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Attitude Reconstruction of a Spacecraft from
Temperature Measurements in Solar Eclipse

Analysis and Observer Design for a not Globally Observable Non-Linear System
Tobias Posielek and Johann Reger

Abstract— This paper proposes a method that uses only
a single temperature measurement and angular velocity mea-
surements to estimate the attitude of a spacecraft under the
influence of solely infrared irradiation. The system governing
the dynamics is highly non-linear with its attitude being
defined in the quaternion space. The resulting observability
mapping is used to transform the system into canonical
observability form. However, this mapping is not bijective and
a method to find the arising local inverses is proposed. The
reconstruction algorithm itself is divided into two separate
parts and uses the canonical form. The first part carries out
the dynamic estimation of the temperature and its deriva-
tives. The second part uses these derivatives to estimate
the attitude by solving a system of non-linear equations.
The proposed algorithm achieves the desired results under
the assumption that a suitable initial guess of the attitude
is available. Numerical simulations show the validity of the
algorithm and illustrate errors induced by measurement noise.

I. INTRODUCTION

Attitude determination and control is a vital part in
every space mission design. Different missions demand
different attitudes with different precisions. The attitude is
usually obtained using a combination of multiple sensors
such as star trackers, Sun sensors, Earth sensors, gyro-
scopes and GPS, see e.g. [1] and [2]. Their signals are
fused in order to obtain an optimal attitude estimation
[3]. Due to the importance of the subject, additional
ways are always investigated to obtain new options to
estimate the attitude in a more cost effective and robust
way. Currently, the capabilities of temperature sensors
for attitude and position estimation is a vivid subject of
research. The common assumption is that satellite surfaces
are equipped with temperature sensors that are thermally
isolated from inner heat flows and the heat flows from
other surfaces which makes their temperature evolution
governed only by the environmental heat flows. Thus, the
temperature dynamics are defined by the superposition
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of solar, albedo, infrared and deep space irradiation, the
first three depending on the attitude and the position
of Earth and Sun. A model based on this assumption is
validated in [4] using commercial thermal analysis tools
for a typical low Earth orbit. The temperatures resulting
from the model follow closely the results of the thermal
analysis tools with maximal deviations of about 5 degrees
Celsius. The same model is validated by [5], who have
constructed and tested a cubic laboratory satellite in a vac-
uum chamber equipped with a Sun simulator. They have
found that the proposed models gives satisfying results
for the proposed experimental setup with three isolated
copper surfaces. The resulting temperature data can be
used for orbit determination, estimating the position and
velocity of the spacecraft as shown in [6]. Here, it is
exploited that two of the main irradiations acting are
emitted by the Earth, namely the albedo and infrared
irradiation. The governing temperature dynamics are non-
linear in position, temperature as well as attitude leading
to the analysis of a non-linear system and the usage of an
unscented Kalman Filter. In the follow up work [7], the
focus lies on the additional simultaneous estimation of the
albedo factor. This factor is often assumed to be constant
over the course of an orbit but actually varies with the
local terrain as well as cloud coverage. In comparison to
these works, it is also investigated if the attitude can be
estimated from temperature measurements assuming the
position of the spacecraft is known. In [8], the heat flux
of multiple temperature sensors orthogonal to each other
is estimated and cast into a static non-linear system of
equations which contains the attitude represented in Euler
angles. This system is then solved using the Levenberg-
Marquardt algorithm in order to obtain the attitude. Due
to the attitude space of dimension three, it can only be
expected with a minimum of three measurements to obtain
an attitude estimation in this framework. However, each
sensor flux is influenced by the sum of solar, albedo and
infrared irradiation. The individual irradiations cannot be
estimated using only three sensors as multiple attitudes
can lead to the same sensor flux. Thus, [8] proposes to add
an additional sensor in opposing direction to one of the
existing sensors to solve this uniqueness issue. The recent
work [9] uses three heat flow measurements to acquire the
attitude estimation based on an unscented and extended
Kalman filter. While the unscented Kalman filter yields
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better results in accuracy, performance, robustness and
stability based on Monte Carlo simulation, it also suffers
under higher execution time. An experimental validation
of the extended Kalman filter can also be found in [5]
which has admitted an accuracy of 0.2◦. Naturally, these
errors are expected to be higher under non-laboratory
conditions. In industry, Coarse Earth Sun Sensors [10] are
employed to obtain a rough estimation of the attitude.
They consist of six pairs of temperature sensors. Each pair
has two sensors with different visual absorption and each
pair is pointing into another direction. These twelve mea-
surements are combined in order to estimate the attitude
which can be used for example for a safe mode [11].

All the presented contributions use multiple temper-
ature sensors. In contrast to these approaches, we are
interested in how much information can be provided by
a single temperature sensor. In this context, we propose
an algorithm and the necessary assumption to estimate
the attitude from a single temperature sensor and angular
velocity measurements. This algorithm can be used in safe
mode or as a fallback algorithm to obtain a valid attitude
estimation despite a sensor failure. This work is the first
contribution which introduces an observer that estimates
the complete attitude of a spacecraft using only a single
temperature measurement. It is based on the results of [12]
and [13] which give the underlying observability analysis
and attitude transformation of the observer.

The notations necessary to formulate the problem and
the algorithm are introduced in Section II. In Section III,
we present the non-linear model governing the thermal and
attitude dynamics with only a single temperature sensor.
A rigorous problem formulation is given in Section IV. Sec-
tion V provides the background on conventional attitude
estimations for spacecraft and illustrates the difficulty and
differences to the analysed problem. In Section VI, the con-
sidered system is transformed into canonical observability
form. The detailed observer design and its analysis can
be found in Section VII. Finally, simulations are carried
out in Section VIII to verify the approach and discuss the
influence of measurement noise.

II. NOTATION

With Ln
f h(x) we denote the n-th Lie derivative of a

differentiable function h with respect to the vector field f .
The i-th unit vector of Rn is defined by ei. The image
of the function f is denoted by im(f). We denote by In

and 0n the identity and zero matrix of dimension n for
n ∈ N. We neglect the subscript n when the dimension of
the matrix is clear. We use 0m,n to denote the zero matrix
of dimension m × n and we write Im,n = [Im 0m,n−m]
for m, n ∈ N and n > m. For an n ∈ N dimensional
vector x we denote by xi the i-th component and by
xi:j = [xi xi+1 . . . xj ] the components i to j where
i < j ≤ n and i, j ∈ N.

Throughout this paper we use quaternions and their
algebra to introduce the proposed attitude representation.

Most of the notations are borrowed from [2]. Let

Si = {x ∈ Ri+1 | ∥x∥ = 1}

be the i-th unit sphere with ∥·∥ the Euclidean norm. We
denote with SO3 the special orthogonal group

SO3 = {A ∈ R3×3 | AA⊤ = I, det(A) = 1}

which contains all rotation matrices. Dependent on the
context we denote with q =

[
q1 q2 q3 q4

]⊤ either a
quaternion, i.e. q ∈ S3, or the function q : S2 × R → S3
mapping a rotation vector ρ ∈ S2 and angle ϕ ∈ [−π, π)
onto the corresponding quaternion, i.e.

q(ρ, ϕ) =
[
ρ1 sin( ϕ

2 ) ρ2 sin( ϕ
2 ) ρ3 sin( ϕ

2 ) cos( ϕ
2 )
]⊤

.

The cross product matrix and the matrix required for
quaternion multiplication are defined as

[u×] =

 0 −u3 u2
u3 0 −u1

−u2 u1 0

 , Ξ(q) =
(

q4I3 + [q1:3×]
−q⊤

1:3

)

for u ∈ R3 and q ∈ S3. In order to define the quaternion
dynamics we also introduce for ω ∈ R3 the matrix

Ω(ω) =
(

−[ω×] ω
−ω⊤ 0

)
.

