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A Control Theoretical Adaptive Human Pilot
Model: Theory and Experimental Validation

Seyed Shahabaldin Tohidi and Yildiray Yildiz , Senior Member, IEEE

Abstract— This article proposes an adaptive human pilot model
that is able to mimic the crossover model in the presence of
uncertainties. The proposed structure is based on the model
reference adaptive control, and the adaptive laws are obtained
using the Lyapunov–Krasovskii stability criteria. The model can
be employed for human-in-the-loop stability and performance
analyses incorporating different types of controllers and plant
types. For validation purposes, an experimental setup is employed
to collect data and a statistical analysis is conducted to measure
the predictive power of the pilot model.

Index Terms— Adaptive control, control of time-delay systems,
crossover model, human decision-making, pilot modeling, uncer-
tain systems.

I. INTRODUCTION

HUMANS’ unique abilities, such as adaptive behavior
in dynamic environments, and social interaction and

moral judgment capabilities, make them essential elements
of many control loops. On the other hand, compared to
humans, automation provides higher computational perfor-
mance and multitasking capabilities without any fatigue, stress,
or boredom [1], [2]. Although they have their own individual
strengths, humans and automation also demonstrate several
weaknesses. Humans may have anxiety and fear and may
become unconscious during an operation. Furthermore, in the
tasks that require increased attention and focus, humans tend
to provide high-gain control inputs that can cause undesired
oscillations. One example of this phenomenon, for exam-
ple, is the occurrence of pilot-induced oscillations (PIOs),
where undesired and sustained oscillations are observed due
to an abnormal coupling between the aircraft and the pilot
[3]–[6]. Similarly, automation may fail due to uncertainty,
fault, or cyberattack [7]. Thus, it is more preferable to design
systems where humans and automation work in harmony,
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complementing each other, resulting in a structure that benefits
from the advantages of both.

To achieve a reliable human-automation harmony, a math-
ematically rigorous human operator model is paramount.
A human operator model helps develop safe control systems
and provides a better prediction of human actions and lim-
itations [8]–[11]. Quasi-linear model [12] is one of the first
human operator models, which consists of a describing func-
tion and a remnant signal accounting for nonlinear behavior.
An overview of this model is provided in [13]. In some
applications, where the linear behavior may be dominant,
the nonlinear part of this model can be ignored, and the
resulting lead-lag-type compensator is used in the closed-loop
stability analysis [14]. The crossover model, proposed in [15],
is another important human operator model in the aerospace
domain. It is motivated from the empirical observations that
human pilots adapt their responses in such a way that the
overall system dynamics resembles that of a well-designed
feedback system [16]. A generalized crossover model, which
mimics human behavior when controlling a fractional-order
plant, is proposed in [17]. In [18], a crossover model is
employed to provide information about the human intent
for the controller. In [19], the dynamics of the operator is
represented as a spring–damper–mass system.

Control theoretical operator models employing optimal
and adaptive control theories are also proposed by several
authors. Optimal human models are based on the idea that
a well-trained human operator behaves in an optimal man-
ner [20]–[24]. On the other hand, adaptive models, such as the
ones proposed in [25] and [26], aim to replicate the adaptation
capability of humans in uncertain and dynamics environments.
In [25] and [26], adaptation rules are proposed based on expert
knowledge. The adaptive model proposed in [25] is applied
to change the parameters of the pilot model based on force
feedback from a smart inceptor [27]. A survey on various pilot
models can be found in [28] and [29].

Several approaches are also developed for human model
parameter identification. In [30], a two-step method using
wavelets and a windowed maximum likelihood estimation are
exploited for the estimation of time-varying pilot model para-
meters. In [31], a linear parameter-varying model identification
framework is incorporated to estimate time-varying human
state-space representation matrices. Subsystem identification
is used in [32] to model human control strategies. In [33],
a human operator model for preview tracking tasks is derived
from the measurement data.
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In this article, we build upon the earlier successful pilot
models and propose an adaptive human pilot model that
modifies its behavior based on plant uncertainties. This model
distinguishes itself from earlier adaptive models by having
mathematically derived laws to achieve a crossover-model-like
behavior, instead of employing expert knowledge. This allows
a rigorous stability proof, using the Lyapunov–Krasovskii
stability criteria, of the overall closed-loop system. Therefore,
unlike earlier adaptive approaches, the design has formal
guarantees to follow the crossover model in the presence
of system uncertainty. Although expert knowledge can also
be incorporated in the proposed design, it does not rely on
this information to function. It is noted that in this article,
we do not claim that the model we propose explains how
the decisions are made by pilots. Rather, we propose an
operator model that can make the overall system mimic the
behavior of the crossover model. To validate the model,
a setup, including a joystick and a monitor, is used. The
participant data collected through this experimental setup are
subjected to visual and statistical analyses to evaluate the
accuracy of the proposed model. Initial research results of
this study were presented in [34], where the details of the
mathematical proof and human experimental validation studies
were missing.

This article is organized as follows. In Section II, the prob-
lem statement is given. Obtaining reference model parameters,
which determine the properties of the crossover model, is dis-
cussed in Section III. Section IV presents the human control
strategy together with a stability analysis. Experimental setup,
results, and a statistical analysis are provided in Section V.
Finally, a summary is given in Section VI.

II. PROBLEM STATEMENT

According to McRuer’s crossover model [35], human pilots
in the control loop behave in a way that results in an open-loop
transfer function

YOL(s) = Yh(s)Yp(s) = ωce−τ s

s
(1)

near the crossover frequency, ωc, where Yh is the trans-
fer function of the human pilot and Yp is the trans-
fer function of the plant. τ is the effective time delay,
including transport delays and high-frequency neuromuscular
lags. The input and the output of the closed-loop transfer
function, whose near-crossover-frequency open-loop behavior
is given in (1), are the desired (reference) and achieved
trajectories.

Consider the following plant dynamics:
ẋ p(t) = A px p(t) + Bpu p(t)

yp(t) = Cpx p(t) (2)

where x p ∈ R
n p is the plant state vector, u p ∈ R is the input

vector, A p ∈ R
n p×n p is an unknown state matrix, Bp ∈ R

n p

is an unknown input matrix, and Cp ∈ R
1×n p is the known

output matrix.

Fig. 1. Block diagram of the human adaptive behavior and decision-making
in a closed-loop system.

The human neuromuscular model [36], [37] is represented
in the state-space form as

ẋh(t) = Ah xh(t) + Bhu(t − τ )

yh(t) = Ch xh(t) + Dhu(t − τ ) (3)

where xh ∈ R
nh is the neuromuscular state vector, Ah ∈ R

nh×nh

is the state matrix, Bh ∈ R
nh is the input matrix, Ch ∈ R

1×nh

is the output matrix, and Dh ∈ R is the control output matrix.
u ∈ R is the neuromuscular input vector, which represents
the control decisions taken by the human and fed to the
neuromuscular system, yh ∈ R is the output vector, and
τ ∈ R

+ is a known, constant delay. The neuromuscular model
parameters are assumed to be known and the output of the
model, yh , is used as the plant input u p in (2), that is, yh = u p

(see Fig. 1).

