constraints, including actuator
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Fig. 1. Nonholonomic mobile robot and its reference frames

saturation, bounded velocity, and environmental characteris-

tics, are used to obtain a nominal model suitable for safety

control. The super-twisting algorithm compensates the effect

of system uncertainties and environmental disturbances and

maintains a safe distance between the robot and stationary

or moving obstacles. When the safety control is active, the

linear reference speed is modified such that the robot shadows

the lead point of the reference trajectory. For small obstacles,

however, the linear speed can be set to a fixed value.

A supervisory algorithm is designed to schedule the switch-

ing logic between trajectory tracking and safety control. The

switching logic uses distance measurements, current robot

position, and reference trajectory data to determine the time

instants to switch back and forth between the two control mod-

ules. The supervisory algorithm handles obstacle avoidance

and geofencing applications. The obstacle avoidance covers

stationary and moving obstacles. The safety control can be

used for border patrol applications.

The proposed modular safety control dramatically improves

control scalability by utilizing the super-twisting algorithm.

Regardless of the number and planar distribution of the

obstacles or complexity of the reference trajectory, the pro-

posed algorithm maintains the safe trajectory tracking for

the nonholonomic mobile robot. The algorithm’s analytical

complexity and required processing power are linearly scaled

when the number of obstacles increases in the experiment.

The rest of this paper is presented in the following order.

Section II presents preliminary and system modeling. System

linearization and allowable control bounds are obtained in

Section III. Trajectory tracking is explained in Section IV.

The safety control is presented in Section V. The supervisory

algorithm is discussed in Section VI. Section VII presents nu-

merical simulations to verify the effectiveness of the proposed

method. Section VIII concludes the paper.

II. PRELIMINARY AND SYSTEM MODELING

The nonholonomic mobile robot is driven by a differential

drive comprised of two identical electric wheels. Fig. 1 shows

the schematic of the robot and inertial and body reference

frames. The body reference frame is attached to the robot at

the center of mass. The heading angle is θ, which is measured

with respect to the x-axis. The kinematic equations of the

robot are given as

ẋ= v cos θ (1)

ẏ= v sin θ (2)

θ̇= ω, (3)

where p = [x y]T is the robot’s position in the inertial

reference frame, θ is the heading angle, v is linear velocity,

and ω is angular velocity. The force and torque generated by

the electric wheels control the linear and angular velocity of

the robot. Assuming that the left and right wheel’s movement

does not affect each other, one can decouple the dynamic

equation of the left and right wheels. Also, the effect of friction

and wheel slip on the dynamic model is negligible. Since the

mobile robot is symmetric with identical left and right wheels

and motors, it is reasonable to assume that both wheels have

the same dynamic equation as shown in the following

v̇R =−avR + buR +∆R (4)

v̇L =−avL + buL +∆L, (5)

where a and b are positive constants, and vR, vL, uR, and

uL are the right wheel speed, left wheel speed, right motor

voltage, and left motor voltage, respectively. Also, ∆R and

∆L are perturbation terms representing model uncertainty

and external disturbance for the right and left wheels. The

perturbation terms are bounded and Lipschitz continuous. The

Robot’s linear and angular velocity is related to the wheels’

velocity through the following equations

v =
(

vR + vL
)

/2 (6)

ω =
(

vR − vL
)

/d, (7)

where d is the distance between the center of the wheels. Thus,

the dynamic equations governing linear and angular velocity

are obtained as

v̇ =−av + buv +∆v (8)

ω̇ =−aω + buω +∆ω, (9)

where

uv =
(

uR + uL
)

/2 (10)

uω =
(

uR − uL
)

/d (11)

∆v =
(

∆R +∆L

)

/2 (12)

∆ω =
(

∆R −∆L

)

/d, (13)

where ∆v and ∆ω are bounded and Lipchitz continuous. Thus,

the dynamic model of the mobile robot can be written as the

following












ẋ
ẏ

θ̇
v̇
ω̇













=













v cos θ
v sin θ
ω

−av + buv +∆v

−aω + buω +∆ω













. (14)

The voltage of the electric wheels are bounded as |ui| ≤ U
for i = R,L, where 0 < U < a2d/b. Using (10) and (11),

one gets

|uv| ≤U (15)

|uω| ≤ 2U/d. (16)

Consider the nominal model, where ∆v = ∆ω = 0 in (14).

Hence, if the initial condition satisfies |v(0)| ≤ bU/a and
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|ω(0)| ≤ 2bU/(ad), then one can show that

|v(t)| ≤ bU/a (17)

|ω(t)| ≤ 2bU/(ad), (18)

for all t > 0.

The model of mobile robot for safety control and trajectory

tracking can be transformed into combination of first- and

second-order linear differential equations with perturbations.

Thus, one can use the super-twisting algorithm (STA) to design

the trajectory tracking and safety control. The design steps of

the STA is explained. Consider the following system

ż1 = z2
ż2 = w +∆(t),

(19)

where ∆(t) represents perturbations, including external dis-

turbances and model uncertainties, which may be functions

of time t. Assume ∆(t) is globally bounded and Lipschitz

continuous, i.e.,

|∆(t)| ≤ M∆ (20)
∣

∣

∣
∆̇(t)

∣

∣

∣
≤ L∆, (21)

where M∆ and L∆ are some known positive constants. The

control objective is to track a reference value, zr, which is

enough smooth. Denote the error variables as e1 = z1 − zr
and e2 = z2 − żr. Hence, the error dynamics are obtained as

ė1 = e2
ė2 = w − z̈r +∆(t).