With A we denote the function which maps an attitude
representation onto its rotation matrix allowing to trans-
form a vector from one coordinate system into another.
Throughout this paper we use for a rotation vector ρ ∈ S2,
a rotation angle ϕ ∈ R and for a quaternion q ∈ S3 the
transformation into rotation matrix defined by

A(ρ, ϕ) = cos(ϕ)I3 − sin(ϕ)[ρ×] + (1 − cos(ϕ))ρρ⊤

A(q) = ∥q∥−2
(

(q2
4 − ∥q1:3∥2)I3 + 2q1:3q⊤

1:3 − 2q4[q1:3×]
)

.

Any definition for ρ ∈ S2 is augmented for ρ̄ ∈ R3 by
simply using ρ = ρ̄

∥ρ̄∥ . For the inverse quaternion q−1 and
the quaternion multiplication denoted by ⊗ we use

q−1 = [−q⊤
1:3, q4]⊤ (1)

A(q)−1 = A(q)⊤ (2)
q ⊗ q̄ =

[
Ξ(q̄) q̄

]
q (3)

A(q ⊗ q̄)⊤ = A(q̄)⊤A(q)⊤ . (4)

Finally, we write asin, acos and atan2 to denote the inverse
of the sine, cosine and tangent with the image [− π

2 , π
2 ],

[0, π] and (−π, π], respectively.

III. SYSTEM DYNAMICS

The overall system dynamics can be split into thermal
and attitude dynamics.
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Fig. 1: Illustration of the considered system. Source of the
Earth, Spacecraft and Sun image: NASA

A. Thermal Dynamics
We use the model and notations of [14] based on the

work of [15] and [16]. The dynamics of the temperature
are assumed to be governed solely by environmental heat.
The dynamics have the form

Ṫ = Qsun(q, t) + Qalb(q, t) + QIR(q, t) − Qds(T ) (5)

where T (t) ∈ R+ is the temperature, Qsun is the solar,
Qalb the albedo, QIR the infrared and Qds the deep space
irradiation which are dependent on the time t ∈ R and
the normalised quaternions q(t) ∈ S3 which describe the
attitude of the body frame of the spacecraft with respect
to the world Earth-centered inertial (ECI) frame. These
irradiations can be used to divide the state space to obtain
a family of smooth vector fields which define six different
cases discussed in [12]. In this work, we consider the case
in which solar and albedo irradiations are not acting, i.e.
Qsun(q, t) = Qalb(q, t) = 0. While this is not representative
for all other cases, this particular case is highly relevant
as it occurs periodically for example when the spacecraft
is in the eclipse as illustrated in Fig. 1. Additionally, this
case has the worst numerical observability properties as
discussed in [12]. Further, the diminished complexity of
this case allows an analytical design of methods. The
augmentation of these methods on the other cases is
subject of another work and will not be discussed here.
The infrared irradiation is a function of the attitude and
time defined by

QIR(q, t) = γF (θ(q, t), r(t)) (6)

where γ ∈ R+ is a positive parameter and F a function
dependent on the angle θ(q, t) ∈ [0, π] between the surface
normal n ∈ R3 of the considered temperature sensor and
the spacecraft position r(t) ∈ R3. The parameter γ is
defined by

γ = 1
C

εeAsIIR (7)

with the thermal capacitance C, the infrared emissivity
of the surface εe, the area of the surface As, and the
intensity of Earth infrared irradiation IIR. These are all
assumed to be constant and dependent on the coating of
the sensor and the considered orbit. Note that a more ac-
curate model would incorporate the intensity of the Earth
infrared irradiation as a function of position and time. To
simplify the analytic analysis, however, these dependencies
are neglected as commonly assumed in literature, see e.g.

[4], [8]. The function F denotes a form factor which models
the irradiations between the spacecraft surface and the
Earth. This form factor is defined by

F (θ, r) =


cos(θ)

H2 θ ≤ π
2 − asin

( 1
H

)
Ff,2

π
2 − asin

( 1
H

)
< θ < π

2 + asin
( 1

H

)
0 θ ≥ π

2 + asin
( 1

H

) (8)

with H = ∥r∥
r⊕

where r⊕ is the Earth mean radius and

Ff,2 = 1
2 − 1

π
asin

(√
H2 − 1

H sin(θ)

)
+ 1

πH2

(
cos(θ) acos

(
−
√

H2 − 1 cot(θ)
)

−
√

H2 − 1
√

1 − H2 cos(θ)2
)

.

The angle θ(q, t) is defined by the attitude q and spacecraft
position r(t) as follows

θ(q, t) = acos
(

− r⊤(t)
∥r(t)∥A(q)⊤n

)
∈ [0, π] .

We model the position of the spacecraft r as a simple
periodic function of time with

ri(t) = ai sin(ωot + bi) (9)

for constants ai, bi ∈ R and i ∈ {1, 2, 3}. Note that the
orbits considered in this work admit r(t) ̸= 0 for all t.
The parameters are obtained by a fit of the position of
the spacecraft which is obtained by a higher order gravity
model [2]. The simplification using the sinusoidal approx-
imation is reasonable because the considered simulation
time is significantly smaller than the orbit time. Further,
it allows us to analytically calculate the Lie derivatives
required for the observability mapping. The deep space
irradiation is defined as a function of the temperature as

Qds(T ) = δT 4

with the parameter

δ = 1
C

εeAsσ

where σ is the Stefan-Boltzmann constant.

B. Attitude Dynamics
The quaternion dynamics defining the angle θ(q, t) are

described by

q̇ = 1
2Ω(ω)q (10)

where ω ∈ R3 is the angular velocity of the spacecraft,
the dynamics of which are described by Euler’s rotation
equation

ω̇ = J−1(−ω × Jω) + J−1u (11)

with inertia matrix J ∈ R3×3 and control input u ∈ R3.
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C. Total Dynamics
The complete dynamics resulting from (5), (10) and (11)

have the form

Ṫ = γF (θ(q, t), r(t)) − δT 4 (12a)

q̇ = 1
2Ω(ω)q (12b)

ω̇ = J−1(−ω × Jω) + J−1u (12c)
ṫ = 1 . (12d)

Note that the time t is introduced as a state with the
dynamics ṫ = 1. This is a common approach which
increases the system dimension by one and induces new
non-linearities. However, it has the advantage of rendering
the system time-invariant and allowing to apply methods
designed for time-invariant systems. The state vector has
the form x =

[
T q⊤ ω⊤ t

]⊤ ∈ R9 and is an element of
the state space X which is a subset of R+ × S3 × R3 × R.

We close this section by introducing notation to ren-
der the problem statement more compact. Let the right-
hand sides of the temperature dynamics be denoted
by fT = γF (θ(q, t), r(t)) − δT 4, of the quaternion dy-
namics by fq(q, ω) = 1

2 Ω(ω)q, of Euler’s rotation equa-
tion by fω(ω) = J−1(−ω × Jω) and gω = J−1, of the
time dynamics by ft = 1, and of the total dynamics as
f⊤ =

[
fT f⊤

q f⊤
ω ft

]
and g⊤ =

[
0 0 gω 0

]
.

IV. PROBLEM STATEMENT

The objective of this work is to reconstruct the attitude
using only a single temperature measurement with angular
velocity measurements. This is equivalent to finding an
observer of the system

ẋ = f(x) + gu (13a)
y = h(x) (13b)

with the output y ∈ R6 obtained using the output function
h : X → R6 with

h⊤(x) =
[
T q⊤q − 1 ω⊤ t

]⊤
.

