
1

Optimal Pump Control for Water Distribution
Networks via Data-based Distributional Robustness

Yi Guo, Member, IEEE, Shen Wang, Ahmad F. Taha, Member, IEEE and Tyler H. Summers, Member, IEEE

Abstract—In this paper, we propose a data-based methodology
to solve a multi-period stochastic optimal water flow (OWF) prob-
lem for water distribution networks (WDNs). The framework
explicitly considers the pump schedule and water network head
level with limited information of demand forecast errors for an
extended period simulation. The objective is to determine the
optimal feedback decisions of network-connected components,
such as nominal pump schedules and tank head levels and reserve
policies, which specify device reactions to forecast errors for
accommodation of fluctuating water demand. Instead of assuming
the uncertainties across the water network are generated by
a prescribed certain distribution, we consider ambiguity sets
of distributions centered at an empirical distribution, which is
based directly on a finite training data set. We use a distance-
based ambiguity set with the Wasserstein metric to quantify the
distance between the real unknown data-generating distribution
and the empirical distribution. This allows our multi-period
OWF framework to trade off system performance and inherent
sampling errors in the training dataset. Case studies on a three-
tank water distribution network systematically illustrate the
trade-off between pump operational cost, risks of constraint
violation and out-of-sample performance.

Index Terms—optimal water resource management, hydraulic
dynamics, flow control, head management, data-driven, distribu-
tionally robust optimization, water distribution networks.

I. INTRODUCTION

DUE to a broad range of future energy and environmental
issues [1], water distribution network operators are seek-

ing improved strategies to deliver energy-efficient, reliable and
high quality service to consumers [2]. However, the increasing
complexity (e.g., due to high dimensionality, nonlinearities,
operation constraints and uncertainties) in municipal water
supply network operation is challenging the current manage-
ment and control strategies and may threaten the security of
this vital infrastructure. Future urban water supply systems
will require more sophisticated methods to function robustly
and efficiently in the presence of this increasing complexity.
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The flexibility of water flow manipulators (pumps and
valves) in water networks has been utilized to optimize vari-
ous objectives, including production and transportation costs,
water quality, safe storage, smoothness of control actions etc.
[3]–[12]. However, most optimal water flow control methods
use deterministic point forecasts of exogenous water demands,
which neglects their inherent stochasticity. In practice, the
variation of water demands in real water distribution networks
is high and difficult to predict [13]. Further, as complexity
of network topology increases [14], small perturbations can
cause significant performance decrease and even infeasibility
of optimal water flow problems [13].

Recent research on optimal water network operation has
been shifting from deterministic to stochastic models, since un-
certainties (e.g., human usage, unexpected component failures,
climate change) are increasingly key factors in many sectors
of water resource management [2], [13]–[23]. Most stochastic
formulations assume that the uncertain water demands follow
a prescribed distribution (e.g., Gaussian [19], [20]), or enforce
constraint for all possible water demand realization by as-
suming only knowledge of bounds on uncertainties [13], [21]
and then utilize robust optimization. In addition, sampling-
based stochastic optimization has also been applied to water
flow manipulation problem [17] to quantify the probability
of constraint violation based on an assumed data generating
mechanism. However, the underlying assumptions in these
approaches can be too strong or overly conservative, which can
lead to underestimation or overestimation of the actual risks
and therefore to ineffective operation. The methods based on
chance-constraints effectively only measure the frequency of
constraint violations not the severity, which can underestimate
risk. The robust methods can enforce constraints for extreme
and highly unlikely uncertainty realizations, effectively over-
estimating risk. Furthermore, some sampling-based methods
are computational intensive due to their requirement of a large
numbers of samples. In practice, forecasts of water demand are
never perfect and their distributions must be estimated from
finite data.

In this paper, we investigate a data-driven Model Predictive
Control (MPC) approach to tackle a stochastic optimal water
flow (OWF) problem for optimal pump schedule and head
management in water distribution networks (WDNs). Many
existing works, including [24]–[27], have successfully ex-
plored the stochastic MPC from the perspective of theoretical
analysis and practical applications. We applied the proposed
data-based distributionally robust stochastic MPC with the
Wasserstein-based ambiguity set to address a water engineer-
ing problem. Additionally, we also proposed a Laplacian-based
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water flow linearization associated with successive control
algorithm, which is considered as a substantial contribution
for dynamic control of water distribution networks from a
control engineering perspectives. The proposed framework
uses limited information of water demand forecasting errors
from a finite training dataset to explicitly balance the trade-
offs between performance and the risk of constraint violations
in the presence of large water demand variations. A prelim-
inary version of this work was presented in [28]; here we
significantly extend the work in several directions. The main
contributions are:

1) We formulate a general multi-period distributionally ro-
bust optimal water flow problem for optimal pump sched-
ule and head management. The distributionally robust
OWF model predictive controller uses data-driven dis-
tributionally robust optimization [29] to tractably obtain
control decisions for network components at each stage.
This allows the data-driven distributionally robust MPC
OWF controller to update the water demand forecast with
a finite time horizon and then re-compute the real-time
optimal decision based on the latest and future forecasting
information. In general, this OWF controller accepts the
training data set from all forecasting frameworks and the
decisions can be robust to various ambiguity sets (i.e.,
moment-based or metric-based). In this paper, we assume
the unknown real data generating distribution is located
in a metric-based ambiguity set, which is constructed
by a Wasserstein ball with constant radius centered at
an empirical distribution supported by the finite training
dataset. In contrast to other stochastic OWF formula-
tions, this approach makes the resulting control policies
explicitly robust to the inherent sampling errors in the
training dataset, which leads to superior out-of-sample
performance. We can appropriately tune the size of the
ambiguity set to avoid overly conservative decisions.

2) To handle computationally difficulties with the nonlin-
ear/nonconvex water network hydraulics, we leverage
a pertinent linear approximation of water network hy-
draulic coupling (i.e., flow-head coupling) to promote
a computationally-efficient stochastic optimal water flow
formulation for optimal pump control and nodal pressure
management. In contrast with the literature, we further
establish a generic matrix linearization in compact format
between water flow and nodal head by re-defining a net-
work Laplacian matrix based on linearization coefficients.
This provides a unified framework that is applicable for
approximation algorithms after linearization (i.e., succes-
sive linearization algorithms or piece-wise linearization
algorithms). We empirically observe that the convergence
of successive linearization algorithm provides an excel-
lent approximation to the nonlinear water flow.

3) The effectiveness and flexibility of our proposed stochas-
tic water flow formulation are demonstrated on a model
of the Barcelona water distribution network. We illustrate
the inherent trade-off between the system conservative-
ness and forecasting errors. The results can help the
operators to explicitly prioritize the trade-off between

the pump operational efficiency and the risk of tank
head constraint violation and then develop the appropriate
control strategies to balance their objectives and risk
aversion.

The rest of paper is organized as follows: Section II de-
scribes a generic model of water distribution networks and
the successive linearization approach; Section III presents
the general formulation of proposed data-based multi-period
distributionally robust stochastic optimal water flow prob-
lems. Section IV specifies the proposed stochastic OWF to
a stochastic optimal pump schedule and head management.
Section V demonstrates the flexibility and effectiveness of the
proposed methodologies via numerical experiments. Section
VI concludes.
Notation: The inner product of two vectors a, b ∈ Rm is
denoted by 〈a, b〉 := aᵀb and (·)ᵀ denotes the transpose of a
vector or matrix. The Ns-fold product of distribution P on a
set Ξ is denoted by PNs , which represents a distribution on
the Cartesian product space ΞNs = Ξ × . . . × Ξ. We use Ns
to represent the number of samples inside the training dataset
Ξ̂. Superscript “ ·̂ ” is reserved for the objects that depend on
a training dataset Ξ̂Ns . The cardinality of set J is denoted by
|J |. The Kronecker product operator is defined as ⊗.

II. HYDRAULIC MODEL AND LEVERAGING LINEAR
APPROXIMATION

In this section, we consider a water distribution network
model associated with active and passive networked compo-
nents and then we leverage a pertinent linear approximation,
which leads to a novel network Laplacian-based matrix ex-
pression. This allows us to use successive linearization to
approximate the original nonlinear hydraulic relationship for
several topologies. WDNs control actions include speeds of
pumps and settings of valves. In the rest of this section, we
introduce the network and hydraulic modelling of networked
components.

