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Efficient Predictive Monitoring of Linear
Time-Invariant Systems Under Stealthy Attacks

Mazen Azzam , Liliana Pasquale , Gregory Provan , and Bashar Nuseibeh

Abstract— Attacks on industrial control systems (ICSs) can
lead to significant physical damage. While off-line safety and
security assessments can provide insight into vulnerable system
components, they may not account for stealthy attacks designed
to evade anomaly detectors during long operational transients.
In this article, we propose a predictive online monitoring
approach to check the safety of the system under potential
stealthy false data injection attacks (FDIAs) on sensors. Specif-
ically, we adapt previous results in reachability analysis for
attack impact assessment to provide an efficient algorithm for
online safety monitoring for linear time-invariant (LTI) systems.
The proposed approach relies on an off-line computation of
symbolic reachable sets in terms of the estimated physical state
of the system. These sets are then instantiated online, and
safety checks are performed by leveraging ideas from ellipsoidal
calculus. We illustrate and evaluate our approach using the
Tennessee–Eastman process. We also compare our approach
with the baseline monitoring approaches proposed in previous
work and assess its efficiency and scalability. Our evaluation
results demonstrate that our approach can predict in a timely
manner if an FDIA will be able to cause damage while remaining
undetected. Thus, our approach can be used to provide operators
with real-time early warnings about stealthy attacks.

Index Terms— Control system security, ellipsoids, industrial
control, linear systems, reachability analysis.

I. INTRODUCTION

INDUSTRIAL control systems (ICSs) denote systems where
safety-critical physical processes are augmented with com-

putation and communication capabilities, e.g., transportation
systems, manufacturing, and chemical processes. Recently, the
security of ICS has received increasing attention, especially
with the rise in the number of attacks against these systems,
e.g., Ukrainian power grid blackout [30]. Different from
attacks targeting IT systems, attacks against ICS can also cause
physical damage, rather than only harming digital assets, e.g.,
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sensitive data. In particular, stealthy attacks, where resourceful
attackers exploit noise [4] or control theoretic properties [38]
to avoid detection, can cause significant damage. Although a
variety of techniques [15] consider the behavior of the physical
process to detect attacks on ICS, the detection of stealthy
attacks still presents several limitations [16].

Assessing the risk of stealthy attacks involves performing
off-line impact assessment [6], [7], [8], [9], [10], [11], which
may provide operators with more insight into potential vul-
nerabilities, such as the inability of a residual-based anomaly
detector to detect certain sensor attacks before they cause
damage. However, off-line impact assessment cannot account
for potential transients and variations in operating modes that
a physical system may experience. In particular, chemical
plants often experience long transients and frequent changes in
operating conditions due to potential unforeseen disturbances,
real-time optimization modules, or high-level control deci-
sions [28], [34]. Safety analysis consists of checking whether,
from a current state, the system can enter an unsafe state given
the current control settings. Conventional control methods can-
not guarantee the safety of the system given the possibility of
stealthy attacks to exploit noise or control-theoretic properties
to avoid detection [25]. Therefore, there is a need for safety
monitoring techniques that evaluate the safety of the system
in real-time given such threats.

The objective of this article is to develop an efficient online
safety monitoring algorithm, specifically under stealthy false
data injection attacks (FDIAs) on sensors. We particularly
consider a practical stealthy attack model where the attacker
evades detection by ensuring that the false alarm rate of
the anomaly detector is maintained [36]. To the best of
our knowledge, only a few works [14], [15], [16], [17] fall
into this line of research, and they either do not consider
intelligently crafted stealthy attacks or are resource-intensive.
Conversely, our approach to online safety monitoring provides
a computationally efficient online mechanism to detect the
potential impact of a range of stealthy attacks, which would be
undetectable using traditional monitoring approaches. In terms
of efficiency and scalability, the main feature of our approach
is to perform the most computationally intensive operations
offline and reduce the online safety checks to computation of a
distance measure. Namely, the intensive off-line computations
consist of approximating symbolic reachable sets of states.
When deployed online, these sets only need to be instantiated
depending on the current state estimate and a prediction of the
state over a certain time horizon. We then take advantage of
the geometric representation of the reachable sets to perform
efficient safety checks. This general approach is inspired by
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the work by Chen and Sankaranarayanan [9] in the context of
real-time monitoring for simplex control architectures.

The main contribution of this work is an efficient and
scalable online safety monitoring algorithm for linear time-
invariant (LTI) systems presented with the threat of stealthy
attacks. The efficiency of the algorithm stems first from the
off-line precomputation of a symbolic ellipsoid approxima-
tion of the reachable set using a linear matrix inequali-
ties (LMIs) program proposed by Murguia and Ruths [36].
Second, we take advantage of results in ellipsoidal calculus [6]
and the half-space geometrical representation of unsafe sets
to perform fast real-time safety checks given an instantia-
tion of the precomputed reachable set at a predicted system
state. When the algorithm is deployed online, it performs a
prediction of the system state given the current state of the
system and a specified time horizon. At each predicted state,
the precomputed reachable set is instantiated, and emptiness
checks of its intersection with the unsafe set are performed.
The algorithm halts when a nonempty intersection is found or
when the prediction time horizon is exhausted.

As a secondary contribution, we propose two online secu-
rity metrics that can be computed by leveraging ellipsoidal
calculus. The potential impact metric quantifies the potential
impact of a stealthy attack. When the emptiness check returns
a negative result, the intersection between the reachable set
and the set of unsafe states can be approximated using an
ellipsoid. We use the size of this ellipsoid to quantify the
potential impact. When the intersection between the reachable
set and the set of unsafe states is nonempty, it is also possible
to compute the time-to-unsafe metric. This metric estimates
the shortest time that an attacker would need to cause damage
before being detected. This time-to-unsafe metric is funda-
mentally different from proximity-based metrics previously
proposed in the literature [7], [8]. These metrics rely on
the raw estimate of the state of the system to compute a
Euclidean distance to unsafe states and are used to perform
safety monitoring. Instead, our time-to-unsafe metric relies on
reachable sets induced by a potential stealthy attack. As such,
we account for the fact that the given estimate may not
represent the real state of the system.

