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Linear Fractional Transformation modeling of
multibody dynamics around

parameter-dependent equilibrium
Ervan Kassarian, Francesco Sanfedino, Daniel Alazard, Charles-Antoine Chevrier, Johan Montel

Abstract—This paper proposes a new Linear Fractional
Transformation (LFT) modeling approach for uncertain
Linear Parameter Varying (LPV) multibody systems with
parameter-dependentequilibrium. Traditional multibody ap-
proaches, which consist in building the nonlinear model of
the whole structure and linearizing it around equilibrium
after a numerical trimming, do not allow to isolate paramet-
ric variations with the LFT form. Although additional tech-
niques, such as polynomial fitting or symbolic linearization,
can provide an LFT model, they may be time-consuming
or miss worst-case configurations. The proposed approach
relies on the trimming and linearization of the equations at
the substructure level, before assembly of the multibody
structure, which allows to only perform operations that
preserve the LFT form throughout the linearization process.
Since the physical origin of the parameters is retained, the
linearized LFT-LPV model of the structure exactly covers all
plants, in a single parametric model, without introducing
conservatism or fitting errors. An application to the LFT-
LPV modeling of a robotic arm is proposed; in its nom-
inal configuration, the model obtained with the proposed
approach matches the model provided by the software
Simscape Multibody, but it is enhanced with parametric
variations with the LFT form; a robust LPV synthesis is
performed using Matlab robust control toolbox to illustrate
the capacity of the proposed approach for control design.

Index Terms— Multibody dynamics, Linear Fractional
Transformation (LFT) modeling, Linear Parameter Varying
(LPV) system, robust control

NOMENCLATURE

(∗u) Skew symmetric matrix of vector u, such that u× v = (∗u)v
[X]

Rx
X (vector or tensor) projected in frame Rx

X x (scalar or vector) evaluated at equilibrium
δX First-order variations of x around equilibrium

I. INTRODUCTION

Multibody systems have applications in various fields such

as aeronautics, aerospace or robotics, with numerous mod-

eling and formulation approaches [1]. Even though multi-

body dynamics are inherently nonlinear, it is often useful to
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linearize them at equilibrium to study the stability, perform

modal analysis or apply classical linear control methods. In

practical engineering problems, many parameter uncertainties

impact the dynamics of the system and must be taken into

account for robust analysis and control. When working on the

uncertain linear model, a representation of the uncertainties

with a bounded and unknown operator ∆, based on the Linear

Fractional Transformation (LFT), enables powerful tools to

perform worst-case robust analysis and control such as µ-

analysis or H∞-synthesis [2]. Furthermore, the nonlinear sys-

tem can often be approximated by a Linear Parameter Varying

(LPV) model around a slowly-varying equilibrium, where

the varying or nonlinear terms are also represented in the

operator ∆ of the LFT. Finally, some mechanical parameters,

such as masses of some elements, may be considered as

decision variables and included in the LFT to be optimized

simultaneously with the controller in multidisciplinary co-

design approaches. In this paper, the uncertain, varying and

decision parameters are referred to as parameters of interest.

Classical multibody approaches, consisting in building the

nonlinear model of the structure by assembly of the individual

models and then linearizing this nonlinear model around

equilibrium, are unable to directly provide the LFT-LPV

model. This is due to the trim conditions depending on the

parameters of interest: for example, consider the small angles

variations of a pendulum with an uncertain mass – the gravity

introduces a stiffness which depends on the uncertain mass,

and a numerical trimming preceding the linearization will

only capture a single parametric configuration of this stiffness

rather than a parameterized LFT model taking into account the

parametric uncertainty on the mass. For a more general class

of systems, the use of symbolic linearization was proposed

in [3], [4] to overcome this issue, but it is computationally

costly for complex systems, especially when dealing with

many parameters or high-order dynamics. Consequently, the

most common practice for systems with parameter-dependent

trim conditions is to perform numerical linearizations around a

grid of equilibrium points corresponding to particular values of

the parameters, and to generate a model covering all Linear

Time Invariant (LTI) models of the grid using multivariable

polynomial fitting techniques [5], [6]. However, this procedure

may introduce conservatism or miss worst-case configurations,

and may be time consuming when there are many parameters

or when a fine grid is required.

For the modeling of large space structures such as satellites

http://arxiv.org/abs/2109.00407v2


2

with flexible solar panels in micro-gravity conditions, a general

framework was introduced in [7], and implemented in a

generic toolbox named Satellite Dynamics Toolbox (SDT)

[8], to build linear models of flexible multibody systems.

Based on Newton-Euler equations, this tool allows to build

the dynamic model of the whole structure by assembling the

individual models of each substructure based on the Two-

Input Two-Output (TITOP) formalism [9]. Some assets of

this approach include the compliance with various substructure

models and boundary conditions, and support of the interfacing

with finite element software when the model includes complex

substructures [10]. The resulting model is provided under the

form of a block-diagram with minimal number of states, and

the parameters can be isolated to obtain a minimal LFT model,

allowing robust control [11] or integrated control/structure co-

design with the H∞ synthesis [12].

