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Boundary Control and Estimation for
Under-Balanced Drilling with Uncertain

Reservoir Parameters
Timm Strecker, Ulf Jakob F. Aarsnes

Abstract— In under-balanced drilling, the bottom-hole
pressure is kept below pore pressure, causing pressure
dependent influx of reservoir gas into the wellbore that
makes the system unstable at low drawdowns. In this pa-
per we propose a feedback controller which stabilizes the
system around an arbitrary pressure setpoint, using only
topside measurement, and assuming unknown reservoir
parameters. A particular challenge with this problem is
the distributed and highly nonlinear nature of the system
dynamics. As the control model we use the “reduced Drift
Flux Model” which models gas-liquid flow as a nonlinear
transport equation with a non-local integral source term.
The observer estimates the distributed gas concentration,
downhole pressure and reservoir parameters by solving the
system dynamics backwards relative to how the gas rises in
the well. The control inputs are then constructed by design-
ing target states over the next sampling period and again
solving reversed dynamics to obtain the required topside
pressures. The resulting controller is implemented with a
2 minute zero-order hold to accommodate the actuation
limitation situation on an actual drilling rig. The results are
illustrated in simulations with a industry standard Drift Flux
formulation as the plant model.

Index Terms— Under-balanced drilling, partial differential
equations, boundary control, observer, parameter estima-
tion, distributed parameter systems, adaptive control

I. INTRODUCTION

When drilling a well for the purpose of producing hydrocar-
bons, a slim borehole is created into a permeable pressurized
formation using a drilling bit attached to a drill string. Drilling
liquid is injecting into the top of the drill string and flows out
through the drill bit and up the annulus around the drill string
carrying formation cuttings with it out of the borehole, see Fig.
1. Controlling the pressure of the drilling fluid near the bottom
of the well is of key importance to the success of the drilling
operation: Too high pressure means that expensive drilling
liquid is lost to the formation which results in reduced return
flow and insufficient hole cleaning. Too low pressure can result
in pressurized formation fluids entering the well, displacing the
high density drilling liquid, and creating an unstable feedback
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Fig. 1. Schematic of an underbalanced well being drilled.

loop which can result in blow-out and collapse of the well if
not controlled [1], [2].

To control the pressure in the well more effectively, many
wells are today drilled with a sealed anulus and a manipulated
back-pressure choke, which allows for the control of the
pressure at the top of the well by the driller. In particular,
these tools are used to perform Under-Balanced Drilling
(UBD) where the well pressure is intentionally kept below the
formation pore pressure such that formation fluids flow into the
well while drilling. Underbalanced drilling have many benefits,
such as improved rate of penetration, better cuttings transport,
higher well productivity and less risk of loss of drilling liquid
[3]. However, these benefits come at the cost of the significant
increase in the difficulty of controlling the well [4].

In the context of automated pressure and flow control,
the dynamics of the two-phase flow encountered in UBD
is significantly more complicated than the single-phase flow
of conventional drilling: In single-phase flow any operating
point is inherently stable, transients are short and predictable
and, barring certain well control incidents, operating con-
ditions are reasonably homogeneous. By contrast, in two-
phase underbalanced operations, the distributed gas–liquid
flow and the reservoir–well interaction result in classical non-
linear behavior such as multiple equilibria, limit cycles and
bifurcations as described by [5]–[7].

A particular challenge with UBD is the interaction between
the well and the reservoir, wherein a low well pressure induces
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Fig. 2. Conceptual plot showing the relation between topside and
bottomhole pressures at equilibrium. For a given topside pressure there
are typically three equilibrium points: one overbalanced, one open loop
unstable underbalanced, and one open loop stable underbalanced.

reservoir influx of low density fluids which displaces the
high density drilling liquid reducing the hydrostatic pressure
causing yet more influx. This positive feedback loop makes
the well unstable at a wide range of bottomhole pressures
below the balance point, see Fig. 2. To have stable operation in
open loop, sufficient influx is required such that the frictional
pressure loss caused by the influx becomes greater than the
reduction in the hydrostatic pressure. Consequently, UBD
is currently limited to formations with very high collapse
pressure-margins. As such, there is a significant value proposal
in using automated pressure control to stabilize the open loop
unstable region below the balance point [8], [9].

However, the non-linear and distributed nature of the system
makes controller design challenging. The necessity to control
the system from a stable to an open loop unstable equilibrium
with vastly different dynamics (from one-phase overbalanced
to two-phase underbalanced flow) precludes the application of
standard “off-the shelf” linearized controller-designs. As such,
this problem motivates the distributed non-linear controller
design approach pursued in the present paper where we focus
on the stabilization problem which has not been explicitly
adressed before. We refer to the following papers on MPC and
linear multivariable control of the extended drilling process for
additional context: [10]–[13]. PDE backstepping has recently
become a popular method for the feedback control of linear
PDEs [19]–[21], but the non-linearity of the model disqualifies
known PDE backstepping results in this case.

The proposed sampled-time output feedback controller con-
sists of an observer and a feedback controller. The observer
estimates the current distributed gas concentration in the
well based on the history of topside measurements only, i.e.,
without requiring any downhole measurements of pressure or
other variables. The feedback controller maps the estimate of
the current gas concentration and the reference for the bottom
hole pressure, into the topside pressures that are required

to achieve the desired reference. The proposed control law
is model based, and takes into account the distributed non-
linear dynamics, including non-local dependencies of the terms
modelling gas expansion which depend on the weight of the
whole fluid column. In simulations with a more detailed drift-
flux model, the proposed control law stabilizes the system in
the desired operating region below the pore pressure, see Fig
2. Specifically, we choose a operating point just below the
balance point, which is considered the most difficult region to
operate in. Moreover, the proposed estimation scheme allows
the online identification of uncertain reservoir parameters
determining the gas influx, again based solely on topside
measurements. This allows the adaptation of the controller
while the system is operated in closed-loop control.

The proposed observer is related to the approach in [14]
where, starting with the history of topside measurements, the
model dynamics are first solved backwards to reconstruct
the past gas and pressure distribution in the well, which is
then used to estimate the current state in a second step.
The feedback control part builds on ideas presented in [15]–
[18], where one starts with the reference signal and again
solves the distributed, non-linear model dynamics backwards
to determine the inputs that are required to achieve reference
tracking. However, these references consider different classes
of systems without the non-local dependencies. In that sense,
the theoretical contributions of this paper can be seen as an
extension of this approach to a class of quasilinear hyperbolic
partial differential equations (PDEs) with non-local source
terms.

II. MODELLING

In this section we describe the Drift-Flux Model (DFM) that
we will use to simulate the plant, and then the reduced-DFM
that we use for the model based control design.

