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Abstract—This paper formulates optimal pacing of a cyclist
on hilly terrain time-trials as a minimum-time optimal control
problem. Maximal power of a cyclist serves as a time-varying con-
straint and depends on fatigue and recovery which are captured
via dynamic models proposed early in the paper. Experimental
protocols for identifying the individualized parameters of the
proposed fatigue and recovery models are detailed and results
for six human subjects are shown. In an analytical treatment
via necessary conditions of Pontryagin Minimum Principle, we
show that the cyclist’s optimal power in a time-trial is limited to
only four modes of all-out, coasting, pedaling at a critical power,
or constant speed (bang-singular-bang). To determine when to
switch between these modes, we resort to numerical solution via
dynamic programming. One of the subjects is then simulated on
four courses including the 2019 Duathlon National Championship
in Greenville, SC. The dynamic programming simulation results
show 24% reduction in travel time over experimental results
of the self-paced subject who is a competitive amateur cyclist.
The paper concludes with description of a pilot lab experiment
in which the subject trial time was reduced by 3% when the
near-optimal pace was communicated to her in real-time.

I. INTRODUCTION

OPTIMIZATION of human performance by accurately
modeling fatigue has challenged athletes, coaches, and

scientists. The rise in popularity of wearable sensors in
physical activity tracking presents opportunities for modeling
and optimizing performance as they alleviate the need for
expensive laboratory equipment. Understanding fatigue dy-
namics can potentially help athletes train in a more efficient
way and perform at their peak. Moreover, it can provide
useful information to further enhance the performance of an
athlete during a physical exercise. Fatigue due to prolonged
exercise is defined as a decline in muscle performance which
accompanies a sensation of tiredness [1], [2]. Therefore, during
physical exercise, fatigue prevents athletes from producing
the required power. Several studies such as [3], [4] have
investigated fatigue in cycling and developed models for it
based on the expenditure of anaerobic energy. Only a few
studies investigate the recovery dynamics of this anaerobic
energy [5].
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Figure 1: An illustration of optimal pacing of a cyclist using upcoming
elevation data, and based on a dynamic model of cyclist fatigue and recovery,
and a model of bicycle longitudinal dynamics. The illustration also shows a
schematic of a dynamic programming grid on two states of velocity (v) and
anaerobic energy (w) for planning the optimal velocity or power. The optimal
power is communicated and displayed to the cyclist in real-time.

Figure 1 illustrates a cyclist pedaling in a time trail on a
mountain course. Even seasoned cyclists may find it challeng-
ing to pace themselves in such a course. By over exerting
themselves too early or too late, they may not achieve their
maximum potential. We hypothesize that cyclists can finish a
time trial faster if they plan in advance in consideration of
their Anaerobic Work Capacity (AWC) and upcoming road
elevation. The pacing strategy can be formalized as an optimal
control problem which requires dynamic models of fatigue and
recovery and maximal power capacity of a cyclist as a function
of their fatigue levels.

There have been a few other studies attempting to formulate
a time-trial as an optimal control problem. In [6] and [7] au-
thors provide an optimal control formulation that uses lumped
muscle models of fatigue and recovery. However, such lumped
models are complex and hard to experimentally verify and
calibrate. Alternatively, one can consider fatigue as running
out of AWC which could be captured with a single dynamic
state and recovery is achieved when pedaling below a Critical
Power (CP ). Such a model can be more easily verified and
calibrated in laboratory experiments as our recent work in [8]
and [9] shows. In fact, a model based on anaerobic energy
expenditure has been used in [10] to optimize a 5 km cycling
time-trial. However, a model for recovery was not considered
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in [10] perhaps because the road was assumed to be flat, not
necessitating a more sophisticated strategy.

This paper has the following main contributions:
• We hypothesize a set of dynamic models for a cyclist’s

fatigue and recovery during anaerobic exercise and extract
the model parameters for six human subjects using 14
hours of experiments per subject via newly proposed test
protocols. We believe these models based on anaerobic
work capacity are more practical to use in optimal pacing
than those based on estimating muscular fatigue presented
in [6] and [7]. This is mainly because the state of AWC
can be estimated rather reliably open-loop and by inte-
grating the cyclist’s power output over time and without
the need for invasive (e.g. blood lactate) measurements.

• We show that affine dependence of system’s dynamics
and constraints on control input (pedaling power) limits
the optimal power to only four power levels, which is
a valuable practical insight into the nature of the opti-
mal pacing strategy when using Pontryagin’s Minimum
Principle. We resort to numerical solution via Dynamic
Programming (DP) to resolve the switching between
various modes of optimal strategy considering the varying
road grade.

• We simulate one of the subjects on four time-trial courses
including the 2019 Greenville Duathlon National Cham-
pionship and show reduced trial time over cyclist’s self-
paced strategy. Our sensitivity analysis shows robustness
to reasonable perturbations in model parameters but also
the need for individualized models.

• A pilot test in which a subject received optimal power
suggestions in real-time and improved her trial time
over a self-paced baseline trial demonstrates the real-time
implementation potential.

After the table of nomenclature, Section II presents a
literature review on muscle fatigue and recovery. Section III
introduces our proposed models for anaerobic energy expen-
diture and recovery as well as a model for maximum power
generation ability of cyclists. In Section IV the experimental
protocol and results for six cyclists are presented. The optimal
pacing problem is formulated in Section V. The problem is
investigated analytically in Section VI using optimal control
theory, and numerical solutions using dynamic programming
are shown in Section VII. Section VIII presents the results
followed by conclusions.

NOMENCLATURE

α Maximum power model parameter
αc Maximum cadence model parameter
λ Vector of the co-state variables
ρ Air density
ÂWC Estimated anaerobic work capacity
ĈP Estimated Critical Power
A Frontal area of the bicycle
a Recovery model parameter
AWC Anaerobic work capacity
b Recovery model parameter
C State and control dependent constraint

c Pedaling cadence
Cd Aerodynamic drag coefficient
CR Coefficient of rolling resistance
cmax,f Maximum pedaling cadence when fully fatigued
cmax Maximum pedaling cadence
CP Critical power
f Vector of the state equations
gi Gear ratio of the ith gear
H Hamiltonian function
h The summation of road forces
Iw Rotational inertia of a bicycle’s wheel
L Integrand in the cost function
m Effective mass of the bicycle
mb Mass of the bicycle and the rider combined
P Cyclist’s applied power
Padj Adjusted recovery power
Pmax Maximum cyclist power as a function of c and w
Ppeak Peak power as a function of w at optimal cadence
Rw Radius of bicycle wheel
S State dependent constraint
s Bicycle’s position (state variable)
Trec Recovery duration
u Control input variable (cyclist’s power)
umax Maximum constraint on the control input
umode Optimal mode of control action
v Bicycle’s speed (state variable)
w Remaining anaerobic energy (state variable)
wrec Recovered anaerobic energy
x Vector of the state variables

II. LITERATURE REVIEW

A. Fatigue Definition and Mechanism

Several studies have investigated fatigue, which has led
to its many definitions. For example, in [11] authors define
fatigue as a reduction in maximal capacity to generate force or
power during exercise. Whereas, fatigue is defined as inability
to produce the desired force or power resulting in impaired
performance in [12] and [13]. The point of occurrence of
fatigue is defined as the moment at which a drop from
the desired power level is observed, which is also time-to-
exhaustion, thus making both terms indistinguishable [14]. To
address this, in [15] and [16] fatigue is defined as a continuous
process altering the neuromuscular functional state resulting
in exhaustion and exercise termination. In general, there are
two sources of fatigue: central fatigue and peripheral fatigue
[17]. Central fatigue is defined as the failure of the Central
Nervous System (CNS) in sending necessary commands to
muscles to operate [18]. This factor is essentially important in
high-intensity exercise [19]. Peripheral fatigue is caused at the
muscle level. It can be induced because of the neuromuscular
failure in muscles to comprehend and perform the commands
coming from CNS, and deficiency of vital substances [19].