Finally, we evaluate the proposed algorithm using the
Tennessee–Eastman process (TEP) as a case study. We first
validate our algorithm through extensive simulations aimed at
assessing its ability to warn about potential damage due to
a stealthy attack. Second, we compare it to existing online
safety monitoring techniques for attacks, namely, those that
only rely on proximity-based metrics using raw state estimates.
We show through simulation scenarios that, under “low-and-
slow” stealthy attacks, existing techniques will not convey
the security and safety situation accurately. Conversely, our
reliance on reachable sets in our approach allows for early
warnings to be provided to operators before a stealthy attack
can cause damage. Finally, we demonstrate the suitability of
the algorithm for real-time applications. Specifically, we show
that safety checking takes place in a time frame that is shorter
than the system’s sampling period, and the algorithm scales
well with the complexity of safety constraints and the desired
length of time horizon for online prediction. We have applied

our monitoring approach within a framework for physics-based
early warnings for stealthy attacks [3].

The rest of this article is organized as follows. Section II
discusses related work. Section III provides an overview of our
approach. Section IV describes the adopted modeling frame-
work. Section V details the proposed algorithm. Section VI
presents numerical simulation results. Finally, Section VII
concludes this article.

II. RELATED WORK

While there exists a large body of work on model-based
attack detection in control systems [15], to the best of our
knowledge, approaches to tackling the problem of online
safety monitoring for ICS under stealthy attacks are scarce.
In model-based attack detection, we ask whether the current
observations of the system are consistent with a mathematical
model up to a certain degree of uncertainty. A model-based
attack detection is a reactive approach to security where
the occurrence of an anomaly triggers an alert. With online
safety monitoring under potential attacks, we ask whether
the current (estimated) state of the system can be taken by
an attack on a target state that violates at least one safety
constraint. Online safety monitoring is a proactive and predic-
tive approach to safety/security that may help in guiding the
selection of preemptive safety measures, such as switching to
a safe and secure redundant controller [9].

Kwon and Hwang [25], [26] have proposed a recursive
method to compute exact reachable sets under stealthy attacks
online. While this method is computationally efficient, it uses
large recursive matrices, which can make extensive use of
resources. Furthermore, safety checking in this work relies
on the characterization of a time-varying safe set as an
ellipsoid centered at the current state. Although this is suitable
for the unmanned aerial vehicle (UAV) application used by
the authors, it may not be applicable in chemical process
control, where unsafe operating levels are usually fixed limits
imposed on physical state variables. In contrast, the bulk of
the computation required for our method is performed offline,
resulting in symbolic sets with a lightweight characterization
when instantiated online. Furthermore, we consider more
practical time-invariant unsafe sets, which can be interpreted
geometrically as a union of half-spaces.

Existing online monitoring schemes [15], [16], [17], [20]
rely on a notion of proximity to a predefined set of
unsafe/critical states. This line of work does not consider
formal safety guarantees, but it uses metrics reflecting the
proximity of the system to unsafe states as a way to either
determine the level of safety or detect attacks. For example,
Coletta [15] and Carcano et al. [20] compute the minimum
Euclidean distance from current states to the unsafe operating
region. Castellanos and Zhou [8] extend this notion further
by computing an approximate “time-to-critical-states” metric.
However, these approaches rely only on raw sensor values and
do not consider the effect of stealthy attacks. For example,
intelligently crafted sensor attacks introduce “low-and-slow”
modifications to sensor values, which may eventually not
reflect the real state of the system. In our work, instead of using
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Fig. 1. Outline of the proposed online monitoring approach.

raw sensor values, we rely on reachable sets under stealthy
attacks which bound—with a certain confidence level—the
actual state of the system.

Another related work [7], [8], [9], [10], [11] has proposed
techniques to quantify the worst case impact of potential
stealthy attacks. To the best of our knowledge, these tech-
niques are developed with the objective of performing risk
assessment offline. For example, Milosevic et al. [32] propose
a framework for security measure allocation given certain
impact and attack complexity metrics. Murguia et al. [37] use
the volume of ellipsoidal approximations of reachable sets
under stealthy attacks as a measure of impact. In our work,
we quantify, in real time, the potential impact of a stealthy
attack based on the size of the intersection of the reachable
set with the set of unsafe states. Using this intersection, instead
of the entire reachable set, gives a more precise estimate of
potential impact. This is made possible by using the geometric
properties of the sets’ representations.

Finally, our approach is inspired by recent work on real-time
reachability analysis [2], [9], [43], notably in the context of
real-time monitoring for simplex control architectures [21].
Similar to the algorithms proposed in this article, a few works
in this area consider precomputing reachable sets offline before
instantiating them online in order to perform safety checking
efficiently. However, to the best of our knowledge, previous
work in this context did not consider safety checking in the
presence of stealthy attacks seeking to cause damage to a
safety-critical system.

III. PREDICTIVE ONLINE MONITORING APPROACH

In this section, we describe the online monitoring problem
tackled in this article and outline the proposed approach.
We also describe the main idea behind existing work on online
safety monitoring under attacks. We consider this body of
work as a baseline against which we compare our approach.

A. Online Monitoring Problem

This article considers the online monitoring framework
depicted in Fig. 1. The objective of our approach is to check

in real-time whether a potential undetected attack can cause
damage to the system before being detected. In other words,
given the current physical state estimate x̂(t), the online
monitoring problem asks whether there exists a stealthy FDIA
on sensors that can bring the system into an unsafe state over
the next T time instants.

If this check returns a negative result, then operators can
be reassured that, even if an intrusion is present, the alleged
attacker may not be able to cause any damage without being
detected. Otherwise, the check can serve as an early warning
and can prompt operators to take preemptive safety or security
measures. Such additional measures are, however, beyond the
scope of this work.

B. Outline of the Proposed Approach

The proposed approach, as shown in Fig. 1, is composed of
two main steps.

1) Off-Line Initialization: This step consists of computing
symbolic reachable sets under a stealthy FDIA in terms
of the state estimate based on a model of the system and
attack. This is possible by considering the evolution of
the state estimation error under a stealthy attack instead
of the physical state itself. As a result, we express
the reachable set of errors in terms of the actual state
estimate. This allows us to perform the bulk of the
computation offline, leading to more efficient real-time
safety checking.