A. Drift-flux model

As the plant model, to represent the two-phase gas–liquid
flow and pressure dynamics, we use the drift-flux model
presented in [22] (see [23] for numerical details). The drift-
flux model is an established way to represent two-phase flow in
drilling in the litterature [24], [25]. Define the mass variables

m = αLρL, n = αGρG, (1)

where for k = L,G denoting liquid or gas, ρk is the density
and αk is the volume fraction of the respective phase. Let
p be the pressure and vk be the velocity of each phase. All
variables above depend on time t ≥ 0 and spatial position x ∈
[0, L] along the well (in curvilinear coordinates, where x = 0
corresponds to the well bottom and x = L is at the topside
choke), but the arguments (x, t) behind the variables are often
omitted for readability, see schematic in Fig. 1. The distributed
mass balances for the two phases and the momentum balance
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for the mixture are given by

∂m

∂t
= −∂(mvL)

∂x
, (2)

∂n

∂t
= −∂(nvG)

∂x
, (3)

∂(mvL + nvG)

∂t
= −∂(mv2

L + nv2
G)

∂x
− ∂p

∂x
− F −G. (4)

In (4), the gravity term is G = (m+n)g cos(φ) where g is the
gravitational acceleration and φ is the inclination from vertical.
The friction term is F = fρvm|vm|

D , with friction factor f ,
mixture density ρ = m + n, mixture velocity vm = αLvL +
αGvG and hydraulic diameter D.

The model is completed by the following algebraic relations.
The volume fractions add up to one, i.e.,

αL + αG = 1. (5)

The densities depend on the pressure as given in

ρL = ρL,0 +
p

c2L
, ρG =

p

c2G
, (6)

where ρL,0 denotes the liquid density in vacuum, and cL, cG
the speed of sound in liquid and gas, respectively. The veloc-
ities satisfy the slip law

vG = C0vL + v∞, (7)

where C0, v∞ are empirical slip parameters discussed in [26].
In this model, the pressure is well-defined and can be obtained
by solving (1) with (5)-(6) for p. For simplicity and readability,
we omitted any spatial dependence of the parameters (f , cL,
etc.), but all parameters can be made dependent on x (e.g., due
to temperature variations along the well) without any change
in the proposed approach.

B. Boundary conditions

In this paper we assume that the pressure applied at the
topside choke is a manipulated variable determined by the
driller or a control law, i.e.,

p(L, t) = ptop(t), (8)

with ptop as the manipulated variable. At the well bottom,
the gas inflow depends on the difference between bottomhole
pressure and the reservoir pore pressure. In this paper, we use

An(0, t)vG(0, t) = kG max(0, pres − p(0, t)), (9)

where A is the cross section of the annulus and kG is the gas
production index, although it is straightforward to generalize
the methods presented in this paper to other nonlinear rela-
tionships. The amount of liquid injected through the bit at the
well bottom, WL,inj , is determined by the rig pump

Am(0, t)vL(0, t) = WL,inj(t). (10)

C. Simplified model for control design

In order to make the model more amenable for model-based
control design, a simplification of the drift-flux model has been
proposed in [27]. Observing that the pressure dynamics in the
well are magnitudes faster than the transport of mass, a quasi-
equilibrium assumption is imposed on the momentum balance
(4), so that the number of distributed equations can be reduced
to just one for the continuity of the gas volume fraction.

Using this approach, the gas volume fraction can be approx-
imated as

∂ᾱG
∂t

+ v̄G
∂ᾱG
∂x

= ĒG, (11)

where the term

ĒG = − ᾱG(1− C0ᾱG)v̄G
p̄

∂p̄

∂x
(12)

accounts for gas expansion as the pressure decreases higher
up in the well. In this simplified model, the gradient of the
velocity v̄G and the pressure p̄ are

∂p̄

∂x
= −(Ḡ+ F̄ ),

∂v̄G
∂x

= −C0ᾱGv̄G
p̄

∂p̄

∂x
, (13)

where F̄ = f ρ̄ v̄m |v̄m|
D , Ḡ = ρ̄g cos(φ), ρ̄ = ᾱGρ̄G + (1 −

ᾱG)ρ̄L, and ρ̄G and ρ̄L are as in (6) but with p̄ instead of p.
Using this, the pressure and velocity profiles can be obtained
by starting from either the topside or the bottomhole pressure
and velocity, respectively, via

p̄(x, t) = p̄(L, t) +

∫ L

x

Ḡ(ξ, t) + F̄ (ξ, t)dξ, (14)

v̄G(x, t) = v̄G(L, t)−
∫ L

x

∂v̄G(ξ, t)

∂ξ
dξ, (15)

or

p̄(x, t) = p̄(0, t)−
∫ x

0

Ḡ(ξ, t) + F̄ (ξ, t)dξ, (16)

v̄G(x, t) = v̄G(0, t) +

∫ x

0

∂v̄G(ξ, t)

∂ξ
dξ. (17)

That is, at each location x ∈ [0, L] along the well, the terms
v̄G and ĒG which determine the dynamics as given in (11),
can be expressed as a function of either the state in the fluid
column below x, i.e., over the interval [0, x], or via the state
above x, i.e., over the interval [x, L].

An implicit expression for the inflow boundary condition at
x = 0 can be obtained be rewriting (9)-(10) as

ᾱG(0, t)v̄G(0, t) =
kG max(0, pres−p̄(0, t))

A ρ̄G(0, t)
, (18)

(1− ᾱG(0, t))
v̄G(0, t)− v∞

C0
=
WL,inj(t)

A ρ̄L(0, t)
, (19)

which can be solved for ᾱG(0, t) and v̄G(0, t). Let
ᾱinflow
G (p̄(0, t)) = ᾱG(0, t) be defined implicitly by the solution

of (18)-(19).
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III. CONTROL DESIGN

We present an output feedback control law consisting of
an observer that estimates the distributed gas concentration
along the well from measurements at the topside boundary
x = L only, and a feedback control law that computes the
topside pressure so that in closed-loop the bottom pressure at
x = 0 convergences to the reference value pref. The control
law is sampled with sampling period θ, i.e., at each time step
tk = k θ, k ∈ N, the control input is computed for the interval
[tk, tk+1].

Fig. 3. Characteristic lines of system (11) representing gas propagating
from the well bottom at x = 0 to the top at x = L. The convex curva-
ture of the characteristic lines indicates acceleration due to expansion.
The dashed lines represent the integration paths for p̄ and v̄G as given
in (14)-(17).

The control law is based on the simplified model from
Section II-C. It builds on ideas from [15], [16], [28] and is
also related to [14], [17], [18], [29]. In particular, it exploits
the fact that the gas propagates through the well with finite
speed v̄G or, mathematically speaking, along the characteristic
lines of the hyperbolic PDE (11) (see, e.g., [30, Chapter 2]).
The characteristic lines of system (11) are sketched in Figure
3.

A. State estimation
Due to the delay corresponding to the time the gas requires

to travel from the well bottom to the top, it is impossible
to immediately estimate the gas concentration along the well
from topside measurements. Instead, the gas outflow at the top
corresponds to gas that entered at the well bottom a certain
amount of time in the past.