In this paper, the framework from [7]–[12] is extended to the

modeling of multibody systems undergoing variations around

a uniformly accelerated motion, e.g. for systems subject to

gravity (robotic arms, aircrafts, civil machinery, stratospheric

balloons...) or space systems during a thrust phase (launchers,

spacecrafts). It was motivated by the need for robust con-

trol for stratospheric balloons, which are complex multibody

systems subject to gravity with uncertain masses [13] that

cannot be modeled with current multibody software due to the

parameter-dependent trim conditions. Rather than linearizing

the nonlinear model of the multibody structure, the proposed

approach linearizes each individual substructure and kinematic

joint and assembles them to build the LFT model of the

structure, after an analytical computation of the parameter-

dependent equilibrium. It allows to only perform operations

that preserve the LFT form throughout the linearization pro-

cess. The LFT model regroups all parametric configurations

in one single model, enabling modern analysis and control

tools like µ-analysis or H∞-synthesis, and is obtained without

resorting to symbolic trimming of the nonlinear model or

polynomial fitting of a set of LTI plants; in particular, the LFT

model exactly covers all plants within the specified bounds

without introducing conservatism or fitting error. Since the

linearization procedure only relies on basic block-diagram

manipulations, the LFT model is obtained in a reasonable

amount of time. From the control engineer’s point of view, the

proposed approach can be implemented in Matlab-Simulink

to build complex multibody structures by interconnecting the

individual bodies. Targeted engineering applications include

modeling of uncertain LPV multibody systems and lumped-

parameter modeling of uncertain flexible systems, for the

purpose of robust control, gain scheduling, vibrations control,

or integrated control/structure co-design, along with control

design tools such as Matlab robust control toolbox. To the

authors knowledge, this approach is the first contribution ad-

dressing the parametric model linearization around parameter-

dependent equilibrium in the general context of uncertain

multibody systems.

The dynamics of rigid bodies are modeled with Newton-

Euler equations in Section II, and the equations of the revolute

joint are presented in Section III. Section IV discusses the

equilibrium and the linearization of the individual models of

rigid body and revolute joint and the compatibility with LFT

formalism. The assembly, trim and linearization algorithm,

allowing to keep the LFT dependency of the model on the

parameters of interest during the linearization, is detailed in

Section V. Finally, Section VI presents an application to the

LFT modeling of an LPV robotic arm; the model is validated

with a comparison to Simscape Multibody and a LPV control

design is performed to illustrate the capacity of the proposed

approach for control design.

II. RIGID BODY DYNAMICS

A. Description of the motion

Definition II.1. Uniformly accelerated reference frame R
Let R = (O,x,y, z) be a reference frame in uniform accel-

eration, represented by the 3× 1 vector a, with regard to an

inertial reference frame Ri.

In this paper, the motion is described in the reference frame

R. This equilibrium condition can represent a gravity field or

an acceleration during a thrust phase for a space system.

Definition II.2. Motion in the reference frame R
Let us define the following vectors:

• xB
P =

[
OP
θ
B

]
the 6× 1 pose vector of body B at point P ,

with OP the 3× 1 position vector of P and θ
B the 3× 1

vector of Euler angles of B with regard to R.

• x′B
P =

[
v
B
P

ω
B

]

the 6× 1 dual velocity vector of body B at

point P , with vB
P = d

−−→
OP
dt

∣
∣
∣
R

and ω
B the angular velocity

of B with regard to R.

• x′′B
P =

dx′B
P

dt

∣
∣
∣
R

=
[
v̇
B
P

ω̇
B

]

the 6 × 1 dual acceleration

vector of body B at point P .

• mB
P = [aT , (x′′B

P )T , (x′B
P )T , (xB

P )
T ]T is defined as the

motion vector of body B at point P .

Noting a6 = [ a
03×1

], the linear and angular accelerations of

body B at point P with respect to Ri are:
[

aBP

∣
∣
Ri

ω̇
B
∣
∣
Ri

]

= x′′B
P + a6 . (1)

B. Newton-Euler equations for rigid bodies

Let us consider a body B of mass mB and matrix of inertia

JB
B at center of gravity B. Newton-Euler equations read at B:

[
FB

TB
B

]

︸ ︷︷ ︸

WB
B

=

[
mBI3 03×3

03×3 JB
B

]

︸ ︷︷ ︸

DB
B

[

aBB
∣
∣
Ri

ω̇
B
∣
∣
Ri

]

+

[
03×1

(∗ωB)JB
Bω

B

]

(2)

where WB
B =

[
F

B

T
B
B

]

is the 6×1 wrench vector (force FB and

torque TB
B) applied to the body B at point B. Definition II.3

and property II.4 were introduced in [7] to transport equation

(2) to any other point P of the body B.