The dynamics (13a) are an abstract version of (12). The
six dimensional output incorporates the temperature T ,
the angular velocity ω and the time t which can be
measured. It is well known that the attitude space is of di-
mension three and that the quaternion representation uses
four variables to allow a singularity-free representation. In
order to ensure that the quaternion space is also only of
order three despite being described by four variables it is
restricted to unit quaternions. Thus, every quaternion q is
an element of the unit sphere S3 and this is accounted
for by adding a virtual output q⊤q − 1. This output
variable can be omitted if the observer structure inherently
guarantees that the quaternion constraint is fulfilled or it
can be used, as suggested here, as an additional output
which is constant zero (and does not need to be measured).
In this work, as an observer of system (13) we consider any

system
˙̂x = f(x̂) + gu + L(x̂, y, ŷ) (14a)
ŷ = h(x̂) (14b)

such that the estimate x̂ is the real state x if the ini-
tial state is known, i.e. for all t holds x̂(t) = x(t) if
x̂(0) = x(0). Additionally, the estimate x̂ of an observer
must converge to the real state x for any initial value, i.e.
limt→∞∥x̂(t) − x(t)∥ = 0. Note that (14) consists of the
same dynamics as (13), but with an additional correction
term L(x̂, y, ŷ) which usually incorporates the error bet-
ween the measured and the estimated output.

V. COMPARISON TO STATE OF THE ART ALGORITHMS

Commonly, the attitude of a spacecraft is obtained using
approaches that depend on multiple vector measurements
taken at the same time [2]. This can be considered as
a static optimisation problem known as Wahba’s prob-
lem [17] which minimises the loss function

1
2

N∑
i=1

αi∥ni − Ari∥

over the attitude matrix A ∈ SO3 for the gains
αi ∈ R+, the vector measurements in ECI and body frame
ni, ri ∈ R3 for i ∈ {1, . . . , N} and the number of mea-
surements N ≥ 2. Different algorithms exist to ensure
an optimal solution of this problem, as presented e.g. in
[2]. Another method commonly employed is to incorporate
the vector measurements in an observer design. Multiplica-
tive extended Kalman filters use quaternions as a global
attitude representation while the local representation of
attitude is achieved using a three dimensional attitude
description. The global attitude error is incorporated in a
multiplicative fashion. In our case, if multiple temperature
measurements T 1,T 2, . . . T N were available, as it is the
case for e.g. industrial Coarse Earth Sun Sensors, it would
be possible to use one of these two methods. But since only
a single measurement is available, it is not straightforward
to apply these algorithms because we need to rely on
higher order derivatives of the temperature. A commonly
employed first approach would be to use an observer
scheme that relies on a linearisation of the system for the
estimation.

We illustrate why it is not advisable to apply such a lin-
earisation for the proposed system class with quaternions.
First, a linearisation of the quaternion dynamics leads
to the system matrix 1

2 Ω(ω) with all eigenvalues located
on the imaginary axis. Thus, every equilibrium point is
not hyperbolic and the Hartmann-Grobman theorem does
not guarantee the existence of a homeomorphism between
the linearisation and the original dynamics. Further, the
quaternion space S3 is not euclidean and a trajectory
that obeys the dynamics of the linearisation leaves the
quaternion space. Instead, we use a non-linear approach in
which we transform the system into canonical observability
form which allows to design an observer without the use
of a linearisation.
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VI. TRANSFORMATION INTO CANONICAL FORM

Based on (13b), define the transformation O of the form

O : R+×S3×R3×R → R+×R×R×R×{0}×R3×R+

x = (T, q, ω, t) 7→ O(x) = z
(15)

with the new coordinate z ∈ R9 defined by

z =[T, L1
f h(x), L2

f h(x), L3
f h(x)+LgL2

f h(x)u, q⊤q−1, ω⊤, t]⊤

where z1:4 are the temperature and its first three deriva-
tives, z5 is the quaternion constraint, z6:8 the angular
velocity and z9 the time. The expressions for the Lie
derivatives can be found in Appendix A. Note that the
transformation consists only of the outputs and their
derivatives. This transformation is also an observability
mapping in the spirit of [18] to identify the observability
properties of the system (13) as utilised in [12]. Roughly
speaking, the system is globally observable if the map-
ping O is bijective because this allows to map the state z,
consisting only of measured outputs y and its (estimated)
time derivatives y(i), to exactly one state x. This means,
injectivity ensures that for each measured temperature
and its time derivatives there exists at most one attitude q.
This forbids the existence of multiple attitudes generating
the same temperature evolution. Surjectivity on the other
hand ensures that for every temperature and its deriva-
tives there exists at least one attitude. This guarantees
that even under the influence of measurement disturbances
an estimate of the attitude can be obtained. In [12], we
have already shown that this kind of global observability
does not hold as there are points for which the Jacobian of
the observability mapping does not have full rank. Weak
observability, however, in this contribution was shown to
hold for most of the states. This ensures at least local
invertibility of the observability mapping O. To be more
specific, consider a point x for which weak observability
is ensured. Then, there exist neighbourhoods U(x) of x
and V (O(x)) of O(x) such that there is a local inverse
O−1 : V (O(x)) → U(x) which fulfils O−1(O(x)) = x. For
such a point the transformed dynamics are in observability
canonical form

ż =


03,1 I3,8
01,1 01,8
01,1 01,8
03,1 03,8
01,1 01,8

 z +


03,1

φ4(z)
φ5(z)

φ6:8(z6:8)
φ9(z9)

+


03,3

ϕ5(z)
03,3
J−1

03,3

u (16a)

y =


z1
z5

z6:8
z9

 (16b)

with the non-linear functions

φ4(z) = L(4)
f h(x)|x=O−1(z)

φ5(z) = q⊤Ξ(q)ω|x=O−1(z)

φ6:8(z) = fω(z6:8)
φ9(z) = 1
ϕ5(z) = LgL(3)

f h(x)|x=O−1(z) .

This system has six outputs where each of them forms
a differentiator subsystem with the non-linearity only
occurring in the final derivative. The non-linearities φ6:8
and φ9 are known and functions of the output while the
non-linearities φ4, φ5 and ϕ5 can only be approximated
numerically and are also functions of the approximated
states and not only of the measured output. This system
in canonical form can now be used to estimate the desired
states. Here we shall emphasise that using the required
third order derivative of the temperature requires a very
high accuracy of the governing model equations and of
the measurements. Conventional temperature sensors have
an accuracy of about 0.1◦C and a sampling frequency of
1Hz [19], [20] and model accuracies vary with orbit and
time. A thorough robustness analysis of these aspects is
beyond the scope of this work in which the focus lies on
the reconstruction in the disturbance free case.

VII. OBSERVER DESIGN

There are two approaches which come immediately into
one’s mind that utilise the canonical form to design an
observer. Among others, these are also used in [18]. In the
first approach an observer is designed for the transformed
z coordinates. In our case such an observer can be chosen
as

˙̂z =


03,1 I3,8
01,1 01,8
01,1 01,8
03,1 03,8
01,1 01,8

 ẑ +


03,1

φ4(ẑ)
φ5(ẑ)

φ6:8(ẑ6:8)
φ9(ẑ9)

+


03,3

ϕ5(ẑ)
03,3
J−1

03,3

u + L(y − ŷ)

(17a)

ŷ =


ẑ1
ẑ5

ẑ6:8
ẑ9

 (17b)

with the correction term

L(y − ŷ) =


L1:3(y1 − ŷ1)
L4(y1 − ŷ1)
L5(y2 − ŷ2)

L6:8(y3:5 − ŷ3:5)
L9(y6 − ŷ6)

 =


L1:3(z1 − ẑ1)
L4(z1 − ẑ1)
L5(z5 − ẑ5)

L6:8(z6:8 − ẑ6:8)
L9(z9 − ẑ9)


where Li can be a matrix of numbers or some non-linear
function for i ∈ {1, . . . , 6}. We call such an observer
differentiator, because it is designed for a system in canon-
ical form where the states are explicit functions of the
outputs and their derivatives. Then a transformation into
the original x coordinates is used, i.e.

x̂ = O−1(ẑ) (18)
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ẋ = f(x)
y = h(x)

˙̂x = f(x̂) +
(

∂O(x̂)
∂x

)−1
L(y − ŷ)

ŷ = h(x̂)

˙̂z =
(

0 I
0 0

)
ẑ +

(
0

φ(ẑ)

)
+ L(y − ŷ)

ŷ = ẑ1

O−1(ẑ)

y

y

x̂

ẑ x̂

Plant

Observer in natural coordinates

Observer in transformed coordinates with retransformation

Fig. 2: Two observer schemes using the transformation into canonical form O for an autonomous system

which utilises the local inverse of O. The existence of
the local inverse is dependent on the current state x and
discussed in detail in [12].