Therefore, evaluating the proposed observer at each time
step tk consists of two steps, which are sketched in Figure
4. First, the past gas concentration in the well is estimated
by starting with the history of topside gas concentration mea-
surements and then solving the gas dynamics (11) backwards
relative to how the gas propagates through the well, i.e.,
backwards in time and downwards in the well. Here, it is
possible to reconstruct the past gas volume fraction up to
the time of the characteristic line along which the latest
measurement evolved (marked by the thicker line in Figure
4). Secondly, a prediction step is used to map the estimate
of the past state on that characteristic line to the current state
ᾱG(·, tk).

Fig. 4. Steps of evaluating the state estimation scheme at time tk: (1)
Solve the dynamics (23)-(26) against the direction of gas propagation
over the domain A(tk) (shaded in blue); (2) solve the dynamics (28)-
(31) forward in time over the domain B(tk) (shaded in red). The thicker
line represents the characteristic line (x, τ(tk;x)), x ∈ [0, L].

Define the characteristic line corresponding to the measure-
ment at time t as

τ(t;x) = t−
∫ L

x

1

v̄G(ξ, τ(t; ξ))
dξ. (20)

Define the measurement at time t as

Y (t) =

αG(L, t)
p(L, t)
vG(L, t)

 , (21)

and the measurement history with horizon T > 0 as

YT (t) = {Y (s) : s ∈ [t− T, t]} . (22)

In practice, a multi-phase flow meter can be used to measure
both ᾱG(L, t) and the topside flow rate, from which v̄G(L, t)
can be computed by use of (7).

1) State estimation: step 1: With the boundary values at
x = L known for a sufficiently long time into the past, it
is possible to estimate the past state inside the well by solving
the dynamics in the negative x-direction. In particular, we need
to assume that T ≥ tk−τ(tk; 0). By solving (11) for ∂ᾱG

∂x and
using (14)-(15) to determine the pressure and velocity profiles,
respectively, we obtain the following system:

∂ᾱG(x, t)

∂x
=

1

v̄G(x, t)

(
ĒG(x, t)− ∂ᾱG(x, t)

∂t

)
, (23)

ᾱG(L, t) = αG(L, t), (24)

p̄(x, t) = p(L, t) +

∫ L

x

Ḡ(ξ, t) + F̄ (ξ, t)dξ, (25)

v̄G(x, t) = vG(L, t)−
∫ L

x

∂v̄G(ξ, t)

∂ξ
dξ. (26)

By use of techniques similar to those in the proof of [16,
Theorem 5] and [30, Theorem 3.8], one can show that the
system (23)-(26) has a solution on the determinate set

A(tk) = {(x, t) : x ∈ [0, L], t ∈ [tk − T, τ(tk;x)]} . (27)

Importantly, the solution on A(tk) contains the state on the
characteristic line (x, τ(tk;x)), x ∈ [0, L]. See also [30, page



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS 5

47] for a more general discussion of determinate sets, and
[14, Remark 4.1] for a discussion of the minimum observation
horizon T . In particular, the condition T ≥ tk − τ(tk; 0)
ensures that the whole characteristic line (x, τ(tk;x)), for all
x ∈ [0, L], is contained in A(tk). In other words, it ensures
that the blue domain in Figure 4 reaches the bottom boundary
at x = 0.

2) State estimation: step 2: The previous subsection pro-
vides a method for obtaining an estimate of the state on the
characteristic line (x, τ(tk;x)). Starting with this estimate of
the past state in the well, it is possible to estimate the current
state by solving the following dynamics from τ(tk; ·) up to
current time tk:

∂ᾱG(x, t)

∂t
+ v̄G(x, t)

∂ᾱG(x, t)

∂x
= ĒG(x, t), (28)

ᾱG(0, t) = ᾱinflow
G

(
p̄(0, t)

)
, (29)

p̄(x, t) = p̄(τ inv
k (t), t) +

∫ τ invk (t)

x

(Ḡ+ F̄ )(ξ, t)dξ, (30)

v̄G(x, t) = v̄G(τ inv
k (t), t)−

∫ τ inv
k (t)

x

∂v̄G(ξ, t)

∂x
dξ, (31)

where ᾱinflow
G (·) is defined implicitly as the solution of (18)-

(19) for a given bottom hole pressure, and for given k ∈ N,
τ inv
k (·) is the inverse of τ(tk; ·) in the second argument, i.e.,
τ inv
k (τ(tk;x)) = x. That is, for t ∈ [τ(tk; 0), tk], τ inv

k (t) gives
the x such that τ(tk;x) = t.

Similar to above, one can show that the system (28)-(31)
has a solution on the determinate set

B(tk) = {(x, t) : x ∈ [0, L], t ∈ [τ(tk;x), tk]} . (32)

Importantly, the solution on the set B(tk) contains the estimate
of the current state α(·, tk).

3) State estimation: algorithm: The preparations from the
previous subsections provide the following algorithm for esti-
mating the state at each sampling instance tk, k ∈ N. See also
Figure 4.

Algorithm 1 State estimation algorithm
Input: measurement history YT (tk) for T ≥ tk − τ(tk; 0)
Output: estimate of state ᾱG(·, tk)

1: solve (23)-(26) in negative x-direction on A(tk), to obtain
estimate of past state ᾱG(x, τ(tk, x), p̄G(x, τ(tk, x) and
v̄G(x, τ(tk, x), for all x ∈ [0, L]

2: solve (28)-(31) in positive t-direction on B(tk), using
the estimate from step 1. as initial condition, to obtain
estimate of ᾱG(·, tk)

For all tk satisfying τ(tk; 0) ≥ 0, Algorithm 1 provides an
estimate of the distributed state, including gas volume fraction
and pressure, in the well. If the dynamics in the well were
exactly equal to the model used for observer design, (11)-
(19), then these estimates would be equal to the actual state
in the well. See also [14] and [28] for related state estimation
results. Here, the condition τ(tk; 0) ≥ 0 basically requires that
enough time has passed since the start of measurements, that

gas has had time to travel all the way from the well bottom
to the top.

Theorems showing the well-posedness and convergence of
the proposed observer when applied to the simplified drift-flux
model from Section II-C are summarized in Appendix I.

B. Control law

Fig. 5. Schematic of the computation of the control inputs over the
interval [tk, tk+1]. Note the direction of the arrows in the dashed lines,
indicating the integration path of the pressure and velocity, are in the
opposite direction compared to Figure 4.

Similar to [16], [18], [28], the idea of the control design
is to start with the desired bottom pressure values at x = 0,
which shall converge to pref(t) but must also be compatible
with the current state, and to solve the pressure equation
against the propagation direction of the control input, in order
to compute the trajectory that satisfies these target bottom
boundary values. The control input, i.e., the topside pressure,
is then set equal to the topside pressure of the target trajectory.