(22)

Consider a sliding surface as σ = e2 + λe1, where λ > 0.

The super-twisting algorithm is then designed as

w = weq − k1
√

|σ|sign(σ)− k2

∫ t

0

sign(σ)dτ, (23)

where k2 > L∆, k1 > 2
√
k2 [39], [40], and the equivalent

control, weq, is obtained from σ̇ = 0 as

weq = z̈r − λe2. (24)

Moreover, if |w| ≤Mw, one can use an integrator anti-windup

to improve the transient behavior of the STA.

III. LINEARIZATION AND ALLOWABLE CONTROL BOUNDS

The first control objective is to track a reference trajectory

accurately. The super-twisting algorithm guarantees robust

tracking performance with desirable transient and steady-

state performance. First, the system dynamics are linearized

using feedback linearization. Denote the following change of

variables

[η1 ξ1]
T

= [x y]
T
+Rθ [L 0]

T
(25)

[η2 ξ2]
T

= Rθ [v Lω]
T
, (26)

where L > 0 is a positive constant, and Rθ is the rotation

matrix given as

Rθ =

[

cos θ − sin θ
sin θ cos θ

]

. (27)

Also, two new control inputs uη and uξ are defined as the

following
[

uη
uξ

]

= Rθ

[

−Lω2 − av + buv
vω − aLω + bLuω

]

. (28)

Applying (25)–(26), with (28) as the new control inputs, the

original dynamic equation (14) is transformed into












η̇1
η̇2
ξ̇1
ξ̇2
θ̇













=













η2
uη +∆η

ξ2
uξ +∆ξ

(ξ2 cos θ − η2 sin θ) /L













, (29)

where
[

∆η

∆ξ

]

= Rθ

[

∆v

L∆ω

]

. (30)

Note that the perturbation terms are bounded and Lipschitz

continuous. The transformed system is comprised of two

double-integrators, and the angle appears as a zero dynamic.

To convert (29) to the original dynamic equations (14), one

can use the following inverse transformation

[x y]
T

= [η1 ξ1]
T −Rθ [L 0]

T
(31)

[v Lω]
T

= R−1
θ [η2 ξ2]

T
(32)

[

uv
Luω

]

=
1

b

[

av + Lω2

aLω − vω

]

+
1

b
R−1

θ

[

uη
uξ

]

. (33)

Moreover, one can find the allowable range of the trans-

formed control inputs for the nominal model, where ∆η =
∆ξ = 0. Denote [w1 w2]

T = R−1
θ [uη uξ]

T . Thus, one can

use (8) and (9) to transform (33) to the following
[

v̇
Lω̇

]

=

[

Lω2

−vω

]

+

[

w1

w2

]

. (34)

Consider |w1| ≤ M1 and |w2| ≤ M2, where M1 and M2

are positive constants. It is desirable to find M1 and M2 such

that the acceleration bounds are satisfied. The bounds of the

right-hand side of (34) are obtained as

−M1 ≤ w1 + Lω2 ≤M1 +
4Lb2

a2d2
U2 (35)

−M2 −
2b2

a2d
U2 ≤ w2 − vω ≤M2 +

2b2

a2d
U2. (36)

Also, the allowable bounds of the left-hand side of (34) are

obtained as |v̇| ≤ 2bU and |Lω̇| ≤ 4LbU/d. Thus, the

following must be satisfied

M1 ≤ 2bU − 4Lb2

a2d2
U2 (37)

M2 ≤ 4Lb

d
U − 2b2

a2d
U2. (38)

To guarantee existence of positive M1 and M2, the following

must hold
bU

2a2
< L <

a2d2

2bU
. (39)

Note that since U < a2d/b, there is always a value for L that

satisfies (39). Moreover, note that ‖R−1
θ ‖∞ ≤ 1. Thus, the

bounds on uv and uω are satisfied if the following holds
∥

∥

∥
[uη uξ]

T
∥

∥

∥

∞

≤ U ′(L), (40)
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where

U ′(L) = min

{

2bU − 4Lb2

a2d2
U2,

4Lb

d
U − 2b2

a2d
U2

}

. (41)

Note that L = d/2 satisfies (39) and gives the maximum

bounds of the transformed control inputs as

U ′(d/2) = 2bU

(

1− bU

a2d

)

. (42)

The following lemma summarizes the discussion on the con-

trol bounds.

Lemma 1: Consider the system (14), where the following

hold |uv| ≤ U , |uω| ≤ 2U/d, |v(0)| ≤ bU/a, ω(0) ≤
2bU/(ad), where 0 < U < a2d/b. Then, |v(t)| ≤ bU/a
and |ω(t)| ≤ 2bU/(ad) for all t > 0 for the nominal system.

Moreover, if (39) and (40) hold for the transformed inputs, the

acceleration bounds of the original system (14) are satisfied.

Also, L = d/2 maximizes the bounds of uη and uξ, where

the maximum bound is given by (42).