A. Network Modelling
We consider a water distribution network as a directed

graph G(N , E) with a set N := {1, 2, . . . , N} of vertices.
These vertices include junctions, reservoirs and tanks that
are collected in sets J , S and T and N = J ∪ S ∪ T .
Similarly, the set E ⊆ N × N of all links including the sets
of pipes, pumps and valves represented by I, M and V so
that E = I ∪M∪V . Let N in

i and N out
i collect the supplying

and carrying neighboring vertices of ith node , respectively.
We use qij ∈ R to denote the water flow through the link
(i, j) ∈ E and hi ∈ R+ denotes the head of node i ∈ N . We
assume each pipe has a prescribed flow direction, and that the
sign of qij indicates whether the actual flow direction matches
the assumption (qij ≥ 0) or goes in the opposite direction
(qij < 0).

1) Junctions: The water demand is assumed to be a con-
stant di(t) in gallons per hour (GPM), which is applied for
time interval t at junction i ∈ J . Mass conservation must be
hold any time at ith node∑

j∈N in
i

qji(t)−
∑
j∈N out

i

qij(t) = di(t), ∀i ∈ J , (1)
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where N in
i and N out

i are the sets of nodes supplying and
carrying flow at ith junction, respectively. If there is no
water demand consumption for nodes i ∈ N\Nd, we have
di(t) = 0 for all time slots. Here we define an aggregated
vector d(t) := [d1(t), . . . , dN (t)]ᵀ ∈ RN .

2) Reservoirs: The set S collects all reservoirs in a water
distribution network. We assume that all reservoirs have infi-
nite water resource supply and that the head of each reservoir
is a constant, which can be treated as an operational constraint

hR
i = helv

i , ∀i ∈ S,

where helv
i represents the elevation for ith reservoir.

3) Tanks: The head of tank at node i ∈ T at time t is
represented by hTK

i (t). The dynamics of these elements are
given by the discrete-time difference equations

hTK
i (t+ 1) = hTK

i (t) +
∆t

ATK
i

 ∑
j∈N in

i

qji(t)−
∑

j∈N out
i

qij(t)

 ,

(2)
where ∆t is the duration of the time interval (t, t + 1]. The
cross-section area of tank is defined by ATK

i .
4) Pumps: The pumps provide head gain in the water

distribution networks on the links (i, j) ∈ M connecting the
suction jth node and the delivery ith node. The head gain
explicitly depends on the pump flow and pump property. Now
we consider the variable speed pump (VSP) in the network
and the head gain is given by

hM
ij(t) = hi(t)− hj(t) = αijq

M
ij(t)

2 + βijq
M
ij(t) + γij , (3)

where coefficients αij , βij and γij are determined by the pump
operation curve.

5) Pipes: The head loss of pipe (i, j) ∈ I described via
the empirical Chezy-Manning (C-M) is given as follows

hP
ij = hi(t)− hj(t) = RCM,ijq

P
ij(t)

2, (4)

where the resistance coefficient is denoted by RCM,ij ∈ R++

and defined by [30]

RCM,ij = 4.66
LCM,ijC

2
CM

D5.33
CM,ij

.

Note that CCM ∈ R++ is the Manning roughness coefficient;
DCM,ij ∈ R++ is the diameter of pipeline in feet; and
LCM,ij ∈ R++ is the length of pipeline in feet.

6) Pressure Reduce Valves: There are several types of
controllable valves in a water distribution network, such as
pressure reduce valves (PRVs), general purpose valves (GPVs)
and flow control valves (FCVs), associated with different
control variables: valve openness, pressure reduction and flow
regulation. Here, we utilize PRVs to restrict the pressure to
a certain difference φij ∈ R+, (i, j) ∈ V along a pipeline
when the upstream pressure at ith node is higher than the
downstream jth node

φij(t) = hi(t)− hj(t), (5)

where hi(t) the head of upstream junction and hj(t) is the
head of downstream junction and the variable φij determines
the energy conservation on pipeline (i, j). Note that no reverse

flow on PRVs is allowed and the water flow through PRVs,
qij , (i, j) ∈ V , is not determined by (5), thereby depends on
other network coupling constraints (1). The implementation
of valve control actions depends on valve construction. We
refer interested readers to [3], [31]–[34] for more details.
The deployment of PRVs in water distribution networks can
promote the potential control availability. Here, we utilize a
“smart” PRV, whose pressure reduce setting can be optimized
in the real time.

7) Network Operational Constraints: We specify several
constraints on network states and inputs in our proposed
stochastic OWF problem to satisfy the physical operation
limitation of water distribution networks (i.e., limits of nodal
heads, pipe flows and tank levels)

hmin
i ≤ hi(t) ≤ hmax

i , ∀i ∈ N ,

qmin
ij ≤ qij(t) ≤ qmax

ij , ∀(i, j) ∈ E ,

where hmin
i and hmax

i are the lower and upper heads on ith

node and qmin
ij and qmax

ij are minimum and maximum flows
on link (i, j). We introduce a binary parameter zij(t) for link
(i, j) to indicate the ON/OFF status of the controllable devices
(i.e., pumps, valves). Then the head coupling between two
neighboring nodes can be modelled as follows

−M (1− zij(t))
≤ hij(t)− g(qij(t), φij(t)) ≤M (1− zij(t)) ,

(7)

where hij(t) := hi(t) − hj(t), g(·) is a general expression
of (3), (4) and (5) as functions of qij and φij and M is a large
positive constant. Note that when zij(t) = 1, the device on
link (i, j) is ON (i.e., qij(t) 6= 0), then the energy conservation
constraints (3), (4) and (5) hold on this link; otherwise zij(t) =
0 and the head at ith node and jth node are decoupled. For
the links without a controllable device (e.g., pipes), we let
zij(t) = 1 for all time intervals 1.

TABLE I
VARIABLE NOTATIONS

Notation Description
hi Head at node i

hTK
i /hR

i Head at tank/reservoir i

hP
ij /φij

Head loss on the pipe/valve from
node i to node j

hM
ij

Head gain on the pump from
node i to node j

qij
Flow through on the link from

node i to node j

qMij /qPij /qVij
Flow through on pump/pipe/valve from

node i to node j

B. Leveraging Linear Approximation of Hydraulic Coupling

The nonlinear energy conservation (7) renders the water
flow formulation nonconvex. This hinders the development

1Our water flow model for water distribution networks is given with binary
variables in general. In the rest of this paper, we develop our distributionally
robust MPC optimal water flow problem with the assumption that all binary
variables are fixed, such that the ON/OFF status of the controllable devices
are not optimized in our models.
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of a computationally efficient stochastic optimal water flow
problem where distributionally robust optimization and risk
measures can be utilized to balance system performance
and robustness. To that end, we provide a Laplacian-based
linearization that utilizes the successive linearization algorithm
to enable a highly accurate approximation of the original
nonlinear energy conservation (7).

The energy conservation (3), (4) and (5) can be concluded
in a compact matrix form

Bfh(t) = qᵀ(t)Nq(t) + Pq(t) + q0, (8)

where h(t) := [h1(t), . . . , hN (t)]ᵀ ∈ RN and q(t) :=
{qij(t)|(i, j) ∈ I ∪ M} ∪ {φij(t)|(i, j) ∈ V} ∈ R|E|

collect network states, e.g., head, flow and valve settings. The
constant matrices/vector N ∈ R|E|×|E|, P ∈ R|E|×|E| and
q0 ∈ R|E| explicitly depend on the property of pipelines,
pump and valves. The incident matrix of graph G is denoted
by Bf ∈ R|E|×|N |, having entries

Bf (n, i)

=

 1 if flow in nth link is away from ith node
−1 if flow in nth link is towards ith node
0 if flow in nth link is not incident on ith node

.