For this purpose, let ᾱ∗,k, p̄∗,k, etc., denote the target
trajectory at the k-th time step, to which the system should
be equal under closed-loop control. As opposed to (8), where
the control input enters at the topside boundary, we introduce
a new input for the target system, p∗,kref , which is the bottom
hole pressure that the target trajectory shall satisfy. The target
dynamics are given by

∂ᾱ∗,kG
∂t

+ v̄∗,kG
∂ᾱ∗,kG
∂x

= Ē∗,kG , (33)

p̄∗,k(x, t) = p∗,kref (t)−
∫ x

0

Ḡ∗,k(ξ, t) + F̄ ∗,k(ξ, t)dξ, (34)

v̄∗,kG (x, t) = v̄∗,kG (0, t) +

∫ x

0

∂v̄G∗, k(ξ, t)

∂ξ
dξ, (35)

where all terms Ē∗,kG , F̄ ∗,k, etc., are defined as in Section
II-C but evaluated at the target state, and with the boundary
conditions given implicitly by

ᾱ∗,kG (0, t)v̄∗,kG (0, t) =
kG max(0, pres − p∗,kref (t))

A ρ̄∗,kG (0, t)
, (36)

(
1− ᾱ∗,kG (0, t)

) v̄∗,kG (0, t)− v∞
C0

=
WL,inj(t)

A ρ̄∗,kL (0, t)
, (37)

and initial condition

ᾱ∗,kG (·, tk) = ᾱG(·, tk). (38)
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Note that the target bottom hole pressure, p∗,kref , enters in both
(34) and (36).

The design of p∗,kref must ensure continuity with the state
estimate at time tk and should converge to the actual reference,
pref, in a continuous fashion. Moreover, the time derivative of
p∗,kref should remain sufficiently slow to avoid shock waves in
the well or, mathematically speaking, a collision of character-
istic lines. One design that satisfies these conditions is

p∗,kref (t) =

{
p̄k + p̄′ · (t− tk) · sign(ek) t ≤ tk + |ek|

p̄′

pref t > tk + |ek|
p̄′

,

(39)
where p̄k = p̄(0, tk) and ek = pref− p̄k are the estimated bot-
tom hole pressure and tracking error at time tk, respectively,
and p̄′ > 0 is the desired time-derivative of the bottom hole
pressure. That is, p∗,kref converges linearly with rate p̄′ to pref
and stays there once the reference is reached. If p̄′ is chosen
sufficiently small, one can again show that the system (33)-
(39) is well-posed, i.e., it has a unique solution on the domain
[0, L]× [tk, tk+1].

By setting
ptop(t) = p̄∗,k(L,t) (40)

for t ∈ [tk, tk+1], and assuming exact model knowledge,
the closed-loop trajectory of (11)-(19) is equal to the target
trajectory on the domain [0, L] × [tk, tk+1]. In particular,
the closed loop trajectory satisfies p̄(0, t) = p∗,kref (t) for all
t ∈ [tk, tk+1]. See also [16], [18], [28] for comparison.

The steps required to evaluate the control law at each time
step are summarized in the following Algorithm and also in
Figure 5.

Algorithm 2 Control algorithm
Input: estimate of ᾱG(·, tk) and p̄(0, tk)
Output: control input ptop(t) for t ∈ [tk, tk+1]

1: set p∗,kref (t), t ∈ [tk, tk+1], as per (39)
2: solve (33)-(38) over domain [0, L]× [tk, tk+1]
3: set ptop(t), t ∈ [tk, tk+1], as per (40)

Well-posedness of the control law and convergence of the
closed loop system when applied to the simplified drift-flux
model from Section II-C are discussed in Appendix I.

C. Estimation of reservoir parameters
Step 1 in Algorithm 1 can also be used to estimate the

production index kG and pressure pres of the reservoir, which
might be uncertain in practice, using only measurements at
the topside boundary. For this, note that the system (23)-(26)
does not depend on the boundary condition at x = 0 modelling
the gas influx as given by (18). That is, Step 1 in Algorithm 1
provides estimates of the bottom hole gas volume fraction and
pressure, ᾱG(0, t) and p(0, t), and thus the gas influx, over the
past interval t ∈ [tk − T, τ(tk; 0)], using only the history of
topside measurements but not the boundary condition at the
bottom of the well. In Figure 4, the time interval t ∈ [tk −
T, τ(tk; 0)] corresponds to the times where the blue domain

reaches the bottom boundary at x = 0. The uncertain values of
kG and/or pres can then be estimated via standard least-square
curve fitting.

For k ∈ N, let θik ∈ [tk − T, τ(tk; 0)], i = 1, . . . , Ik, be
sampling instances over the interval [tk − T, τ(tk; 0)]. Let

ŵiG,k = ᾱG(0, θik) v̄G(0, θik) ρ̄G(0, θik)A, (41)

p̂ik = p̄(0, θik), (42)

be the estimates of the gas influx and bottom hole pressure at
these sampling instances as returned by step 1 in Algorithm
1. At each time step tk, the past estimates from all previous
steps up to that time can be concatenated as

Ŵ
1
G,k
...

ŴNk

G,k

 =



ŵ1
G,1
...

ŵI1G,1
ŵ1
G,2
...

ŵI2G,2
...

ŵ1
G,k
...

ŵIkG,k



,

 P̂ 1
k
...

P̂Nk

k

 =



p̂1
1
...
p̂I11

p̂1
2
...
p̂I22

...
p̂1
k
...
p̂Ikk



, (43)

where Nk =
∑k
j=1 Ij . By choosing T sufficiently large, it

can be ensured that there is no gap between sampling points
at consecutive steps, θIkk and θ1

k+1. Moreover, if required the
samples can be processed further to, e.g., remove duplicate
samples or to ensure equal spacing.

Once the past estimates of the gas influx and bottom
hole pressure have been collected, the production index and
reservoir pressure can be estimated by solving the optimization
problem{
k̂kG, p̂

k
res

}
= arg min

k̂G, p̂res

Nk∑
i=1

∣∣∣Ŵ i
G,k − k̂G max(0, p̂res − P̂ ik)

∣∣∣2 .
(44)

It should be noted that the curve fitting procedure does not
have to be of the exactly of the form (44). For instance, weights
could be put on the different samples. It is also possible to use
other nonlinear functions to model the relationship between
bottom hole pressure and gas influx such as polynomials of
the pressure difference p̂res − P̂ ik.

D. Adding an integral term
The feedback control law in Section III-B can be seen as

a static nonlinear feedback gain, similar to the proportional
gain in classic linear control. In the presence of modelling
errors, using such a static gain can lead to a tracking error at
steady state (see also the simulations in Section IV-E). Such
steady state tracking errors can be corrected if (infrequent)
measurements of the bottom hole pressure are available, by
adding an correction term involving the integral of the tracking
error. One of the main advantages of the controller from
Section III-B is that it, combined with the observer from
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Section III-A, only requires topside measurements. However,
some, potentially infrequent downhole pressure measurements
might be available in practice, in which case it is desirable to
reduce any pressure tracking errors.