Definition II.3. Kinematic model [7]

The 6 × 6 tensor τPC =
[

I3 (∗
−−→
PC)

03×3 I3

]

is defined as the

kinematic model between two points P and C.

Property II.4. Transport of the vectors [7]:
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• Dual velocity vector: x′B
P = τPCx

′B
C

• Dual acceleration vector:

x′′B
P = τPCx

′′B
C +

[
(∗ωB)(∗

−−→
PC)ωB

03×1

]

• Wrench vector: WB
C = τ

T
PCW

B
P

• Inverse kinematic model: τ−1
PC = τCP

• Transitivity: τPCτCP ′ = τPP ′ .

Using property II.4 to transport the vectors from point B to

another point P of body B, and since τBPa6 = a6, equation

(2) is transported to P :

WB
P = τ

T
BPD

B
BτBP

︸ ︷︷ ︸

DB
P

(
x′′B
P + a6

)
+

[
mB(∗ωB)(∗

−−→
BP )ωB

(∗ωB)
(

J
B
B−mB (∗

−−→
BP )2

)

ω
B

]

︸ ︷︷ ︸

NL(P,ωB)

(3)

where NL(P,ωB) regroups the nonlinear terms, and DB
P is

defined as the direct dynamics model of body B at point P .

C. Projection in the body’s frame

In order to describe each body independently from the

others, equation (3) is projected in the reference frame Rb

attached to B:

[WB
P ]Rb

= [DB
P ]Rb

(
[x′′B

P ]Rb
+ [a6]Rb

)
+ [NL(P,ωB)]Rb

.
(4)

The kinematic and direct dynamic models are conveniently

written in the body’s frame. The inertial uniform acceleration

vector a is defined in the inertial frame Ri , or equivalently,

in frame R: [a]Ri = [a]R. With the notations of definition

II.5, its projection in Rb reads:

[a]Rb
= PT

b/i(θ
B)[a]Ri . (5)

Definition II.5. Direction Cosine Matrix:

The Direction Cosine Matrix (DCM) between the body’s

frame Rb = (O,xb,yb, zb) and the frame Ri, containing the

coordinates of vectors xb, yb, zb expressed in frame Ri, is

noted Pb/i(θ
B). The inverse function, which converts a DCM

Pb/i into the equivalent Euler angles, is noted Θ(Pb/i(θ
B)).

Definition II.6. From Euler angles rates to angular velocity:

The relationship between the body frame angular velocity

vector and the rate of change of Euler angles is:

[ωB]Rb
= Γ(θB)θ̇B (6)

where Γ(θB) depends on the chosen Euler sequence and

expresses the relation between the angular velocty vector and

the rate of change of Euler angles [14].

III. CONNECTION WITH A REVOLUTE JOINT

In this section, we consider two bodies A and B inter-

connected with a revolute joint (one degree of freedom in

rotation).

A. Change of frame

Since the equations describing the motion of B (respectively

A) are projected in the reference frame Rb (respectively

Ra), the change of frame operation is necessary to write the

interconnection of A and B.

Property III.1. Change of frame:

Given the Direction Cosine Matrix (DCM) Pa/b between two

frames Ra and Rb according to definition II.5, let us define

P×2
a/b = diag(Pa/b,Pa/b). Then:

• For X a dual velocity, acceleration, or wrench vector:

[X]Rb
= P×2

a/b[X]Ra

• Direct dynamics model: P×2
a/b[D

A
P ]RaP

×2
a/b

T
= [DA

P ]Rb

• Pb/a = P−1
a/b = PT

a/b

B. Model of the revolute joint

Let θ, θ̇, θ̈ be the angular configuration, rate and acceleration

inside the revolute joint between bodies B and A at the

connection point P , r the vector of unit norm aligned with the

joint’s axis, and Tr the driving torque along r. The revolute

joint J is modeled as a body with two ports (it is connected

to A and B), to which are added an input θ̈ and an output Tr.

It is assumed that J is a mass-less body attached to the body

A, with a matrix of inertia JJ
P = JJ rrT . From equation (2),

the dynamic model of J reads:

WB/J ,P +WA/J ,P =

[
03 03

03 JJ
P

] [
v̇A
P + a

ω̇
A

]

+

[
03×1

(∗ωA)JJ
ω

A

]

=

[
03×1

JJ
P

(

ω̇
B + θ̈r

)

+ (∗ωA)JJ
P ω

A

]

.

(7)

The driving torque Tr is the projection of the torque

TB/J ,P applied by B on J at P along r:

Tr = rT6 WB/J ,P

= JJ
(

rT ω̇B + θ̈
)

− rT6 WA/J ,P + rT (∗ωA)JJ
P ω

A

︸ ︷︷ ︸
=0

.