By aggregating the human pilot and plant states, we obtain
the combined open-loop human neuromuscular and plant
dynamics as[

ẋh(t)
ẋ p(t)

]
︸ ︷︷ ︸

ẋhp(t)

=
[

Ah 0nh×n p

BpCh A p

]
︸ ︷︷ ︸

Ahp

[
xh(t)
x p(t)

]
︸ ︷︷ ︸

xhp(t)

+
[

Bh

Bp Dh

]
︸ ︷︷ ︸

Bhp

u(t − τ )

(4)

which can be written in the following compact form:
ẋhp(t) = Ahpxhp(t) + Bhpu(t − τ )

yp(t) = Chp xhp(t) (5)

where xhp = [x T
h x T

p ]T ∈ R
(n p+nh), Ahp ∈ R

(n p+nh )×(n p+nh),
Bhp ∈ R

(n p+nh), and Chp = [01×nh Cp] ∈ R
1×(n p+nh ).

Assumption 1: The pair (Ahp, Bhp) is controllable.
The goal is to obtain the input u(t) in (3), which is the

output of the human decision-making process, such that the
closed-loop system consisting of the adaptive human pilot
model and the plant follow the output of a unity feedback
reference model with an open-loop crossover model transfer
function. We call this reference model as “crossover ref-
erence model” (see Fig. 1). It is noted that once u(t) is
created, it is used as the input to the neuromuscular model,
which creates the pilot motion. To summarize, assuming that
the neuromuscular model, the parameters to determine the
crossover model reference model, and the structure of the
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TABLE I

DEPENDENCY OF CROSSOVER FREQUENCY TO
THE HIGHEST INPUT FREQUENCY (ωi )

plant with parametric uncertainties are available, we aim to
find the evolution of the output of the human decision-making
process, which is represented by the variable u(t), such that
the closed-loop model (including the decision-making process,
human neuromuscular model, and plant model) matches the
crossover reference model.

The closed-loop transfer function of the reference model is
therefore calculated as

Gcl(s) =
ωc
s e−τ s

1 + ωc
s e−τ s

= ωce−τ s

s + ωce−τ s
. (6)

An approximation of (6) can be given as

Ĝcl(s) = bmsm + bm−1sm−1 + · · · + b0

sn + an−1sn−1 + · · · + a0
e−τ s (7)

where n = nh + n p and m ≤ n are positive real constants,
and ai and b j for i = 0, . . . , n − 1 and j = 0, . . . , m − 1, are
real constants to be estimated. The reference model then can
be obtained as the state-space representation of (7) as

ẋm(t) = Am xm(t) + Bmr(t − τ )

ym(t) = Cm xm(t) (8)

where xm ∈ R
(nh+n p) is the reference model state vector, Am ∈

R
(nh+n p)×(nh+n p) is the state matrix, Bm ∈ R

(nh+n p)×mh is the
input matrix, Cm ∈ R

1×(nh+n p) is the output matrix, and r ∈
R

mh is the reference input. It is noted that Cm is selected to
be equal to Chp.

III. REFERENCE MODEL PARAMETERS

The crossover transfer function (1) contains the crossover
frequency, ωc, which is not known a priori. Experimental data,
showing the reference input (r(t)) frequency bandwidth, ωi ,
versus crossover frequency ωc, is provided in [16] and [35], for
plant transfer functions K , K/s, and K/s2. We fit polynomials
to these experimental results to obtain the crossover frequency
of the open-loop transfer function given a reference input
frequency bandwidth. These polynomials are given in Table I.
It is noted that when the reference input has multiple frequency
components, the highest frequency is used to calculate the
crossover frequency.

Remark 2: In this work, we use the polynomial relation-
ships provided in Table I for zero-, first-, and second-order
plant dynamics with nonzero poles and zeros. Further exper-
imental work can be conducted to obtain a more precise
relationship between the crossover and reference input fre-
quencies, but this is currently out of the scope of this
work.

IV. HUMAN PILOT CONTROL DECISION COMMAND

The adaptive human pilot control decision command, u(t),
is determined as

u(t) = Kr Kx x̂hp(t + τ ) + Krr(t) (9)

where Kx ∈ R
1×(nh+n p), Kr ∈ R

mh×mh , and x̂hp ∈ R
(n p+nh) is

the predicted value for xhp. Using (5) and (9), the closed-loop
dynamics can be obtained as

ẋhp(t) = (Ahp + Bhp Kr Kx)x̂hp(t) + Bhp Krr(t − τ ). (10)

Assumption 3: There exist ideal parameters K ∗
r and K ∗

x
satisfying the following matching conditions:

Ahp + Bhp K ∗
r K ∗

x = Am

Bhp K ∗
r = Bm . (11)

Equation (9) describes a noncausal decision command,
which requires future values of the states. This problem can
be eliminated by solving the differential equation (5) as a
τ -seconds ahead predictor as

x̂hp(t + τ ) = eAhpτ xhp(t) +
∫ 0

−τ

e−Ahpη Bhpu(t + η)dη. (12)

By substituting (12) into (9), the human pilot control
decision input can be written as

u(t) = Kr KxeAhpτ xhp(t)

+ Kr Kx

∫ 0

−τ

e−Ahpη Bhpu(t + η)dη + Krr(t). (13)

By defining θx(t) and λ(t, η) as

θx(t) = Kr (t)Kx (t)e
Ahpτ

λ(t, η) = Kr (t)Kx (t)e
−Ahpη Bhp (14)

(13) can be rewritten as (see Fig. 1)

u(t) = θx(t)xhp(t) +
∫ 0

−τ

λ(t, η)u(t + η)dη + Kr (t)r(t).

(15)

Since Ahp and Bhp are unknown, θx , λ, and Kr need to be
estimated. It is noted that (11) presents the equation that define
the ideal value of Kr , which is denoted as K ∗

r . Comparing (13)
and (15), the ideal values of θx and λ can be obtained as

θ∗
x = K ∗

r K ∗
x eAhpτ

λ∗(η) = K ∗
r K ∗

x e−Ahpη Bhp. (16)

The closed-loop dynamics can be obtained using (5) and (15)
as

ẋhp(t) = Ahpxhp(t) + Bhpθx(t − τ )xhp(t − τ )

+
∫ 0

−τ

Bhpλ(t − τ, η)u(t + η − τ )dη

+ Bhp Krr(t − τ ). (17)

Defining the deviations of the adaptive parameters from
their ideal values as θ̃x = θx − θ∗

x and λ̃ = λ− λ∗, adding and
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subtracting Am xhp(t) to (17), and using (11), we obtain that

ẋhp(t) = Am xhp(t) − Bhp K ∗
r K ∗

x xhp(t)

+ Bhp Kr (t − τ )Kx(t − τ )

×
(

eAhpτ xhp(t−τ ) +
∫ 0

−τ

e−Ahpη Bhpu(t + η−τ )dη

)
+ Bhp Kr (t − τ )r(t − τ ). (18)