2) Online Monitoring: At runtime, the proposed monitor
takes as input the current physical state estimate and
the state of the controller, and predicts the value of the
state up to T time steps into the future. We assume that
this prediction can be done using an identified physical
model of the system, with T chosen to maintain an
acceptable degradation in the confidence level of the
predicted state. We then instantiate the precomputed
symbolic reachable set at each predicted state value and
perform an emptiness check of its intersection with a
predefined set of unsafe states. The prediction stops
when a nonempty intersection is encountered or when
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T is exhausted. Furthermore, we compute two security
metrics when the intersection is nonempty:

a) potential impact of the attack;
b) time-to-unsafe states reflecting the approximate

time that a potential attack would need to cause
damage.

These metrics are aimed at providing operators with a
better assessment of the current safety/security situation.

In this article, we apply this general approach to LTI
systems, where we propose the use of ellipsoids as over-
approximations of the symbolic reachable sets. Ellipsoids
have been extensively used for safety verification for con-
trol systems [20], [23]. They feature an efficient quadratic
representation in terms of the dimension of the state of
the system [29], which presents an advantage in real-time
monitoring. Furthermore, in most practical applications of
process control, unsafe operating regions can be represented
as unions of half-spaces. With reachable sets represented as
ellipsoids, safety checking reduces to checking the sign of
the distance from the ellipsoid to each of the hyperplanes
composing the unsafe set [6], [23]. As a result, real-time safety
monitoring is enabled with minimal resource utilization.

In our application to LTI systems, we use results by Mur-
guia [36] in reachability analysis under stealthy attacks to pre-
compute a symbolic reachable set in the off-line initialization
phase. We then use results in ellipsoidal calculus [6], [23]
to design an efficient and scalable online safety monitoring
algorithm for stealthy attacks.

C. Existing Monitoring Techniques

To the best of our knowledge, existing online safety moni-
toring techniques [15], [16], [17], [20] rely mainly on a prox-
imity metric to assess the safety of the system against attacks
targeting physical processes. In this article, we compare our
approach to these techniques that all feature the same idea
detailed in the following. We provide a comparison based on
intuition in this section.

Given a set of unsafe states Su and the current estimated
state x̂(t), existing online monitoring techniques [15], [16],
[17], [20] compute a distance metric du = min d(x̂(t),Su).
The most commonly used distance metric is the Euclidean
distance, which is mainly suitable for continuous or hybrid
systems where state variables of interest assume real values.
Given a set of thresholds τ1 > τ2 > τ3, . . . , alarms of different
levels of criticality can be raised based on the value of du. The
proximity metric can further account for the dynamics of the
system by computing a time-to-unsafe/critical states metric,
tu = du/r , where r is the approximate rate of change of the
system state over a given time period [8]. In the rest of this
article, the term “traditional time-to-unsafe metric” refers to
tu computed using the aforementioned formula.

However, under a stealthy attack that slowly drives the
system into unsafe states to avoid detection, the real state
of the system x(t) will diverge from the estimated state.
Thus, the metric du may not provide an accurate measure
of the proximity of the system to unsafe states. Instead of
relying merely on a proximity measure based on x̂(t), our

online monitoring approach accounts for the possibility of
stealthy attacks by considering reachable sets under such
attacks. Namely, if Rx (t) is the reachable set of states under a
stealthy attack given the used anomaly detector at time t , then
x(t) ∈ Rx(t) even if x(t) �= x̂(t). Otherwise, by definition,
the attack would be detected by the anomaly detector. If,
over the next T time period, Rx(t ′) ∩ Su �= ∅ for some
t ′ ∈ [t; t + T ], then it is possible for an attacker to drive the
system into the unsafe operating region within at least t ′ − t
time units. As such, our safety monitoring approach relies on
the emptiness checking of this intersection, instead of a mere
proximity measure. Furthermore, we consider the proximity
metric t ′ − t as an additional security metric that may assist
operators in assessing the current safety/security situation.

IV. MODELING FRAMEWORK

We apply our approach in this article to LTI systems. Before
detailing the proposed approach, we briefly describe the layout
of the system and the attack model in this section.

A. System Layout

Consider the control system architecture in Fig. 1.
We assume that the physical system can be approximated using
an LTI model{

x(k + 1) = Ax(k) + Bū(k) + w(k)

y(k) = Cx(k) + v(k)
(1)

where x(k) ∈ R
n is the state vector, ū(k) ∈ R

l denotes the
control signals received by the system, and y(k) ∈ R

m is a
vector of sensor measurements. w(k) ∈ R

n and v(k) ∈ R
m

denote process and measurement noise, respectively, and are
assumed to follow a zero-mean Gaussian distribution with
respective covariance matrices �1 and �2. k = t/�t ∈ N

denotes the discrete time instants, where �t is the sampling
period and t is the continuous time. A, B, and C are real,
time-invariant matrices of appropriate dimensions. The system
is assumed to be equipped with an output feedback control
loop such that u(k) = K(ȳ − yr (k)), where u(k) denotes
control signals that are originally sent to the process, K is
the control law, yr (k) denotes the reference output, and ȳ(k)
denotes measurements received by the controller. In this work,
we focus on sensor attacks such that u(k) = ū(k) ∀k.

Furthermore, we assume that a subset of state variables,
denoted as critical, is grouped in the vector xc = Ccx, xc ∈
R

nc , Cc ∈ R
nc×n and is required to remain within a certain

safe set to ensure safe operation. Let Su be the set of unsafe
states; we assume that unsafe conditions are given as a linear
combination of the critical state variables such that the unsafe
set becomes a union of half-spaces1

Su =
{

x(k) ∈ R
n

∣∣∣∣
nc⋃

i=0

Cc,i xi(k) ≥ bi

}
(2)

where bi ∈ R is the i th half-space scalar, Cc,i denotes the i th
row of the matrix Cc, and xi(k) denotes the i th element of
x(k).

1This assumption is typical in several process control applications.
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At a time k, given previous sensor measurements and control
actions, a Kalman filter generates an estimate of the physical
state and expected sensor measurements as follows:⎧⎪⎨

⎪⎩
x̂(k) = Ax̂(k − 1) + Bu(k − 1)

+ L(ȳ(k − 1) − Cx̂(k − 1))

ŷ(k) = Cx̂(k)

(3)

where L denotes the Kalman gain, and x̂ and ŷ denote
estimated state and measurements, respectively.