(8)

where r6 = [ 03×1

r
]. In most applications, it is preferred to

invert the channel from (θ, θ̇, θ̈) to Tr to take into account a

driving mechanism actuating the revolute joint:

θ̈ =
1

JJ

(
Tr + rT6 WA/J ,P

)
− rT ω̇B . (9)

The motion vector, projected in each body’s frame, is

transformed through the revolute joint as follows.

Property III.2. Transformation of the motion vector through

a revolute joint between two bodies:

The motion vector at point P can be expressed from body B
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to body A, connected at point P with a revolute joint:

[mA
P ]Ra =







[a]Ra

[x′′A
P ]Ra

[x′A
P ]Ra

[xA
P ]Ra






=









Pb/a(θ)[a]Rb

P×2
b/a(θ)[x

′′B
P ]Ra + θ̈[r6]Ra

P×2
b/a(θ)[x

′B
P ]Ra + θ̇[r6]Ra[

Pb/a(θ)[
−−→
OP ]Ra

ΘJ

b/a
(θB,θ)

]









where θ
A = ΘJ

b/a(θ
B, θ) is defined as ΘJ

b/a(θ
B, θ) =

Θ
(
Pb/i(θ

B)Pb/a(θ)
)
.

IV. LINEARIZATION OF THE INDIVIDUAL MODELS

In this section, the equations describing the equilibrium

and the linear variations around the equilibrium are derived

individually for each model of rigid body and revolute joint

obtained in Sections II and III. This way, the parametric

dependencies are analytically derived on simple models; it

is shown why this step is necessary to capture the LFT

dependency on certain parameters of interest.

A. Equilibrium

The system is said to be at equilibrium when it has no

motion in the reference frame R. For a body B and a point

P , it corresponds to:
{
xB
P = xB

P , x′B
P = 0 , x′′B

P = 0
}

. For a

revolute joint J , it corresponds to
{

θ = θ̄ , θ̇ = 0 , θ̈ = 0
}

.

The Euler angles at equilibrium are noted θ
B . Around the

equilibrium, the vectors defined in Section II-A, projected in

Rb, verify to the first-order:
{

δ[x′′B
P ]Rb

=
d(δ[x′B

P ]Rb
)

dt

δ[x′B
P ]Rb

= diag
(
I3,Γ(θ

B)
) d(δ[xB

P ]Rb
)

dt

(10)

and the linearized motion vector projected in Rb is:

δmB
P =

[
δ[a]TRb

, δ[x′′B
P ]TRb

, δ[x′B
P ]TRb

, δ[xB
P ]

T
Rb

]T
. (11)

B. Linearized model of the rigid body

Equation (4) is evaluated at equilibrium:

[W
B

P ]Rb
= [DB

P ]Rb
[a6]Rb

(12)

with

[a6]Rb
=

[
PT

b/i(θ
B)[a]Ri

03×1

]

. (13)

Equation (12) shows that the wrench applied to B at equi-

librium depends on the DCM Pb/i(θ
B) and on the direct

dynamics model [DB
P ]Rb

of body B, which can be an LFT of

the following parameters: mass, matrix of inertia, position of

the center of gravity B relatively to point P . This observation

induces that the internal wrenches of the multibody system

may be LFTs of these parameters, which will be of importance

when linearizing the model of revolute joint in Section IV-C.

Equation (4) is linearized around the equilibrium:

δ[WB
P ]Rb

= [DB
P ]Rb

(
δ[x′′B

P ]Rb
+ δ[a6]Rb

)
. (14)

Remark: including the acceleration vector a in the motion

vector mB
P allows equation (14) to be linear in the linearized

motion vector δ[mB
P ]Rb

, and thus to be compliant with LFT

formalism. This is possible because δ[a]Rb
can be propagated

through the revolute joints (see the linearization of property

III.2, in Section IV-C). If it was not the case, we should instead

write δ[a]Rb
as:

δ[a]Rb
=

d[a]Rb

dθB

∣
∣
∣
∣
eq

δθB (15)

but the matrix
d[a]Rb

dθB

∣
∣
∣
eq

cannot generally be obtained as an

LFT because it depends on Euler angles (see Appendix).

The transport of the motion vector (following property II.4)

can be linearized around the equilibrium:
{

δ[mB
P ]Rb

= [ΥPC ]Rb
δ[mB

C ]Rb

[ΥPC ]Rb
= diag (I3 , [τPC ]Rb

, [τPC ]Rb
, I6)

. (16)

Finally, consider a body B where the motion is imposed at

parent port P , and external wrenches W./B,Ci
are applied

at N child ports Ci. From equations (14) and (16), the

linearized inverse dynamics LFT model is represented by the

block-diagram in Fig. 1a. Using additionally equation (10),

the linearized 12th-order forward dynamics LFT model is

represented by the block-diagram in Fig. 1b for a body with

N ports Ci where only external wrenches are applied (no

imposed motion). The green and blue blocks represent the

nominal models and the ∆ operators respectively.