The second approach designs an equivalent observer
directly in original coordinates. By differentiating (18),
with ∂O−1(z)

∂z =
(∂O(x)

∂x

)−1 we obtain the observer

˙̂x = f(x̂) + g(x̂)u +
(

∂O(x̂)
∂x

)−1
L(y − ŷ) . (19)

This observer has the benefit that it uses the inverse of the
Jacobian of O(x) instead of the inverse of the mapping O
which is difficult to obtain in closed terms.

Fig. 2 illustrates the two different possibilities to con-
struct the observer using the transformation into canonical
form. The two approaches are equivalent and for both
inversion and differentiation are necessary. The difficulty
of the first approach lies in determining φ and O−1.
Often, instead of numerically calculating φ, it is neglected
in the observer design and compensated by a suitable
choice of L. The inverse O−1 is usually obtained via
solving an optimisation problem. For the second approach
the Jacobian of O needs to be calculated and inverted.
This is in general numerically less costly than the first
approach. Both approaches have their limitations if O is
not bijective. In the first approach, φ and O−1 are not
uniquely defined any more and the resulting estimation
depends on the choice of these functions. In the second
approach

(∂O(x̂)
∂x

)−1 does not exist for some x̂ and the
estimation depends on the initial values of x̂. In this work
we adhere to the spirit of the first approach as it allows a
strict separation between the differentiation and inversion
task. The algorithm is illustrated in the block diagram in
Fig. 3.

A. Differentiation
We use (17) as a basis to design a differentiator that

estimates the transformed states z. The main task is to
choose L1:4 which can be considered as finding a suitable

algorithm to differentiate z1. Many different methods such
as linear differentiators, high gain differentiators [21] or
sliding mode differentiators [22] enable to estimate such
derivative. We have decided to use a high gain differentia-
tor as in [21] since these kind of observers provide a rapid
and exact estimate if their gain tends to infinity. This can
be used to omit the functions φ4, ϕ5 and renders L1:4 a
column vector L1:4 ∈ R4. The observer is then given by

˙̂z1:4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ẑ1:4 +


α0
ε

α1
ε2
α2
ε3
α3
ε3

 (y1 − ŷ1) (20a)

ŷ1 = ẑ1 (20b)

where ε > 0 is sufficiently small and the parameters α0,
α1, α2 and α3 are chosen such that the corresponding
polynomial s4 + α3s3 + α2s2 + α1s + α0 is Hurwitz.

The quaternion constraint z5 is a virtual output and
identical to zero, i.e.

ẑ5 ≡ 0 . (21)

In the next section a transformation will be introduced
that incorporates this constraint. Thus, calculating ϕ5 and
designing L5 is not necessary.

The angular velocity z6:8 is directly measured which
allows to choose L6:8 = diag(λ6, λ7, λ8) as diagonal matrix
and

˙̂z6:8 = φ6:8(ẑ6:8) + J−1u + diag(λ6, λ7, λ8)(y3:5 − ŷ3:5)
(22a)

ŷ3:5 = ẑ6:8 (22b)

with suitable design parameters λ6, λ7, λ8 ∈ R+ to achieve
asymptotic stability and the desired filtering properties.

Since the time z9 is known, we do not use the proposed
filtering dynamics, but we use

ẑ9 = y6 (23)

instead and do not require to choose L9. Equations (20),
(21), (22) and (23) form the desired differentiator and are
illustrated in Fig. 3.
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Spacecraft

Ṫ = fT (T, q, t)
q̇ = fq(q, ω)
ω̇ = fω(ω) + gu

ṫ = 1

Differentiation

˙̂z1:4 =
[
0 I
0 0

]
ẑ1:4 + L1:4(T − T̂ ) Inversion

O−1

Transfor-

mation
lr,n
2

u

u

T

ω

t

T̂

T̂ (1)

T̂ (2)

T̂ (3)

θ̂

ϑ̂1

ϑ̂2

q̂

ϑ̂0
1 ϑ̂0

2

Fig. 3: Attitude reconstruction using differentiation and an inversion with transformation

B. Inversion
In this section we analyse the function O and propose

a way to obtain the original state x through the inversion
of (15) for given measurements and estimated derivatives
gathered in z. This is achieved by proposing a transforma-
tion from quaternions into a set of three angles describing
the attitude while also having an immediate relation to
the acting flux. Then the inversion problem is formulated
into an optimisation problem and the points impairing the
injectivity are identified.

The measured temperature is described by z1 = y1.
The output z5 = y2 is the quaternion constraint
identical to zero, the output z6:8 = y3:5 is the an-
gular velocity and z9 = y6 is the time t. We use
this to define the functions LT,ω,t

2 (q) := L(2)
f h(x) and

LT,ω,t,u
3 (q) := L(3)

f h(x) + LgL2
f h(x)u. Then, we can re-

move the trivial parts of (15) and obtain the function of
interest

OT,ω,t
2:5 : S3 → R × R × R × {0}

q → OT,ω,t
2:5 (q) = (z2, z3, z4, z5)

(24)

where the image is defined by the non-linear algebraic
system of equations

z2 = γF (θ(q, t), r(t)) − δT 4 (25a)
z3 = LT,ω,t

2 (q) (25b)
z4 = LT,ω,t,u

3 (q) (25c)
z5 = q⊤q − 1 . (25d)

1) Reduction of the Order of the System: This system is
highly non-linear and the existence as well as the unique-
ness of a solution are not clear. One main problem is the
non-euclidean structure of the quaternion space and the
fact that there is no straightforward way to isolate one of
the variables to reduce the order of the system.

Thus, we introduce a transformation l1 which maps
each quaternion to a set of angles (θ, ϑ1, ϑ2) such that
the first angle θ can be directly obtained from (25a).
The transformation and its inverse transformation are
introduced in the following theorem.

Theorem VII.1 For r, n ∈ S2 consider the transforma-
tion

lr,n
1 : S3 → [0, π] × (−π, π] × (−2π, 2π]

q 7→ lr,n
1 (q) = (θ, ϑ1, ϑ2)

the image of which is defined by

θ = acos(r⊤A(q)n)

ϑ1 = atan2((r × nθ,0)⊤nq, nθ,0⊤
nq − (r⊤nθ,0)2)

ϑ2 =
{

+2 acos(q̄4) q̄1:3
∥q̄1:3∥ = nq

−2 acos(q̄4) q̄1:3
∥q̄1:3∥ = −nq

with the two rotation axes defined by nq = A(q)⊤n,
nθ,0 = A (ei × r, θ)⊤

r and the quaternion which
is describing the rotation around the nq axis as
q̄ = q−1(r, ϑ1) ⊗ q−1 (ei × r, θ) ⊗ q−1(v, ϕ) ⊗ q with the
rotation axis v = n×r

∥n×r∥ and angle ϕ = acos(n⊤r).
The inverse transformation lr,n

2 has the form

lr,n
2 : [0, π] × (−π, π] × (−2π, 2π] → S3

(θ, ϑ1, ϑ2) 7→ lr,n
2 (θ, ϑ1, ϑ2)

where the image is defined by

lr,n
2 (θ, ϑ1, ϑ2)=q(v, ϕ)⊗q(ei×r, θ)⊗q(r, ϑ1)⊗q(nθ,ϑ1 , ϑ2)

with the rotation axis nθ,ϑ1 = A(r, ϑ1)⊤A(r × ei, θ)⊤r.
Then lr,n

1 is the inverse of lr,n
2 for θ /∈ {0, π} and vice

versa.