In addition, a chi-squared anomaly detector compares
received measurements with the generated estimate through
a residual r(k) := ȳ(k) − ŷ(k). Under nominal conditions,
the residual metric has a zero-mean and a covariance matrix
�. To check for this hypothesis, a chi-squared metric, z(k) =
r T (k)�−1r(k), is computed and compared with a threshold τ ,
such that exceeding this threshold implies a possible anomaly
and raises an alarm. The threshold τ is designed to maintain
a certain false alarm rate β such that Pr[z(k) ≤ β] = 1 − β
under the nominal operation and can be set as described by
Murgia et al. [36] (see Proposition 1).

B. Attacker Model

We consider in this work FDIAs on sensors that are masked
by the system noise in order to drive the latter slowly to the
unsafe set (2). While different stealthy attack strategies exist
in the literature, we choose to focus on one that is feasible in
practice. Hence, we provide the following justification for our
particular choice as opposed to other possible stealthy attacks.

1) We consider FDIAs specifically on sensors as it has been
shown both theoretically [27] and empirically [45] that
their stealthiness is easier to maintain than attacks on
actuators. FDIAs that consist of corrupting all sensor and
actuator channels, also known as “covert” attacks [41],
even though undetectable, require a significant amount
of resources to be executed [42]. In practice, it may
not be possible for an attacker to have simultaneous
access to all sensor/actuator communication channels
or associated control devices. Each sensor/actuator may
require different kinds of software/hardware tools in
order to corrupt the data they send or receive [1].

2) Replay attacks, similar to FDIAs, threaten the integrity
of sensor measurements. Although they require fewer
resources to remain stealthy [42], the stealthiness of
replaying old sensor measurements relies on whether
these measurements could be admissible at a given time.
Therefore, the system needs to be operating in a steady
state for the replayed measurements to be considered
nominal by the anomaly detector. If transients are expe-
rienced, then replaying old measurements would reveal
the attack since they no longer correspond to the current
control inputs. In this work, we consider process control
systems whereby long transients may be experienced,
thus limiting the extent to which stealthy replay attacks
may be successful.

In our attack model, we assume that the attacker has
sufficient resources and knowledge about the system, including
knowledge of the system dynamics and anomaly detector

properties. Let {ks, . . . , k f } denote the time period of the
attack; we model the attack as a bias imposed on sensor
measurements

ȳ(k) := y(k) + δ(k) ∀ k ∈ {ks, . . . , k f }. (4)

The attack δ(k) remains stealthy by ensuring that the false
alarm rate is maintained throughout the attack period. We use
this characterization because anomaly detectors do raise
alarms under nominal operation. A sudden disappearance of
these alarms in practice may raise suspicion in operators
and lead them to uncover the attack before it can cause
damage [18]. Under the attack in (4), the residual is given
by r(k) = ȳ(k) − ŷ(k) = y(k) − ŷk + δ(k). As such, the
chi-squared metric under attack is given by

z(k) = (y(k) − ŷ(k) + δ(k))�−1(y(k) − ŷ(k) + δ(k)). (5)

By selecting δ(k) to be such that Pr[z(k) ≤ τ ] = 1 − β, the
attacker manages to remain undetected. For example, given
K time steps, the attacker may choose to raise alarms for
βK steps so that the false alarm rate is mimicked as closely
as possible [18].2 This is possible since we assume that the
attacker knows the detector’s parameters, i.e., �, β, and τ ,
in addition to the system and estimator outputs, i.e., y(k)
and ŷ(k), respectively. In practice, such information could
be obtained, for example, through reconnaissance attacks or
insider knowledge. In addition, while this attack strategy is
specifically designed for chi-squared detectors, most existing
work in model-based anomaly detection employs this statisti-
cal change detection test [35].

We note that optimal stealthy FDIA strategies that take
advantage of system noise are studied in the literature [37],
[38], [39]. However, our choice for the previous attack model
stems from its relative simplicity and practicality. In works
describing optimal stealthy attacks, the attacker requires a
deeper knowledge and understanding of the dynamics of the
system. With the adversary model that we adopt, the attacker
is required to only know the basic parameters of the system
model and its anomaly detector, which are relatively easily
obtained through a reconnaissance phase. Furthermore, opti-
mizing the attack strategy comes at a significant computational
cost for the attacker and, thus, limits the attack’s real-time
performance, especially if the attacker needs to adapt to an
adaptive defender. We also note that our approach requires
only the attack to mimic the false alarm rate of the anomaly
detector. As such, it can be applied to optimized attack
strategies that also take advantage of the false alarm rate to
remain stealthy.

V. PROPOSED MONITORING ALGORITHM

The proposed approach relies mainly on the off-line com-
putation of the symbolic reachable set of estimation errors
under the attack described in (4). This set is an ellipsoidal
overapproximation of the exact reachable set, parameterized
by the state estimate. In real time, given the state estimate at
time k, the symbolic set is instantiated at the K -step predicted

2Due to space limitations, the reader is referred to [18] for a more detailed
description of distribution of the detector metric under such attack.
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state. Emptiness checks of its intersection with Su are then
performed. We detail both the off-line and online computations
in the following, and we propose online security metrics based
on the computed reachable set.

A. Off-Line Computation of Symbolic Reachable Set

To compute the reachable set of the estimation error under
the attack in (4), we use the method described by Murgia and
Ruths [36]. We define this error as e(k) := x(k) − x̂(k) and
assume that, at the start of an attack, the estimation error is
always almost zero. The reachable set of the estimation error
under the attack in (4) is independent of the actual physical
state at the start of the attack. As such, this set serves as a
symbolic reachable set parameterized by the state estimate.