The above mentioned studies illustrate the difficulty in-
volved in arriving at a global definition of fatigue. The mecha-
nism of fatigue leading to exhaustion are different for cycling,
running, swimming, etc [20]. As we previously presented in
[8], we define muscle fatigue and recovery in cycling as:
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Table I: Comparison between three metabolic systems that provide ATP for
muscle contraction [28].

Metabolic system Moles of ATP/min Endurance time
Phosphagen system 4 8-10 seconds

Glycogen-lactic acid system 2.5 1.3-1.6 minutes
Aerobic 1 Unlimited (as long as nutrients last)

• Fatigue: Expending energy from anaerobic metabolic
systems by pedaling above a critical power which results
in a decrease of maximum power generation ability.

• Recovery: Recuperating energy into anaerobic metabolic
systems by pedaling below the critical power which
results in an increase of maximum power generation
ability.

B. Muscle Fatigue Measurement and Modeling

Measuring the effect of central fatigue on muscle perfor-
mance is a challenge since the matter is highly subjective
[21]. Most research efforts to objectively measure central
fatigue are focused on measurement of Maximum Voluntary
Contraction (MVC) [22–24]. In voluntary contraction of a
muscle, the generated force is proportional to the muscle
electrical activation [25]. A standard way of measuring muscle
activity is via Electromyography (EMG) tests. During the
test the amount of electric potential produced in muscles can
be measured. Although studies such as [26] and [27] have
shown the accuracy of EMG tests in measuring maximal
and submaximal voluntary contractions, there is evidence of
underestimating the muscle activation at high force levels [17].
Therefore, to point to the goal of the current study, EMG
cannot provide accurate data for modeling a cyclist’s fatigue
and recovery.

In addition to central fatigue there are several sites for
peripheral fatigue. To get a better understanding of fatigue at
muscle level, we should focus on the muscle metabolic system.
Muscle contraction needs a source of energy and the fuel that
provides this energy is adenosine triphosphate (ATP). When
one phosphate radical detaches from ATP, more than 7300
calories of energy are released to supply the energy needed for
muscle contraction [28]. After this detachment, ATP converts
to adenosine diphosphate (ADP). When a human muscle is
fully rested, the amount of available ATP is sufficient to sustain
maximal muscle power for only about 3 seconds, even in
trained athletes [28]. Therefore, for any physical activity that
lasts more than a few seconds, it is essential that new ATP be
formed continuously.

There are three metabolic systems which provide the needed
ATP: Aerobic system , Glycogen-lactic acid system and Phos-
phagen system. Table I compares the three systems, in terms
of moles of ATP generation per minute and endurance time
at maximal rates of power generation. Utilization of these
systems during physical activity is based on the intensity of
the activity.

Cycling can fall in all categories above depending on the
intensity of the exercise. Many people cycle for fun and get
around cities. In this case they may only use their aerobic
system which provides them with low amount of power which
they can hold for a very long time. However, during high

intensity cycling such as in a time trial, the human body will
use the other two sources besides the aerobic system to provide
enough energy for muscle contraction. This is important
when hypothesizing mathematical models that describe muscle
power generation in cycling. Later on, we discuss a method
to define a power limit below which the cyclists use their
aerobic metabolic system that allows them to hold their power
for long periods of time. However, there is limited energy to
pedal above this power limit.

During aerobic exercise, muscles utilize the aerobic
metabolic system to produce ATP. Oxygen plays a vital role
in formation of ATP molecules. There are two major methods
to measure oxygen during a fatiguing exercise. The first
one is measuring the volume of oxygen intake in breathing
(V̇O2

) [29]. During a physical exercise, V̇O2
increases to

provide the necessary oxygen needed to produce ATP in the
muscle as suggested in [30], [31], and modeled in [32]. The
experimental procedure to measure V̇O2 requires a number
of laboratory equipment that cannot be used by a cyclist
during everyday outdoor ride. The second method is directly
measuring the amount of oxygenated hemoglobins at the local
muscle (muscle oxygenation). When muscles are fully fresh,
the percentage of oxygenated hemoglobins among the total
number of hemoglobins is at its highest. During a fatiguing
exercise, this percentage drops. Several studies show that Near
Infrared Spectroscopy (NIRS) is a robust method to measure
muscle oxygenation [33–35]. A few companies currently make
wearable devices that enable the cyclists to monitor their
muscle oxygenation in real-time [36], [37]. We have shown
in [8] a real-time measurement of muscle oxygenation during
a set of experiments.

Another fatigue indicator is the amount of lactate produced
in the muscle. Maximum Lactate at Steady State (MLSS)
is the maximum maintainable blood lactate concentration
without additional buildup through aerobic exercise [38], [39].
During an anaerobic exercise, the rate of lactate production
is higher than its dissipation [40], [41]. As authors in [42]
and [43] suggest, the amount of lactate accumulation can
provide useful information about the fatigue level of muscles.
The high lactate levels at a muscle represent a lower ability
of the muscle to generate force and power [12], [44], [45].
Traditionally, a common way to measure lactate has been
taking blood samples or biopsies during an experiment [46],
[47]. These invasive methods are not in any way suitable
for a real-time measurement and estimation of fatigue. Re-
cently, authors in [48] developed a non-invasive method to
measure blood lactate using electromagnetic wave sensors.
Commercialization of such non-invasive in-situ measurement
techniques will enable researchers to develop mathematical
models that represent the relationship between blood lactate
level and muscle power/force generation capacity.

C. Fatigue in Cycling

In cycling, it is easier to measure power without elaborate
laboratory equipment owing to the development of commercial
grade power meters. A power meter can be used for training,
developing pacing strategies for a time trial, and performance
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evaluation after an exercise or race [49]. However, determining
exercise intensity using power is not straightforward as a
threshold power is needed to classify exercise intensity. As
stated in [50] and [51], the Critical Power (CP ) can potentially
be used to determine exercise intensity. It has been shown that
CP is close to the power at which MLSS occurs according to
[52–54]. This means, while pedaling at a power level above
CP , a cyclist would expend energy from anaerobic energy
sources. On the other hand, pedaling below CP helps the
cyclist replenish its anaerobic reserve [52–54].

The critical power concept was introduced by authors in
[55]. They defined CP as the maximum power output that
can be maintained indefinitely. In [56] authors showed that
there is a limited amount of anaerobic energy for a cyclist to
pedal above CP . This “tank” of energy is called Anaerobic
Work Capacity (AWC). They suggest by pedaling at a certain
power level above CP , a cyclist can hold that power for a
limited amount of time before he or she runs out of anaerobic
energy. The relationship between critical power and anaerobic
work capacity is often expressed as:

P = CP +
AWC

tlim
(1)

where P is a constant power level in Watts, and tlim is time-
to-exhaustion in seconds. Equation (1) can be rewritten as
(P − CP ) × tlim = AWC which means that the anaerobic
energy spent by keeping the power P constant for the duration
tlim must equal AWC. The experimental protocol designed to
calculate CP and AWC in Equation (1) requires multiple
lab visits for the test subjects according to [4], [57–60] . On
each test day, the subject is required to pedal at a specified
constant power level until exhaustion. Exhaustion happens
when a subject pedals below the specified power level for more
than 10 seconds straight. This protocol is repeated multiple
times at different constant power levels. Equation (1) shows
the relationship between the set constant power level, CP ,
AWC, and time to exhaustion during each test.