IV. TRAJECTORY TRACKING

The following explains the steps to design a trajectory

control using the super-twisting algorithm. The reference tra-

jectory is constructed such that the nonholonomic condition is

satisfied, i.e.,

ẋr = vr cos θr (43)

ẏr = vr sin θr (44)

θ̇r = ωr, (45)

where the proper selection of vr and ωr, within the allowed

bounds, creates a variety of reference trajectories. First, the

reference values for the transformed dynamics are calculated

using (43)–(45) and (25)–(26)

[ηr1 ξr1]
T

= [xr yr]
T
+Rθr [L 0]

T
(46)

[ηr2 ξr2]
T

= Rθr [vr Lωr]
T
. (47)

Denote the error variables as η̃i = ηi − ηri and ξ̃i = ξi − ξri
for i = 1, 2, and θ̃ = θ − θr. Thus, the error dynamics are

obtained as
















˙̃η1
˙̃η2
˙̃
ξ1
˙̃
ξ2
˙̃
θ

















=













η̃2
uη − η̇r2 +∆η

ξ̃2
uξ − ξ̇r2 +∆ξ

Ψ













, (48)

where

Ψ=
(ξr2 + ξ̃2) cos(θr+θ̃)−(ηr2 + η̃2) sin(θr+θ̃)

L
−ωr,(49)

where the bound of the control inputs is given by (40). In the

subsequent analysis L = d/2.

Using the presented method in Section II, one can design

the super-twisting algorithm for the error dynamics (48). The

sliding surfaces are designed as

sq = q̃2 + cq q̃1, cq > 0, q = η, ξ. (50)

The super-twisting algorithm guarantees that sq goes to zero

in finite time, which means the following hold

[η̃1 η̃2]
T

= [0 0]
T

(51)
[

ξ̃1 ξ̃2

]T

= [0 0]
T
. (52)

Therefore, at the equilibrium point, the zero dynamic equation

transforms to

˙̃
θ =

ξr2 cos(θr + θ̃)− ηr2 sin(θr + θ̃)

L
− ωr. (53)

Using (47), one can expand and simplify (53) to arrive at the

following

˙̃θ =
Lωr cos θ̃ − vr sin θ̃

L
− ωr. (54)

Denote φ = arctan (vr/(Lωr)). Thus, (54) is further simpli-

fied as

˙̃θ =

√

L2ω2
r + v2r
L

(

cos
(

θ̃ + φ
)

− cosφ
)

(55)

which has two equilibrium points at θ̃eq = 0,−2φ. Applying

the Jacobian linearization, one gets

˙̃θ =

{

−vrθ̃/L, if θ̃eq = 0

vr θ̃/L, if θ̃eq = −2φ
. (56)

Also, note that vr is a positive real value. Hence, the equi-

librium θ̃eq = −2φ is unstable. On the other hand, the

equilibrium θ̃eq = 0 is asymptotically stable which means that

the actual heading angle converges to the reference heading

angle. Moreover, it immediately follows that Rθ = Rθr since

θ = θr. Hence, one can use (51)–(52), (25)–(26), and (46)–

(47) to prove that [x y]T = [xr yr]
T and [v ω]T = [vr ωr]

T

at the equilibrium. Thus, the proposed controller features

perfect trajectory tracking.

The following proposition summarizes the control design

and stability results.

Proposition 1: Consider that Lemma 1 holds for the mobile

robot system given by (14). The reference trajectory is given

by (43)–(45), where vr > 0. Consider the nonlinear transfor-

mation given by (46) and (47), where L = d/2. The sliding

surfaces are given by (50), where cη = cξ > 0. Then, the

STA asymptotically stabilizes the origin of (48) and the robot

accurately tracks the reference trajectory.

In the next section, the problem of safety control is for-

mulated using only distance measurement. A nominal safety

model is obtained, and then the super-twisting algorithm is

used to design the safety control.

V. SAFETY CONTROL

Recall the dynamic equation of the mobile robot given

by (14). As the robot tracks a reference trajectory in an

uncontrolled environment, stationary and moving objects may

appear on the robot’s path. Also, in geofencing applications,

it is desirable to maintain the robot inside a virtual net even

if the reference trajectory leaves the geofence. In border

patrol applications, the robot is required to maintain a certain

distance from the boundary of an arbitrary set. In all of these

applications, the robot must maintain a safe distance with an
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δo

θ βo

δ

[

x
y

]

[

xo
yo

]

do

d̄o

Obstacle

Robot

1

Fig. 2. An obstacle avoidance scenario is considered, where do is the closest
distance from the robot to the obstacle. It is desirable to keep the robot’s
distance at d̄o from the obstacle.

object or reroute its path to maintain a safe distance with

the set boundary. Thus, in the subsequent analysis, a nominal

model is obtained to facilitate safety control based on distance

measurements. Then, the super-twisting algorithm is used to

design the safety control.

Consider a mobile robot given by (14), where the robot’s

position is p = [x y]T . Also, as shown in Fig. 2, the

closest point of the obstacle to the mobile robot is shown

by po = [xo yo]. Since the location of po changes when the

robot moves, one can calculate the translational and rotational

velocity of po using the following relationships

vo =
√

ẋ2o + ẏ2o (57)

ωo =
ÿoẋo − ẍoẏo
ẋ2o + ẏ2o

. (58)

As shown later, the knowledge of vo and ωo is not required

for the control design. However, the upper bound of vo and ωo

is required to prove the stability of the safety control. Also,

since vo and ωo are constructed using (57) and (58), then the

following holds for po

ẋo = vo cos θo (59)

ẏo = vo sin θo (60)

θ̇o = ωo. (61)

Denote the length of pop as do and its angle with the

horizontal axis as βo calculated as

do =

√

(x− xo)
2
+ (y − yo)

2
(62)

βo = arctan

(

y − yo
x− xo

)

. (63)

Denote δ = θ−βo and δo = θo−βo. Note that θ−θo = δ−δo.