(9)
The nonlinearities in (8) make the OWF problem non-

convex and computationally challenging. Therefore, in the rest
of this subsection, we will seek to linearize (8) instead. We
express the flow as q = q̄+∆q, where q̄ ∈ R|E| is the nominal
water flow vector and ∆q ∈ R|E| captures disturbances around
the nominal values. To lighten notation we omit the time index
in the discussion of linearization in this section. Substituting
q = q̄ + ∆q into (8), we have

Bfh = (q̄ + ∆q)
ᵀ

N (q̄ + ∆q) + P (q̄ + ∆q) + q0

+ q̄ᵀNq̄ + Pq̄ + (2q̄ᵀN + P) ∆q + ∆qᵀN∆q + q0.

Neglecting second-order terms in ∆q, (8) becomes approxi-
mately

Bfh ≈ q̄ᵀNq̄ + Pq̄ + q0︸ ︷︷ ︸
A

+ (2q̄ᵀN + P)︸ ︷︷ ︸
B

∆q,

where matrices A,B ∈ R|E|×|E|. Now, we turn our attention
to solving for the water flow perturbation vector ∆q. Decom-
posing all energy conservation on each pipeline, we can write
the above linearization in the scalar form

hi − hj = aij + bij∆qij , ∀(i, j) ∈ E ,

where aij and bij denote the elements of A and B, respec-
tively. The water flow perturbation on each link is

∆qij =
1

bij
(hi − hj)−

1

bij
aij , ∀(i, j) ∈ E .

The sum of water perturbation carrying away from ith node
is defined as ∆Qi ∈ R around the nominal operation point q̄
given by

∆Qi =
∑
j

[
1

bij
(hi − hj)

]
−
∑
j

[
aij
bij

]
︸ ︷︷ ︸

Q̄i

, ∀i ∈ N . (10)

Note that the first term in (10) can be expressed using the
network Laplacian matrix L ∈ RN×N defined by the edge
weights 1

bij
. The second term in (10) is the nominal carrying

flow Q̄i ∈ R at ith node. Then the linear energy conservation
of water distribution network in compact form is

Lh = ∆Q + Q̄,

where the network’s Laplacian matrix L has elements

Lij =


∑
l∼i

1
bil

if i = j

− 1
bij

(i, j) ∈ E
0 (i, j) /∈ E

.

We define two vectors as ∆Q := [∆Q1, . . . ,∆QN ]ᵀ and
Q̄ := [{Q̄i ∈ R|Q̄i =

∑
j
aij
bij
}. Given the incidence matrix

defined in (9), the following energy conservation constraint
holds as a function of water flow perturbations

Lh = Bᵀ
f∆q + Q̄, (11)

where the Laplacian-based compact form maps the water flow
disturbance ∆q to the network head h around the linearized
point of nodal water carrying Q̄.

C. Verifying Feasibility of Laplacian Approximation

To validate the effectiveness and feasibility of the proposed
Laplacian approximation, we solve a water flow feasibility
problem

WFP-0: min
h,∆q

0

subject to (1) and (11).
(12)

by utilizing successive linearization algorithm and compare
the solutions to the water flow results from EPANET [30]
modelled via the nonlinear energy conservation constraints (8).
The overall successive linearization process is presented in
Algorithm 1. We use δ ∈ R++ to indicate the stop criteria of
Algorithm 1, which limits the acceptable discrepancy between
two successive optimization results. It can be set to a small
positive constant.

We empirically observe that the successive linearization
algorithm for WDN in Algorithm 1 provides a good numerical
approximation of the nonlinear hydraulic dynamics (q,h) and
flow directions if the following assumptions hold. More nu-
merical results and discussions illustrating the approximation
accuracy are presented in Appendix A.

Assumption 1. The water distribution network G is a tree
network [35].

Assumption 2. Pumps and valves are all active, i.e., zij =
1,∀(i, j) ∈M∪ V .

The main purpose of this paper is to seek the optimal
pump schedules satisfied the network constraints (e.g., flows
and head limits) under network uncertainties. The proposed
stochastic OWF formulation is designed for the real-time op-
timal control, which is based on the pre-determined operation
status of all active devices, i.e., zij is not an optimization
variable in (7). Additionally, we assume the network topology
is a pure tree. This ensures that the successive linearization
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algorithm converges (12) to a nonlinear feasible point and
gives the correct directions of water flows.

Algorithm 1 Successive Linearization Algorithm for Water
Distribution Networks

Input:.EPANET Network Information .inp source file2,
demand d, incidence matrix Bf

Output: System operating points h∗ and q∗

1: Initialize: n = 0, initial nominal water flow q̄0 and
Linearization error Err > δ

2: while Err > δ do
3: Calculate Laplacian Ln and flow carrying vector Q̄n

for nth iteration
4: Solve WFP-0 for ∆q∗n and h∗n from (12)
5: Compute the linearization error, Err = ‖∆q∗n‖22
6: Update nominal water flow points q̄n+1 = q̄n + ∆q∗n
7: n = n+ 1
8: end while
9: return solutions q∗ = q̄n+1, h∗ = hn

Remark 1. (Hydraulic-Network Simplification). Our proposed
framework focuses on optimal operation for water distribution
networks instead of hydraulic design and analysis. Therefore,
we assume all networks are trees, where the proposed lin-
earization approach is highly effective. Many networks can be
simplified or approximated as a tree network using various
techniques, which facilitates a higher-level interpretation of
the main network structure [36], [37].

Remark 2. (Successive Linearization Initialization). The ini-
tial nominal water flow q0 is an input of successive lineariza-
tion algorithm for WDNs. We suggest here a possible q0

for various components (e.g., pumps and pipes) to initialize
Algorithm 1 for improved convergence. For all pipes I in
WDNs, the initial water flow is corresponding to the flow speed
1 CFS [30]. The actual input initial water flow is adjusted
based on the properties of individual pipeline (i.e., length and
diameter). The initial linearized water flow point of pumps will
come from the pump efficiency curve [7]

Eij = e1
ijq

2
ij + e2

ijqij + e3
ij , ∀(i, j) ∈M.

The successive linearization of pumps starts from the most
efficient point as

∂Eij
∂qij

= 2e1
ijqij + e2

ij = 0, q̄ij =
e2
ij

2e1
ij

, ∀(i, j) ∈M.

Empirically speaking, starting points satisfying the physical
constraints will lead to a feasible solution.

The proposed Laplacian-based approximation of hydraulic
flow-head coupling provides a basic model of water distribu-
tion networks for us to develop the data-based distributionally
robust optimal pump control. In the rest of the paper, we first
present the general idea and then leverage the Laplacian-based

2The EPANET network information source file contains the topology of
water networks and the properties of the hydraulic components (e.g., pipes,
pump, tank and etc.).

successive linearization to promote a computationally-efficient
framework for optimal pump control and nodal pressure man-
agement.

III. DATA-BASED MULTI-PERIOD STOCHASTIC OPTIMAL
WATER FLOW

In this section, we formulate a stochastic OWF problem
as a distributionally robust stochastic optimal control prob-
lem. We first pose the problem generically to highlight the
overall approach and in subsequent sections we incorporate
the linearization of hydraulic modelling in Section II for a
tractable and computationally-efficient stochastic OWF. This
framework is more general than most stochastic OWF in
the literature, which typically focus only on individual or
single-stage optimization problems, or has a less sophisticated
approach for explicitly incorporating uncertainties. Consider
a multi-period data-driven distributionally robust optimization
problem

inf
π∈Π

sup
P∈P

EP
T∑
t=0

ht(xt, ut, ξt), (13a)

subject to xt+1 = ft(xt, ut, ξt), (13b)
ut = π(x0, . . . , xt, ξt,Dt), (13c)
(xt, ut) ∈ Xt, (13d)

where xt ∈ Rn represent the state vector at time t that includes
the internal states of all elements (i.e., valves, tanks and pipes).
Let ut ∈ Rm denote a control input vector that includes
inputs for all controllable components (e.g., pump output and
valve settings). The ξt ∈ RNξ denote random vectors in a
probability space (Ω,F ,Pt) which includes forecast errors of
all uncertainties in the network.