Let t̃i be the sampling instances where downhole pressure
measurements are available, with in general slower sampling
rate t̃i+1 − t̃i � tk+1 − tk. Define the integral term as

Π0 = 0, (45)

Πi = Πi−1 +KI ×
(
pref − p(0, t̃i)

)
×
(
t̃i − t̃i−1

)
, (46)

with integral gain KI . Then, the topside pressure as given in
(40) can be modified to

ptop(t) = p̄∗,k(L,t) + Πi (47)

for all k with tk ∈ [t̃i, t̃i+1]. In order to avoid that the more
aggressive static feedback term compensates the much slower
integral term, the pressure offset must be considered in the
measurement as in

Y (t) =

 αG(L, t)
p(L, t)−Πi

vG(L, t)

 , (48)

with i such that t ∈ [t̃i, t̃i+1].
It should be noted that with infrequent sampling of the

downhole pressure (say, in the order of once per hour), the
integral term does hardly contribute to stabilization of the
pressure (which would require more frequent sampling [11]),
but only acts to reduce the steady state tracking error.

IV. NUMERICAL SIMULATION

TABLE I
PARAMETERS

L = 2500 m ρL,0 = 975 kg/m3 pres = 266 bar
A = 0.012 m2 cL = 1000 m/s kG = 0.01 kg/(s bar)
D = 0.0635 m cG = 315 m/s WL,inj = 13 kg/s
f = 0.03 C0 = 1.1 v∞ = 0.1 m/s
θ = 10 min p̄′ = 10 bar/h αG(·, 0) ≡ 0

A. Simulation parameters
We demonstrate the performance of the proposed control

law in numerical simulations of a well with the parameters
given in Table I. The dynamics in the well are modelled using
the drift-flux model introduced in Sections II-A II-B while the
simplified model from Section II-C is only used for the output
feedback control law. A first-order finite difference scheme
with 50 discretization elements is applied to convert all PDEs
(the system dynamics (2)-(4) and all PDEs in Algorithms 1
and 2) into high-order ODEs (“method of lines”). The resulting
ODEs are then solved in matlab by use of ode23tb.

At each sampling instance, the topside pressures are pre-
computed over a θ = 10 minute interval. The algorithm
provides a continuously varying signal for the topside pressure.
However, in practice, the choke on an actual rig is usually not
manipulated continuously. In order to emulate this, a further
zero-order hold with period 2 minutes is applied to the original

topside pressure signal, so that the topside pressure becomes
a piecewise-constant signal that changes every 2 minutes, and
attains 5 different values over each 10 minute period. That is,
due to the zero-order hold, the actual topside pressure that
is applied to the system deviates slightly from the output of
Algorithm 2. Pre-computing the control inputs for each 10-
minute period, which involves solving the PDEs outlined in
Algorithms 1 and 2, takes less than 1 second on a standard
laptop, i.e., a fraction of the sampling interval.

The simulation presented below deviate from the formal
analysis in Appendix I, which focuses on the simplified drift-
flux model from Section II-C in closed loop with the proposed
estimation and control scheme for nominal parameters, in that
the simulation model is different to the model used for control
design, that the control inputs are applied in a zero-order hold
fashion, that the parameter identification scheme and integral
action from Sections III-C and III-D are applied (which were
not part of the nominal design analysed in the appendix), and
that uncertainty in parameters and disturbances/noise affecting
the measurements and control input are included. Thereby, the
simulations serve to demonstrate that the proposed estimation
and control method not only works in the ideal case, as proven
in the appendix, but also shows robustness with respect to
issues that need to be expected in practical applications.

B. Simulation results - nominal design

Fig. 6. Topside pressures as computed by the feedback control
law presented in this paper in the two scenarios, and two open-loop
alternatives. Although the topside pressures convergence to the same
point, they correspond to three different equilibria, see Fig. 2. The top
figure is a zoom in of the bottom figure.
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Fig. 7. Comparison of bottomhole pressure trajectories when using the
proposed feedback control law in the two scenarios and the two open-
loop alternatives. The top figure is a zoom in of the bottom figure.

In this section we demonstrate the controller performance
in simulations where the well parameters are assumed known.
The topside and bottom hole pressure trajectories are shown
in Figure 6 and 7, respectively. The gas volume fraction is
shown in Figure 8. At the initial condition there is no gas in
the well.

In the trajectory titled “control 1”, the topside pressure is
initially held at 10 bar until the control law is activated at
t = 50 minutes. While the topside pressure is at 10 bar, the
bottom hole pressure sits slightly above the reservoir pressure
at 266.5 bar, so that there is no inflow of gas. Once the
controller is activated, it lowers the topside and, thus, the
bottom hole pressure. Consequently, gas starts to enter the
well. The presence of gas in the well lowers the pressure
difference between topside and well bottom (because the
light gas reduces the weight of the liquid/gas column), which
further lowers the bottom hole pressure. The controller uses
the estimate of ᾱG to compensate this effect and stabilizes the
bottom hole pressure close to the reference value at 1 bar below
the reservoir pressure. Note again that the feedback controller
uses no measurements of the downhole pressure, which leads
to the small offset between down hole pressure reference and
asymptotically achieved down hole pressure. As shown in
Figure 8, once the bottom hole pressure is settled at 265 bar,
the gas concentration stabilizes at around 0.3% (by area) at the
well bottom and expands to approximately 6.5% at the top of
the well. The controller achieves stabilization of the bottom
pressure close to the reference despite the mismatch between
the drift-flux model used for simulation and the simplified

Fig. 8. Gas concentrationαG using the feedback control law presented
in this paper and the two open-loop alternatives.
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model used for computation of the control.
In the second closed-loop simulation (“control 2”), the

feedback controller is only activated at time t = 6 hours.
Before that, the topside pressure initially decreases as the
trajectory in “control 1” in order to initiate a gas inflow, but
is then eventually brought back to the equilibrium at 10 bar.
This blow-out scenario is described in more detail in the
following subsection under “open loop 2”. Briefly speaking,
the equilibrium corresponding to the reference down hole
pressure is unstable, and the gas entering the well leads to a
severe drop in the down hole pressure (approximately 30 bar
by the time the feedback controller is activated, leading to a
gas concentration of 60% at the top of the well). However,
the feedback controller again manages to estimate the gas
distribution in the well with sufficient accuracy, compensates
its effect on the pressure in the well by increasing the topside
pressure for a period of time, and brings the down hole
pressure back to the reference.

In these simulations, the delay tk − τ(tk, 0) is just over
30 minutes at all time steps. Thus, saving the measurements
over a horizon of T = 40 minutes is a conservative choice to
ensure that the steps in Algorithm 1 are well-posed.

C. Comparison with open-loop control
For comparison, Figures 6-8 also show the trajectories

corresponding to two open-loop topside pressure signals. In
the first alternative (“open loop 1”), the topside pressure is
held constantly at 10 bar. Since there is no gas in the well at
the initial condition, the bottom hole pressure remains slightly
above the reservoir pressure, i.e., in an over-balanced situation,
for the entire simulation.