To avoid these multiple lab visits, authors in [61] developed
a 3-minute-all-out test (3MT) as in Figure 2. In this test,
subjects sprint “all-out” for the entire 3 minutes. The value
of CP is given by the average power output of the last 30
seconds. The value of AWC is the area between the power
curve and CP . This test has been further validated in [62]
and [63]. However, there are some recent papers arguing the
validity of the 3MT test to estimate CP and AWC [64],
[65]. In [64] authors suggest that while 3MT provides an over
estimate of CP , it can still be considered as a useful test
since it reduces the number of lab visits significantly. For the
purpose of this paper, we rely on the 3MT test to determine
CP and AWC.

III. MODELING FRAMEWORK

The focus of this section is i) developing a dynamic model
for depletion and recovery of anaerobic work capacity as
the cyclist pedals with a power above and below critical
power respectively, and ii) determining the maximal power
the cyclist can produce as a function of remaining anaerobic
work capacity and pedaling cadence.

Figure 2: The 3-minute-all-out test protocol. The average power at the last
30 seconds of the tests is considered to be CP , and the area between power
plot and CP is equivalent to AWC.

A. Dynamic Model of Fatigue and Recovery

As discussed in Section II-C, AWC is a finite energy store
for pedaling above CP . When a cyclist expends his or her
AWC entirely, the maximum power that can be produced is
CP . Let w be the remaining amount of AWC. The rate of
change of w with time while expending energy above CP is
given by the difference between the rider’s power and CP , as
shown below in Equation (3). Recovery of w on the other hand
happens when the pedaling power is below CP . Recovery rate
of w can be calculated similarly to its depletion [66] albeit at
a slower rate as shown in [67] and [68]. In other words, if
the cyclist is pedaling at a constant power level P below CP
for the duration Trec, the actual amount of recovered energy
(wrec) will be less than (CP − P )× Trec. Thus, we propose
the notion of an adjusted recovery power Padj as,

Padj = CP − wrec
Trec

(2)

to be used in a switching model of energy expenditure and
recovery as follows,

dw

dt
=

 −(P − CP ) P > CP

−(Padj − CP ) P < CP
(3)

where P is the pedaling power of the cyclist. We further
hypothesize that the recovery power Padj is only a function of
pedaling power P and not its duration Trec. This assumption
stems from the need for a causal energy recovery model.
If it is assumed that w’s rate of recovery depends on Trec,
the amount of recovered energy during recovery interval will
depend on the recovery duration in the future which does not
seem plausible. In our previous study in [8], we elaborated
more on the reason behind making this assumption by using
muscle oxygenation data.

Experimental data that is presented later in Section IV
shows that Padj can be well approximated as a linear function
of pedaling power P with constant a and b that should be
identified for each cyclist. Thus in the rest of paper we use,

Padj = aP + b (4)
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B. Model of Maximal Pedaling Power

A parameter which is affected by the expenditure of AWC
is the cyclist’s ability to generate an instantaneous maximum
power. In [8] we had shown, using experimental data, the
following linear relationship between maximum power Ppeak
and remaining anaerobic energy w during a 3MT test,

Ppeak = αw + CP (5)

where α is a parameter. We had assumed test subjects were
free to choose their pedaling speed (cadence) for maximal
power generation. However, several studies [69–71] have
shown through a series of short sprints, that cadence affects the
maximum power generation ability of cyclists, regardless of
their state of fatigue. At any given fatigue state, the maximum
power is a parabolic function of cadence as in,

Pmax = 4Ppeak

(
c

cmax

)(
1− c

cmax

)
(6)

where Ppeak denotes the peak of parabola, c is the cyclist’s
cadence, and cmax is the cyclist’s maximum cadence, which
is reached when Pmax = 0. Other studies investigate also
the effect of fatigue on this parabolic relationship [72–74]. In
[74], it is shown that the peak of parabolic curves of Pmax
versus pedaling cadence decreases linearly with fatigue state
w, consistent with our results in [8] and Equation (5).

Moreover, maximum cyclist cadence cmax also decreases
with the state of fatigue w [72], [74] and this relationship is
linear as experimental results in [74] show. That is,

cmax = αcw + cmax,f (7)

where αc is a model parameter and cmax,f is the maximum
cadence of the cyclist when AWC is fully depleted. Therefore,
we can update Equation (6) using Equations (5) and (7) as,

Pmax = 4(αw+CP )

(
c

αcw + cmax,f

)(
1− c

αcw + cmax,f

)
(8)
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Figure 3: Maximum instantaneous power as a function of the cyclist’s cadence
and remaining anaerobic energy. The plot is based on data from Subject 14.

Figure 4: A view of the testing environment. The cyclist in this photo is not
one of our subjects.

This relationship is visualized in Figure 3 and was calibrated
with data available from one of our human subjects as de-
scribed in the next section.

IV. EXPERIMENTAL PROTOCOL AND RESULTS

The experimental protocol comprised of three tests namely,
(i) a ramp test to determine V̇O2

and Gas Exchange Threshold
(GET), (ii) a 3-minute all-out test (3MT) to determine CP
and AWC, and (iii) an interval cycling test to determine
the recovery of AWC. The ramp test involves incrementally
increasing the power at 25Watts/min until the subject is
exhausted. From the ramp test, oxygen uptake V̇O2

, defined as
the volume of oxygen inhaled per minute per kilogram of body
weight [29], is determined. Furthermore, during the test, there
is an abrupt change in the ratio of volume of CO2 exhaled to
the volume of O2 inhaled, which is the GET point at which
blood lactate concentration starts to increase. The power at
V̇O2

(maximum oxygen uptake) and GET are recorded to aid in
designing the 3MT and the interval tests. The CP and AWC
from the 3MT are also used to design the interval test for
modeling the AWC recovery. The experimental protocol was
approved by the Institutional Review Board of Clemson and
Furman Universities. Besides power, muscle oxygenation and
heart rate were also recorded during the tests.

We conducted experiments on 17 human subjects. All
subjects were cyclists who cycle at least 3 times a week, and
were used to high intensity workout sessions. Each subject
was scheduled for 14 one-hour-long visits to our laboratory.
There was at least 24 hours of resting before each test for
the subject to recover to a fully fresh state. Also, the subjects
were asked not to consume any caffeine 24 hours prior to
each test. The subjects were instructed to remain hydrated
during all of the experiments. Because of the complexities
of scheduling multiple visits, only 6 of these subjects were
able to finish all of the tests. The test protocol was approved
by Clemson University’s Institutional Review Board (IRB)
under protocol numbers IRB2016-169 and IRB2017-222. In
order to be compliant with IRB policies we label our subjects
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by a number. The subjects who successfully finished all the
experiments were Subs 6, 9, 11, 12, 14, 16.

All tests were conducted in a laboratory setting on both
Clemson and Furman University campuses. Figure 4 shows
the experimental setup in one of these laboratories. The tests
were programmed on a RacerMate CompuTrainer [75] using
Perfpro studio software application [76]. There are studies
such as [77] that suggest the CompuTrainer’s power mea-
surement accuracy depends on a variety of parameters such
as temperature and calibration procedure. Nevertheless, the
CompuTrainer has been shown to be a valid device to estimate
CP and AWC using the 3MT test [78] and [79].

A. Estimation of CP , AWC, and Maximal Power from 3MT

On the first lab visit, the ramp test was conducted followed
by a 3-minute-all-out (3MT) familiarization test. On the next
three subsequent visits, a fresh 3MT was conducted from
which we averaged estimated values of CP and AWC. As
shown in Figure 2 in each 3MT, subjects sprint “all-out” for
the entire 3 minutes. The value of CP for each test is given by
the average power output of the last 30 seconds as described
in [61]. The value of AWC is the calculated area between
the power curve and CP . We mentioned in Section II that
there are studies suggesting that the 3MT test may provide an
overestimate of CP and AWC. Later in the paper, we show
via a sensitivity case study that small errors in estimating the
values of CP and AWC (±5%) increases the trial time by
only 1%.