Remark: a multibody system has a base which is either the

ground (imposed motion) or a body with forward dynamics

(no imposed motion, the equilibrium is determined by the

wrenches). In the latter case, the orientation of the base at

equilibrium is explicitely defined. Then, the matrix
d[a]Rb

dθB

∣
∣
∣
eq

can be obtained as an LFT of the Euler angles. However,

for the inverse dynamics, the Euler angles are propagated

from the base to the body through the joints, and since

this transformation is not compliant with the LFT (see the

discussion in Appendix), it is necessary to use the acceleration

propagated with the motion vector.

C. Linearized model of the revolute joint

The linearization of the revolute joint must take into account

the dependency of the DCM Pa/b on the variable θ: if X is

a vector such that [X]Ra = Pb/a(θ)[X]Rb
:

δ[X]Ra = Pb/a(θ̄)δ[X]Rb
+

dPb/a

dθ

∣
∣
∣
∣
eq

︸ ︷︷ ︸

=(r∗)Pb/a(θ̄)

δθ[X]Rb
. (17)

Remark: the DCM Pb/a(θ̄) can be expressed as an LFT of

the parameter t = tan(θ̄/2) (respectively t = tan(θ̄/4)) with

2 (respectively 4) occurrences (cf. [15, p. 191 to 195]).

The projections of equation (7) in the frame Rb and of

equation (9) along r read:







[WB/J ,P ]Rb
+P×2

a/b(θ)[WA/J ,P ]Ra

=

[
03×1

[JJ
P ]Rb

(

[ω̇B]Rb
+ θ̈[r]Rb

)

+ [(∗ωA)JJ
P ω

A]Rb

]

θ̈ = 1
JJ

(
Tr + [rT6 ]Ra [WA/J ,P ]Ra

)
− [rT ]Rb

[ω̇B]Rb

.

(18)
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δ[W./B,C1
]Rb

δ[WB/.,P ]Rb
δ[mB

P ]Rb

δ[mB

C1
]Rb

δ[W./B,CN
]Rb

•

•

•

+
+

+
−

•

•

•

δ[mB

CN
]Rb

∆

[τTCNP ]Rb

[DB

P ]Rb

[ΥCNP ]Rb

[ΥC1P ]Rb

∆

∆

∆

(a)

δ[W./B,C2
]Rb

δ[W./B,C1
]Rb

δ[mB

C1
]Rb

δ[mB

C2
]Rb

δ[W./B,CN
]Rb

•

•

•

δ[mB

CN
]Rb

•

•

•

+
+ +

−+

∆

∆

∆

∆

∆

∆

∆

[DB

P ]
−1
Rb

1
sI6

1
sI6

d[a]Rb

dθB

∣

∣

∣

eq

(b)

Fig. 1: Linearized model of a rigid body B: (a) Inverse dynamics, (b) Forward dynamics

It can be noted that [r]Rb
and [JJ

P ]Rb
are independent from θ.

Indeed, noting R(θ) the rotation matrix around r, the DCM

reads Pb/a(θ) = R(θ)Pb/a(0). Then:

[r]Rb
= PT

b/a(0)R
T (θ)[r]Ra

︸ ︷︷ ︸

=[r]Ra

(19)

and

[JJ
P ]Rb

= PT
b/a(θ)[J

J
P ]RaPb/a(θ)

= JJPT
b/a(0)R(θ)T [r]Ra

︸ ︷︷ ︸

=[r]Ra

[rT ]RaR(θ)
︸ ︷︷ ︸

=[rT ]Ra

Pb/a(0)

= PT
b/a(0)[J

J
P ]RaPb/a(0) .

(20)

Equation (18) is evaluated at equilibrium:

{
[WJ /B,P ]Rb

= P×2
a/b(θ̄)[WA/J ,P ]Ra

0 = T r + [rT6 ]Ra [WA/J ,P ]Ra

(21)

and linearized around the equilibrium:






δ[WB/J ,P ]Rb
+
[
(r∗) 0

0 (r∗)

]

P×2
b/a(θ̄)[WA/J ,P ]Raδθ

+P×2
a/b(θ̄)δ[WA/J ,P ]Ra

=

[
03×1

[JJ
P ]Rb

(

δ[ω̇B]Rb
+ δθ̈[r]Rb

)

]

δθ̈ = 1
JJ

(
δTr + [rT6 ]Raδ[WA/J ,P ]Ra

)

−[rT ]Rb
δ[ω̇B]Rb

.

(22)

Equation (22) shows that the wrench applied to the joint at

equilibrium, represented by the vector [WA/J ,P ]Ra , intro-

duces a stiffness in the motion of the revolute joint (factor

multiplying δθ). In addition to some possible wrenches applied

to the system and defining the equilibrium (such as a buoyant

force compensating for the gravity acceleration in the case of a

stratospheric balloon, or a thrust providing the acceleration in

the case of a launcher), the wrench [WA/J ,P ]Ra results from

the wrenches applied by rigid bodies given by equation (12),

and it must be evaluated at equilibrium before the lineariza-

tion. Therefore, following the discussion on equation (12),

[WA/J ,P ]Ra may depend on some parameters of interest

(masses, lengths, etc). A numerical evaluation of the trim

point, as it is done with current available software, is not

adequate to capture it as an LFT (it will only evaluate a

single, nominal configuration); on the contrary, evaluating

[WA/J ,P ]Ra while preserving its LFT structure allows to

correctly re-inject it in the linearized model of the revolute

joint. This observation justifies the need for the analytical

derivation of the trim conditions and analytical linearization

presented in this section, as well as for the dedicated procedure

presented in Section V.