The goal of (13) is to find a optimal feedback policy that
minimizes the expected value of the system objective function
ht : Rn×Rm×RNξ → R robust to the worst-case distribution
in the forecast error ambiguity set P . We consider a setting
where the objective function ht includes both operating costs
and risks of violating various network and device constraints
and is assumed to be continuous and convex as functions
of (xt, ut) for any fixed ξt. The system dynamics function
ft : Rn × Rm × RNξ → Rn models internal dynamics
of all network-connected components, such as water storage
tanks. The general feasible set Xt includes other network and
device constraints, such as mass balance, energy conservation,
operational bounds on nodal heads and pipe flows (some
constraints may be modeled deterministically with respect to
mean values and others may be included as risk terms in the
objective function).

Since the real distributions of forecast errors are never
known in practice, we explicitly account for uncertainty in
their distributions themselves by assuming that the real but
unknown distribution Pt belongs to an ambiguity set Pt of
distributions which will be constructed from a forecast sam-
pling dataset.We collect the forecast error over an operating
horizon t as ξt := [ξᵀ1 , . . . , ξ

ᵀ
t ]ᵀ ∈ RNξt, which has joint

distribution P and corresponding ambiguity set P .
In this multi-period stochastic OWF, we are seeking a

series of closed-loop feedback policies in the form ut =
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π(x0, . . . , xt, ξ0:t,Dt) explicitly considering forecast errors
describing historical patterns, where the term Dt indicates all
network component model information and the parameteriza-
tion of the ambiguity set of the forecast error distribution. This
framework allows for design of not only for current nominal
reaction, but also reactions to future uncertainty realizations.
The policy function π maps all available information to control
actions and is an element of a set Π of measurable functions.

A. Ambiguity Sets based on Wasserstein Metric

One of the main challenges for solving (13) is how to utilize
our available information of uncertainties to appropriately
realize the distributions for a tractable problem reformulation.
There is a variety of ways to reformulate the general stochastic
OWF problem (13) to obtain tractable subproblems that can
be solved by standard convex optimization solvers. These
include assuming specific functional forms for the forecast
error distribution (e.g., Gaussian) [17] and using specific
constraint risk functions, such as those encoding value at
risk (i.e., chance constraints) [19], [38], conditional value at
risk (CVaR) [28], distributional robustness [28] and support
robustness [13]. In all cases, the out-of-sample performance
of the resulting decisions in operational practice ultimately
relies on 1) the quality of data describing the forecast errors
and 2) the validity of assumptions made about probability
distributions. Many existing approaches make either too strong
or too weak assumptions that possibly lead to underestimation
or overestimation of risk.

In this paper, we utilize a recently proposed tractable
method [29] in a multi-period data-based stochastic OWF, in
which the ambiguity set is based on a finite forecast error train-
ing dataset Ξ̂Ns via Wasserstein balls. Comparing with others
existing ambiguity sets [39]–[44], Wasserstein balls offer the
powerful out-of-sample performance and allow water distribu-
tion network operators to control the conservativeness of the
decisions, which promote the flexibility of water distribution
network from a practical perspective. We optimize an expected
objective over the worst-case distribution in the ambiguity set
P , which can be formulated as a finite-dimensional convex
program. The decisions from this stochastic OWF provide
an upper confidence bound under forecast errors realization,
quantified by the size of the ambiguity set (i.e., Wasserstein
radius [29]). The Wasserstein metric defines a distance in the
space M(Ξ) of all probability distributions Q supported on a
set Ξ with EQ[‖ξ‖] =

∫
Ξ
‖ξ‖Q(dξ) <∞.

Definition 1 (Wasserstein Metric [45], [46]). Given all dis-
tributions Q1,Q2 supported on Ξ, the Wasserstein metric
dW :M(Ξ)×M(Ξ)→ R+ is defined as

dW (Q1,Q2) :=

∫
Ξ

‖ξ1 − ξ2‖Θ(dξ1, dξ2),

where Θ represent a joint distribution of ξ1 and ξ2 with
marginals Q1 and Q2, respectively and ‖ · ‖ indicates an
arbitrary norm on RNξ .

The Wasserstein metric quantifies the “transportation costs”
to move mass from one distribution to another. The Wasser-
stein ambiguity set is defined by

P̂Ns :=

{
Q ∈M(Ξ) : dW (P̂Ns ,Q) ≤ ε

}
. (14)

This ambiguity set P̂Ns constructs a ball with radius ε in
Wasserstein distance around the empirical distribution P̂Ns

on the training dataset. The radius ε can be chosen so that
the ball contains the true distribution P with a prescribed
confidence level and leads to performance guarantees [29].
The radius ε also explicitly controls the conservativeness of
the resulting decision. Large ε would produce decisions that
rely less on the specific features of the uniform empirical
distribution supported by the training dataset Ξ̂Ns and improve
robustness to inherent sampling errors. We will discuss the
use of this conservativeness index for our stochastic OWF
problem.

B. Data-based Distributionally Robust Model Predictive Con-
trol of Optimal Water Flow

The goal of our data-based distributionally robust stochastic
OWF framework is to interpret and demonstrate inherent
trade-offs between efficiency and risk of constraint violations.
Accordingly, the objective function comprises a weighted sum
of an operational cost function and a constraint violation risk
function: ht = J tCost + ρJ tRisk, where ρ ∈ R+ is a weight that
quantifies the network operator’s risk aversion. The operational
cost function is assumed to be linear or convex quadratic. The
cost functions will be discussed in detail in Section IV.

The constraint violation risk function JRisk comprises a
sum of the conditional value-at-risk (CVaR) [47] of a set of
N` network and device constraint functions. The conditional
value-at-risk is a well known and coherent risk measurement
in finance [47]. Here we introduce the CVaR risk metric to
solve a MPC-based OWF engineering problem, due to the
large variation of water demand uncertainties. Minimizing the
CVaR of constraint violation limits both the frequency and
expected severity of constraints. Specifically, we have

J tRisk :=

N∑̀
i=1

CVaRβP[`i(xt, ut, ξt)],

where β ∈ (0, 1] refers to the confidence level of CVaR under
the distribution P of random variable ξt. The risk measure en-
coded by the CVaR metric for the random variable ξ at level β
is stated as CVaRβP(`i(xt, ut, ξt)) := infκti E

1
β [`i(xt, ut, ξt)−

κti]+ + κ,∀i, t, where κti ∈ R+ is an auxiliary variable.
Intuitively, the constraint violation risk function JRisk could
be understood as the sum of networks and devices constraint
violation magnitude at risk level β. The details of CVaR
constraint convex reformulation are shown in the next Section.

The general problem (13) will be approached with a distri-
butionally robust model predictive control (MPC) algorithm.
MPC is a feedback control technique that solves a sequence of
open-loop optimization problems over a planning horizon Ht
(which in general may be smaller than the overall horizon
T ). At each time t, we solve the distributionally robust
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optimization problem over a set Πaffine of affine feedback
policies using the Wasserstein ambiguity set (14), where πaffine
collects linear functions which map the past system states,
uncertainties and historical data to control actions.
Distributionally Robust MPC for Stochastic OWF:

inf
π∈Πaffine

sup
P∈P̂Ns

EP
t+Ht∑
τ=t

JτCost + ρJτRisk, (15a)

subject to xτ+1 = fτ (xτ , uτ , ξτ ), (15b)
uτ = π(x0, . . . , xτ , ξτ ,Dτ ), (15c)
(xτ , uτ ) ∈ Xτ . (15d)

Only the immediate control decisions for time t are imple-
mented on the controllable device inputs. Then time shifts
forward one step, new forecast errors and states are realized,
the optimization problem (15) is re-solved at time t + 1 and
the process repeats. This approach allows any forecasting
methodology to be utilized to predict uncertainties over the
planning horizon. Furthermore, the forecast error dataset P̂Ns ,
which defines the center of the ambiguity set P̂Ns , can be
updated online as more forecast error data is obtained. It is
also possible to remove outdated data online to account for
time-varying distributions.

In the rest of the paper, we will use the specific model of
water distribution networks discussed in Section II, where the
subproblems (15) have exact tractable convex reformulations
as quadratic programs [29] and can be solved to global
optimality with standard solvers.