In Equation (5) we had hypothesized that the peak power
Ppeak during a 3MT can be approximated as a linearly
decreasing function of remaining anaerobic energy w. Figure
5 shows peak power data as a function of w for all of our
six subjects and the R2 as a measure of quality of fit. The
close-to-one values of R2 validate the linear relationship for
five of the six subjects. The data from subject 9 deviates to
some extent from the linear fit; the likely reason being that
subject 9 did not perform an all-out effort during the 3MT
test. Therefore parameter α in Equation (5) was estimated by
the linear fit to the 3MT peak power data and the result for
each subject is reported in Table II.

It should be noted that we hypothesized Equation (8) after
we had collected the experimental data. Therefore, we made
an assumption to be able to determine the constants α, αC and
Cmax,f in Equation (8) posthoc. We assume that the braking
force applied by the CompuTrainer is set in a way that the
subject is always at their ideal cadence and thus at the peak
power of the parabolic power-cadence function at each energy
level in Figure 3. Under this assumption we were able to
determine the model constants in Equation (8) with a single
3MT. Figure 3 visualizes Equation (8) using Sub 14’s model
parameters which will later be used in our optimal control
formulation as a constraint.

The summary of modeling results for all of the subjects is
presented in Table II. The reported values for CP , AWC, and
constant parameters of the Equation (8) are the average of the
three 3MT tests each subject performed. An interested reader
can find more information about the quality of fit in [9].
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Figure 5: Subjects’ peak power versus their remaining anaerobic energy during
the 3MT tests.

Table II: Experimentally determined parameters for the six subjects who
successfully finished all of the 3-min-all-out and interval tests.

Subject Sex m (kg) CP (Watts) AWC (J) a b (Watts) α (1/s) αc(rpm/J) cmax,f (rpm)

6 M 79 269 12030 0.11 237.5 0.037 0.017 139
9 M 63 233 10100 0.09 204.5 0.036 0.014 158

11 M 95 335 15092 0.08 300.9 0.039 0.01 163
12 M 70 217 5637 0.12 196.5 0.046 0.009 142
14 F 74 242 7841 0.08 222.5 0.044 0.008 164
16 M 51 206 9137 0.2 167.5 0.025 0.007 154

B. Estimation of Recovery Power from Interval Tests

The interval test, depicted in Figure 6, was developed using
the definitions of fatigue and recovery form Section II-A
to derive mathematical models for recovery of AWC. The
protocol was developed under the following assumptions:

• The 3MT test provides reliable estimates of CP and
AWC [78].

• Exercise below CP utilizes the aerobic energy source,
and results in recovery of AWC [67].

• The recovery of AWC below CP happens at a slower
rate than its expenditure above CP [67].

• The rate of recovery depends on the recovery power and
not the duration of recovery [8].

• The power held during recovery interval is averaged and
assumed to be constant.

After the 3MT tests and on the fifth visit to the lab, an
interval test familiarization was conducted. On the subsequent
visits, the interval tests at three different recovery powers (min
power on Computrainer 80 Watts, 90% of power at GET
(PGET ), and half way between PGET and CP ) and three
durations (2 min, 6 min, 15 min) were conducted. The power
levels were adopted from [80] and recovery durations from
[67]. It should be noted that PGET has shown to be always
lower than CP [81], [82].

6



Figure 6: The power interval test protocol. After a warm-up period, the subject pedals at CP4 for 2 minutes. Then the cyclist pedals at three different recovery
power levels for different time intervals to recover energy. Following that, the subject performs a 3-min-all-out to burn all the remaining energy from AWC.
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Figure 7: Recovery model plots for all six subjects. The gray dots represent
the experimental data, the black line shows the model fit, and the red dashed
line is CP for each subject.

In the interval test protocol shown in Figure 6, after a warm
up of 10 minutes, there is a 2-minute interval at CP4, the
power at which all of the subject’s AWC will be consumed
in 4 minutes (CP4 = AWC

240 ). The subject expends 50% of
their AWC in the 2-min CP4 interval and then recovers
AWC at the above-mentioned recovery powers and durations.
Following the recovery interval, the subject then performs a
3-min-all-out test to expend all of their remaining AWC. The
amount of energy recovered in the recovery interval is then
determined by subtracting AWC from the summation of areas
above CP through the entire test.

Since recovery happens at a slower rate than fatigue, we
cannot integrate the power curve below CP during the recov-
ery interval (green area in Figure 6) to calculate the amount
of recovered energy. In Figure 6, the sum of orange areas
(A1+A2) is the total amount of anaerobic energy expended

by the cyclist and an unknown portion of the green area is
the recovered energy. The 3-minute-all-out at the end of the
protocol, ensures that the anaerobic energy is fully depleted.
The total expended energy is more than the subject’s AWC
because there is some anaerobic energy gained during the
recovery interval. Subtract AWC from the total expended
anaerobic energy yields the actual amount of recovered energy
during the green interval. In other words, the recovered energy
is A1+A2 −AWC.

In the recovery model we proposed, the goal was to define a
substitute power level that could be integrated over time to de-
termine the recovered energy. Therefore, we hypothesized and
defined an adjusted power Padj which is computed by dividing
the actual recovered energy (A1+A2−AWC) by the recovery
duration during a recovery experiment. As explained in Section
III, the recovery rate cannot depend on recovery duration.
Therefore, at each power level below CP , the adjusted power
is calculated for the 3 recovery durations (2 min, 6 min, 15
min) and then averaged. We observed that this adjusted power
has an almost linear relationship with the actual applied power
for every subject. Figure 7 shows the three adjusted powers
versus the actual pedaling power during recovery intervals for
all six subjects which is in agreement with the shown linear
fit. The data point close to CP represents the adjusted power
for the case where the subject pedals at halfway between GET
and CP . Since the corresponding adjusted power is very close
to CP we expect very little energy recovery at this level.
Note that one of the data points for subject 12 is above his
CP which could be attributed to the subject deviating from
prescribed power during his interval test. Parameters a and b
of Equation (4) are estimated for each of the six subjects and
shown in Table II.

V. OPTIMAL CONTROL FORMULATION

In this section, pacing of a cyclist is formulated as a
constrained optimal control problem. The relevant dynamic
states are: i) traveled distance s ii) bicycle velocity v, and iii)
the remaining anaerobic energy of the cyclist w. The control
input is the rider’s power at a function of time u(t). Thus the
state-space model is of the form:

ẋ = f (x(t), u(t)) =
[
f1 f2 f3

]T
(9)
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where the state vector is,

x(t) =
[
s(t) v(t) w(t)

]T
(10)

and f is a nonlinear function, mapping the input and the states
to the rate of change of the states. In Equation (9), f1 is simply
velocity,

ds

dt
= v

∆
= f1 (11)

and f2 is obtained using Newton’s second law,

dv(t)

dt
=

u(t)

mv(t)
− h(s)− 1

2m
CdρAv(t)2 ∆

= f2 (12)

where

h(s)=
mb

m
g (sin(θ) + CR cos(θ)) (13)

and mb is the mass of the bicycle and rider, Cd is the
aerodynamic drag coefficient, A is the frontal area, ρ is the
density of air which is assumed to be constant and independent
of the elevation, θ is the road slope which is positive for uphill
and negative for downhill, and CR is the coefficient of rolling
resistance of the road. The parameter m is the effective mass
of the bicycle adding the effect of rotational inertia of the
wheels to mb [83],

m = mb + 2
Iw
R2
w

(14)

where Iw is the wheel rotational inertia, and Rw is the radius
of each bicycle wheel. The bicycle used in the experiments
has a wheel radius of 0.35 m (28 inch wheels) and mass of
1.2 kg, so Iw of each wheel was 0.147 kg.m2. Therefore, the
effective mass is 2.3 kg larger than the combined mass of
cyclist and the bicycle (2.4% larger in the case of subject 14).