Example 1: Pendulum – Consider a pendulum around its

stable equilibrium, composed of a revolute joint, a mass-less

link, and an point mass, and assume that the mass is uncertain

and represented by an LFT. The stiffness is proportional to the

mass, and must be computed as an LFT to be re-injected in the

linearized model of the revolute joint. It is worth emphasizing

that a system as simple as the pendulum has a parameter-

dependent equilibrium in the sense of this paper, even though

the equilibrium angle is fixed, and must be treated with the

proposed approach to derive a multibody LFT model.

Example 2: Robotic arm – Consider a robotic arm with

several bodies and revolute joints. It is sought to derive a LPV

model where the scheduling parameters, whose variations are

isolated with the LFT formalism, are the equilibrium angle of

each joint. In addition to the rigid bodies parameters (masses,

etc), the internal wrenches also depend on the equilibrium

angles of the bodies. Therefore, it is first necessary to derive

the DCM Pb/i(θ
B) of each body as the product of the

individual DCMs of the revolute joints, which are LFT-LPV

rotation matrices. Then, the wrenches are evaluated as LFTs of

the equilibrium angles and rigid bodies parameters, and finally
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re-injected in the linearized models of the revolute joints.

The transformation of the motion vector (property III.2) is

also linearized:






δ[a]Ra = (r∗)Pb/a(θ̄)[a]Raδθ +Pb/a(θ̄)δ[a]Rb

δ[x′′A
P ]Ra = P×2

b/a(θ̄)δ[x
′′B
P ]Rb

+ δθ̈[r6]Ra

δ[x′A
P ]Ra = P×2

b/a(θ̄)[x
′B
P ]Rb

+ δθ̇[r6]Ra

δ[xA
P ]Ra =





Pb/a(θ̄) 0

0
∂ΘJ

a/b

∂θB

∣
∣
∣
∣
eq



 δ[xB
P ]Rb

+





(r∗)Pb/a(θ̄)[OP ]Rb

∂ΘJ

a/b

∂θ

∣
∣
∣
∣
eq



 δθ

(23)

Once again, the position vector at equilibrium [OP ]Rb
must be

computed analytically because it may have LFT dependency

on the lengths or angles at equilibrium.

From equations (22) and (23), the linearized model of

the revolute joint takes δ[WA/J ,P ]Ra , δ[mB
P ]Rb

and δTr as

inputs, and returns δ[mA
P ]Ra , δ[WJ /B,P ]Rb

and (δθ̈, δθ̇, δθ)
as outputs. With the proposed evaluation of the vectors

[WA/J ,P ]Ra and [OP ]Rb
as LFT models, the linearized

revolute joint is also an LFT model except for the gains
∂ΘJ

a/b

∂θ

∣
∣
∣
∣
eq

and
∂ΘJ

a/b

∂θB

∣
∣
∣
∣
eq

which are used to propagate Euler

angles (see the discussion in Appendix).

V. ASSEMBLY, TRIM AND LINEARIZATION ALGORITHM

As discussed in Section IV, it is necessary to perform

an analytical trimming to preserve the LFT dependencies.

This is possible by assembling the model of the structure at

equilibrium from the individual models (12) and (21). Then,

the trim conditions, expressed as LFTs, are re-injected in the

assembly of the individual linearized models (Fig.1, equations

(22) and (23)). This procedure is schematized in Fig.2.

Individual nonlinear models

Assembly

Linearization

Equilibrium
configuration

Equilibrium

LFT model

Individual
linearized models

Individual models
at equilibrium

conditions
Trim

Assembly

Individual

Fig. 2: Assembly, trim and linearization algorithm

More precisely, let us consider a tree-like structure com-

posed of (i) a base, which is either a parent body described

by its forward dynamics (6 DOF) or the ground (no DOF),

(ii) children bodies described by their inverse dynamics (no

additional DOF), and (iii) n revolute joints (n DOF). Each

body may be connected to any number of other bodies or

joints, as long as there is no closed kinematic loop.