By setting e(k) = x(k) − x̂(k), and performing some
algebraic manipulations of (3), the evolution of the estimation
error under an attack is given by

e(k + 1) = Ae(k) − L(Ce(k) + v(k) + δ(k)) + w(k)

= Ae(k) − L(y(k) − ŷ(k) + δ(k)) + w(k). (6)

Since the error is partially driven by the Gaussian noise
w(k) and the attack-dependent sequence δ̄(k) = y(k)− ŷ(k)+
δ(k), using a deterministic approach will yield an unbounded
reachable set, as the support of w(k) and δ(k) [as characterized
in (4) and (5)] is infinite. This issue can be overcome by setting
a confidence level on the energy of both of these vectors. For
the attack, the sequence δ̄(k) is already constrained to be such
that Pr[z(k) ≤ τ ] = Pr[‖�−1/2 δ̄(k)‖2 ≤ τ ] = 1 − β, where
‖·‖ denotes the L2-norm. For the noise, let p = Pr[‖w(k)‖2 ≤
w̄]; since w(k) follows a zero-mean Gaussian distribution, the
bound w̄ on ‖w(k)‖2 can be determined using the gamma
distribution for a desired confidence p.

By using this assumption, the resulting reachable set can be
interpreted as a level set of the distribution of the reachable
error. A larger confidence level would lead to a larger set at
the cost of being overly conservative with the safety checking.
A reasonable choice for p would be 1−β, as the false alarm β
is designed to be small. This also simplifies the computation
of the reachable set since, for p = 1 − β, we readily have
Pr[‖w(k)‖2 ≤ w̄] = Pr[z(k) ≤ τ ] under the attack in (4). The
following is based on this choice; for a more detailed treatment
of this confidence level and a comparison of reachable sets
under different choices of p, the reader is referred to [36]
and [18] due to space limitations. Let Rp

e denote the reachable
set of error under the attack in (4) and a confidence level
p = 1 − β

Rp
e := {e(k) ∈ R

n | e(k) is s.t. (6),

p = Pr[‖w(k)‖2 ≤ w̄] = 1 − β}. (7)

While computing Rp
e is intractable, it is possible to overap-

proximate the set using an ellipsoid in R
n, given by

Rp
e ⊆ E p

e = {e(k) | eT (k)�−1e(k) ≤ 1} (8)

where the positive definite matrix � is the ellipsoid’s shape
matrix. Letting P = �−1, the minimum volume ellipsoid

Algorithm 1 Off-Line Symbolic Reachable Set Computation

containing the set Rp
e can be obtained by solving the following

semidefinite program [36]:

P = arg min − log det P
s.t. P > 0; Q ≥ 0 (9)

where

Q =

⎡
⎢⎢⎢⎢⎢⎣

bP ATP 0 0
PA P P −PL�1/2

0 P 1 − b

τ + w̄
I 0

0 −�1/2 LTP 0
1 − b

τ + w̄
I

⎤
⎥⎥⎥⎥⎥⎦

b ∈ (0, 1). (10)

Note that, while b is an optimization variable, it is necessary to
fix it to ensure the convexity of the program. A grid search can
then be performed over the interval (0, 1) to find the optimal
shape matrix corresponding to the minimum-volume ellipsoid.

Given the shape matrix � = P−1, and replacing e(k) by
its definition, we obtain a symbolic ellipsoidal approximation
E p

x (k) of the reachable set Rp
x (k) of the actual system state

x(k), parameterized by the current state estimate x̂(k)

Rp
x (k) ⊆ E p

x (k) = {x(k) ∈ R
n | (x(k) − x̂(k))T

× �−1(x(k) − x̂(k)) ≤ 1}. (11)

Algorithm 1 summarizes the off-line steps to obtain E p
x (k).

Given the system matrix A, the Kalman gain L, the residual
covariance matrix �, the anomaly detector’s threshold τ ,
and the confidence bound w̄, the algorithm performs a grid
search over (0, 1) by partitioning the interval into segments
of length �h. The choice of �h will depend on the desired
tightness of the ellipsoidal approximation given the computa-
tional resources available. Note that this step only needs to be
performed offline once, and only the matrix � needs to be
stored to instantiate E p

x (k) online given a state estimate x̂(k).

B. Online Safety Checks

Algorithm 2 outlines the steps needed to perform online
safety checks. Given the current state estimate x̂(k) and the
state of the controller, we estimate the state of the system for
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Algorithm 2 Online Safety Checking

K time steps into the future using the identified model of the
plant. At each time step l ∈ {0, . . . , K }, we instantiate E p

x (k +
l), and we check whether it intersects the set Su . The algorithm
halts and reports an unsafe state when a nonempty intersection
is encountered. If the prediction horizon is exhausted, the
algorithm reports a safe state. In the following, we detail the
procedure that we use to perform the emptiness checks.

Let Hi = {x ∈ R
n | Cc,i x ≥ bi} be a half-space representing

one of the safety conditions composing the set Su [see (2)].
Checking whether E p

x (k f )∩Su = ∅ involves checking whether
E p

x (k f ) ∩ Hi = ∅ for each i ∈ {1, . . . , nc}. If the latter is true
for all i , then the former is also true since Su = ∪ns

i=1Hi .
To check whether E p

x (k f ) ∩ Hi = ∅, it suffices to compute
the minimum distance from E p

x (k f ) to the hyperplane that
delimits the half-space Hi . Let Hp,i = {x | Cc,i x = bi} be
such hyperplane; the minimum distance from E p

x (k f ) to Hp,i

is given by [24]

di(k f ) =
|bi − Cc,i x(k f )|−

√
x(k f )

T �x(k f )∥∥CT
c,i

∥∥ . (12)

If di(k f ) ≤ 0, then E p
x (k f )∩Hi �= ∅. Otherwise, if di(k f ) ≥ 0,

then the ellipsoid E p
x (k f ) is either contained in Hi or does not

intersect the half-space, depending on whether its center x̂(k f )
belongs to Hi . However, since the state estimate is within the
safe region,3 i.e., x̂(k f ) /∈ Hi , then, in our case, di(k f ) >
0 always implies that E p

x (k f ) ∩ Hi = ∅.

C. Real-Time Security Metrics

In addition to checking the emptiness of the intersection of
the reachable set with the set of unsafe states, it is possible to
derive two online security metrics. The first metric can help
operators get a better idea of the potential impact of a stealthy
false data-injection attack, while the second approximates
the minimum amount of time that would be required for

3Otherwise, it would be clear that the system is evolving to an unsafe state,
and Algorithm 2, in this case, would become obsolete.

an attacker to cause damage. In this section, we show how
ellipsoidal methods can be used to compute such metrics
efficiently.