Next, take the derivative of do and βo with respect to time.

ḋo = (v cos θ − vo cos θo)
x− xo
do

+

+(v sin θ − v sin θo)
y − yo
do

= (v cos θ − vo cos θo) cosβo +

+(v sin θ − v sin θo) sinβo

= v cos δ − vo cos δo (64)

β̇o = (v sin θ − vo sin θo)
cosβo
do

−

− (v cos θ − vo cos θo)
sinβo
do

=
v

do
sin δ − vo

do
sin δo. (65)

Taking the time derivative of ḋo gives

d̈o = v̇ cos δ − vδ̇ sin δ − v̇o cos δo + voδ̇o sin δo. (66)

Note that δ̇ = ω − β̇o and δ̇o = ωo − β̇o, where β̇o is given

by (65). Also, v̇ is given by (14). Thus, one can write (66) as

the following

d̈o =
(

− av + buv +∆v

)

cos δ − vω sin δ + voωo sin δo +

+ β̇o
(

v sin δ − vo sin δo
)

− v̇o cos δo

=
(

− av + buv
)

cos δ − vω sin δ +
v2

do
sin2 δ +∆o, (67)

where

∆o = ∆v cos δ + voωo sin δo +
v2o
do

sin2 δo −

− 2vvo
do

sin δ sin δo − v̇o cos δo. (68)

Note that the robot linear and angular velocity are bounded.

Also, assuming that the safe boundary around the obstacle is

smooth enough such that (57) and (58) is bounded and smooth

enough, then one can find positive values Lo1 and Lo2 such

that the following is satisfied

|∆o| ≤ Lo1, |∆̇o| ≤ Lo2. (69)

The safety control is active when the robot’s distance to the

obstacle is within a determined safety bound, i.e.,

d̄o − ǫo ≤ do ≤ d̄o + ǫo, (70)

where 0 < ǫo ≪ d̄o. Also, the angle δ is either π/2
for counterclockwise turns or −π/2 for clockwise turns.

In the subsequent analysis, the counterclockwise scenario is

addressed, i.e.,

π/2− ǫδ ≤ δ ≤ π/2 + ǫδ, (71)

where 0 < ǫδ ≪ π/2. Relationships between angles and

distances are shown in Fig. 2. Using (70) and (71), one can

accurately approximate (67) as the following

d̈o = −vω + v2/d̄o +∆′

o, (72)

where ∆′

o = ∆o +∆m, where ∆m accounts for the effect of

model approximation, where |∆′

o| < L′

o1, |∆̇′

o| < L′

o2, where

L′

o1 and L′

o2 are positive constants. Denote ζ1 = do − d̄o



6

and ζ2 = ζ̇1, where d̄o is the safe distance from the obstacle.

Hence, the nominal safety model is given as












ζ̇1
ζ̇2
ω̇
v̇

δ̇













=













ζ2
−vω + v2/d̄o +∆′

o

−aω + buω
−av + buv

ω − (v sin δ − vo sin δo) /
(

d̄o + ζ1
)













. (73)

During the safety control phase, the translational speed is

set to the reference value, vr, and the angular velocity is

compensated to maintain the safe distance at d̄o. To design

the safety control, first, the backstepping technique is used to

drive ζ1 and ζ2 to zero. Denote ω̃ = ω − ω̂r, ṽ = v − vr, and

δ̃ = δ − π/2, where

ω̂r = v/d̄o − ûζ/v. (74)

Also, define the control inputs as

uω =
(

−cωω̃ + aω + ˙̂ωr

)

/b (75)

uv = (−cvṽ + av) /b, (76)

where cv > 0 and cω > 0. Thus, the safety model is updated

as














ζ̇1
ζ̇2
˙̃ω
˙̃v
˙̃
δ















=













ζ2
ûζ +∆′′

o

−cωω̃
−cvṽ
Φ













, (77)

where

Φ = ω̂r + ω̃ − (vr + ṽ) cos δ̃ − vo sin δo

d̄o + ζ1
, (78)

where ∆′′

o = ∆′

o − vω̃, where |∆′′

o | < L′′

o1 and |∆̇′′

o | < L′′

o2,

where L′′

o1 and L′′

o2 are positive constants. Note that ω̂r is an

auxiliary input, which must satisfy (18). Thus, using (74), one

arrives at

|ω̂rv| ≤ |v2/d̄o|+ |ûζ|, (79)

where

|ω̂rv| − |v2/d̄o| ≤ 2b2U2/(a2d)− b2U2/(a2d̄o). (80)

Therefore, the bounds on ûζ are obtained as

|ûζ | ≤ (bU/a)
2 (

2/d− 1/d̄o
)

, (81)

where d̄o > d/2, which verifies the fact that the safe distance,

measured from the robot’s center of mass, must be larger

than the wheels’ distance from the robot’s center of mass.

Otherwise, the robot will collide with the obstacle.

The super-twisting algorithm is used to design ûζ . First, the

sliding surface is designed as

sζ = ζ2 + cζζ1, cζ > 0. (82)

Next, the super-twisting algorithm proves that sζ goes to zero

in finite time which in turn proves that ζ1 and ζ2 converge to

zero asymptotically. Hence, the robot is maintained at the safe

distance, d̄o, from point po.