Using (12), (18) is rewritten as

ẋhp(t) = Am xhp(t) − Bhp K ∗
r K ∗

x xhp(t)

+ Bhp Kr (t − τ )Kx(t − τ )xhp(t)

+ Bhp Kr (t − τ )r(t − τ ). (19)

Defining the tracking error as e(t) = xhp − xm, subtracting (8)
from (19), using (11), and following a similar procedure given
in [38], it is obtained that:
ė(t) = ẋhp − ẋm

= Ame(t) − Bhp K ∗
r K ∗

x xhp(t)

+ Bhp Kr (t − τ )Kx(t − τ )xhp(t)

+ Bhp
(
Kr (t − τ ) − K ∗

r

)
r(t − τ )

= Ame(t) + ( − Bhp K ∗
r K ∗

x + Bhp
(
K ∗

r −K ∗
r + Kr (t−τ )

)
× Kx(t − τ )

)
xhp(t)

+ Bhp
(
Kr (t − τ ) − K ∗

r

)
r(t − τ )

= Ame(t) + Bm
(
Kx(t − τ ) − K ∗

x

)
xhp(t)

+ Bm
(
K ∗

r
−1 Kr (t − τ ) − 1

)
Kx(t − τ )xhp(t)

+ Bm
(
K ∗

r
−1 Kr (t − τ ) − 1

)
r(t − τ )

= Ame(t) + Bm(K̃x(t − τ )xhp(t)

+ Bm
(
K ∗

r
−1 − K −1

r (t − τ )
)
Kr (t − τ )Kx(t − τ )xhp(t)

+ Bm
(
K ∗

r
−1 − K −1

r (t − τ )
)
Kr (t − τ )r(t − τ ). (20)

Using (12) and defining � = K ∗
r

−1−K −1
r , we can rewrite (20)

as

ė(t) = Ame(t) + Bm K ∗
r

−1(K ∗
r Kx(t − τ ) − K ∗

r K ∗
x

)
×

(
eAhpτ xhp(t − τ ) +

∫ 0

−τ

e−Ahpη Bhpu(t + η − τ )dη

)

+ Bm�(t − τ )

(
Kr (t − τ )Kx(t − τ )

(
eAhpτ xhp(t − τ )

+
∫ 0

−τ

e−Ahpη Bhpu(t + η − τ )dη

)

+ Kr (t − τ )r(t − τ )

)
. (21)

Using (16) and (21), we obtain that

ė(t) = Ame(t) + Bm Kx(t − τ )

×
(

eAhpτ xhp(t − τ ) +
∫ 0

−τ

e−Ahpη Bhpu(t + η − τ )dη

)

− Bm K ∗
r

−1
(

θ∗
x xhp(t−τ ) +

∫ 0

−τ

λ∗(η)u(t + η−τ )dη

)
+ Bm�(t − τ )u(t − τ ). (22)

Using (14), (22) can be rewritten as

ė(t) = Ame(t) + Bm

×
((

K −1
r (t − τ )θx(t − τ ) − K ∗

r
−1θ∗

x

)
× xhp(t − τ ) +

∫ 0

−τ

(
K −1

r (t − τ )λ(t − τ, η)

− K ∗
r

−1λ∗(η)
)
u(t + η − τ )dη

)
+ Bm�(t − τ )u(t − τ ). (23)

Defining θ1 = K −1
r θx and λ1 = K −1

r λ and using their
deviations from their ideal values, θ̃1 = θ1 − θ∗

1 and λ̃1 =
λ1 − λ∗

1, where θ∗
1 = K ∗

r
−1θ∗

x and λ∗
1 = K ∗

r
−1λ∗, (23) can be

rewritten as

ė(t) = Ame(t) + Bm θ̃1(t − τ )xhp(t − τ )

+ Bm

∫ 0

−τ

λ̃1(t − τ, η)u(t + η − τ )dη

+ Bm�(t − τ )u(t − τ ). (24)

The following lemma will be necessary to prove the main
theorem of this article.

Lemma 4: Suppose that the continuous function u(t) is
given as

u(t) = f (t) +
∫ 0

−τ

λ(t, η)u(t + η)dη (25)

where u, f : [t0 − τ,∞] → R and λ : [t0,∞)×[−τ, 0] → R.
Then

|u(t)| ≤ 2( f̄ + c0c1)e
c2

0(t−t ′) ∀t ′
j ≥ t ′

i (26)

if constants t ′
i , f̄ , c0, c1 ∈ R+ exist such that | f (t)| ≤ f̄∫ 0

−τ

λ2(t, η)dη ≤ c2
0, for t ∈ [

t ′
i , t ′

j

)
(27)

and ∫ 0

−τ

u2(t + η)dη ≤ c2
1 ∀t ≤ t ′

i . (28)

Proof: The proof of Lemma 4 can be found in [39]. �
Theorem 5: Given the initial conditions θ̃1(ξ), λ̃1(ξ, η),

�(ξ) and xhp(ξ) for ξ ∈ [−τ, 0], and u(ζ ) for ζ ∈ [−2τ, 0],
there exists τ ∗ such that for all τ ∈ [0, τ ∗], the controller (15)
with the adaptive laws

θ̇T
1 (t) = −xhp(t − τ )e(t)T P Bm (29)

�̇T (t) = −u(t − τ )e(t)T P Bm (30)

λ̇T
1 (t, η) = −u(t + η − τ )e(t)T P Bm (31)

where P is the symmetric positive definite matrix satisfying
the Lyapunov equation AT

m P + P Am = −Q for a symmetric
positive definite matrix Q, which can be employed to obtain
controller parameters using K̇r = Proj(Kr �̇Kr ), θx(t) =
Kr (t)θ1(t), and λ(t) = Kr (t)λ1(t) and make the pilot neuro-
muscular and plant aggregate system (5) follow the crossover
reference model (8) asymptotically, i.e., limt→∞xhp(t) =
xm(t), while keeping all the signals bounded.
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Fig. 2. Experimental setup.

Proof: The proof of this theorem is provided in the
Appendix. �

The implementation of the proposed model requires the
determination of: 1) the reference/crossover model and 2) the
adaptive decision maker (see Fig. 1). A step-by-step procedure
to design these two components is provided in the following.

Reference Model:
Step 1: Determine the maximum input frequency (frequency

bandwidth) and the type of the plant transfer function.
Step 2: Using Table I, calculate the crossover frequency.
Step 3: Substitute the calculated crossover frequency (ωc)

and an estimate of human reaction delay (τ ) in (6), calcu-
late (7), and construct (8).

Adaptive Decision Maker:
Step 4: Use (15) as adaptive decision command.
Step 5: Use (29)–(31) as adaptive laws along with K̇r =

Proj(Kr �̇Kr ), θx(t) = Kr (t)θ1(t), and λ(t) = Kr (t)λ1(t),
where the details of the Proj operator can be found in [40]
and [41].