Proof: The derivation of the transformation and its
properties are given in [13].
The main advantage of the representation (θ, ϑ1, ϑ2) is
that its domain is euclidean and that its first variable
describes the angle between r and n which can be used
to reduce the order of the non-linear system. The second
and third variable ϑ1 and ϑ2 both correspond to rotations
which are visualised in [13]. However, their interpretation
is less straightforward than that of θ as previous rota-
tions are required to be performed beforehand. With this
transformation we can rewrite system (25) in (θ, ϑ1, ϑ2)
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coordinates to obtain

z2 = γF (θ, r(t)) − δT 4 (26a)
z3 = LT,ω,t

2 (lr,n
2 (θ, ϑ1, ϑ2)) (26b)

z4 = LT,ω,t,u
3 (lr,n

2 (θ, ϑ1, ϑ2)) (26c)
z5 = lr,n

2 (θ, ϑ1, ϑ2)⊤lr,n
2 (θ, ϑ1, ϑ2) − 1 . (26d)

As can be seen in (24), z5 is identical to zero. Conse-
quently, (26d) is fulfilled for any set of angles because the
image of ln,r

2 is the unit sphere. Additionally, it can be
seen that the angle θ can be directly determined from
(26a) because the form factor F is strictly monotonic.
For F (θ, r(t)) = r2

⊕
∥r∥2 cos(θ) the angle can even be obtained

analytically from (26a) as

θ = acos
(

1
γ

∥r∥2

r2
⊕

(z2 + δT 4)
)

. (27)

This reduces (26) to the two non-linear equations

z3 = H3(ϑ1, ϑ2) (28a)
z4 = H4(ϑ1, ϑ2) (28b)

with the definitions H3(ϑ1, ϑ2) = LT,ω,t
2 (lr,n

2 (θ, ϑ1, ϑ2))
and H4(ϑ1, ϑ2) = LT,ω,t,u

3 (lr,n
2 (θ, ϑ1, ϑ2)). As this is a

highly non-linear system of equations it is not possible
to give an analytical expression for ϑ1, ϑ2 as a function
of z. On top of that, this expression varies with the other
states T, ω, t, θ and the parameters. In the next section we
reformulate the non-linear system of equations (28) into
an optimisation problem and discuss its solution for the
parameters and states shown in Table II and III.

2) Formulation of the Optimisation Problem: We formulate
the inversion problem (28) as the equivalent optimisation
problem of the form

min
ϑ1,ϑ2

∥∥∥∥H3(ϑ1, ϑ2) − z3
H4(ϑ1, ϑ2) − z4

∥∥∥∥
2

(29a)

s.t. [ϑ1, ϑ2] ∈ D1 × D2 (29b)

where D1 and D2 are the domains of ϑ1 and ϑ2, usually
chosen to be an interval of length 2π. It is straightforward
to see that every solution of (28) is a solution of (29) and
vice versa. Plotting the image of the cost function of (29)
allows to get an insight to the difficulty of this optimisation
problem. Fig. 4 shows this image in the (ϑ1, ϑ2)-space
for [z3, z4] = [H3(0, 0), H4(0, 0)] and the given parameters
and states. It can be seen that most of the level sets are
approximately parallel to the ϑ1 axis. However, there are
two valleys with locally decreasing level sets. One contains
the expected optimum while the other has a similar shape
and seemingly multiple optima as well. Furthermore, the
cost function varies barely for varying ϑ1. This makes
the determination of a solution difficult because all values
along this manifold are optimal results under certain
tolerances which will make the optimisation stop if a point
(ϑ1, 0) with ϑ1 ∈ (−π, π] is reached. In order to avoid this
issue, we need to transform the cost function to remove the
slowly varying manifold. A simple linear transformation is

proposed by considering the Taylor expansion of first order
at the point (ϑ∗

1, ϑ∗
2)

H3:4(ϑ1, ϑ2) ≈ H3:4(ϑ∗
1, ϑ∗

2) + ∂H(ϑ∗
1, ϑ∗

2)
∂(ϑ1, ϑ2)

([
ϑ1
ϑ2

]
−
[
ϑ∗

1
ϑ∗

2

])
.

Reshaping the optimisation problem (29) using the Jaco-
bian leads to a better conditioned problem of the form

min
ϑ1,ϑ2

∥∥∥∥∥
[

∂H(ϑ1, ϑ2)
∂(ϑ1, ϑ2)

]−1 [
H3(ϑ1, ϑ2) − z3
H4(ϑ1, ϑ2) − z4

]∥∥∥∥∥
2

(30a)

s.t. [ϑ1, ϑ2] ∈ D1 × D2 . (30b)

The image of this cost function is shown in Fig. 5. It
has a smooth behaviour in the domain. The form of the
level sets have changed significantly through the trans-
formation. The attitude (ϑ1, ϑ2) = 0 used to determine
the outputs now describes a minimum with near circular
level sets in its vicinity. This is a desirable property with
respect to numerically solving the optimisation problem.
Additionally, it can be seen that there are multiple other
minima. Some of them are due to the boundedness of the
domain and can be found at its boundary. They can clearly
be identified as non-global minima. Others, which can be
found in the interior of the domain, exhibit a cost function
value in the same range as for (ϑ1, ϑ2) = 0.

These minima show that the function O is not bijective
for all x. For such x, this gives rise to a family of local
inverse functions O−1

i : V (O(x)) → Ui(ϑ̄i) for i ∈
{1, . . . , ngm} with ngm ∈ N defined as the maximal number
of global minima of the optimisation problem (30). The
domain of these functions is identical while each range
Ui ⊂ X is a neighbourhood defined by an other global
minimum ϑ̄i. The function values O−1

i (z) are obtained
solving the optimisation problem (30) for initial values in
the basin of attraction of the different ϑ̄i. Note that in
particular O−1

i (O(x)) ̸= O−1
j (O(x)) for i ̸= j for almost

all x and that for at least one i holds O−1
i (O(x)) = x.

3) The Global Minima and their Region of Attraction: As
pointed out in the previous section, there exist multiple
points that solve the optimisation problem locally. This
makes the solution of the optimisation problem dependent
on the optimisation method and the initial value. Local
minima can be identified by having non-zero cost function
values. If the solver converges to such a minimum, another
initial value has to be used. Global minima can only
be distinguished from the real solution by incorporating
additional constraints into the optimisation problem. We
identify the points to which the solver is converging and
determine the basin of attraction of the global minima.
For a compact notation ϑ = (ϑ1, ϑ2) is introduced.

The optimisation problem (30) is solved for a number
of initial values that are uniformly covering the ϑ-space
[−π, π] × [−π, π] with a gradient based solver. As in [23],
using the optimisation result ϑ̄ we define the function

LS : [−π, π] × [−π, π] → im(LS) (31a)
ϑ 7→ LS(ϑ) = ϑ̄ (31b)
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Fig. 4: Logarithmic visualisation of the cost function of optimisation problem (29) for [z3, z4] = [H3(0, 0), H4(0, 0)].

Fig. 5: Logarithmic visualisation of the cost function of optimisation problem (30) for [z3, z4] = [H3(0, 0), H4(0, 0)].

mapping every initial value ϑ to the point ϑ̄ to which the
solver is converging. It is clear that every point ϑ̄ ∈ im(LS)
is a global minimum if the cost function of ϑ̄ is equal to
zero. In Table I the calculated points ϑ̄ and their costs
are listed. There are four points with a cost very close to
zero which identifies them as global optima. Four other
points can be clearly identified as non-global optima by
their higher value of the cost function. We define the basin
of attraction of a minimum Λ(ϑ̄) as the pre-image of ϑ̄
under LS, i.e.

Λ(ϑ̄) = {ϑ ∈ [−π, π] × [−π, π] | LS(ϑ) = ϑ̄} .