Step 1 (Geometry at equilibrium, or forward recur-

rence): This step aims at computing the geometrical trim

conditions as LFTs of the parameters of interest: the DCM

Pb/i(θ
B) for each body, and the position vector [OP ]Rb

at

each revolute joint. These quantities are initially defined at

the base (either a parent body or ground) and are propagated

from the base to the other bodies and joints. The DCM is trans-

formed at each revolute joint: Pb/i(θ
B) = Pa/i(θ

A)Pb/a(θ̄);
and the position vector is transformed at each revolute joint:

[OP ]Rb
= Pa/b(θ̄)[OP ]Ra , and at each rigid body: from a

port P to a port C: [OC]Rb
= [OP ]Rb

+[CP ]Rb
. The DCMs

Pb/a(θ̄) and the positions [CP ]Rb
can be LFT models, and

these operations preserve the LFT form, hence all Pb/i(θ
B)

and [OP ]Rb
are finally obtained as LFT models.

Step 2 (Wrenches at equilibrium, or backward re-

currence): This step aims at computing the wrenches at

equilibrium [WA/J ,P ]Ra in the revolute joints as LFTs of the

parameters of interest. For this, the wrenches are propagated

from the outer bodies (end of the open kinematic chain) to the

base using the models (12) and (21), which are also compliant

with the LFT formalism (and where the matrices [DB
P ]Rb

can

be LFT models as well). Note that step 2 requires the DCMs

Pb/i(θ
B) computed at step 1 (see equation (13)).

Step 3 (Linearized model): Finally, the individual lin-

earized models (Fig.1, equations (22) and (23)) are assem-

bled while re-injecting the trim conditions obtained as LFT

models in steps 1 and 2. Therefore, the resulting model is a

fully parameterized LFT model accounting for the parameter-

dependent equilibrium.

Since the physical origin of all parameters has been pre-

served during the whole procedure, the LFT model exactly

covers all plants without introducing conservatism or fitting er-

ror. In practice, the procedure can be implemented on Matlab-

Simulink; in this case, the trim conditions computed as LFT

models in steps 1 and 2 are evaluated as input/output transfers

after implementation of models (12) and (21) as static LFT

models. Since only basic block-diagram manipulations are

applied, the procedure can be executed in reasonable time even

for complex systems. However, although the trim conditions

calculated in steps 1 and 2 can be expressed with minimal

parametric dependency on the parameters of interest, since

they are in turn re-injected at step 3, there can be redundant

occurrences in the linearized LFT model; reduction techniques

can be used to reduce the order of the block ∆ [16].

VI. APPLICATION EXAMPLE

A. Presentation of the system

The two-link robotic arm presented in Fig. 3 is subject to the

gravity represented by the vector g, which is equivalent to an

acceleration a = −g in the proposed approach. The reference

frame in acceleration is noted R = (O,x,y, z). The arm is

composed of 3 bodies B1, B2, and B3. The revolute joints

J1 and J2, which allow the rotation around x, are actuated

with torques T1 and T2. B3 is a point mass representing the

end-effector carrying a load, and is rigidly connected to B2

(no degree of freedom). The characteristics of the rigid bodies

are indicated in Table I. The position of the center of gravity

(CoG) is the distance of the CoG from the body’s left tip (in

Fig. 3), normalized by the length of the body. Uncertainties

of ±20% have been set on some parameters. The scheduling

parameters t1 = tan(θ̄1/2) and t2 = tan(θ̄2/2) are defined as

uncertain parameters in the revolute joints blocks.
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z

x
y

B1

B2

B3

J1

J2

a = −g

T1

B0

O

T2 θ2

θ1

Fig. 3: Two-link robotic robotic arm

TABLE I: Physical parameters of the robotic arm

B1 B2 B3

Mass mi (kg) 3 (± 20%) 2 5 (± 20%)

Moment of inertia Ji (kg.m2) 0.2 (± 20%) 0.1 0
Length Li (m) 1 1 (± 20%) 0

Position of the CoG ρi (-) 0.3 (± 20%) 0.5 0

B. Multibody LFT modeling

The proposed approach is implemented on MATLAB with

the robust control toolbox. The uncertain and scheduling

parameters are declared with the routine ureal. The trim

conditions (DCMs, position vectors, wrenches) are evaluated

with the routine ulinearize as static input/output transfers

in separated SIMULINK files, where the individual static LFT

models of each body at equilibrium are assembled (steps 1 and

2). Once the trim conditions are obtained as LFT models, they

are re-injected in the linearized models which are assembled

as in Fig. 4 (step 3). For readability, it is indicated whether

the connections represent a motion vector δm or a wrench

δW, but the full nomenclature adopted in previous sections

is omitted. The LFT dependencies of the trim conditions are

carried by the blocks ∆ of the revolute joints. A damp-

ing Kd = 0.1N s rad−1 and a stiffness Kp = 0.1N rad−1 are

added to the linear models of the revolute joints. The procedure

took 20 seconds on a Intel Core i7 processor.