Assuming 100% efficiency for the bicycle drivetrain, we can
equate the propulsion power u(t) to the cyclist’s power on the
pedals. As a result of using cyclist pedaling power rather than
force as input, gear selection is not a factor in our formulation,
which otherwise makes the optimization more complex.

Note that the third state equation for time derivative of
cyclist’s remaining anaerobic energy is the previously repre-
sented Equation (3),

f3
∆
=
dw

dt
=

CP − u u > CP (a)

CP − (au+ b) u < CP (b)
(15)

Now we are able to formulate a minimum-time optimal
control problem for the pacing strategy in a time-trial. The
objective function to be minimized is time,

min
u(t)

J =

∫ tf

t0

dt (16)

subject to,

state-space model: ẋ = f(x(t), u(t))
velocity limits: 0 6 v(t) 6 vmax
remaining energy limits: 0 6 w(t) 6 AWC
rider’s power limit: 0 6 u(t) 6 umax(c, w)

(17)

where umax is defined by Equation (8). In this formulation the
final position is specified and fixed but the other two states v
and w are let open at the final position. In the simulations
of this paper, we assume the maximal speed vmax is constant
during the trip, but our approach applies if vmax varies along
the road for example during sharp corners.

VI. NECESSARY CONDITION FOR OPTIMAL SOLUTION

In this section we study the defined optimal control problem
using the variational approach. According to Pontryagin’s
Minimum Principle (PMP), the necessary condition for the
optimality of input u is that it minimizes the following
Hamiltonian function,

H(x(t), u(t), λ(t)) = L(x(t), u(t)) + λT (t) {f(x(t), u(t))}
(18)

in which

λ =
[
λ1 λ2 λ3

]T
(19)

where λ is the vector of co-state variables, L is the integrand
in the cost function J in (16), and f is the vector on the right
hand side of the state equations with components represented
in Equations (11), (12), and (15). We also need to address
the constraint of maximum power generation of the cyclist.
The maximum power umax is a function of state variable
w and cadence c as represented in (8). Cadence c needs to
be translated to the state variable v for the constraint to be
applicable in our formulation. Using the gear ratio of the
bicycle in our experimental setup, we can write the bicycle’s
velocity v at each gear as,

v(t) = giRwc (20)

where gi is the gear ratio of the ith gear, and Rw is the rear
wheel (tire thickness included) radius. Our lab’s bicycle has 21
gear combinations which means we will have 21 plots in the
form of Figure 3 with different maximum velocities. We take
the maximum surface of all of these 21 plots and create the
constraint surface as a function of the two states of v and w
as shown in Figure 8. The underlying assumption in forming
this maximal constraint is that given a specific feasible power
to hold, the cyclists can find the best gear that enables them
to do so. This is a reasonable assumption because seasoned
cyclists are experienced in finding appropriate gears.

Therefore, we observe an inequality constraint as a function
of the control input u, the state v and the state w variables.
We can rewrite the constraint in a standard form as,

C(w, u) = u(t)− umax(v(t), w(t)) 6 0 (21)

where umax(v, w) is defined by the surface in Figure 8.
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Figure 8: The constraint surface on the control input u as a function of the
state variables v and w.

In the presence of such an inequality constraint on control
and state variables, the Hamiltonian equation needs to be
augmented as follows [84],

H = L+ λT f + µC (22)

where

µ

> 0 C = 0

= 0 C < 0
(23)

Additionally, the upper and lower limits on v and w pre-
sented in Equation (17) should be taken into account as,

S(v, w) =


v(t)− vmax
−v(t)

w(t)−AWC
−w(t)

 6 ~0 (24)

According to [84], when constraints are not functions of
the control input u, we take successive time derivatives of
S(v, w) and replace v̇ and ẇ with f2 and f3, respectively,
until we obtain an expression that is explicitly dependent on
u. In this case, the first derivative of S(v, w) with respect to
both v and w includes u. Then, we can treat S(1)(v, w) similar
to C(v, w) and augment the Hamiltonian as follows,

H = L+ λT f + µC + ηTS(1) (25)

where η =
[
η1 η2 η3 η4

]T
must obey the following

conditions,

ηi


> 0 S

(1)
i = 0

= 0 S
(1)
i < 0

for i = 1, 2, 3, 4 (26)

It should be noted that the terms µC and ηTS(1) will always
be zero in the Hamiltonian when constraints are met. The
dynamics of the co-states follow,

λ̇T = −Hx ≡ −Lx − λT fx − µCx − ηTS(1)
x (27)

where the subscript x denotes partial derivative with respect
to the corresponding state variables. Because dynamics of
w in Equation (15) switches between fatigue and recovery
conditions, we end up with a switching Hamiltonian function
for fatigue and recovery modes.

A necessary condition for optimality is that the control
input u, minimizes the Hamiltonian. One can set the partial
derivative of H with respect to u equal to zero. However, in
this case because H is affine in u, the derivative with respect
to u (Hu) does not depend on u.

Hu =


λ2

mv − λ3 + 1
mv (η1 − η2) + (η4 − η3) + µ u > CP

λ2

mv − aλ3 + 1
mv (η1 − η2) + a(η4 − η3) u < CP

(28)
Note that the µ term only shows up when u > CP because

when u < CP the constraint C is not active. Since Equation
(28) does not depend on u, the optimal solution will be of the
bang-singular-bang form; that is the Hamiltonian is minimized
at extreme values of u with the exception of potential singular
arcs in between.

When the Hamiltonian is affine in u, the sign of the Hu

indicates the optimal input value. As is shown in Equation
(28), the sign of Hu depends on µ and η. When µ has a
non-zero (positive) value, the constraint C in Equation (17) is
active which means the optimal value for u is its maximum
(umax) regardless of the sign of the slope. When either η1

or η2 has a non-zero value, S(1)
1 or S(1)

2 is active. In that
case, it can be shown that acceleration should be zero which
means the optimal value for u is the power at which velocity
is constant (uv̇=0). When either η3 or η4 has a non-zero value,
S

(1)
3 or S(1)

4 is active. In this case, it can be shown that ẇ is
zero which means the optimal input u will be at CP . The only
cases left are when µ and η are all zero and we can cross them
off from Equation (28) and rewrite,

Hu =


λ2

mv − λ3 u > CP

λ2

mv − aλ3 u < CP
(29)

The system of equations that should be solved are the
Equations (9) and (27), resulting in 6 equations combined.
The expanded version of the Equation (27) will be,


λ̇1 = λ2g

mb
m

dθ(s)
ds (cos(θ(s))− CR sin(θ(s)))

λ̇2 = −λ1 − λ2

mt

(
u
v2 − CdρAv

)
λ̇3 = 0

(30)

Now Hu can be compared in both fatigue and recovery
modes. If Hu is positive, the minimum value of u minimizes
the function. On the other hand, if Hu is negative, the
maximum value of u minimizes the function. We can
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consider four cases,

Case I. λ2

mv − λ3 < 0 AND λ2

mv − aλ3 < 0
The slope in both fatigue and recovery modes are negative

which means maximum value of u in each case minimizes the
Hamiltonian. In the fatigue mode the maximum input value is
umax, and in the recovery mode the maximum input value is
CP . The optimal between the two is the control that yields
the smallest Hamiltonian,

H∗ = min {Hfatigue(umax), Hrecovery(CP )} (31)

where the subscripts of H differentiates between fatigue and
recovery modes because the equations of the two modes are
slightly different. If we substitute the aforementioned values
of u we cannot decisively say which Hamiltonian is smaller.
We can write the optimal input as,

u∗ =

umax Hfatigue(umax) < Hrecovery(CP )

CP Hfatigue(umax) > Hrecovery(CP )
(32)

Note that in the event Hfatigue(umax) = Hrecovery(CP ), both
u = CP and u = umax are optimal.