0
t

δ̃
π/2

−π/2

1

Fig. 3. Variation of δ̃ over time. The safety algorithm maintains δ̃ ≈ 0.

Furthermore, the error system (77) shows that ω̃ and ṽ con-

verge to zero. Assume that the obstacle is a single stationary

point, i.e., vo = 0. Thus, the zero dynamic can be written as

˙̃
δ = ω̂r −

vr

d̄o
cos δ̃. (83)

The behavior of (83) depends on the sign of ω̂r. If the robot is

within the avoidance distance and do > d̄o, then −π/2 < δ̃ <
0. Thus, the super-twisting algorithm creates enough positive

angular velocity to drive the distance toward d̄o. Therefore,

δ̃ → 0. On the other hand, if do < d̄o, then 0 < δ̃ < π/2. Thus,

the super-twisting algorithm creates enough negative angular

velocity to drive the distance to d̄o, and thus δ̃ → 0. The super-

twisting algorithm continuously modifies the angular velocity

to maintain the robot at the safe distance. Thus, as shown in

Fig. 3, the two behaviors always are present, which means the

zero dynamic is stable in an average sense, and thus δ̃ ≈ 0. A

similar argument can be used for the case when the obstacle is

moving, or the problem of border patrol is addressed. Similar

results also can be obtained for the case of clockwise safety

control.

The following proposition summarizes the results of coun-

terclockwise safety control.

Proposition 2: Consider the mobile robot modeled by (14),

where ∆v and ∆ω are bounded and Lipschitz continuous.

Assume the robot is in the vicinity of the avoidance distance,

i.e., |do− d̄o| ≤ ǫo, where 0 < ǫo ≪ do. Moreover, the closest

point of the obstacle to the robot changes as (59)–(61), where

vo and ωo are bounded and enough smooth. The control law

is given as (74)–(76), where ûζ is designed using the super-

twisting algorithm. Then, the origin of the error dynamics (77)

is stable and the robot maintains safe distance d̄o with the

obstacle.

VI. SUPERVISORY ALGORITHM

The proposed control algorithm comprises trajectory track-

ing and safety control, where the stability of each module

is separately proven. This section presents the supervisory

algorithm that provides the switching logic between the two

modules. The proposed supervisory algorithm can handle ob-

stacle avoidance of stationary and moving objects, geofencing,

and border patrol applications.

The mobile robot dynamic equation is given by (14). Denote

X = [x y θ v ω]T , where X ∈ X , where X ⊆ R
5. The

reference trajectory is defined as Xr = [xr yr θr vr ωr]
T .

Note that the reference trajectory satisfies the nonholonomic
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condition. A set of initial conditions X0 ⊂ X and a set of

unsafe states Xu ⊂ X are given. The safety is achieved if

all the state trajectories initiated inside X0 avoid the unsafe

set for all t > 0. The avoidance zone of an obstacle is a

strip of a predefined width around the obstacle. In keep-in

geofencing applications, the geofence’s avoidance zone is a

strip of predefined width around the inner border. The width

of the avoidance zone may differ between obstacles. The safe

set of the mobile robot is bound by the geofence borders and

excludes the border’s avoidance zone and all obstacles and

their avoidance zones.

It is desirable to design the supervisory algorithm such that

the robot accurately tracks the reference trajectory inside the

safe set and successfully avoids the unsafe set. Consider the

following assumptions.

Assumption 1: The system starts from a safe state.

Assumption 2: The stationary obstacles are far apart with

non-intersecting avoidance zones. Also, the robot can navigate

safely through spaces between neighboring obstacles.

Assumption 3: At any given instant, no more than two

robots are on a collision path.

Assumption 4: The obstacle dimensions are comparable to

the robot dimensions.

Consider counterclockwise safety control is implemented in

the following discussion. Similar results can be produced for

clockwise safety control. The position error in the robot body

frame is obtained as

[ex ey]
T
= Rθ [xr − x yr − y]

T
, (84)

where Rθ is the rotation matrix given by (27). Note that ey
is the projection of position error vector along yb-axis. See

Fig. 4.

Since the system initially is at a safe state, {X,Xr} ⊂ X0,

the trajectory tracking algorithm is active when the experiment

starts. If the reference trajectory and robot are in the vicinity of

an obstacle or another robot, {X,Xr} ⊂ Xu, the safety control

is activated. The safety control may be deactivated when the

reference trajectory leaves the avoidance zone. However, the

robot’s position relative to the reference trajectory affects the

decision to reactivate the trajectory tracking.

As Fig. 4 shows, the reference trajectory leaves the avoid-

ance zone at point pr1 while the robot is at point p1. One

can observe that the straight path to the reference trajectory

intersects with the avoidance zone, i.e., ey > 0. Thus, if

the safety control is deactivated, the robot may go back

inside the avoidance zone. Hence, excessive switching between

safety control and trajectory tracking may worsen system

performance and harm the actuators. On the other hand,

when the robot arrives at point p2, where the corresponding

reference point is at pr2, one can observe that the straight

line between the robot and reference point no longer crosses

the avoidance zone. Thus, ey ≤ 0 indicates that if the safety

control is deactivated, the robot leaves tangent to the avoidance

boundary. Thus, the safety control can be turned off when the

reference trajectory is outside the avoidance region and ey ≤ 0.