IV. CHANCE-CONSTRAINTS AND DISTRIBUTIONALLY
ROBUSTNESS FORMULATION

Following our proposed formulation above, we begin this
section by introducing the state space expression of WDN
hydraulic dynamics, briefly discuss chance constraints and
describe a convex reformulations of the stochastic optimal
water flow problem based on conditional value-at-risk and
distributionally robust optimization.

A. Network Dynamics in State-Space Format

The WDN model discussed in the previous section can be
summarized in a difference algebraic equation (DAE) model

x(t+ 1) = Āx(t) + B̄uu(t) + B̄vv(t), (16a)
d(t) = Ēuu(t) + Ēvv(t), (16b)

F̄xx(t) + F̄ll(t) = F̄uu(t) + F̄vv
P(t) + F̄φφ(t) + F̄0, (16c)

where the decision variables {x, u, l, v, vP, φ} are defined
in Table 2 and the constant matrices {A,B,E, F} are de-
rived from the hydraulic dynamics in Section II. We detail
these constants in term of the Laplacian-based hydraulic
model (11) in the Appendix B. The dynamics of tank head
(2) is given in (16a) and the mass balance (1) and lin-
earized energy conservation (11) are summarized in (16b)
and (16c), respectively. For compact notation, we concatenate
the states, inputs and demands over the planning horizon as
xt = [x(1)ᵀ, . . . , x(t)ᵀ]ᵀ ∈ RnTKt, ut = [u(0)ᵀ, . . . , u(t −
1)ᵀ]ᵀ ∈ Rnut, vt = [v(1)ᵀ, . . . , v(t)ᵀ]ᵀ ∈ Rnvt, vP

t =

[vP(1)ᵀ, . . . , vP(t)ᵀ]ᵀ ∈ Rnpt, lt = [l(1)ᵀ, . . . , l(t)ᵀ]ᵀ ∈
Rnlt, φt = [φ(1)ᵀ, . . . , φ(t)ᵀ]ᵀ ∈ Rnφt and dt =
[d(0)ᵀ, . . . , d(t− 1)ᵀ]ᵀ ∈ RNt, yielding

xt = Ax0 +Buut +Bvvt,

dt = Euut + Evvt,

Fxxt + Fllt = Fuut + Fvv
P
t + Fφφt + F0,

where It indicates a t-dimensional identity matrix

Eu = It ⊗ Ēu, Ev = It ⊗ Ēv, Fx = It ⊗ F̄x,
Fl = It ⊗ F̄l, Fu = It ⊗ Ēu, Fv = It ⊗ F̄v,
Fφ = It ⊗ F̄φ, F0 = It ⊗ F̄0,

A =


Ā
Ā2

...
Āt

 , Bd =


B̄u 0 · · · 0

ĀB̄u B̄u
. . . 0

...
. . . . . .

...
Āt−1B̄u · · · ĀB̄u B̄u

 ,

Bv =


B̄ 0 · · · 0

ĀB̄v B̄v
. . . 0

...
. . . . . .

...
Āt−1B̄v · · · ĀB̄v B̄v

 .

TABLE II
VARIABLE DESCRIPTION IN DAE MODEL

N* Description Dimension
x a vector collecting heads at tanks nTK = |T |

l
a vector collecting heads
at junctions & reservoirs nl = |J |+ |S|

u a vector collecting flow at pumps nu = |M|

v
a vector collecting flows
through pipes & valves nv = |I|+ |V|

vP a vector collecting flows through pipe np = |I|
φ a vector collecting head loss on PRVs nφ = |V|

N* indicates a abbreviation of Notation.

B. Cost Functions and Constraints
Multiple objective functions can be included in the stochas-

tic optimal water flow problem

J t1 = u(t)ᵀHu(t)u(t) + fᵀu (t)u(t) + f0, (18a)
J t2 = ∆u(t)ᵀ∆u(t), (18b)

J t3 =
(
x(t)− V safe)ᵀ (x(t)− V safe) , (18c)

where (18a) captures the pump operational cost based on time-
varying electricity tariffs. The matrix Hu is positive semi-
definite. The control input variation between consecutive time
slots (e.g., ∆u(t) := u(t)−u(t− 1)) can be also penalized in
(18b) to avoid large transient in pipes and to satisfy treatment
requirements. Additionally, tank management requires a safety
head level V safe to account for unexpected demand given in
(18c).

The system constraints are introduced due to the physical
nature of the decision variables (i.e, x and u). We seek to
enforce state and input constraints

umin ≤ ut ≤ umax, (19a)

xmin ≤ xt ≤ xmax, (19b)



8

where (19a) corresponds to actuator limits (e.g., pumps and
valves) and (19b) captures bounds on pipe flows, nodal heads
and tank levels. Here, xmin and xmax denote the minimum and
maximum admissible bounds of states. The lower and upper
physical limits of actuators are umin and umax, respectively.
In general, these constraints can not be violated strictly due
to the mass conservation principles and physical restriction
of components. For the rest of this paper, we assume that
these hard bounds can be “softened” to non-physical upper
and lower bounds from a pre-specified safe operation zone,
which can be violated probabilistically but results in safety or
operational risk [38].

C. Multi-Period Stochastic Optimal Water Flow

In a deterministic optimal water flow control problem, water
demand uncertainty is not explicitly considered. Since actual
water demands can exhibit large variations and unpredictabil-
ity [15], we model demand stochastically as dt = d̄t+ξt, with
a nominal predicted value d̄ ∈ RNt and a zero-mean forecast
error ξt = [ξᵀ1 , . . . , ξ

ᵀ
t ]ᵀ ∈ RNt from a probability space

(Ω,F ,Pξ). The distribution captures spatiotemporal variations
and dependencies among the demands.

To explicitly account for this stochasticity of water de-
mands, we formulate the following general stochastic optimal
water flow problem to find an optimal strategy for responding
to forecast errors via an optimal control policy for the flow
actuators ut = πt(ξt), where πt : RNt → Rnut is a function
from a set Πc of causal policies. Specifically, we consider
a multi-period optimal water flow problem with finite time
horizon T

inf
πT∈Πc

T∑
τ=1

EPξ
[
Jτ (xτ , πτ (ξτ ), ξτ

]
, (20a)

subject to dT = EuπT (ξT ) + EvvT , (20b)
xT = Ax0 +BuπT (ξT ) +BvvT , (20c)

FxxT + FllT = FuuT + Fvv
P
T + FφφT + F0,

(20d)

E R
(
umin − πT (ξT )

)
≤ 0, (20e)

E R
(
πT (ξT )− umax

)
≤ 0, (20f)

E R
(
xmin − xT

)
≤ 0, (20g)

E R
(
xT − xmax

)
≤ 0, (20h)

where R indicates a generic transformation of the inequality
constraints into the stochastic versions with different uncer-
tainty assumptions and stochastic optimization techniques.
These include assuming specific probability distributions (i.e.,
Gaussian), using specific constraint risk measurement, such
as value-at-risk and conditional value-at-risk, sample average
approximation, scenario-approach, distributionally robust op-
timization and robust support. Note that this transformation
can be different in general for each constraint. For constraints
that represent physical limits, we consider tightened non-
physical upper and lower bounds on states and inputs from
a pre-specified safe operation zone, which can be violated
probabilistically but results in safety or operational risks [38].
Since optimizing over general policies makes problem (20)

infinite dimensional, we optimize instead over a set of affine
control policies

uτ = Dτξτ + eτ , (21)

where eτ ∈ Rnuτ represents a nominal plan for pumps and
the block lower-triangular matrix Dτ ∈ Rnuτ×Nτ ensures that
the controller is causal. In this case, the input design variables
turn to an uncertainty feedback matrix Dτ and nominal input
vector eτ . Unlike traditional state-driven feedback control, the
optimal feedback matrix Dτ acts as reserve policies of pumps
to respond to realized water demand variations ξτ .