V. EXPERIMENTAL RESULTS

A. Experimental Environment

In order to test the proposed adaptive human model against
data, an experimental setup consisting of a Logitech Extreme
3D Pro joystick and a Toshiba Portege-Z30-B laptop with Intel
Core i7 CPU is used (see Fig. 2).

The tracking task is performed by an operator monitoring
the pursuit display, which provides information about the error
between the target to be followed and follower, which is the
output of the plant (see Fig. 3). The operator provides the input
u p (see Fig. 1) through the joystick, which is fed to the plant
using MATLAB/Simulink (R2018b). In return, the response
of the plant is calculated and shown on the laptop screen in
real time.

The reference signal r(t) is generated as a sum of the
sinusoids with frequencies of 0.1, 0.3, 0.5, 0.7, 1, 1.3, and
1.5 rad/s with the same amplitude of 0.2 and without phase
shift.

Fig. 3. Pursuit display.

Fig. 4. Bode plot of the reference model and its approximation.

Three classes of plant models, having zero-, first-, and
second-order transfer functions, are used in the experiments.
In this section, we first give a detailed analysis of the first-order
plant case and then provide a summary of the results of
the other cases in tables. The nominal first-order plant used
in the experiments is Yp(s) = (4/(s + 1)), which is similar
to the one used in [25]. The uncertainty is introduced to the
plant model by modifying the gain and the pole location by
50% to obtain Yp(s) = (6/(s + 0.5)).

To form the reference model (8), two parameters, namely,
the crossover frequency and the time delay, need to be
determined. The highest frequency component of the refer-
ence signal is ωi = 1.5 rad/s. Employing Table I for the
first-order plant Yp, the crossover frequency is calculated as
ωc = 4.5 rad/s. The delay is determined by using the mean
value of the operators’ delay, which is τ = 0.3 s. Therefore,
the closed-loop transfer function of the reference model is
calculated as

Gcl(s) =
4.5
s e−0.3s

1 + 4.5
s e−0.3 s

= 4.5 e−0.3 s

s + 4.5 e−0.3 s
. (32)

Similar to (7), an approximate transfer function is obtained
as

Ĝcl(s) = 3.881s + 24.24

s2 + 0.6834s + 24.72
e−0.3s . (33)

Fig. 4 shows a comparison between (32) and (33) and
demonstrates that the approximation works well for almost
all frequencies.
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Fig. 5. Time evolution of the error between the output of the plant controlled
by the adaptive model and the reference model output.

Fig. 6. Evolution of human adaptive parameters θx1 and θx2.

The neuromuscular dynamics is taken as Yh(s) =
((s + 3)/(s + 2))e−0.3s , where the time delay τ = 0.3 is the
effective time delay, including human decision-making delay
and neuromuscular lags.

Remark 6: In this article, we assume that the neuromus-
cular dynamics are given. The procedure for finding the
neuromuscular model can be found in [36] and [37].

Remark 7: In [26], where decoupled multiaxis tracking
tasks are considered, a factor is introduced to represent the
fact that the pilots are less aggressive in multiaxis tasks,
compared to single-axis ones. In this work, although we cover
the single-axis tracking task, an extension to two-axis tracking
would not need any new model development or an increase in
complexity, except using the same equations stated in the step-
by-step implementation guide in Section V, for the additional
axis, with different gain and frequency parameters. A detailed
analysis of single- and double-axis tracking tasks can be found
in [42].

B. Behavior of the Adaptive Model

The error between the plant output and the reference model
is shown in Fig. 5. The effect of uncertainty injection can be
seen at t = 70 s. Figs. 6–8 show the adaptive human model
parameters. To understand the amount of agreement between
these results and the human experimental trials, visual and
statistical analyses are provided in the following.

Remark 8: The model is developed based on adaptive con-
trol principles, and therefore, even when the plant model is
not changing, the adaptive parameters may continue to vary
based on the changes in the reference inputs. This parameter
variance, however, is not a problem since the model’s track-
ing capability, as well as the boundedness of the adaptive

Fig. 7. Evolution of human adaptive parameters λi , i = 1, 2, 3, and 4.

Fig. 8. Evolution of human adaptive parameter Kr .

parameters, is guaranteed by the Lyapunov analysis. We also
know that unless the inputs are persistently exciting, the
adaptive parameters may not converge to their ideal values.
Therefore, different trajectories may result in different model
parameters. This is not an issue since these parameters are
tuned automatically by the adaptive process.

Remark 9: Adaptation rates are important in terms of tran-
sient behavior, and therefore, their selection is important to
obtain a successful model. There are some guidelines that
can be used in the implementation, at least to start at a good
initial condition for the tuning process [43], [44]. Consider a
generic adaptive law θ̇ = −
e1�, where 
 is the adaptation
rate matrix, e1 is the tracking error, and � is the vector of
corresponding system signals. Assuming that e1 and elements
of � are the same order of magnitude as the reference signal r ,
the adaptation rate for a parameter θ is chosen as 
 = θ∗/
(3τmr̄2), where θ∗ is an estimate of the desired adaptive
parameter, τm is the smallest time constant of the reference
model, and r̄ is the maximum possible amplitude of the
reference signal.

C. Participants and Experimental Procedure

Eleven participants (six women and five men) from the grad-
uate and undergraduate student pools of Bilkent University
participated in the experiment. All of the participants read and
signed the “informed consent to participate” document. This
study is approved by the Bilkent University Ethics Committee
for research with human participants. Before the experiments,
to familiarize the participants with the experimental setup, and
its environment, consisting of the display and the joystick, each
participant was asked to follow a given reference via joystick
inputs for the duration of 200 s. To prevent learning during
these warm-up runs, the reference input, uncertainty injection
times, and the uncertainty types were chosen differently from
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Fig. 9. Plant output, yp , when adaptive human model is in the loop versus
minimum and maximum values of plant output when participants are in the
loop.

Fig. 10. Plant output, yp , when adaptive human model is in the loop versus
mean value of plant output when participants are in the loop.

the ones used in the real experimental runs. In particular, the
reference signal for the warm-up runs consisted of the sum
of the sinusoids with frequencies of 0.1, 0.5, 1, and 1.5 rad/s
with the same amplitude of 0.2 and without phase shift. The
plant dynamics at the beginning of the warm-up run was
(2/(s2 + 3s + 2)). At t = 45 s, the dynamics changed to
(5/(s + 2)) in a step-like manner (suddenly). It is changed to
(3/(s + 1)) at around t = 90 s using a sigmoid function (grad-
ually) and again changed to a zero-order dynamics at 150 s
(suddenly).