1) Real-Time Impact of Stealthy Attack: In the case where
E p

x (k f ) ∩ Su �= ∅, we can quantify the impact of a poten-
tial stealthy false data-injection attack using the approximate
size of this intersection. Namely, for each half-space Hi ⊂
Su , it is possible to overapproximate E p

x (k f ) ∩ Hi using a
minimum-volume ellipsoid Ei(k f ) of center qi(k f ) ∈ R

n and
shape matrix �i(k f ) as follows [6]:

qi(k f ) = x̂(k f ) − 1 + αi n

n + 1
�c̄i

�i (k f ) = n2
(
1 − α2

i

)
n2 − 1

×
(

� − 2(1 + αi n)

(n + 1)(αi + 1)
�c̄i c̄

T
i �

)
(13)

where c̄i = Cc,i/(Cc,i�CT
c,i )

0.5
and αi = (Cc,i x̂(k f ) −

bi)/(Cc,i�CT
c,i )

0.5
. As such, we quantify the impact of a

potential stealthy false data-injection attack using the volume
of Ei(k f ). The volume of a general ellipsoid in R

n with a
shape matrix Q is given by

vol(E) = vol[Bn]
√

det Q (14)

where vol[Bn] and det Q denote the volume of the unit n-
ball and the determinant of the matrix Q, respectively. It is
worthwhile to note that different system dimensions may
lead to vastly different number ranges for the volume of
the intersection ellipsoid. Thus, in order to make the impact
metric more meaningful, we propose to use the ratio of the
volume of the intersection ellipsoid to that of the ellipsoid
approximating the reachable set. This guarantees that the
impact metric will fall in the range [0; 1], thus becoming more
intuitive to interpret. From (14), the impact metric reduces to
the following:

Im(k) = [
max

i=1,...,nc

det �i (k f )
]/

det �. (15)

2) Approximate Time to Unsafe States: In the case E p
x (k f )∩

Su �= ∅ for some k f ∈ {k, . . . , k + K }, we use the time k f as
the approximate time to unsafe states metric in our approach,
namely,

Tc(k) = (k f − k)�t , ∃k f ∈ {k, . . . , k + K }
s.t. E p

x (k f ) ∩ Su �= ∅ (16)

where �t is the system’s sampling period. The advantage of
using k f instead of the distance from the state estimate x̂(k)
itself is that the former approach accounts for the fact that,
if an undetected attack is present, then the actual state x(k f ) �=
x̂(k f ) still lies within E p

x (k f ) (otherwise, the attack would
be detected). This metric provides operators with an idea of
the minimum time that they have to react before a potential
stealthy FDIA manages to bring the system into an unsafe
state.
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TABLE I

SAFETY CONSTRAINTS CONSIDERED FOR THE TE CASE STUDY [12]

VI. EVALUATION

In this article, we use the TEP with the control architecture
designed by Ricker [39] as a case study. This benchmark
process is widely regarded as one that reflects a high degree of
accuracy a real-life chemical process [22]. In addition, it has
been used widely to test ideas in process control [40] and
model-based approaches to ICS security [14].

Namely, we used the simulation written in Simulink by
Bathelt et al. [5]. While the controllers are implemented as
Simulink blocks, the physical process itself is simulated in
continuous time and is written in C and incorporated into
Simulink using MATLAB’s S-function blocks. Rate transi-
tion blocks are, in turn, used to simulate the discrete-time
sampling of sensor measurements and actuator signals by
digital controllers, in a fashion that mimics real-life situ-
ations in process control systems. We implemented Algo-
rithms 1 and 2 in MATLAB with the ellipsoidal techniques
based on the Ellipsoidal Toolbox written by Kurzhanskiy
and Varaiya [24]. We approximated the TEP process as an
LTI system with 50 state variables using MATLAB’s n4sid
algorithm. We considered the safety constraints discussed by
Down and Vogel [12], as shown here in Table I. We aug-
mented the TEP Simulink simulation with a Kalman filter
and a chi-squared anomaly detector. To initialize the online
monitoring tool, we ran Algorithm 1 to determine the reach-
able ellipsoid’s shape matrix. We performed the grid search
for parameter b by dividing the interval into segments of
length 0.01.

Our evaluation consists of three main parts. First, we val-
idated our approach by measuring true and false positive
rates using extensive simulations. Second, we compared our
approach with existing online monitoring approaches. Finally,
we assessed the performance and scalability of our approach.

A. Validation

The objective of our approach is not to detect attacks but
rather to perform safety checking under potential stealthy
attacks that seek to cause damage. Namely, Algorithm
2 checks whether the current state of the system can be taken
to an unsafe state by a stealthy attack within the next K time
instants and cause damage before the anomaly detector detects
the attack. Thus, to evaluate our approach, we ran several
simulations of the TEP only considering different stealthy
attacks on the sensors that report values of safety-critical
parameters shown in Table I. We avoided using the true/false
positive/negative rate performance metrics as traditionally

Fig. 2. True/false positive/negative rates as a function of the length of
prediction horizon K .

defined in the attack detection literature. Instead, we consid-
ered a notion of true/false positives/negatives similar to the one
adopted in previous work on online safety monitoring [10].

1) A true positive occurs when Algorithm 2 raises a warn-
ing within K time instants before damage occurs due to
an attack, and the system reaches an unsafe state before
the anomaly detector raises an alarm.

2) A true negative occurs when Algorithm 2 does not raise
any warnings within K time instants before damage
occurs, but the attack is detected by the anomaly detec-
tor.

3) A false positive occurs when Algorithm 2 reports an
unsafe state within K time instants before damage
occurs, but the anomaly detector manages to detect the
attack before the system enters the unsafe state.

4) A false negative occurs when Algorithm 2 does not raise
any warnings within K time instants before damage
occurs, even if a stealthy attack is taking place, and the
anomaly detector does not raise any alarm.

We first tested the effect of the length of the prediction
horizon K on these rates, with results presented in Fig. 2. For
each value of K that we tested, we ran 500 simulations where
we picked the attacked sensors at random, and we simulated
the attack as a slowly growing bias on sensor measurements.