Substituting the affine control policies into (20), the objec-
tive function (20a) becomes convex quadratic in Dτ and eτ
and depends on the distributional information of ξτ . Since
the policy is affine, the robust equality constraint (20b) is
equivalent to

EuDT = 1, d̄T = EueT + EvvT . (22)

With affine policies, (20e)-(20h) become

R (DT ξT + eT − umax) ≤ 0, (23a)
R (umin −DT ξT − eT ) ≤ 0, (23b)
R (Ax0 +Bu(DT ξT + eT ) +BvvT − xmax) ≤ 0, (23c)
R (xmin −Ax0 −Bu(DT ξT + eT )−BvvT ) ≤ 0, (23d)

We collect all above affine constraints inside the risk measures
(23a)–(23d) into a set V{1:T} of N` = 2T (nTK + nu)
constraints and the expressions inside the brackets can be
written in a general linear form ai(DT )ᵀξT + bi(eT ), where
index i refers to each individual constraint in V{1:T}.

D. Chance-Constraints

Using a Value-at-Risk measure, the OWF problem can be
posed as a chance-constrained optimization problem

inf
D,e

T∑
τ=1

EPξ [Jτ (xτ ,uτ , ξτ )] ,

subject to Pξ (ai(DT )ᵀξT + bi(eT ) ≤ 0) ≥ 1− β,
EuDT = 1, d̄T = EueT + EvvT ,

FxxT + FllT = FueT + Fvv
P
T + FφφT + F0,

∀i ∈ V{1:T},

where β ∈ R is the prescribed safety parameter or “risk
budget” for the linear constraint in set V{1:T}. The subscript
{1 : T} of set V{1:T} indicates the set exclusively includes
the state and input constraints between time interval [1, T ]. If
ξT is normally distributed, then it is known that the chance
constraint can be written as a second-order cone constraint
[48], [49]. However, in general chance constraints only restrict
the frequency of constraint violations, not the severity. Since
the real distribution is never known in practice, this approach
can lead to underestimation of actual risks and poor out-of-
sample performance. In this paper, we leverage a data-driven
distributionally robust optimization methodology to account
for both frequency and severity of constraint violation via
conditional value-at-risk (CVaR) metric without assuming a
particular distribution.
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E. Stochastic OWF based on Distributionally Robust Opti-
mization and Conditional Value-at-Risk (CVaR)

We treat the constraints (23a)–(23d) with a risk measure de-
rived from distributionally robust optimization techniques. It is
possible to allow some constraints to be reformulated by other
risk measures and optimization techniques, such as sample
average approximation, moment-based distributionally robust
optimization, robust optimization and Gaussian-based chance
constraints. We restrict the model here only for Wasserstein
metric distributionally robust techniques and leave potential
combinations for the future work.

For simplicity, we consider the risk of each constraint
individually; it is possible to consider risk of joint constraint
violations, but this is more difficult and we leave it for future
work. Recall each individual affine constraint between the
finite time horizon Ht in the set V{t:t̄} can be written in a
compact form as follows. The [t, t̄] here refers to the finite
time horizon [t, t+Ht].

Cti (Dt, et, ξt) = ai(Dt)
ᵀξt + bi(et), t ∈ [t, t̄],

where Cti (·) is the ith affine constraint in the set V{t,t̄}. The
CVaR with risk level β of the each individual constraint in the
set V{t,t̄} is

inf
κti

Eξt

{
[Cti (Dt, et, ξt) + κti]+ − κtiβ

}
≤ 0, t ∈ [t, t̄], (25)

where κti ∈ R is an auxiliary variable [47]. The expression
inside the expectation in (25) can be expressed in the form
with risk level β

Qti = max
k=1,2

[
〈aβik(Dt, et), ξt〉+ bβik(κti)

]
, t ∈ [t, t̄].

This expression is convex in (Dt, et) for each fixed ξt since
it is the maximum of two affine functions. Our risk objective
function is expressed by the distributionally robust optimiza-
tion of CVaR

Ĵ tRisk =
t+Ht∑
τ=t

N∑̀
i=1

sup
Qτ∈P̂Nsτ

EQτ max
k=1,2

[
〈aβik(Dτ , eτ ), ξ̂τ 〉+ bβik(κτi )

]
.

The above multi-period distributionally robust optimization
can be equivalently reformulated the following quadratic pro-
gram, the details of which are described in [29]. The objective
is to minimize a weighted sum of an operational cost function
and the total worst-case CVaR of the affine constraints in set
V{t,t̄} (e.g., nodal head and tank level).
Data-based Distributionally Robust MPC Stochastic OWF:

Fig. 1. Flowchart of data-based distributionally robust stochastic OWF.

inf
Dτ ,eτκ

τ
i

v,vP,x,l,φ

t+Ht∑
τ=t

{
E[ĴτCost] + ρ sup

Qτ∈P̂Nsτ

N∑̀
i=1

EQτ [Qτi ]

}
,

= inf
Dτ ,eτκ

τ
i ,

λτi ,s
τ
io,ς

τ
iko

v,vP,x,l,φ

t+Ht∑
τ=t

{
E[Ĵ tCost] +

N∑̀
i=1

(
λiετ +

1

Ns

Ns∑
o=1

sτio

)}
,

(26a)
subject to[
EuDt̄ − 1

]
[t,t̄]

= 0NHt , (26b)[
Euet̄ + Evvt̄ − d̄t̄

]
[t,t̄]

= 0NHt , (26c)[
Fxxt̄ + Fllt̄ − Fuet̄ − FvvP

t̄ − Fφφt̄ − F0

]
[t,t̄]

= 0NHt ,

(26d)

ρ(〈aβik(Dτ , eτ ), ξ̂oτ 〉+ bβik(κτi ) + 〈ςiko, zτ − Fτ ξ̂
o
τ 〉) ≤ sτio,

(26e)

‖Fᵀ
τ ςiko − ρa

β
ik(Dτ , eτ )‖∞ ≤ λτi , (26f)

ςiko ≥ 0, (26g)
∀o ≤ Ns,∀i ≤ N`, k = 1, 2, τ = t, ..., t+Ht,

where ρ ∈ R+ quantifies the water network operators’ risk
aversion. This is a quadratic program that explicitly uses the
training dataset Ξ̂Nsτ = {ξ̂oτ}o≤Ns . The risk aversion parameter
ρ and the Wasserstein radius ετ allow us to explicitly balance
trade-offs between efficiency, risk and sampling errors inherent
in Ξ̂Nsτ . The support is modeled as a polytope Ξτ := {ξτ ∈
RNξτ : Fτξτ ≤ zτ}. The constraint ςiko > 0 holds since the
uncertainty set is not-empty; on the other hand, in a case with
no uncertainty (i.e, ςiko = 0), the variable λ does not play any
role and sτio = ρ(〈aβik(Dτ , eτ ), ξ̂oτ 〉+ bβik(κτi )).

Remark 3. There are three important tuning parameters in
our proposed multi-period data-based stochastic OWF (26)
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corresponding to different performance-risk trade-offs, which
all function in the ways with their unique interpretation
• The Wasserstein radius ε improves out-of-sample per-

formance and mitigates the effects of inherent sampling
errors, which here is our main focus. The decisions
optimize performance under the worst-case distributions
within Wasserstein distance ε of the empirical distribution
in probability distribution space. A larger ε indicates less
reliance on the specific training dataset Ξ̂ that describes
the real unknown data-generating distribution, which
results in more conservative decisions. The superior out-
of-sample performance is achieved by this adjustable
Wasserstein metric, as demonstrated in Section V.

• Risk aversion ρ trades off the operational risk and the
nominal operational efficiency. The proposed stochastic
OWF offers the system operators alternative strategies to
run the water distribution networks under different risk
levels. The decisions under various ρ achieve various
risk levels. Meanwhile, the out-of-sample performance
under fixed risk aversion is controlled by the adjustable
Wasserstein radius.

• CVaR risk level β indicates the risk level of constraints
(23a)–(23d), which trades off constraint violation magni-
tudes with nominal operational efficiency.

We fix the risk level parameter β of CVaR to highlight the
effects of ε and ρ in the next section. It would also be
interesting to explore the additional effects of changing β;
however, we leave this discussion for future work.