This basin is displayed for the individual minima
ϑ̄ ∈ im(LS) in Fig. 6. The global minima are marked by
black crosses each lying in its basin of attraction. In red,
the union of the initial values that do not converge to a
global minimum can be seen. The green region displays
the basin of attraction of ϑ̄ = [0, 0]⊤ which was used
for constructing the optimisation problem. The remaining
colours correspond to the other three global minima. It can
be seen that every minimum has a basin of attraction of
reasonable size. Most parts of the basins of attraction are
connected and clearly distinguishable. However, there are

few points in each basin that make the smallest convex
sets in the basins very conservative. The basin in which
the initial value of the optimisation lies defines which
inverse mapping O−1

i is used. Note that the number and
form of the basins of attractions vary decisively with the
considered states (T, θ, ω, t). In particular, analyses have
shown that the dependency on the angular velocity ω
is complex and requires extensive analytical as well as
numerical investigations which are out of scope for this
work. However, it shall be emphasised that, as pointed
out in [12], it is required to have ω ̸= 0 to allow for an
estimation of the complete attitude.

We finish this section by stating the main assumption
that allows to estimate the desired attitude with the
proposed optimisation.

Assumption 1 The initial value ϑ̂0(t) used for the op-
timisation algorithm (30) lies in the basin of attraction
Λ(ϑ(t)) of the current state ϑ(t) for every time t ∈ R.

In practical applications, this assumption can be fulfilled
at the beginning of a failure mode because the last correct
attitude estimate can be used for the optimisation. When
no knowledge about a suitable initial value is available, it
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is required to carry out the algorithm for multiple initial
values as illustrated in the next section.

VIII. SIMULATION

In this section we simulate the algorithm presented in
the previous section as illustrated in Fig. 3 for a spacecraft
on a Sun-synchronous orbit with an altitude of 600km,
with 06 : 00 longitude of the ascending node and an orbit
period of about 97 min. The orbit is obtained using a
model incorporating the first zonal coefficient and a fit to
the polynomial (9). The parameters, constants and initial
values can be found in Table II and III. Note that a
Sun-synchronous orbit is an orbit whose orientation with
respect to the Sun is similar over the complete year. A
more detailed description about its properties and the
required initial states can be found in [2]. The initial
and simulation time is chosen such that the spacecraft
is in solar eclipse, i.e. only infrared irradiation is acting
on a spacecraft surface and the model (12) is valid. The
spacecraft is assumed to have non-zero angular velocity
and to be in a failure mode in which it is not controlled.

A. Ideal Measurements
In this section we neglect any measurement noise to

put the focus on the loss of uniqueness of the solution
and not on the estimation error or delay induced by noise.
Therefore, we also incorporate directly the angular veloc-
ity measurement instead of filtering it. The integration
is carried out using a Runge–Kutta solver with a fixed
step size of 1s. The step size is chosen to be in the range
of conventional temperature sensor sampling times [19],
[20]. A high-gain differentiator as in (20) is used with
the parameters α =

[
8 24 32 16

]
and ε = 2. These

parameters are chosen by hand and high when compared
to literature so as to avoid numerical instabilities induced
by the large simulation step size. A set of optimised
parameters can be found in the next section. The inversion
is realised solving the optimisation problem (30) at every
time step using the simplex algorithm of the in-house DLR
software MOPS [24]. Other methods using for example
polynomial approximations as in Gloptipoly [25] have
currently not been investigated, but will be considered in
future research. In order to obtain continuous solutions,
we use the attitude of the previous step as the initial
value of the current step for the optimisation. Further
the domains D1 and D2 of ϑ1 and ϑ2 are moved with
the last estimation, i.e. D1(tk+1) = ϑ1(tk) + [−π, π] and
D2(tk+1) = ϑ2(tk) + [−π, π]. Note that carrying out
the optimisation is computationally very expensive. In its
current state the optimisation is not real-time applicable
which will make modifications of the optimisation or the
developed algorithms necessary in future work if an online
estimation is desired.

Since Assumption 1 is essential for the algorithm, we
show two simulations. The first one has a simulation time
of 100 s during which the assumption holds. The second
simulation has the same setup as the first one, but has

a longer simulation time during which the assumption
is not fulfilled anymore. Additionally, estimates of initial
values in different basins of attractions not fulfilling the
assumption are displayed.

1) The Assumption holds: The algorithm illustrated in
(30) consists mainly of two steps, namely the differenti-
ation of the temperature data and the estimation of the
attitude from the estimated temperature and its deriva-
tives. Fig. 7 shows the estimation errors of the temperature
and its derivatives. As expected for a high gain observer,
the peaking phenomenon occurs. Thus, in the transient
phase between 0 and 5 seconds (recall step size of 1 s),
the estimation error is large. Afterwards, it can be seen
that desired derivatives are estimated with a sufficiently
small error. In Fig. 8 the estimation errors of the an-
gles (θ, ϑ1, ϑ2) for the initial values (θ0, ϑ0

1(0)ϑ0
2(0)) =

(2, −0.5, 0.5) are presented. During the transient phase of
the differentiator, the optimisation is not carried out and
simply the initial value is held. After the transient phase
the optimisation converges and follows the real attitude
with small numerical errors.

2) The Assumption does not hold: In order to illustrate the
importance of Assumption 1, we determine the solution
over time for four initial values. Each of these initial values
lies in another basin of attraction of the existing global
minima displayed in Fig. 5. We use the four initial values
ϑ̂1(0) = (−0.5, 0.5), ϑ̂2(0) = (−2.5, 0), ϑ̂3(0) = (2.5, 2)
and ϑ̂4(0) = (0, 2). We identify every solution ϑ̂i with its
inverse mapping O−1

i for i ∈ {1, . . . 4}. The angle θ is
calculated directly from Ṫ and thus independent of the
initial value. Consequently, only the angles ϑ are of interest
and discussed in the following.

All four estimation errors can be found in Fig. 9. They
admit different behaviour. The estimate ϑ̂1 is the estimate
considered in the previous section with its initial value in
the basin of attraction of the real attitude. It converges
to the real state until 150s. Then the estimation error
increases and does not converge back to zero for the
remainder of the simulation.

The other three estimates ϑ̂2, ϑ̂3, ϑ̂4 all start at different
initial values and follow different estimates. However, at
230 s they start following the real state ϑ. Note the dis-
continuity of all errors at 376 s. This is due to the bounded
domain of ϑ to avoid ambiguities. The estimates are
kept within a moving domain to avoid this discontinuity.
However, they can easily be mapped into the real domain
[−π, π] × [−π, π].

It can be seen that the estimates of the state is difficult
to predict for the considered system if it crosses the set
of unobservable states. At this point, the estimate which
has been correct up to then can suddenly start to follow
a wrong prediction as in the case of ϑ̂1. Another possible
result is that estimates which have been incorrect may
start to converge to the correct solution as in the case of
ϑ̂1, ϑ̂2, ϑ̂3.

In order to evaluate whether all estimates really yield
the same outputs and if it is possible to determine the
correct estimate, the cost function is displayed in Fig. 10.
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Fig. 6: Illustration of the basins of attraction of the four global minima. The global minima are marked by black crosses.
The set of the initial values that do not converge to a global minimum are displayed in red. The basin of attraction
of ϑ̄ = [0, 0]⊤ which was used to construct the optimisation problem is displayed in green. The remaining colours
correspond to the other three global minima.

TABLE I: Determined minima ϑ̄ ∈ LS(ϑ) and their rounded costs.