We can see from Fig. 2 that, for a small prediction horizon
length, Algorithm 2 returns mostly negative checks, with
true and false negatives accounting for the vast majority of
predictions for K < 500. As K grows, the number of true and
false positives increases, with the false positive rate increasing
in a much slower manner. For K ≥ 1500, although the rate
of true positives is high, Algorithm 2 returns a high number
of false positives as well. This behavior is the result of the
design of Algorithm 2. First, for small K , the algorithm
will likely not be exploring a sufficient number of states
where a stealthy attack would cause a violation of safety
constraints. Thus, it is expected to observe a high rate of
both false and true negatives, with true and false positive rates
remaining very low. As K increases, the algorithm is allowed
to explore more states, therefore increasing the number of true



AZZAM et al.: EFFICIENT PREDICTIVE MONITORING OF LTI SYSTEMS UNDER STEALTHY ATTACKS 743

Fig. 3. ROC curve for Algorithm 2 with the length of prediction horizon K
as the third dimension.

TABLE II

TRUE POSITIVE/NEGATIVE RATES VERSUS THE NUMBER OF SENSORS
ATTACKED AT THE SAME TIME

positives. The slow parallel increase in false positives shows
that Algorithm 2 exhibits high accuracy for intermediate values
of K . However, at high values of K , the accuracy of the
predicted states is expected to decrease, which explains the
high false positive rates.

These simulations show that there exists a tradeoff between
how early we would like to raise warnings about potential
safety violations due to a stealthy attack and the accuracy of
Algorithm 2. These experiments can also serve as a method
to tune the choice of K . To showcase these ideas, we have
plotted in Fig. 3 the receiver operating characteristic (ROC)
curve for Algorithm 2 with the length of prediction horizon K
as the third dimension. We note that it exists a “cutoff” point
at K = 500 time steps where we obtain acceptable values
for the true/false positive rates (90.8% for true positives
and 4.05% for false positives). This is equivalent to about
15 minutes ahead-of-time prediction, which is a reasonable
choice in practice for K .

For K = 500, we tested the accuracy of Algorithm 2 under
different numbers of sensors being attacked at the same time.
We ran 500 simulations for each different number of sensors
being attacked. In each simulation, we picked the attacked
sensors at random, and we ran Algorithm 2 while considering
the safety constraints associated with the sensor(s) under attack
(see Table I). The results in Table II show high true positive
and low false positive rates in each case. These experiments
demonstrate the accuracy of Algorithm 2 with respect to all
safety-critical sensors. Given the large number of random
simulations that we ran, we can conclude that Algorithm 2 can
report potential safety violations due to a stealthy attack
with respect to all the safety constraints imposed on
the system.

Fig. 4. Results from simulation Scenario 1.

Fig. 5. Results from simulation Scenario 2.

B. Comparison With Existing Monitoring Approaches

In this section, we empirically showcase the usefulness of
our approach compared to existing monitoring approaches
described in Section III-C. To this end, we implemented an
online monitoring tool measuring the time-to-unsafe states
metric based on the Euclidean distance from the current
state estimate to the set of unsafe states. We also measure
the average rate of change of the estimated system state.
We avoided a comparison based on the accuracy metrics
depicted in Section VI-A. This is due to the fact that the
traditional time-to-unsafe states metric relies on the selection
of different thresholds to raise alarms of different criticality.
With the lack of precise methods to select these thresholds, it is
hard to perform a meaningful quantitative comparison between
the metric proposed in this article and the traditional one.
Therefore, we used a set of attack scenarios on safety-critical
sensors to empirically demonstrate the advantages of our
approach. We particularly focus on attacks targeting sensors
with a slowly growing bias.

We chose three attack scenarios. Scenarios 1 and 2 depict
individual attacks targeting the level and pressure sensors,
respectively, of the main reactor in the TEP. Scenario
3 depicts an attack performed simultaneously on the level,
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Fig. 6. Results from simulation Scenario 3.

pressure, and temperature sensors of the reactor. We chose
Scenarios 1 and 2 to illustrate the typical kind of attacks
targeting safety-critical sensors, individually. We can obtain
similar results for individual attacks on other safety-critical
sensors. Scenario 3 illustrates a more dangerous coordinated
attack where all main reactor sensors in the TEP are manipu-
lated at the same time. Again, similar results can be obtained
for other combinations of sensors for safety-critical variables
listed in Table I. Figs. 4–6 present the results obtained for each
scenarios.

1) Scenario 1: In this scenario, we simulate an attack on
the reactor’s level sensor, where a growing bias on level mea-
surements is introduced to trick the controller into overflowing
the reactor. This simulation is shown in Fig. 4 where we can
see that the anomaly detector raises an alarm almost at the
moment the overflow takes place. Our impact metric increases
significantly over the period preceding the physical damage to
the reactor, and our time-to-unsafe states metric shows that the
plant is dangerously close to damage. Conversely, the tradi-
tional time-to-unsafe states computed based on the estimated
state alone show a slight increase, indicating that the plant
appears to be moving away from the unsafe operating region.

2) Scenario 2: In this scenario, we perform an attack on
the reactor’s pressure sensor. Namely, the attack is a slowly
growing bias on pressure measurements seeking to trick the
pressure controller into increasing the pressure inside the
reactor, while it appears lower than its set point. We can
see from Fig. 5 that the anomaly detector fails to raise any
alarm before excessive pressure builds up in the reactor.
However, our online monitoring algorithm reports that the
plant’s operation may be unsafe in the presence of an attack
throughout this ramp-down operation, which is shown by a
nonzero impact metric. While the impact metric shows an

increase over the few hours between the start of the attack and
the damage taking place. Instead, the traditional time-to-unsafe
states metric shows the plant moving away from unsafe states.

3) Scenario 3: In this scenario, we simulate simultaneous
attacks on the main reactor’s pressure, temperature, and level
sensors. All three attacks are slowly growing biases. Fig. 6
shows that damage occurs faster in this scenario than in
the previous two, with the anomaly detector again failing
to raise any alarms. Our impact metric, however, shows
again that the plant’s operation may be unsafe under the
attack. Instead, the traditional time-to-unsafe states metric
depicts the plant moving away from the unsafe operating
region.