Hence, excessive switching is avoided. If the clockwise safety

control is implemented, ey ≥ 0 deactivates the safety control.

xb
yb

xb

yb

p1

p2

pr1

pr2

d̄o

d̄o−ǫo

d̄o + ǫo

Obstacle

1

Fig. 4. Obstacle avoidance scenario. The reference trajectory is shown in
dashed black. The robot moves from north-east to south-west on the solid blue
curve. If the trajectory control activated at p1, excessive switching happens
between trajectory tracking and safety control. The safe distance is d̄o and
0 < ǫo ≪ d̄o. The green strip is the avoidance zone.

A0start

A1A2

Xr ∈ Xu

and
X ∈ Xu

Xr ∈ X0 or X ∈ X0

Xr ∈ X0
Xr ∈ Xuey > 0

ey ≤ 0

1

Fig. 5. State machine for obstacle avoidance. The trajectory control is active
in state A0, and the safety control is active in states A1 and A2. If conditions
ey > 0 and ey ≤ 0 are replaced with ey < 0 and ey ≥ 0, respectively, the
logic can be used for keep-in geofencing or border patrol.

The supervisory algorithm for obstacle avoidance is shown

in Fig. 5. Similar results can be produced for clockwise safety

control. If the obstacle is oversize, the obstacle avoidance

problem can be treated as a geofencing problem. In keep-

in geofencing, it is desirable to maintain the robot inside

the safe zone at a safe avoidance distance with the border

regardless of the changes in the reference trajectory. The safe

zone comprises a strip of width d̄o around the inner border. If

the conditions ey > 0 and ey ≤ 0 in Fig. 5 are replaced with

ey > 0 and ey ≥ 0, respectively, one obtains the supervisory

algorithm with counterclockwise safety control for keep-in

geofencing and border patrol applications.

VII. CONTROL IMPLEMENTATION AND CASE STUDIES

Four case studies are designed to verify the effectiveness of

the proposed safety control, including a) avoiding stationary

obstacles, b) safe passage of colliding robots, c) keep-in

geofencing, and d) border patrol.

The trajectory tacking control is the same for the four case

studies as given in the following

uq = ueq − kq1

√

|sq|sign(sq)− kq2

∫ t

0

sign(sq)dτ, (85)



8

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

1.5
Ref. trajectory
Actual trajectory
Avoidance zone
Initial position

(b)

0 5 10 15 20 25 30 35 40
Time (s)

-0.7

-0.3

0

0.3

0.7

C
on

tr
ol

 in
pu

t

Safety control
Right wheel
Left wheel
Control bound

Fig. 6. (a) The robot accurately tracks the reference trajectory outside the
avoidance zone and successfully avoids the stationary obstacles. Solid blue is
the center of mass of the robot. (b) Evolution of control commands versus
time. The safety control is active in the green area.

where sq = q̃2 + cq q̃1 for q = η, ξ. The equivalent control is

given as

ueqq = q̈r − cq q̃2, q = η, ξ. (86)

The control parameters are set as kq1 = 2, kq2 = 0.5, cq = 10
for q = η, ξ. Note that L = d/2. Thus, one can use (40) and

(42) to obtain the control bounds as |uq| ≤ Uq, where

Uq = 2bU

(

1− bU

a2d

)

, q = η, ξ, (87)

where a = b = 3.85, d = 0.235 m, U = 0.7 V. The saturated

control command is then calculated as usatq = Uqsat (uq/Uq)
for q = η, ξ, where the saturation function is defined as

sat(ψ) =

{

ψ if |ψ| < 1
sign(ψ) if |ψ| ≥ 1

. (88)

Since the control (85) includes an integrator and the control

bounds are know, one can add an integrator anti-windup to

improve the closed-loop performance of the system. Next, one

can use (33) to calculate uv and uω from usatη and usatξ , where

|uv| ≤ U , uω ≤ Uω, where Uω = 2U/d. Hence, the control

command of the left and right wheels are obtained as

[

uR
uL

]

=

[

1 d/2
1 −d/2

] [

Usat (uv/U)
Uωsat (uω/Uω)

]

. (89)

Because of the actuator limitation, the saturated command

signals are applied to the wheels, i.e., Usat (uR/U) and

Usat (uL/U).

A. Avoiding Stationary Obstacles

Assume that the robot tracks a reference trajectory in

an environment where stationary obstacles are present. The

reference trajectory may cross the obstacles. The safety control

is given as (75)–(76), where ω̂r is given by (74). However,

as explained earlier in Fig. 3, δ̃ does not settle at a fixed

value, which means ω̂r features continuous change. Thus, to

improve performance robustness, a modified version of uω is

implemented as the following

uω = (−cωω̃ + aω) /b, (90)

where ω̃ = ω − ω̂r, where ω̂r is given by (74). The super-

twisting algorithm is used to design ûζ as

ûζ = −cζζ2 − kζ1

√

|sζ |sign(sζ)− kζ2

∫ t

0

sign(sζ)dτ, (91)

where sζ = ζ2+ cζζ1. The control parameters are designed as

kζ1 = 0.8, kζ2 = 0.04, cζ = 1, cu = cω = 5. The bounds of

ûζ are given by (81). Thus, an integrator anti-windup can be

added to the safety algorithm to further improve the control

performance. Also, to incorporate the control saturation, one

can modify (74) as

ω̂r = v/d̄o − sat (ûζ/Uζ) /v, (92)

where Uζ = (bU/a)
2 (

2/d− 1/d̄o
)

, where d̄o is the safe

distance.