J1(s)
δm

δW

δθ1δT1

∆ ∆

J2(s)

∆

δθ2δT2

∆

B2

∆

B3

δm

δW

δm

δW

δW

δm

δW

δm

Fig. 4: Multibody LFT model of the robotic arm

C. Comparison with Simscape Multibody

To validate the proposed approach, the model of the same

robotic arm is built with Simscape Multibody and linearized

around the equilibrium. The proposed LFT model matches

Simscape’s model in the nominal configuration of the uncertain

parameters and across all angular configurations, as shown in

Fig. 5, where the relative error between the two models stays

small even in the worst-case configurations around θ̄1 = ±90°.

Non nominal configurations were also tested and matched the

corresponding Simscape’s model. Moreover, Fig. 6 presents

the singular values of the transfer [δT1 , δT2]
T → [δθ1 , δθ2]

T

for both models in one angular configuration. Let us emphasize

that the proposed LFT model contains all configurations of

the scheduling parameters t1 and t2 as well as the parametric

uncertainties in one single model, while the Simscape model

needs to be reevaluated, trimmed and linearized for every

geometric or parametric configuration.
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Fig. 5: || (G1 −G2)G
−1
2 ||∞ across angular configurations,

where G1 is the nominal LFT model (no parametric uncer-

tainty) and G2 is the Simscape Multibody’s model.
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Fig. 6: Singular values of [δT1 , δT2]
T → [δθ1 , δθ2]

T for

θ̄1 = 70° and θ̄2 = 30° (300 samples of the LFT model)

D. Robust LPV control

To conclude, a robust LPV controller is proposed to illus-

trate the compatibility of the proposed approach with classical

robust control tools and to show the advantages of the LFT

model. The angles are limited to the following operating

ranges: θ1 ∈ [45°, 90°] and θ2 ∈ [45°, 135°], and the set of

scheduling parameters is noted τ = {t1, t2}.

Noting δθref = [δθref1 , δθref2 ]T the vector of reference

angles, δe = δθref − [δθ1 , δθ2]
T , and δT = [δT1 , δT2]

T ,

the LPV controller K(s, τ ) is such that:

δT = K(s, τ )δe . (24)

Let the real matrices of appropriate dimensions A(τ ), B(τ ),
C(τ ), D(τ ) define the state-space representation of K(s, τ ).
The scheduling surface S(τ ) is defined as:

S(τ ) =

[
A(τ ) B(τ )
C(τ ) D(τ )

]

= M0 +M1t1 +M2t2 (25)



8

where the matrices M0, M1, M2 are to be tuned, and the

LPV controller K(s, τ ) reads:

K(s, τ ) = Fu

(

S(τ ),
Ins

s

)

= Fu

(
K(s),∆K

τ

)
(26)

where Fu refers to the upper LFT, ns is the number of states

of the controller, and the block ∆K
τ

isolates the occurrences

of t1 and t2.

The value ns = 3 was chosen, and after defining the

weighting functions WT = 1/1500 I2 (to limit the actuator’s

efforts) and We(s) = s+1
2s+0.02 I2 (to penalize low-frequency

tracking error), the robust, structured H∞ problem:

minimize
M0,M1,M2

γ2 s.t. max
τ ,∆

{|| δθref → WT δT ||∞} < γ2

subject to: max
τ ,∆

{|| δθref → Weδe ||∞} < γ1 < 1

(27)

was solved with MATLAB routine systune, based on the

algorithm presented in [17]. A performance (γ1 = 0.97,

γ2 = 0.69) was obtained (corresponding to the worst-case

H∞ norms of the transfers), and Fig.7 represents the LPV

controller. Since the proposed modeling approach provided all

parametric configurations of both the uncertain and scheduling

parameters in one single LFT model, the robustness and

the LPV controller synthesis were addressed together in one

single control design iteration, and the resulting performance

is guaranteed across all parametric configurations.
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Fig. 7: Singular values of K(s, τ ), θ̄1 = 45°, θ̄2 ∈ [45°, 135°]

VII. CONCLUSION

After introducing a multibody modeling framework based

on Newton-Euler equations, it was shown why a numerical

trim computation is not adequate to derive an LFT model, and

a specific assembly procedure, based on the linearization of the

equations of motion at the substructure level, was proposed to

solve this issue. An application to a robotic arm was outlined

to show how the proposed approach can be implemented on

MATLAB and used for control design.

APPENDIX

The transformation Θ(.) from definition II.5 cannot be

expressed as an LFT of uncertain or varying Euler angles,

because it includes trigonometric functions. Therefore, prop-

agating Euler angles from one body to another (with the

function ΘJ

b/a from property III.2) cannot be done while

preserving the LFT form. As a consequence, if Euler angles

are defined as output measurements, the corresponding output

gains cannot always be obtained as exact LFTs, and rational

approximations of ΘJ

a/b and its derivatives may be necessary

(it can be noted that, for problems in a single plane, the

transformation ΘJ

a/b becomes trivial and this issue disappears).

Nonetheless, the dynamical model can always be obtained

because the inclusion of the acceleration vector a in the motion

vector allows to dispense with Euler angles in the equations

of the dynamics (see equation (14) in Section IV-B).
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