Case II. λ2

mv − λ3 > 0 AND λ2

mv − aλ3 > 0
In this case, the input should take its minimum value in

both cases, which will be CP and 0 for fatigue and recovery
modes, respectively. The minimum Hamiltonian can be found
from,

H∗ = min {Hfatigue(CP ), Hrecovery(0)} (33)

The optimal input value in this case will be:

u∗ =

CP Hfatigue(CP ) < Hrecovery(0)

0 Hfatigue(CP ) > Hrecovery(0)
(34)

If Hfatigue(CP ) = Hrecovery(0), both u = 0 and u = CP
are optimal.

Case III. λ2

mv − λ3 > 0 AND λ2

mv − aλ3 < 0
In this case, the input takes its minimum value in fatigue

mode, and its maximum value in recovery mode. In both of
these scenarios the input is CP ,

u∗ = CP (35)

Case IV. λ2

mv − λ3 < 0 AND λ2

mv − aλ3 > 0
In this case, the input takes its maximum value in fatigue

mode, and its minimum value in recovery mode, which will
be umax and 0, respectively. The minimum Hamiltonian can
be found from,

H∗ = min {Hfatigue(umax), Hrecovery(0)} (36)

Th optimal input value in this case will be:

u∗ =

umax Hfatigue(umax) < Hrecovery(0)

0 Hfatigue(umax) > Hrecovery(0)
(37)

And when Hfatigue(umax) = Hrecovery(0), both u = 0 and
u = umax are optimal.

So far the optimal control input can take values of 0, CP ,
and umax. There is yet another case, a possible singularity
condition, that will be investigated next.

Singular Arc. λ2

mv − λ3 = 0 OR λ2

mv − aλ3 = 0

Here we present the analysis for the case where the Hamil-
tonian’s slope in the recovery or fatigue mode is zero and thus
we may have a singular interval which could be optimal. It can
be shown that the final results for both modes are the same.
Therefore, we only present the analysis for the recovery mode.
During the possible singular condition in recovery mode we
have,

λ2

mv
− aλ3 = 0 (38)

This equality needs to hold for an interval of time for a
singular interval to exist. Therefore, its time derivative during
that interval should also be zero. Setting the time derivative
equal to zero and observing from Equation (30) that λ̇3 = 0
we get,

λ̇2

v
− λ2

v2
v̇ = 0 (39)

We can substitute λ̇2 and v̇ from Equations (30) and (12)
respectively, to obtain,

1

v

[
− λ1 + λ2

u

mv2
+
λ2

m
(CdρA)v

− λ2

v

(
u

mv
− h(s)− 1

m
(CdρA)v2

)]
= 0

(40)

Simplifying the equation above by using (38) yields,

λ1 + amλ3h(s) +
3

2
(CdρA)aλ3v

2 = 0 (41)

Since input u does not appear in Equation (41), it is
necessary to take the time-derivative again which yields,

− λ̇1 + amλ̇3h(s) + amλ3
dh

ds
v

+
3

2
aλ̇3(CdρA)v2 + 3aλ3(CdρA)vv̇ = 0

(42)

Simplifying by using Equation (30) yields,

3aλ3(CdρA)vv̇ = 0 (43)

In Equation (43) only v̇ can be zero. Therefore, during a
potential singular interval the velocity must be a constant. The
corresponding input power is obtained using Equation (12),

u∗ = uv̇=0 = mv

(
h(s) +

1

2m
(CdρA)v2

)
(44)

which varies with the road grade.
Considering all of the cases discussed above, the optimal

power trajectory can only take values from the vector below,
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u∗ =


umax
uv̇=0

CP
0

 (45)

Equation (45) provides the necessary conditions for opti-
mality of u since it was based on a PMP analysis. It therefore
suggests that the global minimizer at each time u∗(t) must be
one of these modes. This indicates that the optimal pedaling
strategy may include one or more of the four modes of
pedaling at maximal power, riding at CP , resting, or riding
at a constant speed. While this insight is useful, it is difficult
to analytically determine when the switching between these
modes happens. Note that the three state equations along with
the three co-state equations form a two point boundary value
problem that is generally difficult to solve analytically. The
switching dynamics of the problem at hand creates additional
challenges. Therefore, next we resort to numerical solution of
the optimal control problem via dynamic programming. The
above PMP analysis proves valuable in limiting the input space
in DP process to only the modes described by Equation (45)
which significantly reduces the computational burden of DP.

VII. NUMERICAL SOLUTION OF THE PROBLEM

In the DP implementation, we use distance as the inde-
pendent variable instead of time because the final distance is
given and road grade is also known as a function of distance.
The distance is discretized at equal sampling intervals. With
a zero-order hold on input in between sampling intervals, the
following discretized state-space equations are obtained,

ti+1 = ti +
∆s

vi
(46)

vi+1 = vi +
∆s

vi

(
ui
mtvi

− g(sin(θi) + µcos(θi))

− 0.5CdρA

mt
v2
i

) (47)


wi+1 = wi + ∆s

vi
(CP − ui) ui > CP

wi+1 = wi + ∆s
vi

(CP − aui − b) ui < CP
(48)

Furthermore, the states v and w are quantized in a fine
grid between their minimum and maximum (see a schematic
illustration of a partial DP grid in Figure 1). The control
variable u is only needed to be quantized at the four possible
optimal modes determined in Equation (45), which signifi-
cantly reduces the required memory needs and computation
time.

The cost function in Equation (16) is rewritten with position

as the independent variable and discretized as follows1,

JN =

i=N∑
i=0

∆si
vi

(49)

According to the Bellman’s principle of optimality [85],
when a system is on its optimal path from an initial state
to a final state, regardless of any past decision or state, it
should follow an optimal policy for the remainder of the
route. Therefore, in dynamic programming, to find the optimal
state trajectory, one can begin from the final state and move
backward and calculate the optimal cost-to-go from any state
to the final step. The optimal costs, as well as optimal control
inputs, from all of the possible (v, w) nodes at si+1 to the
final state at sN are stored as J∗

i+1,N . Then, cost-to-go from
every node at si to all of the nodes at si+1 is calculated and
the optimal value among them and the corresponding optimal
input is stored for the specified node at si. This process is
repeated backwards to the beginning of the route. As a result
a lookup state feedback map is created offline from which
the optimal control action can be retrieved for any state at
any position stage in real-time. Subsequently, in a forward DP
sweep, the optimal action at each discretized state node will be
known. Any deviation from the originally planned optimal path
can be handled by looking up the optimal input as a function
of estimated state from the stored DP map. Let’s denote the
optimal cost-to-go from specific velocity and energy states at
step si+1 to sN by J∗

i+1,N . Then, the optimal cost from step
si to sN will be,

J∗
i,N = min

ui
[Ji,i+1 + J∗

i+1,N (x)] (50)

where

J∗
i+1,N = min

ui+1,ui+2,...,uN−1

[Ji+1,N ] (51)

and the optimal control u∗(i) is the minimizing argument.
In our implementation, the distance is discretized at intervals

of ∆s = 10 m. At every distance stage, velocity v is quantized
to 300 nodes spaced uniformly in the interval [1, 20] m/s.
The choice of minimum velocity at 1m/s is because i) speeds
closer to zero cause numerical issues as v appears in the
denominator in the discretized equations of motion, and ii)
during a time-trial the athlete is unlikely to pedal at lower
speeds. Anaerobic energy w is quantized to 600 nodes spread
uniformly between 0 and the Subject 14’s AWC (7841J). As
mentioned earlier, the input power u is also quantized to 4
values as indicated by Equation (45).