Remark 4. (Successive Linearization for Stochastic OWF
(26)). The data-based distributionally robust stochastic opti-
mal water flow (26) at tth time interval is solved via successive
linearization algorithm discussed in Section II. Since all
coefficients and affine constraints {A,B,E, F,aβik.b

β
ik} are

derived from Laplacian-based network format (11), at each
successive linearization iteration for certain time interval, we
repeatedly obtain {A,B,E, F,aβik.b

β
ik} in problem (26) based

on the linearized updated {L, Q̄} until the linearized errors
converge and move to the next time period. A flowchart of
proposed data-based distributionally robust stochastic OWF
is demonstrated in Fig. 1.

V. CASE STUDIES

We now demonstrate the effectiveness of the proposed
framework with numerical experiments. We use a network
model derived from a portion of the Barcelona drinking water
network [19]. There are 2 reservoirs, 4 water demands, 3 tanks,
2 pumps, 4 valves and 20 junctions, the physical properties of
nodes and links are given in Tables III and IV, respectively.
The nominal water demand pattern over 24 hours shown
in Fig. 3(a) is derived from EPANET (a standard software
package for analysis of drinking water distribution systems)
[30]. Four demands are located at nodes 8, 15, 16 and 17.
Realization of demand forecasting errors are generated by
evaluating the so-called persistence forecast on the EPANET
demand data, which predicts the water demand at the next time
step to be equal to that at the previous time step. The time-
of-use (TOU) electricity price is given in Fig. 3(b). Generally

Fig. 2. Barcelona drinking water network includes 25-node, 3 tanks and 2
reservoirs.
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(a) Water Demand Pattern

1 5 10 15 20 24
0

0.2

0.4

0.6

0.8

1

(b) Time-of-Use Price

Fig. 3. Time-varying input profiles including water demand pattern and TOU
electricity price. The actual water consumption at each node depends on
the based demand setting shown in Table III. The pump cost function is
parameterized in proportional to TOU electricity price.

speaking, the proposed framework can handle inputs of the
electricity prices and water demand patterns.

We placed three tanks at Node 23, Node 24 and Node 25 to
accommodate the water demand uncertainties associated with
the downstream nodes. The lower and upper tank level in feet
are restricted to hmin

i = 525 and hmax
i = 530,∀i ∈ T . Due to

the inherent variability of water demands, tank level constraint
violations may occur. Given the forecasting error data of water
demand, the numerical tests are focused on reducing potential
constraint violation via proposed distributionally robust frame-
work (26) and minimizing the operational cost under certain
risk aversion as well. To have a clear and straightforward
presentation, only the lower level constraints of three tanks are
modelled in distributionally robust fashion (26e)–(26g). Other
constraints are handled via sample average approximation
(SAA) [50], [51] or deterministic approach, though it is easy
reformulate other constraints with distributional robustness.

No bound is enforced on water demand forecast errors,
which implies the parameters (i.e., z and F) of polytope
supported set in (26e)–(26f) are set to zero. The variation
of forecast errors increases with the prediction horizon. The
number of forecast error samples in the training data set Ξ̂Nt is
Ns = 100. The stop criteria of Algorithm 1 is set to δ = 10−6.
The simulation takes 60 seconds or less to solve DRO OWF
with finite horizon Ht = 4 (hours) using MOSEK Solver [52]
via the MATLAB interface with CVX [53] on a laptop with
16GM of memory and a 2.8GHz Intel Core i7.

Fig. 4 visualizes the fundamental trade-off between the
conservativeness of constraint violation and the water network
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TABLE III
NODE SETTING OF THE BARCELONA WATER DISTRIBUTION NETWORK

Node Type
Base

Demand
(GPM)

Node Type
Base

Demand
(GPM)

1 Junction 0 2 Junction 0
3 Junction 0 4 Junction 0
5 Junction 0 6 Junction 0
7 Junction 0 8 Junction 100
9 Junction 0 10 Junction 0
11 Junction 0 12 Junction 0
13 Junction 0 14 Junction 0
15 Junction 100 16 Junction 100
17 Junction 100 18 Junction 0
19 Junction 0 20 Junction 0
21 Reservoir 0 22 Reservoir 0
23 Tank 0 24 Tank 0
25 Tank 0
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Fig. 4. Trade-offs between conservativeness of optimal decisions and pump
operational costs under various Wasserstein radius ε and risk aversion ρ.

operational costs during 24 hour operation under various risk
aversion ρ and Wasserstein radius ε. As we increase the
Wasserstein radius ε, the pump cost will increase as well,
but leads to more conservative pumps schedule and lower
risk of tank constraint violation. A larger ε results in less
constraint violation based on the inherent sampling errors and
in turn guarantee the a stronger robustness performance, which
will ensure good out-of-sample performance. In addition, with
increasing risk aversion ρ, the CVaR of constraint violation
is emphasized, which comes to a higher operational costs
and lower constraint violation. A robust MPC case study is
presented by assuming the water demand forecast errors with
a support of ξ ∈ Θ := [−θd̄ ≤ ξ ≤ θd̄, θ = 0.2], which is
similar to the Robust MPC formulation in the previous work
[13]. In this comparison study, the linearization nodal pressure
constraints were modelled based on the above robust uncer-
tain set and utilized the successive linearization for optimal
decisions. Comparison costs are demonstrated in Fig. 4. Data-
based DRO OWF provides a controllable conservativeness
compared to the stochastic robust MPC.

Fig. 5 and Fig. 6 show the water level of tanks hTK
T

and the optimal nominal pump schedule eT over T − 24
hours under varying Wasserstein radius ε. The tank head
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Fig. 5. Optimal state trajectories of three tanks (i.e., Node 23, Node 24 and
Node 25) for varying Wasserstein radii ε. The dash lines indicate the upper
and lower bounds on tank head. The initial tank level for all three tanks is
525.1 feet. The risk aversion is set to ρ = 2.8× 104.
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Fig. 6. Comparison of optimal pump schedule for various value of Wasserstein
radius ε = 0.04, 0.08, 0.16 under certain risk aversion ρ = 2.8× 104.
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TABLE IV
LINK SETTING OF THE BARCELONA WATER DISTRIBUTION NETWORK (CHEZY-MANNING)

Link Type From
Node

To
Node

Pipe
Length
(feet)

Pipe
Diameter

(feet)

Pipe
Rough
-ness

Link Type From
Node

To
Node

Pipe
Length
(feet)

Pipe
Diamter

(feet)

Pipe
Rough
-ness

1 Pipe 2 3 2000 12 0.03 2 Pipe 3 4 1000 12 0.03
3 Pipe 12 15 3000 12 0.03 4 Pipe 13 16 4000 12 0.03
5 Pipe 14 17 5000 12 0.03 6 Pipe 11 18 1000 12 0.03
7 Pipe 18 5 1000 12 0.03 8 Pipe 23 18 1000 12 0.03
9 Pipe 9 19 1000 12 0.03 10 Pipe 19 10 1000 12 0.03

11 Pipe 24 19 1000 12 0.03 12 Pipe 7 20 1000 12 0.03
13 Pipe 20 3 1000 12 0.03 14 Pipe 20 8 3000 12 0.03
15 Pipe 25 20 1000 6 0.03 16 Pump 21 1 - - -
17 Pump 22 6 - - - 18 PRV 6 7 - - -
19 PRV 1 9 - - - 20 PRV 1 2 - - -
21 PRV 1 11 - - - 22 Pipe 4 12 3000 12 0.03
23 Pipe 5 13 3000 12 0.03 24 Pipe 10 14 3000 12 0.03

trajectories and pump schedule are re-optimized at each time-
step via the closed-loop MPC controller based on the data-
based uncertainty representation (i.e., a Wasserstein ball of
distributions of water demand forecast errors). To prevent the
tank level decrease lower then 525 feet, the pumps need to
transport more water to tanks for accommodating the water
demand uncertainties. As the results, the pumps are more
active during the time-slots with higher electricity costs, which
leads a significant increase of operational costs. This leads to
a safer tank level profiles, as shown in Fig. 5. When ε is small,
the water consumption mostly come from tanks to maintain an
economic operation, which cause the possible constraint vio-
lation (e.g., Tank 23 when ε = 0.04) if the demand variations
were large. As we increase ε leading to a more conservative
decision, all pumps sacrifice the operational efficiency and
provide more water to increase the tank level and support the
water demands. The tank lower level constraints are satisfied
due to the better robustness to water demand forecast errors.