Minimum
[

0
0

] [
2.955
−0.32

] [
2.77
1.96

] [
0.208
1.66

] [
−π

−0.33

] [
−π
2.2

] [
−2.23

−π

] [
−π
−π

]
Costs 2 × 10−8 2 × 10−8 2 × 10−8 2×10−8 3 × 10−2 0.1 5 8

TABLE II: Parameters and constants (all SI-units)

Parameter Value Parameter Value

γ 0.0673 δ 1.6 × 10−11

J diag[5.4 5.4 0.9] a1 6.9 × 106

a2 1.05 × 106 a3 6.89 × 106

b1 2.56 b2 −1.64
b3 −2.17 ω 0.001
r⊕ 6371000 n e3

TABLE III: Initial states (all SI-units)

Parameter Value

T 292
w 0.01[0.5774 0.5774 0.5774]
t 100
θ π

2

Based on the fact that ϑ̂1 represents the correct estimate
with only small numerical errors in the first 100 s, all
costs below 10−7 suggest a good approximation. Thus, the
complete ϑ̂1, ϑ̂2 trajectories can both be considered as at-
titude trajectories that lead to the same temperature. The
estimates ϑ̂3 and ϑ̂4 between 94 s and 225 s have high costs.
This suggests that during this phase the optimisation has
not converged to a global minimum. This can be avoided
by improving the optimisation using different methods or
multiple initial values. In the remaining time, however, the
estimated attitudes achieve the measured outputs as well.

These observations reveal an important issue. If the
set of initial values contains points of multiple basins of
attractions, it is not possible to distinguish the solutions
by using the cost function. In the first 100 s there are

Fig. 7: Error between real and estimated temperature and
their derivatives.

four different attitude trajectories that lead to the same
temperature and it cannot be determined which one is
the desired one, solely inspecting the costs. Consequently,
the initial states are either indistinguishable or the other
three reconstructed trajectories are not a solution of the
system (12) with q = lr,n

2 (θ, ϑ1, ϑ2). The latter can be ver-
ified by calculating the derivative of q using the difference
quotient for h = 1 as well as the right hand side of (12)
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Fig. 8: Error between the real and estimated angles de-
scribing the attitude in radians.

and determine the difference between them

εq := q(t + h) − q(t)
h

− 1
2Ω(ω)q . (32)

This variable is close to zero for a solution q which solves
(12). It is displayed in Fig. 11 for the real and estimated
states. It can be seen that for estimates close to the real
attitude the error is relatively small. In the remaining time
the error varies largely and is of high magnitude. In par-
ticular, the switch between the correct estimates around
225 s can be seen. This shows that despite the ambiguity, a
real solution can be identified using information of a time
interval of the estimation.

We use the final section of this work to illustrate the dif-
ficulties occurring under the influence of additional noise
on the measurements and discuss natural augmentations
to deal with them.

B. Measurements with Gaussian White Noise
Consider additional Gaussian white noise ηT , ηω on the

real temperature and angular velocity values, T and ω,
respectively, i.e. the measured variables have the form
Tnoisy = T + ηT and ωnoisy = ω + ηω. This leads
to errors in the estimated temperature derivatives and
optimal attitude solutions (θ̂, ϑ̂1, ϑ̂2) that do not coincide
with the real attitude. In turn, the provided initial value
for the optimisation algorithm may lead to a diverging
optimisation.

In order to reduce the influence of these potential
errors, we adapt the algorithm illustrated in Figure 3.
We filter the temperature measurements using a first
order low pass filter Ṫfil = Tfil

τ + Tnoisy
τT

and smooth the
angular velocity measurements using a simple observer
ωfil = fω(ω) + gωu + wnoisy − ŵ. Furthermore, in order to
smooth the optimisation results and obtain an attitude
that fulfils the dynamics (10), we process the attitude

Fig. 9: Error angles for the four different initial states in
radians.

Fig. 10: Value of the cost function for the four estimates,
line styles as in Figure 9.

estimation obtained by the proposed algorithm with a non-
linear attitude filter in the spirit of [26] as

˙̂qfil = 1
2Ξ(q̂fil)ω + k

1
2Ξ(q̂)Ξ⊤(q̂fil)q̂

where q̂ is the attitude obtained by the optimi-
sation and q̂fil is the final estimated attitude and
(θ̂fil, ϑ̂1,fil, ϑ̂2,fil) = lr,n

1 (q̂fil) are the corresponding irradia-
tion angles. The augmented algorithm is shown in Fig-
ure 12.

In the following, we show two simulations of the
same scenario as before in Section VIII-A with the
noise covariance parameters σT = 10−4 K s−0.5,
σω =

√
10 · 10−7 rad s−0.5 and the estimated initial

values (θ̂0, ϑ̂0
1, ϑ̂0

2)(t) = (θ̂, ϑ̂1, ϑ̂2)(t). The considered
temperature noise is chosen smaller than the ones
expected from real measurements [8]. This is done for
illustration purposes as simulations with these noise
levels already yield high errors in the estimation but
allow an identification of the error sources. The two
simulations differ by the given initial value for the
optimisation. In the first scenario, the real attitude is
given as the initial value (θ̂0, ϑ̂0

1, ϑ̂0
2)(t) = (θ, ϑ1, ϑ2)(t)



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 13

Fig. 11: Numerical quaternion derivative error as defined
in (32) for the real quaternions (black dashed line) and
the four estimates.

at the current time step t. This is a theoretical case as
the real attitude is usually not available to the estimator.
This first case is shown for illustration purposes to
distinguish between errors induced by the deviations of
the estimated derivatives and errors induced by a poor
choice of the initial optimisation value. In the second
simulation, the initial value of the optimisation is obtained
from the filtered attitude of the last simulation step
(θ̂0, ϑ0

1, ϑ0
2)(t) = (θfil, ϑ1,fil, ϑ2,fil)(t − Ts). The simulation

step size is chosen to be Ts = 0.1 s while the optimisation
is run at samples of 1 s to reduce the simulation time. The
optimisation starts after 120 s to allow the convergence of
the noise filter and the differentiator.

The gains in the simulations are α =
[
8 24 32 16

]
,

ε = 9.53 and τT = 4.02 which are obtained
by an optimisation minimising the steady state er-
ror of the third estimated temperature derivative,
i.e minα,ε

∫ 400
150 |T (3)(t) − T̂ (3)(t)|dt. The observer gain

k = 0.02 is determined by an optimisation minimising the
error between the real and estimated attitude in the first
simulation.

Figure 13 shows the error between the estimated and
real temperature and their derivatives. The last two
derivatives T̈ and T (3) are mainly responsible for the
quality of the estimation of ϑ̂1 and ϑ̂2. It can be seen
that the error is more than ten times higher as for the
noise free case displayed in Figure 7. Additionally, the
error does not converge to zero. This is significant as this
error is propagated to the optimisation results as can be
seen in Figure 14. This figure shows the errors between
the real angles and the estimated angles. The errors to the
estimated angles received from the optimisation (θ̂, ϑ̂1, ϑ̂2)
are displayed as light blue and orange dots, respectively.
The errors to the filtered attitude (θfil, ϑ1,fil, ϑ2,fil) are
displayed as blue and red solid lines, respectively (c.f. also
Figure 13). From the first figure it can be seen that the
optimisation results θ̂ are identical for both simulations
and very close to the real values. This is because the
underlying optimisation problem (26a) for θ is simple to
solve and requires only the first derivative of T . For the
optimisation results of ϑ1, ϑ2 it can be seen that in the first
simulation where the initial conditions are chosen to be the
real values, the optimisation error mostly stays in a band of
1 rad around the real values. However, at some instances,

e.g. between 237 s and 244 s, the optimisation does not
give an estimation close to the real attitude even if it was
given as an initial value. The reasons for that are twofold,
first this divergence is close to the unobservable points
discussed in Section VIII-A and secondly, the cost function
changes considerably dependent on the magnitude of the
error of the temperature derivative estimation. In the
second simulation, it can be seen that the optimisation
determines an estimation close to the global optimum
(2.77, 1.96) identified in the previous section which does
not correspond to the real attitude but solves the optimisa-
tion problem. Consequently, the optimisation follows this
optimum until around 227 s until the optimisation yields
results closer to the real attitude.