When at the distance si from the initial position, vi and
wi states move to vi+1 and wi+1 by applying an input ui.
The resultant states at step si+1 will not necessarily attain the

1When implementing this objective function in DP, we sometimes observed
chattering in the power trajectory. This chattering can be the optimal solution
or due to the coarse quantization of control input to only four (optimal) modes.
To achieve a practical power trajectory for a cyclist, we added a regularization
term to the cost that penalizes the change in control input from stage to stage
multiplied by a small penalty weight. The weight was carefully tuned to
minimize the impact of the regularization term on the value of the objective
function.
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Figure 9: DP simulation results over three elevation profiles. Sub14 model was used in this set of simulations.

quantized values of states v and w. Therefore, we implemented
a stochastic transition to the neighboring nodes on the v − w
plane as described in [86]. The transition cost is calculated as
a weighted sum of the cost at the neighboring nodes, and then
stored in the closest node.

Initially, the cyclist starts from the minimum velocity, and
his/her remaining energy is initialized at AWC. The DP
simulation was run on a desktop computer with a 3.2GHz
Intel core i5 CPU, and 12GB of RAM. The run time for our
longest cycling route (18km) was 53 min and 45 sec. This is
thanks to the PMP insights on limited optimal control modes
that allowed us to significantly reduce the input quantization.
Without it, the computation time would have been in the order
of several hours.

VIII. RESULTS AND DISCUSSION

A. Simulating Optimal Pacing

To illustrate the nature of optimal solution, we first present
the optimal pace calculated by DP over 4 km roads with three
basic elevation profiles: a flat road, a road with a 5% grade
climb, and a road with two hills. Figure 9 shows the three

scenarios and the results based on Sub 14 data. The optimal
power u, remaining anaerobic energy w, and velocity v are
shown in each case. The figure also shows which one of the
four optimal control mode was chosen in the umode subplot,
in which values of 1, 2, 3, and 4 correspond respectively to
the control u equaling, 0, CP , uv̇=0, and umax.

On the flat road, the optimal strategy is to go all-out till
all anaerobic reserves are depleted and then continue with
critical power. In this case, the maximum power constraint
is activated and the power trajectory stays on the constraint.
More interestingly, during the ramp course, the optimal pacing
strategy benefits from elevation preview. The cyclist burns
only 2% of anaerobic energy in the starting line to get to
the velocity that can be then maintained by applying CP . The
reserved energy comes to use during the ascent over the hill,
by the end of which all of the AWC is expended and the
cyclist pedals at CP towards the end.

During the simulation over a course with two uphill sec-
tions, aware of the upcoming downhill, the controller rec-
ommends the cyclist to burn most of the anaerobic energy.
Then during the downhill, the subject recovers 8% of the
AWC which helps overcoming the second hill. In this case,
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all four modes of optimal power are applied. We can observe
several quick changes in the recommended power level in this
scenario. It is important to note that the cyclist is not asked to
switch between arbitrary power levels. Following a constant
power at CP or a constant velocity during a singular interval
is not a difficult task for seasoned cyclists if they are provided
with their real-time power and velocity data. For the two other
modes, the subject is required to either apply maximum power
or stop pedaling, both of which are practical to perform. If
necessary, the regularization weight that penalizes the change
in the control input can be increased, noting that trial time
will increase.

B. Optimal Pace Versus Experimentally Captured Self-Paced
Strategy

In this section we evaluate simulated performance of Sub-
ject 14, when optimally paced via DP, against her experi-
mentally measured self-paced performance when riding the
cycling course of the 2019 Duathlon National Championship
in Greenville, South Carolina on our CompuTrainer in the
laboratory setting2.

We requested Subject 14, who is a seasoned and capable
cyclist, to ride the course with her own pacing strategy and
asked her to aim to finish in the fastest time possible. During
this laboratory experiment, she was able to see in real-time
and via the interface depicted in Figure 4 the current road
slope, distance traveled, and her velocity, pedaling power, and
heart rate The subject managed to finish the course in 34 min 8
sec. We then evaluated her performance when optimally paced
with DP over the same course, in a simulation of her model.
Figure 10 shows the elevation profile as well as the cyclist
pedaling power, remaining anaerobic energy, and velocity in
both scenarios.

The simulation results suggest that if the subject followed
the optimal power provided by the DP, she would have finished
the course in 25 min 56 sec, a 24% improvement with respect
to her self-paced time-trial. While the large difference can be
partially attributed to ideal simulation conditions, an important
observation from this test is that the subject’s self strategy
lacks consistency in applying power. During the first 5 km
of the course in the self-paced scenario, the average power
of the cyclist is 230 Watts, whereas during the last 5 km it
is 190 Watts. Both of these values are below the Subject’s
critical power (242 Watts). However, the optimal simulation
suggests that except for several short periods of maximal effort
and recovery, power should remain at CP . While the velocity
profile in the simulation is always higher than the subject’s
velocity, both profiles have a similar trend during the course
which is dictated by the elevation profile. The difference
between the velocity profiles can be explained by the the short

2One of the shortcomings of utilizing the CompuTrainer is that it does not
model the aerodynamic drag force during a ride. Instead a constant force of
15.5 N was added to the resistance of the Computrainer as determined during
the calibration process. Also the CompuTrainer cannot accelerate the bicycle
in downhill rides as would happen on a real ride and therefore the negative
resistance force due to downhill section of the course was removed. These
changes were also accounted for by adjusting the equations of motion in
the DP simulation of the optimal pace when comparing to the Computrainer
experimental results.
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Figure 10: Power and energy trajectory differences between sub 14’s self-
paced strategy and the optimally-paced simulation on the Greenville Duathlon
course.

frequent maximal efforts that increases the cyclist’s velocity.
The average power of the optimal strategy is 240 Watts which
is only 28 Watts greater than the average for the self-paced
trial.

Also, because the cyclist was pedaling below CP for most
parts of the course, her model indicates that she must have
recovered almost all of her anaerobic energy at the end which
is far from optimal. Although our subject was familiar with the
route and cycles four times a week, she is not a professional
athlete and lacks high level training, which could be one
reason for her lack of pace in spending her anaerobic energy.
Nevertheless, pacing over long hilly courses can be a challenge
for professional athletes as well, and the proposed optimal
pacing strategy could be used for coaching or even real-time
guidance of cyclists as will be outlined in Section VIII-D.

C. Sensitivity Analysis

As mentioned in Section II, the 3MT test may overestimate
CP and AWC. Other studies have shown that CP and AWC
can change over a span of four weeks depending on the amount
of exercise performed [65], [87]. In this section and via a
sensitivity analysis, we evaluate the effect of uncertainty in
CP and AWC estimates on the time attained by optimal
pacing. We consider i) nominal parameter estimation errors of
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±5% as well as ii) erroneous use of parameters of a different
subject for subject 14. The best scenario baseline that we
compare against is the optimal pace of subject 14 over the
2019 National Duathlon Championship course, as presented
in Section VIII-B. We assume that the baseline simulation
uses the true values of parameters CP and AWC when
determining the optimal pace.

In the first set of parameter sensitivity simulations, we
evaluate the impact of a ±5% error in estimates of either
CP or AWC on the trial time. In other words four scenarios
of ĈP = (1 ± 0.05)CP and ÂWC = (1 ± 0.05)AWC are
considered, where ĈP and ÂWC denote the estimated values
of CP and AWC, respectively.

Since the true values CP and AWC are presumed un-
known, the backward DP was run using the estimated values
ĈP and ÂWC and optimal values of cost-to-go and input
were recorded for each (v, w) pair accordingly. In the forward
DP calculations, two models were simulated: i) one model
with true parameter values to represent the true cyclist, her
actual states v and w, and her maximum power constraint as
a function of v and w, and ii) another model with estimated
parameters to determine an open-loop estimate of the remain-
ing anaerobic energy ŵ since we will not have a sensor to
measure the true value of w in a real implementation. Then
the actual velocity v which can be measured and the open-loop
estimate ŵ were used to extract the optimal value of power
u from the DP lookup table. Note that the extracted power u
may violate the true power constraint calculated earlier due
to model parameter mismatch; in which case the maximum
power is applied instead in the next forward simulation step.
In other words if the recommended power exceeds the cyclist
capability, the cyclist is only able to apply her maximal power
and this is captured in our simulations.