These scenarios demonstrate the usefulness of our approach
in the presence of stealthy attacks compared to simple
distance-to-unsafe metrics. Relying on the traditional distance-
to-unsafe metric may relay an inaccurate idea of the current
security or safety conditions. This was especially highlighted
in Scenarios 2 and 3. While the plant appears to drift away
from the unsafe operating region, our monitoring approach
can still warn operators that an attacker is able to damage the
system without being detected.

Fig. 7 shows a comparison between the time-to-unsafe
metric computed using our algorithm and the same metric
computed based on the raw estimated state. Namely, we plot
the difference (error) between the metric in each case and the
time-to-unsafe states computed based on the real state of the
system. In each scenario, we observe that the metric based
on the raw estimated state is relatively accurate before the
attack starts (the error is close to zero). However, the error
starts to grow as the stealthy attack progresses, and the real
state diverges from its estimate. Conversely, as the stealthy
attack progresses, this error decreases for the time-to-unsafe
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Fig. 7. Difference (error) between time-to-unsafe metric computed based on state estimate and based on the proposed algorithm versus the time-to-unsafe
states based on the real state of the system. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

Fig. 8. Average execution time of the proposed scheme versus the number
of steps for prediction.

states metric computed according to our algorithm and reaches
almost zero toward the end of the attack.

This demonstrates the usefulness of our algorithm in the
worst case, where the actual state of the system significantly
diverges from the real estimate under a stealthy attack. While
this may be overly conservative when the system is not under
attack, the safety criticality of the systems that we consider
justifies the need to employ monitoring that can generate early
warnings when a dangerous stealthy attack is taking place.
Hence, the task of precomputing reachable sets under attack
and using them for online monitoring is well justified.

Our monitoring approach can be used as part of an early
warning system to improve situational awareness and poten-
tially preserve important data relevant to an investigation that
a stealthy attack should indeed cause damage. A full treatment
of this aspect of our approach is, however, deferred for future
work.

C. Performance and Scalability

We ran 100-h simulations of the TEP to test the performance
of our approach. For performance testing purposes, we mod-
ified the algorithm so that all the states along the prediction
horizon are visited. This represents the worst case scenario.
We tested the ability of Algorithm 2 to scale with respect to:

Fig. 9. Average execution time of the proposed scheme versus the number
of safety constraints.

1) the length of the prediction horizon (number of steps K )
and 2) the number of safety constraints. We performed this
testing on a machine with an Intel i7-9750H CPU clocked at
2.6 GHz and with 16 GB of RAM.

Fig. 8 shows the average time needed to perform state
prediction and safety checking (see Algorithm 2) for each
number of steps with a fixed number of safety constraints.4

Results show that the performance of Algorithm 2 scales
linearly with the number of steps required for state prediction.
Furthermore, at K = 1000 steps, equivalent to approximately
30-min ahead-of-time prediction, the execution time of the
safety checking algorithm is smaller than the sampling period
(1.8 s).

In addition, we tested the ability of our algorithm to scale
with the number of safety constraints. To this end, we fixed
K at 500 steps (i.e., ≈15 min), and we ran 100-h simulations
for each number of safety constraints. For the purposes of
testing, we generated random half-spaces representing safety
constraints. Results are shown in Fig. 9. The execution time
scales linearly with the number of safety constraints and, with
500 safety constraints, is still less than the sampling time of

4For a 100-h simulation, this average is taken over approximately 2 × 105

safety checks for a sampling period of 1.8 s.
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the system. Hence, the proposed algorithm exhibits excellent
real-time performance in the presence of more complex safety
constraints.

It is worth noting that the performance of the proposed
algorithm can be improved significantly if implemented with a
compiled language, such as C++, instead of MATLAB. This
is the case in most control systems applications.

D. Implementation Challenges

Our evaluation has shown that the proposed monitoring
approach exhibits high accuracy and real-time performance.
When it comes to its implementation in practice, we note
that the approach relies on a model of the system and its
anomaly detector, which is normally available during the
control design phase. The stealthy attack model that we focus
on encompasses several optimized stealthy attack strategies
proposed in previous work. This is also evident by the ability
of Algorithm 2 to exhibit high accuracy with respect to a
large number of randomized attacks in our validity tests (see
Section VI-A). Finally, the attack model’s relative practicality
with respect to the attacker makes it a reliable heuristic
threat model to consider for a practical design of monitoring
algorithms.

In our approach, we require some design parameters to be
set. For Algorithm 1, a choice for the size of the partitioning
interval �h must be made to guide the grid search. This
parameter depends entirely on the desired tightness of the
reachable set approximation. As this is a design-time activity,
the computational cost of choosing an arbitrarily small �h

could be negligible when considering the increased tightness
of the resulting approximation. Our experiments have shown
that, even with a choice of �h = 0.01, we can achieve high
accuracy in terms of safety checks. For Algorithm 2, the design
choice is to set a proper length for the prediction horizon K .
We showed that extensive randomized simulations performed
in Section VI-A can help in choosing a value for K that
achieves an acceptable tradeoff between how “early” we would
like to raise warnings versus the accuracy of Algorithm 2 (see
Figs. 2 and 3).

VII. CONCLUSION

In this article, we have presented a predictive online safety
monitoring approach for LTI systems under potential stealthy
sensor attacks. Our approach precomputes off-line symbolic
reachable sets in terms of the system’s state estimate by
considering the evolution of the estimation error under a
potential stealthy attack. Given the current state of the system
and controllers, we predict, in real time, the control flow
of the system for a certain number of steps in the future.
The precomputed sets are then instantiated at the predicted
estimates. We use ellipsoidal calculus techniques to perform
emptiness checks of the intersection of the precomputed set
with a set of unsafe states. We applied the approach to
the large-scale TEP where we validated our approach and
we showed that it can perform safety checks in a timely
manner. Furthermore, we demonstrated the improvement over
existing online monitoring techniques, and we showed that the

computation of reachable sets under stealthy attacks is well
justified in safety-critical applications. In the future, we will
study in more detail the uncertainty propagation caused by
the prediction of future states and its effect on the validity of
the safety checking. In addition, we will study the possibility
of extending the proposed online monitoring approach to
other attack models, such as the replay or the covert attack,
particularly in situations where it is justifiable to consider more
resource-intensive stealthy attacks from the attacker’s point of
view. We also plan to consider systems that exhibit a high
degree of nonlinearity and may not be modeled in the LTI
framework.
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