For the filtered attitude it can be seen that the desired
smoothing effect of the optimisation values is provided by
the filter. However, an interesting result can be observed
for both simulations. The errors that occur in the opti-
misation on the angles ϑ1, ϑ2 are propagated to errors of
the filtered attitude in the θ angle. This can be observed
for example by considering the optimisation results for the
ideal initial values (dotted light blue) and the correspond-
ing filtered attitude (solid blue). The optimisation has
high (ϑ̂1, ϑ̂2) errors between 200 s and 300 s. The filtered
attitude however inherits these errors in θfil and not as
expected in (ϑ̂1,fil, ϑ̂2,fil).

The simulations have shown that measurement noise
is an important factor that needs to be dealt with when
applying the proposed algorithm. We have proposed ad-
ditional attitude and measurement filters that reduce the
error induced by the measurement noise. Adaptations of
the differentiator and the filters can be made to achieve
potential improvements. We have investigated the usage of
other linear differentiators such as Linear Kalman Filter.
The considered linear differentiators admitted similar be-
haviour regarding their balance between performance and
disturbance rejection properties. Thus, we expect improve-
ments only through the usage of non-linear differentiators
explicitely including the temperature derivative dynamics.
Additionally, an attitude filter in θ, ϑ1, ϑ2 instead of q may
yield smaller errors in θ if the gains are chosen accordingly.
In addition, the gains of the attitude filter may be made
adaptive based on the costs obtained by the optimisation
algorithm. For a high cost value the filter should rely more
on the dynamics than on the correction term and therefore
have a small gain k. The opposite reasoning can be made
for a small cost function values.

IX. CONCLUSIONS

The attitude of a spacecraft can be estimated using only
a single temperature measurement and angular velocity
data. The governing system dynamics are highly non-
linear and transformed into canonical form using a stan-
dard observability mapping. A high gain observer is used
to estimate the temperature and its derivatives. In order
to determine the inverse of the observability mapping,
a transformation of the attitude from quaternions to a
set of three angles can be employed. The reduced order
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Spacecraft
Filter Differentiation

Inversion
O−1

Transfor-
mation

lr,n
2

Attitude
Filter

u

T , ω

t, u

ηT , ηω

Tnoisy

ωnoisy

Tfil

ωfil

T̂ (i) θ̂

ϑ̂1

ϑ̂2

ϑ̂0
1 ϑ̂0

2

q̂

ωfil

q̂fil

Fig. 12: Augmentation of the algorithm from Figure 3. The summation in red adds the considered measurement noise
while the blocks in green are the additional filters. The attitude obtained from the optimisation (θ̂, ϑ̂1, ϑ̂2) and after
the filter q̂fil are displayed in light blue and blue, respectively.

Fig. 13: Error between real and estimated temperature and
their derivatives under the influence of measurement noise.

Fig. 14: Error between the estimated and real irradiation
angles in radians.

inversion problem is then solved using optimisation. How-
ever, this observability mapping is not bijective and for
the considered case four attitudes exist that produce the
same temperature derivatives up to third order. The basins
of attraction for the individual attitudes are calculated
and illustrated. If it can be guaranteed that the initial
value lies in the desired basin of attraction, the correct
attitude can be estimated. If not, using multiple observers
with different initial values is an option which allows to
identify the correct estimate based on the error between
the attitude dynamics. This is illustrated by means of
numerical simulations. They show that even in this case
the observer can estimate the attitude correctly for ideal
measurements. The influence of noise on the temperature
measurements leads to errors in the temperature derivative
estimation and consequently to errors in the result of
the optimisation. This is in particular an issue if the
hereby generated initial value for the optimisation lies
in an undesired domain of attraction. The remaining
observable scenarios with albedo and solar irradiation will
be investigated in future work. In this case, the proposed
irradiation angle transformation does not lead to the
desired order reduction which complicates the solution of
the optimisation problem even more.

APPENDIX

A. Analytic Derivatives

This section contains the derivatives and Lie derivatives
necessary for the transformation of the system into canon-
ical form. For the partial derivatives of fT at (T, q, t) with
r = r(t) and θ = θ(q, t) we obtain

∂fT

∂T
= −4δT 3 (33a)

∂fT

∂q
= γ

∂F (θ(q, t), r(t))
∂θ

∂θ(q, t)
∂q

(33b)

∂fT

∂t
= γ

∂F (θ(q, t), r(t))
∂θ

∂θ(q, t)
∂t

+ γ
∂F (θ(q, t), r(t))

∂r
ṙ

(33c)

where ṙ corresponds to the derivative of the position (9)
with respect to time. With H = ∥r∥

r⊕
, the derivative of the



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 15

form factor for r ̸= 0 is

∂F (θ, r)
∂θ

=


− sin(θ)

H2 θ ≤ π
2 − asin

( 1
H

)
∂F2(θ,r)

∂θ θ ∈ Θ2

0 θ > π
2 + asin

( 1
H

)
undefined θ = π

2 + asin
( 1

H

)
∂F (θ, r)

∂r
=


−2 r2

⊕r⊤

∥r(t)∥4 cos(θ) θ ≤ π
2 − asin

( 1
H

)
∂F2(θ,r)

∂r θ ∈ Θ2

0 θ > π
2 + asin

( 1
H

)
undefined θ = π

2 + asin
( 1

H

)
with Θ2 = {θ | π

2 − asin
( 1

H

)
< θ < π

2 + asin
( 1

H

)
} where

∂F2(θ,r)
∂θ is calculated symbolically using computer algebra.

The partial derivatives of the angle θ are

∂θ(q, t)
∂t

=
d acos(− r⊤

∥r∥ A(q)⊤n)
dx

∂ cos(θ)
∂t

∂ cos(θ)
∂t

= −n⊤A(q) ∂

∂r

(
r

∥r∥

)
ṙ

∂

∂r

(
r

∥r∥

)
= 1

∥r∥3

r2
2 + r2

3 −r1r2 −r1r3
−r1r2 r2

1 + r2
3 −r2r3

−r1r3 −r2r3 r2
1 + r2

2


∂θ(q, t)

∂q
=

d acos(− r⊤

∥r∥ A(q)n)⊤

dx

−r⊤

∥r∥
∂A(q)⊤n

∂q

and the derivative of the rotation matrix is given in [2] as

∂A(q)n
∂q

= 2∥q∥−2[A(q)n×]Ξ⊤(q) (34)

and thus

∂A(q)⊤n

∂q
= 2∥q∥−2[A(Impq)n×]Ξ⊤(Impq)Imp

where Imp =
(

−I3 0
0 1

)
and A(q)⊤ = A(Impq). It is

readily verified that

∂

∂T

∂fT (T, q, t)
∂q

= 0 (35)

∂

∂T

∂fT (T, q, t)
∂t

= 0 (36)

∂

∂q

(
∂fT (T, q)

∂T
fq(q, ω)

)
= ∂fT (T, q)

∂T

∂fq(q, ω)
∂q

. (37)

We use this to obtain the Lie derivatives

h(x) = T (38a)
Lf h(x) = fT (T, q, t) (38b)

L2
f h(x) = ∂fT (T, q, t)

∂T
fT (T, q, t)

+ ∂fT (T, q, t)
∂q

fq(q, ω) + ∂fT (T, q, t)
∂t

(38c)

L3
f h(x) = ∂

∂T

(
∂fT (T, q, t)

∂T
fT (T, q, t)

)
fT (T, q, t)

+
(

∂fT (T, q, t)
∂T

∂fT (T, q, t)
∂q

+fq(q, ω)⊤ ∂2fT (T, q, t)
∂q2

+∂fT (T, q, t)
∂q

∂fq(q, ω)
∂q

+ ∂

∂q

∂fT (T, q, t)
∂t

)
fq(q, ω)

+ ∂fT (T, q, t)
∂q

∂fq(q, ω)
∂ω

fω(ω)

+ ∂fT (T, q, t)
∂T

fT (T, q, t)
∂t

+ ∂

∂t

∂fT (T, q, t)
∂q

fq(q, ω) + ∂2fT (T, q, t)
∂t2

(38d)

LgL2
f h(x) = ∂fT (T, q, t)

∂q

∂fq(q, ω)
∂ω

gω . (38e)
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