Two stationary obstacles are considered at positions p1 =
[0 1]T and p2 = [−1 0]T , where the safe distance is 0.35 m for

p1 and 0.25 m for p2. The robot is located at p0 = [0 −0.5]T .

As shown in Fig. 6(a), the robot accurately tracks the reference

trajectory and successfully avoids the two obstacles. The green

circles represent the robot’s actual dimension, and the dashed

red circles are the avoidance zones. Note that the robot is

modeled as a point mass. The solid blue line represents the

center of mass of the robot. The reference velocities are given

as vr = 0.5π m/s and ωr = 0.5π rad/s. The evolution of the

control signals is shown in Fig. 6(b), where the green area

shows the duration where the safety control is active. During

the safety control, vr = 0.5π m/s, and the angular velocity is

manipulated to maintain the safe distance with the obstacle.

B. Safe Passage of Colliding Robots

Consider a situation where two robots are moving on the

same trajectory in the opposite direction. Thus a collision is

inevitable without safety control. Each robot is equipped with

the same obstacle avoidance algorithm designed for avoiding

stationary obstacles. As Fig. 7(a) shows, the robots safely pass

each other. The robots are identical and d̄o = 0.5 m for both

robots. As shown in Fig. 7(b), the safe distance is kept at d̄o,

although the reference trajectories result in a collision. The

initial positions of the robots are [1.4 0]T m and [0 −1.4]T m.

C. Keep-In Geofencing

The proposed algorithm can also handle the problem of ge-

ofencing and border patrol. The trajectory tracking and safety
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Fig. 7. (a) Two robots move on the same trajectory in opposite directions.
The blue robot moves counterclockwise and the green robot moves clockwise.
The proposed algorithm guarantees safe operation. (b) Distance between the
two robots. The robots do not violate the safety distance.
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Fig. 8. The proposed algorithm accurately tracks the reference trajectory
while maintaining the robot at a safe distance inside the geo-fence shown in
solid red.

control have the same structure as the obstacle avoidance,

except cζ = 10, cu = cω = 3. Moreover, performance may be

improved by modifying the linear reference speed during the

safety phase such that the robot shadows the lead point of the

reference trajectory.

For example, for keep-in geofencing application, if the

length of the reference trajectory outside the border, is longer

than the safe border cropped by the reference trajectory, one

can use the following

v̂r = vr cos (θ − θr) , (93)

to modify the linear reference velocity. Providing a general

modification algorithm for the linear reference velocity is

(a)
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15
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Actual trajectory

(b)

0 50 100 150
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0.3

0.4

0.5

0.6

0.7

D
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Safe distance

Fig. 9. (a) The robot performs border patrol with a constant linear velocity
while maintaining a safe distance with the border shown in red. (b) Robot’s
distance from the border. The average robot’s distance from the border is
0.49 m. In 93% of the time, the robot’s distance remains above 0.45 m.

outside the scope of this work.

The geofencing scenario is shown in Fig. 8. Although the

reference trajectory leaves the border, the robot maintains a

safe distance at do = 0.5 m with the border. The linear speed

is updated to keep up with the lead point of the reference

trajectory.

D. Border Patrol

As shown in Fig. 9(a), the safety algorithm used for geo-

fencing can handle border patrol applications, where the linear

speed is fixed at 0.5π m/s. As shown in Fig. 9(b), the

robot’s distance is maintained very close to the safe distance,

d̄o = 0.5 m. In fact, in 93% of the time, the safe distance

remains above 0.45 m. Tighter control bounds can be achieved

by recalibrating the safety control gains, which may cause

control over-actuation. In the case studies, the safety algorithm

uses counterclockwise evasive maneuvers. Similar results can

be produced for clockwise safety control.

VIII. CONCLUSIONS

The proposed variable structure control successfully isolates

environmental properties from the performance criteria. It is

shown that the derived nominal safety model adequately han-

dles various safety-critical scenarios such as collision avoid-

ance and geofencing with minimal information from the envi-

ronment. The control structure comprises trajectory tracking,

safety control, and a supervisory logic. Moreover, the super-

twisting algorithm not only guarantees stability and safety but

also facilitates control implementation. The proposed method
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dramatically simplifies the design steps and reduces the com-

putation burden of the control compared to popular methods

such as potential fields or path planning. Regardless of the

number of obstacles or mobile robots, the algorithm’s core

components remain the same. Control bounds are obtained

for the transformed systems, which facilitate adding features

like integrator anti-windup to improve control performance.

The results of four different case studies, conducted under

realistic system constraints, verified the effectiveness of the

proposed method. Future work extends the proposed method

to unmanned aerial vehicles.
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“Trajectory tracking with collision avoidance for nonholonomic vehicles
with acceleration constraints and limited sensing,” The International

Journal of Robotics Research, vol. 33, no. 12, pp. 1569–1592, 2014.

[13] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments us-
ing velocity obstacles,” The International Journal of Robotics Research,
vol. 17, no. 7, pp. 760–772, 1998.

[14] A. Chakravarthy and D. Ghose, “Obstacle avoidance in a dynamic en-
vironment: A collision cone approach,” IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans, vol. 28, no. 5, pp.
562–574, 1998.