In the second open-loop alternative (“open loop 2”), the
topside pressure signal drops like in the closed-loop simulation
in order to initiate a gas inflow at the well bottom, before
recovering to the average topside pressure of the closed-loop
case at 10 bar. However, the equilibrium corresponding to the
reference bottom hole pressure is unstable. That is, the gas
inflow reduces the gravitational pressure drop in the well,
which further reduces the bottom hole pressure and increases
the gas inflow, until it reaches a stable equilibrium at almost
70 bar below the reference. As shown in Figure 8, the large
gas influx due to the low bottom hole pressure leads to a gas
concentration of approximately 18% by area at the well bottom
and just over 80% at the top.

D. Estimation of reservoir parameters
In this section we demonstrate the performance of both the

controller and the parameter estimation scheme from Section
III-C. Here, the parameters from Table I are used to simulate
the well but the reservoir parameters kG and pres are assumed
to be uncertain.

Figure 9 shows the topside and bottom hole pressure
trajectories for five different simulations. In three of these
simulations, the initial guess k̂0

G overestimates or underes-
timates the actual production index by 50%, respectively,
and in one of them the initial guess p̂0

res of the reservoir
pressure also underestimates the actual value by 5 bar. In each

Fig. 9. Comparison of pressure trajectories for nominal and uncertain
reservoir parameters.

of these simulations, the output feedback controller uses the
initial values k̂0

G and p̂0
res until there is one instance at which

the estimated gas influx Ŵ i
G,k exceeds 1 kg/min. Once this

threshold is exceeded, the reservoir parameters are estimated
at each following time step as described in Section III-C based
on the current set of samples, and the updated estimates k̂kG
and p̂kres are used both Algorithm 1 for state estimation and in
Algorithm 2 to compute the control inputs.

The only modification compared to Section III-C is the
inclusion of a simple data processing step, in that at each tk,
the new estimation samples ŵiG,k and p̂ik, i = 1, . . . , Ik, are
only added to the overall set of samples used for curve-fitting
if they satisfy the following condition:

min
j≤k−1

∣∣∣∣mean
i=1...Ik

(ŵiG,k)− mean
i=1...Ij

(ŵiG,j)

∣∣∣∣ ≥ 0.05 kg/min (49)

or

min
j≤k−1

∣∣∣∣mean
i=1...Ik

(p̂ik)− mean
i=1...Ij

(p̂ij)

∣∣∣∣ ≥ 0.05 bar. (50)

This is to prevent that once the system settles around steady
state, more and more almost identical samples of ŵiG,k and p̂ik
keep getting added. Otherwise, excessive weight would be put
on the accumulation of samples around the equilibrium, which
could ultimately cause the solution of optimization problem
(44) to slowly drift as more and more samples around steady
state keep getting added.

In another simulation scenario, no initial guess of k̂0
G and

p̂0
res is used. Instead, the topside pressure is set equal to the one

used in the simulation “open loop 2” described in the previous
section. As discussed above, this open-loop signal induces a
gas influx and drop in the bottom hole pressure. Once the
estimated gas influx Ŵ i

G,k exceeds the threshold of 1 kg/min
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at one sampling instance, the estimates k̂kG and p̂kres are again
obtained as in the previous case and the feedback controller is
activated. For comparison, the nominal simulation where the
exact values of kG and pres are available to the controller is
also shown.

As shown in Figure 9, the adaptive feedback controller
manages to stabilize the bottom hole pressure close to the
reference in all simulations. Uncertainty in the reservoir pa-
rameters does affect the solution during transients, before
the uncertain parameters are identified. In each of the four
cases with uncertainty, the estimate k̂kG settles between 7-
11% below the actual value kG, and p̂kres settles between 0.2-
0.3 bar below pres. This error leads to the slightly lower bottom
hole pressures to which the four trajectories with uncertainty
converge in Figure 9.

Fig. 10. Samples of gas influx estimates ŵi
G,k and bottom hole

pressure estimates p̂ik, i = 1, . . . , Ik, at different time steps tk (shown
only for every third tk), for the simulation where no initial guesses k̂0G
and p̂0res are used. The lines show the curve fit at different times and the
actual relationship as given by (9).

The parameter identification steps are investigated more
closely in Figure 10, at the example of the trajectory where
the system is initially operated in open-loop and no initial
guesses k̂0

G and p̂0
res are used. The top figure shows samples

of ŵiG,k and p̂ik up to time tk = 250 min where the bottom
hole pressure is still decreasing with time. Despite numerical
errors, the samples lie close to a line (except for the very
first estimated influxes up to around 0.1 kg/min), and a good
curve fit is possible once the threshold of 1 kg/min is exceeded.
When the pressure increases (corresponding to the samples
shown in the bottom figure), the influx estimates tend to be
slightly higher for the same pressure compared to when the
pressure decreases. This can be attributed to numerical inaccu-
racies. In the bottom figure, one can also see the accumulation
of samples around 264.5 bar and 0.8 kg/min for times after
around tk = 350 min, which is when the systems starts to settle

around the equilibrium. The curve fit changes little once the
maximum influx has been reached, and conditions (49)-(50)
for the inclusion of new samples are not satisfied any more
after tk = 390 min. Compared to the actual influx as given by
(9), the parameter estimation scheme tends to estimate that the
same amount of gas influx occurs at a slightly lower bottom
hole pressure (i.e., the estimated samples and fitted curve
lie to the left of the black lines in Figure 10), which leads
to the offset of approximately 0.5 bar between the adaptive
simulations and the nominal simulation in Figure 9.

E. Monte Carlo Simulations
In this section we demonstrate the controller performance in

Monte Carlo type simulations with parametric uncertainty and
disturbances/noise affecting the measurement and actuation
signals. Here, the estimation and control schemes use the
nominal parameters given in Table I, whereas the actual
parameters f (friction factor) and cG (gas compressibility)
used in the drift flux model vary by 5% around the nominal
value. Moreover, we add a random 5% disturbance/noise signal
to the topside measurement of the gas concentration, αG(L, t),
and another random, unmeasured disturbance to the topside
pressure ptop of ±0.5 bar (about 5% of 10 bar which is the
nominal topside pressure). In order to vary the initial condi-
tion, the topside pressure is manually set to in between 8 bar
and 10 bar, which brings the well into the under-balanced range
for most parameter samples and induces a gas influx before
the feedback controller is activated after 2 hours. Moreover,
we show the same simulation for a shorter, 1000 m deep well.
Here, the simulations are run for 100 samples in the given
range, including the 18 extreme points where the uncertainty
is either 0 or ±5% and for the initial topside pressure is either
8 bar or 10 bar, as well as 82 random samples within this range.
The reference pressures are lowered compared to the previous
simulations so that despite the error in the friction factor all
simulations are in the under-balanced range.