Travel times recorded for each of the four simulations with
perturbed parameters are reported in Table III as well as the
ideal baseline with true parameters. The travel time in all
four cases with parameter value perturbation is larger than
the baseline case. This is an expected result because DP
provides the global optimal solution, and deviations from DP
recommendations due to parameter mismatch, yields larger
than optimal travel times. That said, the travel time in the
sub-optimal simulations was at most 1% longer than the
optimal baseline. This suggests that the optimal controller
still performs well in the presence of reasonable measurement
errors or week-to-week changes in CP and AWC values.

Table III: Simulation results for cases with uncertainty in the estimated CP
and AWC. The fatigue and recovery models of Sub 14 and the elevation
profile of the 2019 National Duathlon Championship was used for these trials.

CP (Watts) AWC (J) time (sec)
Baseline 242 7841 1556

CP (1 + 0.05) 254.1 7841 1567
CP (1− 0.05) 222.9 7841 1572
AWC(1 + 0.05) 242 8233 1563
AWC(1− 0.05) 242 7449 1576

Figure 11 demonstrates the final outcome of a sensitivity
simulation in which AWC had been overestimated by 5%.
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Figure 11: The sensitivity simulation case on the Greenville Duathlon course
assuming AWC fro Sub 14 was 5% overestimated.

Comparing the results shown in this figure to Figure 10, we
observe less sprint and no recovery intervals in power trajec-
tory, which results in sub-optimal performance. To understand
sensitivity of the optimal pace to larger errors in parameter
estimate, we evaluated a scenario in which the parameter
for a difference subject (subject 6) were erroneously used to
determine the pace of subject 14. Similarly to the previous
sensitivity study, we used two models for DP calculations.
The trial time of subject 14 increased to 1659 seconds which
is 7% higher than the optimal baseline simulation for Sub 14
and could have easily cost her a race. The significant increase
in trial time in this case underlines the necessity of using
individualized parameters of fatigue and recovery for effective
optimal pacing.

D. Laboratory Pilot Test via a Virtual Coach

The ultimate goal of this research is to be able to pace a
cyclist on a real course by displaying the optimal power to hold
at each time . Towards that goal, we have created a laboratory
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test environment where a cyclist on a stationary CompuTrainer
bicycle receives optimal power suggestions on a display in
real-time. Here we describe the process for displaying the
optimal power to a cyclist and the outcome of a preliminary
experiment.

As shown on top of Figure 12, our CompuTrainer provided
a visual display of cyclist’s power, velocity, road grade, and
position. However our Computrainer did not provide a live
feed of this data. Instead we devised an image processing algo-
rithm to automatically extract the cyclist’s power, velocity, and
position from the Computrainer screen at 2 Hz. Subsequently,
the remaining anaerobic energy w was estimated open-loop
and using the fatigue and recovery model of the cyclist. In the
future it may be possible to estimate w in closed-loop using
non-invasive wearable sensors such as a sweat lactate sensor
developed in [88].

The road profile was assumed to be available to our virtual
coach in advance. The backward DP, using parameter models
of the cyclist, was run in advance of the cycling session to
generate a lookup table of optimal power as a function of
the cyclist’s states v and w for each position interval of the
course. During the cycling session, the optimal power to hold
was retrieved from this table at each position interval, using
the estimated state of the cyclist (remaining anaerobic energy
and velocity). The suggested power was calculated once every
100 m and was maintained constant during the next position
interval, which was comfortable for the cyclist to follow and
did not have the rapid changes as those that were observed
in previous simulations. The suggested (target) power was
displayed in a MATLAB graphic user interface as seen in the
bottom of Figure 12. This interface also displayed the optimal
pedaling mode (of the 4 optimal choices described earlier)
and the cyclist’s actual pedaling power. To ensure that the
cyclist only relied on the suggested optimal pace and did not
self-strategize, s/he was only allowed to look at the MATLAB
interface and not the CompuTrainer’s user interface. Therefore,
the cyclist did not know the road grade, position, and velocity.

We completed a pilot test using the elevation profile of the
2019 National Duathlon Championship in which subject 14
was instructed to follow the power suggestions displayed to
her in real-time. The cyclist was cheered forward by two team
members standing alongside as she was also cheered when
she had completed the self-paced strategy that was shown in
Figure 10. Her trial-time in the pilot trial improved by 3%
over her self-strategy trial presented in Section VIII-B which
is an encouraging result. However we found later and when
the subject was not available for further testing, that due to
a programming error the suggested pace was sub-optimal and
thus cannot make any general conclusion about the result. We
expect the performance to further improve with the correction
that has been done since. By repeat experiments on several new
subjects in the future, we hope to verify that performance can
be indeed improved via optimal strategy feedback in the lab
and on the road and across different cyclists. We are including
this section on the pilot test process in the paper, hoping that
the description of the process by itself motivates and helps
future work by other groups as well.

Figure 12: The PerfPro Studio interface which provides real-time data from
the CompuTrainer on the top. Our virtual coach interface designed to show
the optimal power and real-time power to the cyclist at the bottom.

IX. CONCLUSIONS & FUTURE WORK

Optimal pacing of a cyclist in a time-trial was formulated
as an optimal control problem with an emphasis on the
influence of depletion and recovery of anaerobic reserve on
performance. In particular each cyclist’s maximal power varies
with level of fatigue and chosen cadence and plays a critical
role in determining the optimal pace in a hilly time-trial. To
that end, state-space dynamic models that track depletion and
recovery of Anaerobic Work Capacity (AWC) as a function
of rider’s power above or below their Critical Power (CP )
were hypothesized and were calibrated using data from six
human subject tests after each spent 14 hours in the lab.
In addition, a model was obtained from experimental data
relating cyclists’ maximal power to their remaining anaerobic
capacity and their cadence. With the models in place, we
were able to usefully employ Pontryagin’s Minimum Principle
to determine that over any road profile, the optimal strategy
is bang-singular-bang, switching between maximum exertion,
no exertion, pedaling at CP , or cruising at constant speeds.
Global optimality of these four modes was further verified
via the numerical method of Dynamic Programming. Once
global optimality was confirmed, limiting the quantization of
the cyclist power to only these four optimal modes, sub-
stantially reduced the computational load of DP and allowed
finer quantization of the states. Simulations over simple road
profiles with one or two steep climbs, showed the efficacy
of the optimal strategy in distributing the depletion of AWC
along the whole course and appropriately pacing the cyclist in
anticipation of climbs. We also simulated human subject 14
over the 2019 Greenville Duathlon course. We had data from
subject 14 pedaling the same course on a CompuTrainer with
her self-strategy. The simulation suggested that optimal pacing
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could speed up subject 14 and allow her to finish the course
in 76% of her original time (reduction from 2048 seconds to
1556 seconds) with a 28 Watt increase in her average output
power which is 11% of her CP . The comparison indicates that
consistency in power generation is a key difference between
the subject’s self and the optimal strategies. While the power
should be kept at CP for most of the ride, the cyclist benefits
from frequent short sprints to increase velocity.

We recently completed a pilot test in which subject 14 was
instructed to follow a sub-optimal strategy displayed to her
in real-time and as a result her trial-time improved over self-
strategy. We hope to verify that performance can be indeed
improved via optimal strategy feedback in repeat experiments
once we are able to resume human subject testing in the lab.
Other future work include additional 3MT tests at different
fatigue and cadence levels to further validate our maximal
power surface depicted in Figure 3. A few recent studies [64],
[65] suggest that 3MT tests may not provide very accurate
estimation of CP and AWC and therefore there is room
for additional work on protocols that better estimate these
parameters. Our optimal control analysis and strategy do not
depend on the value of these parameters and could be exercised
with more accurate parameter values.
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