D. Time- and Frequency-Domain Analyses of the Adaptive
Model

Let f p1(t), f p2(t), . . . , f pk(t) be the plant outputs when
participants p1, p2, . . . , pk are in the loop, respectively. For
each f pi(t), t = T1, T2, . . . , TN , where Tj , j = 1, 2, . . . , N ,
represents a sampling instant, at each sampling instant Tj , the
minimum, the maximum, and the mean values of the plant
outputs when participants are in the loop can be obtained as

f pmin(Tj) = min
i=1,2,...,k

f pi(Tj ), j = 1, . . . , N (34)

f pmax(Tj) = max
i=1,2,...,k

f pi(Tj ), j = 1, . . . , N (35)

f pmean (Tj) =
∑k

i=1 f pi (Tj)

k
, j = 1, . . . , N (36)

where k = 11 is the number of participants. Fig. 9 shows the
evolutions of f pmin and f pmax , together with fad(t) ∈ R

N , which
is the plant output when the adaptive human model is in the
loop, where t = T1, T2, . . . , TN . It is seen that the plant output
when adaptive human model is in the loop almost always stays

Fig. 11. Frequency responses of the crossover model, the adaptive model,
and the mean human experimental data, before the uncertainty introduction.

Fig. 12. Frequency responses of the crossover model, the adaptive model,
and the mean human experimental data, after the uncertainty introduction.

between the maximum and the minimum values of the plant
output when participants are in the loop. Furthermore, Fig. 10
shows that f pmean and fad evolve reasonably close to each other.

The adaptive model and the mean participant data are also
compared in the frequency domain both before and after
the uncertainty introduction, in Figs. 11 and 12, respectively.
As seen from the figures, both the adaptive model and partic-
ipant data show similar properties with the crossover model.
However, the model starts to deviate from the human data
for lower frequencies. The transfer functions used to plot
these Bode plots are obtained using the time-response data
provided in Fig. 10. For the systems run by the adaptive
model and the participants, we obtained the open-loop trans-
fer functions (3.5/s)e−0.3s and (4/(s + 0.8))e−0.3s , respec-
tively, before the uncertainty introduction, and (4.5/s)e−0.3s

and (3.5/(s + 0.1))e−0.3s , after the uncertainty introduction.
Fig. 13 shows the close match between the closed-loop time
responses of the estimated transfer functions and the data used
to obtain them.

E. Comparison Between the Adaptive and Fixed Human
Models

In this section, to demonstrate the advantages of
having an adaptive human model instead of a fixed
one, we compare the behavior of these two models.
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Fig. 13. Comparison between the closed-loop time response of estimated
transfer functions and the data used to create them. (a) Participant transfer
function and data. (b) Adaptive model transfer function and data.

As the fixed human model, we use the transfer func-
tion ((1.125(s2 + 3s + 2))/(s2 + 3s))e−0.3s , which makes the
closed-loop transfer function equal to the crossover model
given in (32).

Fig. 14(a) shows that before the occurrence of uncertainty
at t = 70 s, both the fixed and the adaptive human models
present a reasonable agreement with the experimental results.
However, after the uncertainty introduction, the fixed model
becomes unstable, while the adaptive model continues to show
acceptable performance. The result demonstrates the danger
of using a fixed model in the presence of time delays. Using
the method proposed in [45], one can find that the system
after the uncertainty introduction becomes unstable for delay
values larger than 0.22 s. To provide a comparison in the stable
region, we plot the response of the fixed model for a delay
value of 0.22 s in Fig. 14(b). The plot shows that even though
the response is stable, it fails to provide a reasonable prediction
of the human pilot response after the uncertainty introduction.

F. Statistical Analysis of the Adaptive Model Using
Confidence Intervals

The difference between the plant output when the
i th participant is in the loop and when the adaptive human
model is in the loop is defined as

di ≡ fad − f pi , i = 1, . . . , k (37)

where di = [di(T1), . . . , di(TN )]T ∈ R
N , i = 1, . . . , k,

is called the i th difference. The mean and the standard
deviation of the i th difference is obtained as

d̄i =
∑N

j=1 di(Tj )

N
, i = 1, . . . , k (38)

si =
√∑N

j=1(di(Tj ) − d̄i)2

N − 1
, i = 1, . . . , k. (39)

The normal-scores plot for d̄i is shown in Fig. 15. The
figure does not show any significant deviation from the normal

Fig. 14. Plant output, yp , when the adaptive human model is in the loop
versus fixed human model with (a) 0.3- and (b) 0.22-s time delay in the loop.

Fig. 15. Normal-scores plot.

distribution. This shows us that the data do not suggest that
the population of mean errors, d̄i , deviates significantly from
normal distribution. The sample mean and the sample standard
deviation of d̄i ’s can be obtained as

d̄ =
∑k

i=1 d̄i

k
(40)

s =
√∑k

i=1(d̄i − d̄)2

k − 1
. (41)

Let μ0 be the mean value of the population of mean errors,
which is given as

μ0 ≡
∑K

i=1 d̄i

K
(42)

where K is the population size. Since normal-scores plot,
given in Fig. 15, did not provide any counter evidence,
assuming that the distribution of the set of data {d̄1, . . . , d̄K }
is normal with mean μ0, μ0 satisfies the following

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 12,2022 at 08:04:28 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TOHIDI AND YILDIZ: CONTROL THEORETICAL ADAPTIVE HUMAN PILOT MODEL 9

probability [46]:

P

[
d̄ − tα/2

s√
k

< μ0 < d̄ + tα/2
s√
k

]
= 1 − α (43)

where d̄ and s are obtained from (40) and (41), k is the
number of participants, α is the significance level, and tα/2

is the upper α/2 point of the t distribution with degree of
freedom k − 1, which can be obtained from the t-distribution
table. Since the number of participants, k = 11, is less
than 30, it is appropriate to use the t-distribution. Using
α = 0.05, obtaining tα/2 from the t-distribution table as 2.228,
and calculating d̄ as −0.0068 and s as 0.0379, it can be
concluded using (43) that we are 95% confident that μ0 is in
the interval (−0.0323, 0.0187). This shows that the mean μ0

of the population’s mean deviation from the adaptive human
model is reasonably close to zero.

Similarly, the variance, σ 2
0 , of the population’s mean devi-

ation from the adaptive human model satisfies the following
probability [46]:

P

[
(k − 1)s2

χ2
α/2

< σ 2
0 <

(k − 1)s2

χ2
1−α/2

]
= 1 − α (44)

where χ2
α/2 is the upper α/2 point of the χ2 distribution with

degree of freedom k − 1 and can be obtained from the χ2

distribution table. Calculating s from (41), using α = 0.05,
and obtaining χ2

α/2 and χ2
1−α/2 from the χ2 table with ten

degrees of freedom, it can be concluded using (44) that we
are 95% confident that σ0 is in the interval (0.0265, 0.0663).
This shows that the standard deviation σ0 of the population’s
mean deviation from the adaptive human model is reasonably
small.

G. Statistical Analysis of the Adaptive Model Using
Hypothesis Testing

In this analysis, we test whether the hypothesis “the mean
value of the population mean errors, or the mean deviations
from the adaptive model,” is zero. In other words, our null
hypothesis, H0, is given as

H0 : μ0 = 0 (45)

where μ0 is defined in (42). The alternative hypothesis,
H1, is given as H1 : μ �= 0 . Similar to the confidence
interval analysis, assuming that μ0 is the mean of a normally
distributed set of data {d̄1, . . . , d̄K }, where K is the population
size, the hypothesis H0 is rejected if∣∣∣∣∣ (d̄ − μ0)

√
k

s

∣∣∣∣∣ ≥ tα/2 (46)

where d̄ and s are obtained from (40) and (41), k is the
number of participants, and tα/2 is the upper α/2 point of
the t distribution with degree of freedom k − 1 [46]. Using
the significance level α = 0.05 and degree of freedom k −1 =
10, obtaining t0.025 = 2.228 from the t-distribution table,
calculating d̄ = −0.0068 and s = 0.038 using (40) and (41),
respectively, and substituting μ0 = 0 and k = 11, the left-hand
side of (46) can be calculated as 0.5935, which is less than tα/2.