The simulated trajectories are shown in Figure 11. The
model errors lead to a larger offset between the achieved
bottom hole pressures and reference, but the bottom hole
pressures stabilize within a few bar of the reference in all
simulations. The time-varying noise and disturbance terms
cause some fluctuations in the pressure trajectories.

In order to compensate the steady-state tracking error, the
integral term introduced in Section III-D is activated at time
t = 20 hours with a gain of KI = 0.1

3600 s and sampling
period of 1 hour. That is, sampling of the downhole pressure is
asynchronous with the topside measurement and the integral
term gets updated much less frequently than the topside pres-
sure. Still, the integral term helps to quickly bring the bottom
hole pressure close to the reference, with minor remaining
fluctuations due to the noise and disturbances.

V. CONCLUSIONS

We presented a feedback control design for underbalanced
drilling using only measurements and actuators located topside
on the drilling rig and with uncertainty in reservoir parameters.
In simulations with an industry standard drift-flux model as
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Fig. 11. Monte Carlo simulations with parametric uncertainty and
disturbance/noise terms as described in the text, for the 1000 m (top)
and 2500 m (bottom) deep wells. The plots show the individual bottom
hole pressure trajectories (thinner lines) as well as the 5th, 25th, 75th
and 95th percentiles. The integral term is activated at t = 20 hours.

the plant, the proposed controller manages to stabilize the
downhole pressure at an open-loop unstable setpoint slightly
below the reservoir pressure (the point considered most diffi-
cult to control [4], [31]). The method also shows robustness
to sampling, modelling errors and disturbances/noise affecting
the topside measurements and actuation. For scenarios where
infrequent measurements of the bottom hole pressure are
available (in the order of once per hour), such measurements
can be fed back in an integral fashion to compensate tracking
errors caused by parametric uncertainty. Independently of
whether the presented feedback controller or an alternative
strategy is used for pressure control, the proposed estimation
scheme provides estimates of the distributed gas concentration,
downhole pressure, reservoir pressure, and production index
using only topside measurements. Finally, the results serve as
a verification that the simplified model from [27] captures the
dominant dynamics of the two-phase drift flux mode that are
most relevant for control design.

The simulations presented in this paper deviate to some
extend from the theoretical stability analysis, in that the model
used for control design is different from the plant model.
Therefore, in future work the theory should be extended to
close this gap. While [16] provides a conservative robustness

analysis for a related system, sharper certificates for robustness
with respect to model uncertainty and sampling would be
highly desirable. Another direction for future work would be
event-triggered schemes [32], [33], which might help to further
reduce the control effort by only updating the actuation when
it is truly needed.

APPENDIX I
PROOF OF WELL-POSEDNESS AND CONVERGENCE FOR

THE SIMPLIFIED DRIFT FLUX MODEL

In this section, we prove well-posedness of the observer
and control law from Sections III-A and III-B, respectively,
as well as stability of the closed-loop system consisting of the
simplified drift-flux model (11)-(19), the observer (Algorithm
1) and the feedback control law (Algorithm 2). Let

X(x, t) =
(
ᾱG(x, t) p̄(x, t) v̄G(x, t)

)T
, (51)

X̃(x, t) =
(
ᾱG(x, t) p̄(x, t)− p̄0(x) v̄G(x, t)− v̄G,0(x)

)T
(52)

Ỹ (t) = X̃(L, t), (53)

where p̄0 and v̄G,0 are the steady state pressures and velocities
corresponding to zero gas concentration and p̄0(0, t) = pref.
Note that ∂

∂tX(x, t) = ∂
∂tX̃(x, t) for all x ∈ [0, L].

Lemma 1: Fix k ∈ N. Assume the measurements Y (t)
as defined in (21) is Lipschitz-continuous. There exist con-
stants δ1 > 0 and δ′1 > 0 such that if ‖Ỹ (t)‖ ≤ δ1
and ‖ ∂∂t Ỹ (t)‖ ≤ δ′1 for all t ∈ [tk − T, tk] with T >
0 such that τ(tk; 0) ≥ tk − T (with τ as defined in
(20)), then the system (23)-(26) has a unique Lipschitz-
continuous solution on the domain A(tk). Moreover, there
exists a constant c′1 such that ess sup(x,t)∈A(tk) ‖ ∂∂tX(x, t)‖ ≤
c1 ess supt∈[tk−T,tk] ‖ ∂∂tY (t)‖.

Proof: The proof follows the proofs of [16, Theorem
5] and [30, Theorem 3.8]. In order to define broad solutions
(see [16][Theorem 3.8]), we can transform (23)-(26) into
integral equations by integrating (23) along its characteristic
lines. Then, by subtracting the steady state values p̄0 and
v̄G,0, bounding the integrands by expressions that are locally
Lipshitz in the state, exploiting that p̄ in the denominator in
(12) is bounded from below by p̄(x, t) ≥ p̄(L, t) ≥ 1 bar
(so that 1

p̄ remains bounded), and using a Gronwall-type
inequality, an a-priori bound on ‖X̃(x, t)‖ for (x, t) ∈ A(tk)
can be derived. Similarly, integral equations for ∂

∂tX̃(x, t) can
be derived, the right-hand side of which are super-linear in
X̃(t) and ∂

∂ X̃(t). Using techniques as in [16, Theorem 5],
one can show that the solution of these integral equations do
not blow up for all (x, t) ∈ A(tk) if δ′1 is sufficiently small
(depending on the bound on ‖X̃(x, t)‖ derived previously).
Moreover, the integral equations for X̃ and ∂

∂tX̃ depend
linearly on Ỹ (t) and ∂

∂t Ỹ (t), respectively, which can be used
to bound ‖ ∂∂tX(x, t)‖ via ‖ ∂∂tY (t)‖.

Finally, uniqueness of the solution can be shown by sub-
tracting (23)-(26) for two solutions with the same topside
measurements from each other. Clearly, the zero-solution
solves the resulting set of equations, meaning that the two
solutions are equal.
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Remark 2: In [16], rigorous expressions for the bounds
equivalent to δ1 and δ′1 in Lemma 1 are given for a related class
of quasilinear hyperbolic systems. However, their derivations
are extremely technical and are not repeated here. These
bounds are based on worst-case growth estimates that are
very conservative, meaning that at this stage they are unlikely
to give a realistic estimate that would be of practical value.
Moreover, the state X in (51) contains concentrations (< 1)
and pressures (> 105 Pa). This difference in scale would lead
to even more conservatism in any bounds, although this could
be addressed by rescaling the state.

The same techniques as in Lemma 1 can be used to show
well-posedness of the second step in the observer evaluation.

Lemma 3: Assume X(x, τ(tk;x)) is Lipshitz-continuous
in x ∈ [0, L]. There exist constants δ2 > 0 and
δ′2 > 0 such that if supx∈[0,L] ‖X̃(x, τ(tk;x))‖ ≤ δ2 and
ess supx∈[0,L] ‖ ∂∂t X̃(x, τ(tk;x))‖ ≤ δ′2, then the system (28)-
(31) has a unique solution on the domain B(tk).