[15] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[16] Z. Qu, J. Wang, and C. E. Plaisted, “A new analytical solution to mobile
robot trajectory generation in the presence of moving obstacles,” IEEE

Transactions on Robotics, vol. 20, no. 6, pp. 978–993, 2004.

[17] J. Alonso-Mora, P. Beardsley, and R. Siegwart, “Cooperative collision
avoidance for nonholonomic robots,” IEEE Transactions on Robotics,
vol. 34, no. 2, pp. 404–420, 2018.

[18] R. Fareh, M. Baziyad, M. H. Rahman, T. Rabie, and M. Bettayeb,
“Investigating reduced path planning strategy for differential wheeled
mobile robot,” Robotica, vol. 38, no. 2, pp. 235–255, 2020.

[19] K. Chu, M. Lee, and M. Sunwoo, “Local path planning for off-
road autonomous driving with avoidance of static obstacles,” IEEE

Transactions on Intelligent Transportation Systems, vol. 13, no. 4, pp.
1599–1616, 2012.

[20] F. Lamiraux, D. Bonnafous, and O. Lefebvre, “Reactive path deforma-
tion for nonholonomic mobile robots,” IEEE Transactions on Robotics,
vol. 20, no. 6, pp. 967–977, 2004.

[21] A. W. Divelbiss and J. T. Wen, “A path space approach to nonholonomic
motion planning in the presence of obstacles,” IEEE Transactions on

Robotics and Automation, vol. 13, no. 3, pp. 443–451, 1997.
[22] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive

active steering control for autonomous vehicle systems,” IEEE Trans-

actions on Control Systems Technology, vol. 15, no. 3, pp. 566–580,
2007.

[23] S. Li, Z. Li, Z. Yu, B. Zhang, and N. Zhang, “Dynamic trajectory
planning and tracking for autonomous vehicle with obstacle avoidance
based on model predictive control,” IEEE Access, vol. 7, pp. 132 074–
132 086, 2019.

[24] B. Pinkovich, E. Rivlin, and H. Rotstein, “Predictive driving in an
unstructured scenario using the bundle adjustment algorithm,” IEEE

Transactions on Control Systems Technology, 2020.
[25] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision

avoidance,” IEEE Transactions on Control Systems Technology, 2020.
[26] A. S. Matveev, H. Teimoori, and A. V. Savkin, “A method for guidance

and control of an autonomous vehicle in problems of border patrolling
and obstacle avoidance,” Automatica, vol. 47, no. 3, pp. 515–524, 2011.

[27] A. S. Matveev, M. C. Hoy, and A. V. Savkin, “The problem of boundary
following by a unicycle-like robot with rigidly mounted sensors,”
Robotics and Autonomous Systems, vol. 61, no. 3, pp. 312–327, 2013.

[28] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[29] B. H. Krogh, “Guaranteed steering control,” in 1985 American Control

Conference. IEEE, 1985, pp. 950–955.
[30] G. Leitmann and J. Skowronski, “Avoidance control,” Journal of Opti-

mization Theory and Applications, vol. 23, no. 4, pp. 581–591, 1977.
[31] R. Aggarwal and G. Leitmann, “Avoidance control,” Journal of Dynamic

Systems, Measurement, and Control, pp. 152–154, 1972.
[32] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast

mobile robots,” IEEE Transactions on systems, Man, and Cybernetics,
vol. 19, no. 5, pp. 1179–1187, 1989.

[33] H. Kong, F. He, X. Song, W. N. N. Hung, and M. Gu, “Exponential-
condition-based barrier certificate generation for safety verification of
hybrid systems,” in International Conference on Computer Aided Veri-

fication, 2013.
[34] M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed

safety using Control Lyapunov-Barrier Function,” Automatica, vol. 66,
pp. 39–47, 2016.

[35] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE

Transactions on Automatic Control, vol. 62, pp. 3861–3876, 2017.
[36] P. Glotfelter, I. Buckley, and M. Egerstedt, “Hybrid nonsmooth barrier

functions with applications to provably safe and composable collision
avoidance for robotic systems,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 1303–1310, 2019.

[37] A. Ghaffari, I. Abel, D. Ricketts, S. Lerner, and M. Krstic, “Safety verifi-
cation using barrier certificates with application to double integrator with
input saturation and zero-order hold,” in American Control Conference,
2018.

[38] A. Ghaffari, “Operational safety control for unmanned aerial vehicles
using modular barrier functions,” in American Control Conference, 2020.

[39] L. Derafa, A.Benallegue, and L.Fridman, “Super twisting control algo-
rithm for the attitude tracking of a four rotors UAV,” Journal of the

Franklin Institute, vol. 349, pp. 685–699, 2012.
[40] J. A. Moreno, “A linear framework for the robust stability analysis

of a generalized super-twisting algorithm,” in International Conference

on Electrical Engineering, Computing Science and Automatic Control,
2009, pp. 1–6.


	I Introduction
	II Preliminary and System Modeling
	III Linearization and Allowable Control Bounds
	IV Trajectory Tracking
	V Safety Control
	VI Supervisory Algorithm
	VII Control Implementation and Case Studies
	VII-A Avoiding Stationary Obstacles
	VII-B Safe Passage of Colliding Robots
	VII-C Keep-In Geofencing
	VII-D Border Patrol

	VIII Conclusions
	References