TABLE II

SUDDEN UNCERTAINTY

TABLE III

GRADUAL UNCERTAINTY

Therefore, we cannot reject H0. We retain H0 and conclude
that H1 fails to be proved.

Since we are retaining the null hypothesis, we want to
minimize the probability β of incorrectly retaining the null
hypothesis. This means that we want our test’s power, 1 − β,
to be large, such as 0.95. What is the minimum required
deviation of the population mean from 0, represented as
μ1, that would make our test to incorrectly retain the null
hypothesis with 0.05 probability, i.e., β = 0.05? To calculate
this, we first write the rejection region, R, using (46) as

R :
∣∣∣∣∣ (d̄ − μ0)

√
k

s

∣∣∣∣∣ ≥ tα/2 ⇒ R : |d̄| ≥ 0.0255. (47)

Defining T = (((d̄ − μ1)
√

k)/s), for β = 0.05, we need

P

[
(−0.0255 − μ1)

√
k

s
< T <

(0.0255 − μ1)
√

k

s

]

= β

2
= 0.025. (48)

Using the t-table, it can be found that the minimum |μ1| that
satisfies (48) is 0.051. This means that our test can detect
an 0.051 deviation from the mean value of the mean error
between the adaptive human model and the participant data
when the probability of the test to incorrectly conclude that
the model and the data are compatible (μ0 = 0) is only 5%.

Analyses of the experimental results where a first-order
plant dynamics is used with a sudden uncertainty injec-
tion is provided above. All of the results, including the
ones for the other cases, where plants with different orders
and sudden/gradual uncertainty injections, are summarized in
Tables II and III. The data collected from the participants can
be reached at http://www.syslab.bilkent.edu.tr/research.
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VI. SUMMARY

In this article, an adaptive human pilot model based on
model reference adaptive control principles is proposed. This
model mimics the pilot decision-making process by making
sure that the overall closed-loop system follows the crossover
model in the presence of plant uncertainties. The stability of
the system is shown using the Lyapunov–Krasovskii stability
criteria. Furthermore, experiments with human operators are
conducted to validate the model. The detailed visual and
statistical analyses of the experimental results show that the
adaptive model creates similar system responses as the human
operators.

APPENDIX

Proof of Theorem 5

Consider a Lyapunov–Krasovskii functional [39]

V (t) = eT Pe + tr(�T (t)�(t)) + tr
(
θ̃T

1 (t)θ̃1(t)
)

+
∫ 0

−τ

∫ t

t+v

tr
( ˙̃θT

1 (ξ) ˙̃θ1(ξ)
)
dξdv

+
∫ 0

−τ

∫ t

t+v

tr(�̇T (ξ)�̇(ξ))dξdv

+
∫ 0

−τ

tr
(
λ̃T

1 (t, η)λ̃1(t, η)
)
dη

+
∫ 0

−τ

∫ t

t+v

∫ 0

−τ

tr
( ˙̃λT

1 (ξ, η) ˙̃λ1(ξ, η)
)
dηdξdv. (49)

The derivative of V (t) can be calculated as

V̇ (t) = ėT (t)T Pe(t) + eT (t)Pė(t) + 2tr
( ˙̃θT

1 (t)θ̃1(t)
)

+ 2tr(�̇T (t)�(t)) +
∫ 0

−τ

2tr
( ˙̃λT

1 (t, η)λ̃1(t, η)
)
dη

+ τ tr
( ˙̃θT

1 (t) ˙̃θ1(t)
) −

∫ 0

−τ

tr
( ˙̃θT

1 (t + v) ˙̃θ1(t + v)
)
dv

+ τ tr(�̇T (t)�̇(t)) −
∫ 0

−τ

tr(�̇T (t + v)�̇(t + v))dv

+ τ

∫ 0

−τ

tr
( ˙̃λT

1 (t, η) ˙̃λ1(t, η)
)
dη

−
∫ 0

−τ

∫ 0

−τ

tr
( ˙̃λT

1 (t + v, η) ˙̃λ1(t + v, η)
)
dηdv. (50)

Substituting (24) into (50) and using the Lyapunov equation
AT

m P + P Am = −Q, it is obtained that

V̇ (t) = −eT (t)Qe(t) + 2eT (t)P Bm θ̃1(t − τ )xhp(t − τ )

+ 2eT (t)P Bm

∫ 0

−τ

λ̃1(t − τ, η)u(t + η − τ )dη

+ 2eT (t)P Bm�(t − τ )u(t − τ )

+ 2tr
( ˙̃θT

1 (t)θ̃1(t)
) + 2tr(�̇T (t)�(t))

+
∫ 0

−τ

2tr
( ˙̃λT

1 (t, η)λ̃1(t, η)
)
dη

+ τ tr
( ˙̃θT

1 (t) ˙̃θ1(t)
) −

∫ 0

−τ

tr
( ˙̃θT

1 (t + v) ˙̃θ1(t + v)
)
dv

+ τ tr(�̇T (t)�̇(t)) −
∫ 0

−τ

tr(�̇T (t + v)�̇(t + v))dv

+ τ

∫ 0

−τ

tr
( ˙̃λT

1 (t, η) ˙̃λ1(t, η)
)
dη

−
∫ 0

−τ

∫ 0

−τ

tr
( ˙̃λT

1 (t + v, η) ˙̃λ1(t + v, η)
)
dηdv.

Using g(t)− g(t − τ ) = ∫ 0
−τ ġ(t + v)dv, (51) can be rewritten

as

V̇ (t) = −eT (t)Qe(t)

+ 2tr
(

xhp(t − τ )eT (t)P Bm θ̃1(t) + ˙̃θT
1 (t)θ̃1(t)

)
+ 2tr

(
u(t − τ )eT (t)P Bm�(t) + �̇T (t)�(t)

)
+

∫ 0

−τ

2tr
(

u(t + η − τ )eT (t)P Bm λ̃1(t, η)

+ ˙̃λT
1 (t, η)λ̃1(t, η)

)
dη

− 2eT (t)P Bm

(∫ 0

−τ

˙̃θ1(t + v)dv

)
xhp(t − τ )

− 2eT (t)P Bm

(∫ 0

−τ

�̇(t + v)dv

)
u(t − τ )

− 2eT (t)P Bm

(∫ 0

−τ

(∫ 0

−τ

˙̃λ1(t + v, η)dv

)

× u(t + η − τ )dη

)