Lemmas 1 and 3 form the basis for showing well-posedness
and convergence of the observer defined in Algorithm 1.

Theorem 4: Assume the measurements Y (t) is Lipschitz-
continuous for all t. There exist K ∈ N and constants δ3 > 0
and δ′3 > 0 such that if ‖Ỹ (t)‖ ≤ δ3 and ‖ ∂∂t Ỹ (t)‖ ≤ δ′3 for
all t ∈ [0,∞), then the state estimate obtained by Algorithm
1 is equal to the actual state at all times tk with k ≥ K.

Proof: One can choose K large enough such that
τ(tK ; 0) > 0. Since both the actual and the estimated trajec-
tory satisfy (23)-(26) and are equal to Y at x = L, uniqueness
of the solution on A(tk) for k ≥ K as guaranteed by Lemma
1, implies that the estimated state is equal to the actual on
all of A(tk), including on the characteristic line (x, τ(tk;x),
x ∈ [0, L]. Similarly, since the observer equations (28)-(31) are
just a copy of the set of equations that the actual dynamics
satisfy, Lemma 3 implies that the estimated and actual state
exist and are equal on B(tk) if ‖X̃(x, t)‖ and ‖ ∂∂t‖X̃(x, t)‖
are sufficiently small on the line (x, τ(tk;x), x ∈ [0, L]. By
the last statement in Lemma 1, the latter can be ensured by
choosing δ3 and δ′3 sufficiently small. Since B(tk) includes
the line (x, tk), x ∈ [0, L], this implies that the estimate of
X(·, tk) is equal to the actual value.
We next formulate a lemma regarding well-posedness of each
feedback control step as given by Algorithm 2.

Lemma 5: Fix k ∈ N and assume the state at time tk is fully
known, i.e., (38) is satisfied. There exist δ4 > 0 and δ′4 > 0
and δ̄ > 0 such that if ‖X̃(·, tk)‖∞ ≤ δ4, ‖ ∂∂tX̃(·, tk)‖∞ ≤ δ′4
and p̄′ ≤ δ̄, then (33)-(38) has a unique solution on (x, t) ∈
[0, L] × [tk, tk+1]. Moreover, the actual system (11)-(19) in
closed loop with ptop as constructed by Algorithm 2 satisfies
p̄(0, t) = p∗,kref (t) for all t ∈ [tk, tk+1].

Proof: Existence and uniqueness of the solution on
(x, t) ∈ [0, L]× [tk, tk+1] can be proven using the same tech-
niques as in Lemma 1, where we again use that (33)-(38) is just
a reformulated version of the actual dynamics. In particular,
uniqueness of the solution includes that p̄(x, t) = p̄∗,k(x, t)
on (x, t) ∈ [0, L]× [tk, tk+1]. That is, p̄(0, t) = p∗,kref (t) for all
t ∈ [tk, tk+1] if and only if p̄(L, t) = ptop(t) = p̄∗,k(L, t) for
all t ∈ [tk, tk+1].

We are now in position to prove the main theorem on well-
posedness and convergence of the closed loop system.

Theorem 6: Assume the feedback controller is activated at
some time T with τ(T ; 0) ≥ 0. There exist δ5 > 0, δ′5 > 0,
δ̃5 > 0, δ̃′5 > 0, δ̄ > 0 and T ′ > T such that if the initial
conditions and ptop(t) for t ≤ T are Lipschitz continuous,
compatible and such that the solution exists up to time T
with ‖Ỹ (t)‖ ≤ δ̃5 and ‖ ∂∂t Ỹ (t)‖ ≤ δ̃′t for all t ≤ T , and
such that ‖X̃(·, T )‖∞ ≤ δ5 and ‖ δδtX̃(·, T )‖∞ ≤ δ′5, then
the closed-loop system consisting of the simplified drift flux
model (11)-(19), the observer in Algorithm 1 and the feedback
control law in Algorithm 2 with p̄′ ≤ δ̄ has a unique solution
on [0, L]× [0,∞) that satisfies p̄(0, t) = pref for all t ≥ T ′.

Proof: Since τ(T ; 0) ≥ 0 by assumption, Theorem 4
states that the observer has converged by the time the feedback
controller is activated. Here, it is assumed that the initial
conditions and ptop(t) for t ≤ T are benign such that the
system is actually observable and controllable by the time the
controller is activated. For all k with tk ≥ T , by Lemma
5 the solution satisfies p̄(0, t) = p∗,kref (t) for t ∈ [tk, tk+1].
By recursively using the design in Equation (39), this means
that p̄(0, t) = p∗,kref (t) = pref for all t ≥ T ′ = |p̄(0,T )−pref|

p̄′ .
With regards to well-posedness, the design in (39) and the
assumption that ‖X̃(·, T )‖∞ ≤ δ5, ensures that p̄(0, t) = p∗,kref
remains below a bound that can be made arbitrarily small by
making δ5 small. The norm of the time derivative at x = 0,
‖ ∂∂tX̃(0, t)‖ for t ≥ T can be made arbitrarily small via p̄′.
Then, similar as in Lemma 1, by solving the dynamics in the
positive x-direction with the “initial” condition at x = 0, one
can show that this implies that ‖X̃(x, t)‖ and ‖ ∂∂tX̃(x, t)‖
remain sufficiently small for all x ∈ [0, L], t ≥ T . That is, the
solution cannot blow up in finite time, and the assumptions of
Theorem 4 (smallness of ‖Ỹ (t)‖ and ‖ ∂∂t Ỹ (t)‖) and Lemma 5
(smallness of ‖X̃(·, tk)‖∞ and ‖ ∂∂tX̃(·, tk)‖∞) are recursively
satisfied. Moreover, the design (39) is such that p∗,kref (tk) =
p̄(0, tk) which, due to (14)/(16) and (34), implies that ptop(t)
stays continuous at t = tk for all k so that the whole solution
remains Lipschitz-continuous.

Remark 7: In [16], rigorous, although quite conservative
certificates for robustness with respect to uncertainty in param-
eters and measurement and actuation inaccuracies are given
for a related class of quasilinear hyperbolic systems. Deriving
similar conditions for the system considered here would go
beyond the scope of this paper. However, the numerical
simulations in Section IV-E suggest that there is some inherent
robustness with respect to such uncertainties, as well as with
respect to mismatch between the full drift-flux model and the
siomplified model used for control design.

The sampling period θ does not appear in Theorem 6
because in the appendix, exact model knowledge and pre-
dictability are assumed. In presence of model uncertainty,
the sensitivity of closed-loop stability with respect to θ is
also investigated in [16]. In particular, long θ can reduce the
robustness with respect to model uncertainty due to prediction
errors, while very short θ can also be detrimental because new
measurement errors are introduced at every sampling event.
The latter can be managed by introducing a minimum dwell
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time (see also the classical reference [34]).
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