To demonstrate the effectiveness of the proposed frame-
work (26), we also introduce the EPANET built-in traditional
Rule-based Control (RBC) scheme, which has been widely
employed for various water engineering problems. The RBC
scheme shares the same control constraints in (26), limits the
water heads of three tanks (i.e., Tanks 23, 24 and 25) within
a prescribed safe range (i.e., [525, 530] ft) via binary ON
or OFF status of pumps (i.e., Pumps 16 and 17). The time
step to control pumps is set to one hour, which implies the
pumps check the water levels of tanks every hour and then
perform control actions. Note that Tanks 23 and 24 can only
be controlled by Pump 16 while Tank 25 can be managed
by Pumps 16 and 17 simultaneously. Note that the water
levels of Tank 23 and Tank 25 possibly direct Pump 16 to
the completely conflict control actions (i.e., ON or OFF) if
we do not explicitly prioritize these two tanks. Therefore, we
assign the level signal from Tank 23 is the priority for Pump
16 to take control actions if a conflict happens.

Fig. 7 illustrates the water levels of three tanks based on
the RBC scheme via Monte Carlo simulations. We randomly
generate 100 scenarios of water demand forecast errors, which
follow the Gaussian distribution with zero mean and 20% stan-
dard deviation of nominal water demand shown in Fig. 3(a).

It readily seen that the RBC mechanism fails to realize the
water demand forecast errors and can not successfully manage
the tank heads located at a prescribed safe bound. In general,
it is very hard to parameterize the RBC control scheme for
low risk constraint violation guarantee under the large demand
variation, which is due to its decentralized control structure.
The benefit of closed-loop multi-period distributionally robust
optimal water flow based on model predictive control scheme
can be clearly seen via the comparison to the RBC control
framework. We analyze the trade-off and conservativeness
of stochastic OWF problems in our preliminary works [28],
including robust MPC, the sample average approximation with
CVaR, the chance-constraints (moment-based distributionally
robust optimization) MPC and the deterministic scenario.
A useful insight that comes out of our results is that the
trajectories of tank heads follow similar patterns under varying
MPC formulations but with different conservativeness.

In summary, we conclude that our proposed data-based dis-
tributionally robust OWF framework can explicitly incorporate
water demand uncertainties and successfully control the trade-
off between operational efficiency, risk of constraint violation
and out-of-sample performance.

VI. CONCLUSION AND OUTLOOK

We propose a data-based distributionally stochastic robust
optimal water flow based on limited information from water
demand forecasts. The framework creates and then leverages a
successive linearization of hydraulic coupling for an efficient
computation of multi-period feedback control policies, which
are robust to inherent sampling errors in the training dataset.
We explore the tractability of proposed multi-period OWF
problem via the Wasserstein-based distributional information
of ambiguity set centered at the empirical distribution. The
effectiveness and flexibility has been demonstrated on a 25-
node water distribution network for the optimal water pump
schedule and tank head management under water demand
uncertainties. The numerical results indicate that our proposed
framework has superior out-of-sample performance then exist-
ing control frameworks and allows flexible parameterization
to systematically exploit the operating strategies of water
pumps to explicitly trade-off the operational efficiency and
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Fig. 7. State trajectories of tank head (i.e., Tank 23, Tank 24 and Tank
25) after performing RBC via Monte Carlo simulation including 100 demand
scenarios. The dash lines indicate the upper and lower bounds on tank head.

constraint violations due to large water demand variations. The
limitations and outlooks of the proposed data-based optimal
pump control are summarized below:

Scalability: As the size of the water network and the num-
ber of water demand samples increase, more computational
efforts are required to solve the optimal solutions. Though the
proposed optimization problem is convex and can be solved
by many solvers, future work will focus on improving the
computational affordability of our framework for large-scale
water distribution networks [54].

Communication: The optimal pump control actions are
attained by successively solving a distributionally robust opti-
mization, which requires global communication. Future work
will extend the proposed framework to a distributed setting
with local communication.

Network Topology: The Laplacian approximation for solv-
ing intractable optimal water flow works appropriately for
water distribution networks with pure tree topologies. A more
general successive Laplacian approximation is required for
mesh water distribution networks in the future.

Feasibility: The feasibility of the proposed data-based dis-
tributionally robust stochastic MPC is numerically validated
instead of theoretically. Further feasibility analysis of a generic
data-based distributionally robust stochastic MPC and the
convergence of the successive algorithm will be theoretically
established.
Future works also can be
• developing a data-based distributionally robust control

framework for optimal water contamination control;
• including operational status of actuators as controllable

variables for a distributionally robust stochastic hybrid
MPC OWF framework;

• developing a theoretical convergence analysis of the pro-
posed successive linearization algorithm.

APPENDIX A

Here, we demonstrate a comparison between the feasibility
results from the proposed Laplacian-based successive lin-
earization approach in Algorithm 1 and the water flow results
from the EPANET nonlinear solver. For simple demonstration,
we used a 6-node water distribution network with 1 reservoir,
1 tank, 1 pump and 2 demands in Fig. 8. Two demands are
located in Node 2 and Node 3 with the base demand of 50
GPM. The nominal water demand pattern over 24 hours is the
same as shown in Fig. 3(a).

Fig. 8. A 6-node water distribution network with 1 reservoir, 1 tank, 1 pump,
and 2 water demands.

Fig. 10 and Fig. 11 visualize the results from the com-
parison, which demonstrate the effectiveness of the proposed
Laplacian-based successive linearization approximation. Fig. 9
also presents the linearization errors by implementing Algo-
rithm 1, which is defined by Err := ‖∆q∗n‖22. The maximum
linearized error over 24 hours is less than 2.5× 10−7. It can
be seen that the water head and flow trajectories from the
Laplacian-based model successfully provide a great approx-
imation of the network status solved by the exact nonlinear
hydraulic models.

0 5 10 15 20 25 30 35 40 45 50

Time (hours)

0

0.5

1

1.5

2

2.5

N
o
rm

 o
f 
E

rr
o
rs

10
-7

Fig. 9. The linearized errors of the successive algorithm over 24 hours, defined
by Err := ‖∆q∗

n‖22.
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Fig. 10. Comparison of water flow status between the feasibility results from the proposed successive Laplacian-based linearized approach and the results
from the EPANET nonlinear solver.
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Fig. 11. Comparison of head status between the feasibility results from the proposed successive Laplacian-based linearized approach and the results from the
EPANET nonlinear solver.

APPENDIX B

Here we provide the constant matrices {A,B,E, F} shown
in (16) in terms of the network coefficients in the Laplacian-

based linearization (11). Recall the tank level dynamics (16a)

x(t+ 1) = Āx(t) + B̄uu(t) + B̄vv(t),

where Ā is the nTK-dimension identity matrix and the last
two terms on the right side are re-organized in terms of the
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network incident matrix Bᵀ
f , the coefficient of tanks ATK

i and
time interval ∆t

[
B̄u B̄v

] [u(t)
v(t)

]
=


∆t
ATK

1
· · · 0

...
. . .

...
0 · · · ∆t

ATK
nTK

 [Bᵀ
f ]{T }

︸ ︷︷ ︸[
B̄u B̄v

]

[
u(t)
v(t)

]
.

The operator [·]{T } selects the ith-row of matrix Bᵀ
f , where all

node i are collected in the set T . Similarly, for mass balance
d(t) = Ēuu(t) + Ēvv(t) we have[

Ēu Ēv
] [u(t)
v(t)

]
= Bᵀ

f

[
u(t)
v(t)

]
.

Finally, recall the mass conservation in DAE model (16c)

F̄xx(t) + F̄ll(t) = F̄uu(t) + F̄vv
P(t) + F̄φφ(t) + F0,

and re-write the above equation as follows

[
F̄x F̄l

]︸ ︷︷ ︸
L

[
x(t)
l(t)

]
︸ ︷︷ ︸
h(t)

=
[
F̄u F̄v F̄φ

]︸ ︷︷ ︸
Bᵀ
f

 u(t)
vP(t)
φ(t)


︸ ︷︷ ︸

∆q(t)

+ F0︸︷︷︸
Q̄(t)

.
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