+ τ tr
( ˙̃θT

1 (t) ˙̃θ1(t)
) −

∫ 0

−τ

tr
( ˙̃θT

1 (t + v) ˙̃θ1(t + v)
)
dv

+ τ tr(�̇T (t)�̇(t)) −
∫ 0

−τ

tr(�̇T (t + v)�̇(t + v))dv

+ τ

∫ 0

−τ

tr
( ˙̃λT

1 (t, η) ˙̃λ1(t, η)
)
dη

−
∫ 0

−τ

∫ 0

−τ

tr
( ˙̃λT

1 (t + v, η) ˙̃λ1(t + v, η)
)
dηdv. (51)

By substituting (29)–(31) into (51), it is obtained that

V̇ (t)

= −eT (t)Qe(t)

− 2
∫ 0

−τ

tr(xhp(t − τ )e(t)T P Bm
˙̃θ1(t + v))dv

− 2
∫ 0

−τ

tr(u(t − τ )e(t)T P Bm�̇(t + v))dv

− 2
∫ 0

−τ

∫ 0

−τ

tr(u(t + η − τ )e(t)T P Bm
˙̃λ1(t + v, η))dvdη

+ τ tr
( ˙̃θT

1 (t) ˙̃θ1(t)
) −

∫ 0

−τ

tr
( ˙̃θT

1 (t + v) ˙̃θ1(t + v)
)
dv

+ τ tr(�̇T (t)�̇(t)) −
∫ 0

−τ

tr(�̇T (t + v)�̇(t + v))dv

+ τ

∫ 0

−τ

tr
( ˙̃λT

1 (t, η) ˙̃λ1(t, η)
)
dη

−
∫ 0

−τ

∫ 0

−τ

tr
( ˙̃λT

1 (t + v, η) ˙̃λ1(t + v, η)
)
dηdv
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= −eT (t)Qe(t) +
∫ 0

−τ

tr
(

2 ˙̃θT
1 (t) ˙̃θ1(t + v) + ˙̃θT

1 (t) ˙̃θ1(t)

− ˙̃θT
1 (t + v) ˙̃θ1(t + v)

)
dv

+
∫ 0

−τ

tr
(

2�̇T (t)�̇(t + v) + �̇T (t)�̇(t)

− �̇T (t + v)�̇(t + v)
)

dv

+
∫ 0

−τ

∫ 0

−τ

tr
(

2 ˙̃λT
1 (t, η) ˙̃λ1(t + v, η) + ˙̃λT

1 (t, η) ˙̃λ1(t, η)

− ˙̃λT
1 (t + v, η) ˙̃λ1(t + v, η)

)
dηdv. (52)

Using the trace property tr(A + B) = tr(A) + tr(B) and the
algebraic inequality a2 ≥ 2ab − b2 for two scalars a and b,
it can be shown that tr(2AT B + AT A − BT B) ≤ 2tr(AT A).
Using these inequalities, (52) can be rewritten as

V̇ (t) ≤ −eT (t)Qe(t) +
∫ 0

−τ

2tr
( ˙̃θT

1 (t) ˙̃θ1(t)
)
dv

+
∫ 0

−τ

2tr(�̇T (t)�̇(t))dv

+
∫ 0

−τ

∫ 0

−τ

2tr
( ˙̃λT

1 (t, η) ˙̃λ1(t, η)
)
dηdv. (53)

By substituting (29)–(31) into (53) and using the trace oper-
ator property tr(AB) = tr(B A) for two square matrices A
and B , (53) can be rewritten as

V̇ (t) ≤ −eT (t)Qe(t)

+ 2τ tr
(
e(t)x T

hp(t − τ )xhp(t − τ )e(t)T P Bm BT
m P

)
+ 2τ tr

(
e(t)uT (t − τ )u(t − τ )e(t)T P Bm BT

m P
)

+ 2τ

∫ 0

−τ

tr
(
e(t)uT (t + η − τ )u(t + η − τ )e(t)T

× P Bm BT
m P

)
dη. (54)

Using tr(AB) ≤ tr(A)tr(B) for two positive semidefinite
matrices A and B and tr(X T X) = ‖X‖2

F for a matrix X ,
an upper bound for (54) can be derived as

V̇ (t) ≤ −eT (t)Qe(t)

+ 2τ tr(e(t)x T
hp(t − τ )xhp(t − τ )e(t)T )tr

(
P Bm BT

m P
)

+ 2τ tr
(
e(t)uT (t − τ )u(t − τ )e(t)T

)
tr
(
P Bm BT

m P
)

+ 2τ

∫ 0

−τ

tr
(
e(t)uT (t − τ + η)u(t − τ + η)e(t)T

)
× tr

(
P Bm BT

m P
)
dη

≤ −λmin(Q)‖e(t)‖2

+ 2τ‖xhp(t − τ )e(t)T ‖2
F

∥∥BT
m P

∥∥2
F

+ 2τ‖u(t − τ )e(t)T ‖2
F

∥∥BT
m P

∥∥2
F

+ 2τ

∫ 0

−τ

‖u(t + η − τ )e(t)T ‖2
F

∥∥BT
m P

∥∥2
F

dη

≤ −λmin(Q)‖e(t)‖2

+ 2τ‖xhp(t − τ )‖2‖e(t)‖2
∥∥BT

m P
∥∥2

F

+ 2τ‖u(t − τ )‖2‖e(t)‖2
∥∥BT

m P
∥∥2

F

+ 2τ

∫ 0

−τ

‖u(t + η − τ )‖2‖e(t)‖2
∥∥BT

m P
∥∥2

F
dη

= ∥∥BT
m P

∥∥2
F
‖e(t)‖2

×
(

− λmin(Q)

‖BT
m P‖2

F

+ 2τ

(
‖xhp(t − τ )‖2 + ‖u(t − τ )‖2

+
∫ 0

−τ

‖u(t + η − τ )‖2dη

))
. (55)

Defining q ≡ ((λmin(Q))/(‖BT
m P‖2

F )), the inequality

q − 2τ

(
‖xhp(t − τ )‖2 + ‖u(t − τ )‖2

+
∫ 0

−τ

‖u(t + η − τ )‖2dη

)
> 0. (56)

needs to be satisfied for the nonpositiveness of V̇ . Assuming
that xhp and u are bounded in the interval [t0 −2τ, t0), the rest
of the proof is divided into the following four steps.

Step 1: In this step, the negative semidefiniteness of the
Lyapunov–Krasovskii functional’s (49) time derivative in the
interval [t0 − τ, t0) is shown, which leads to the boundedness
of the signals in this interval. In addition, an upper bound for
u in the interval [t0 − 2τ, t0) is given.

Suppose that

sup
ξ∈[t0−τ,t0)

‖xhp(ξ)‖2 ≤ γ1

sup
ξ∈[t0−2τ,t0)

‖u(ξ)‖2 ≤ γ2 (57)

for some positive γ1| and γ2, and τ1 is given such that

2τ1(γ1 + γ2 + τ1γ2) < q. (58)

Then, the following inequality is satisfied:

q − 2τ

(
‖xhp(ξ − τ )‖2 + ‖u(ξ − τ )‖2

+
∫ 0

−τ

‖u(ξ + η − τ )‖2dη

)
> 0

∀ξ ∈ [t0, t0 + τ ) ∀τ ∈ [0, τ1]. (59)

It follows that V (t), defined in (49), is nonincreasing for
t ∈ [t0, t0 + τ ). Thus, we have

λmin(P)‖e(ξ)‖2 ≤ e(ξ)T Pe(ξ) ≤ V (t0) (60)

which leads to

‖xhp(ξ)‖ − ‖xm(ξ)‖ ≤ ‖e(ξ)‖ ≤
√

V (t0)

λmin(P)
. (61)

Then, we have

‖xhp(ξ)‖ ≤
√

V (t0)

λmin(P)
+ ‖xm(ξ)‖ (62)

for ∀ξ ∈ [t0, t0 + τ ). We also have the inequality

‖�(ξ)‖2 ≤ V (t0) ⇒ ∥∥K ∗
r

−1 − K −1
r (ξ)

∥∥2 ≤ V (t0)

⇒ ∥∥K −1
r (ξ)

∥∥ ≤ √
V (t0) + ∥∥K ∗

r
−1∥∥

(63)

for ∀ξ ∈ [t0, t0 + τ ). It is noted that the boundedness of
� = K ∗

r
−1 − K −1

r does not guarantee the boundedness of K̃r .
In order to guarantee the boundedness of K̃r independent

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 12,2022 at 08:04:28 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

of the boundedness of �, the projection algorithm [40] is
employed as

K̇r = Proj
(
Kr ,−Kr BT

m Pe(t)uT (t − τ )Kr
)

(64)

with an upper bound Kmax, that is, ‖Kr‖ ≤ Kmax. Thus,
a lower bound for ‖K −1

r (ξ)‖ can be calculated using the
following algebraic manipulations:
Kr (ξ)K −1

r (ξ)

= I ⇒ ∥∥Kr (ξ)K −1
r (ξ)

∥∥ = 1

⇒ 1 ≤ ‖Kr (ξ)‖∥∥K −1
r (ξ)

∥∥ ≤ Kmax

∥∥K −1
r (ξ)

∥∥
⇒ 1

Kmax
≤ ∥∥K −1

r (ξ)
∥∥. (65)

Defining k1 = √
V (t0)+‖K ∗

r
−1‖ and using (63), it is obtained

that
1

Kmax
≤ ∥∥K −1

r (ξ)
∥∥ ≤ k1, ξ ∈ [t0, t0 + τ ). (66)

Therefore, Kr is always bounded and K −1
r (ξ) is bounded for

∀ξ ∈ [t0, t0 + τ ).
Furthermore, using the definitions of θx, θ1, λ, and λ1

given in Theorem 5, and the nonincreasing Lyapunov func-
tional (49), it can be concluded that

‖θ̃1(ξ)‖2
F ≤ V (t0) ⇒ ∥∥K̃ −1

r (ξ)θ̃x(ξ)
∥∥2

F
≤ V (t0) (67)∫ 0

−τ

‖λ̃1(ξ, η)‖2
F dη ≤ V (t0)

⇒
∫ 0

−τ

∥∥K −1
r (ξ)λ̃(ξ, η)

∥∥2
F

dη ≤ V (t0)

(68)

for ∀ξ ∈ [t0, t0 + τ ). Using (67) and (68), it can be obtained
that

‖θ̃x(ξ)‖2
F ≤ K 2

maxV (t0)∫ 0

−τ

‖λ̃(ξ, η)‖2
F dη ≤ K 2

maxV (t0) (69)

for ∀ξ ∈ [t0, t0 + τ ).
To simplify the notation, we define

I0 ≡ max

(√
V (t0)

λmin(P)
+ sup

[t0,t0+τ)

‖xm(ξ)‖,

Kmax

√
V (t0), K 2

maxV (t0)

)
(70)

where Rmax is the upper bound of the reference input r(t).
An upper bound on the control signal u(t) for t ∈ [t0, t0+τ )

can be derived by using Lemma 4 and (15). In particular,
setting t ′

i = t0, t ′
j = t0 + τ , and c2

0 = V (t0), we obtain that

|u(ξ)| ≤ 2

(
f̄ +

(∫ 0

−τ

u2(t0 + η)dη

)1/2

I0

)
eI0τ (71)

for ∀ξ ∈ [t0, t0 + τ ), where f̄ , which is the upper bound
of θx(t)xhp(t) + Kr (t)r(t), depends only on I0. Defining
g(γ2, I0, τ ) ≡ 2( f̄ + γ2 I0

√
τ )eI0τ , (71) can be rewritten as

|u(ξ)| ≤ g(γ2, I0, τ ) ∀ξ ∈ [t0, t0 + τ ). (72)

The rest of the proof is similar to the one given in [39].
In the following, a summary of the next steps are given.

Step 2: A delay range [0, τ2] is found, which satisfies the
condition (56) over the interval [t0, t0 + 2τ ) as

2τ2
(
I 2
0 + (max(γ2, g(γ2, I0, τ2)))

2(1 + τ2)
)

< q (73)

which leads to ‖xhp(ξ)‖ < I0, ∀ξ ∈ [t0, t0 + 2τ ), ∀τ ∈ [0, τ̄2],
τ̄2 = min{τ1, τ2}.

Step 3: It is shown in this step that the bound on u over the
interval [t0, t0 +τ ) depends only on Ahp, Bhp, T , and τ , where
T is a value between t0 and τ . Denoting this upper bound as
U(I0), we have |u(t)| ≤ U(I0), t ∈ [t0, t0 + τ ).

Step 4: Using the calculated upper bound for u in the
previous step, a delay range [0, τ2] is found, which satisfies
the condition

2τ3
(
I 2
0 + (max(U(I0), g(U(I0), I0, τ3)))

2(1 + τ3)
)

< q.

(74)

For τ ∗ = min(τ̄2, τ3), ‖xhp(ξ)‖ ≤ I0 and |u(ξ)| ≤ U(I0) for
all ξ ∈ [t0, t0 + τ ], ∀τ ∈ [0, τ ∗].

The above four steps show that xhp(ξ) and u(ξ) are bounded
for ∀ξ ∈ [t0, t0 + kτ ], for k = 1 and τ ∈ (0, τ ∗]. By assuming
that xhp and u are bounded for a given k, the rest of the proof
consists of showing that the boundedness of these variables
hold for k +1. Using this assumption and repeating steps 1–4,
which leads to satisfying (74), we conclude that the Lyapunov
function is nonincreasing and ‖xhp(ξ)‖ ≤ I0, and |u(ξ)| ≤
g(U(I0), I0, τ ) for ξ ∈ [t0, t0 + (k + 1)τ ], τ ≤ τ ∗ ≤ τ3. This
completes the boundedness proof using induction. Then, using
Barbalat’s Lemma, it can be shown that the error between the
human-in-the-loop system output xhp and the reference model
output xm converges to zero.
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