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Transactive Control of Electric Railways Using
Dynamic Market Mechanisms

David D’Achiardi, Anuradha M. Annaswamy, Sudip K. Mazumder, and Eduardo Pilo

Abstract— Electricity demand of electric railways is a rel-
atively unexplored source of flexibility in demand response
applications in power systems. In this paper, we propose a
transactive control based optimization framework for coor-
dinating the power grid network and the train network. This
is accomplished by coordinating dispatchable distributed
energy resources and demand profiles of trains using a
two-step optimization. A railway based dynamic market
mechanism (rDMM) is proposed for the dispatch of dis-
tributed energy resources (DER) in the power network along
the electric railway using an iterative negotiation process,
and generates profiles of electricity prices, and consti-
tutes the first step. The train dispatch attempts minimize
the operational costs of trains that ply along the railway,
while subject to constraints on their acceleration profiles,
route schedules, and the train dynamics, and generates
demand profiles of trains and constitutes the second step.
The rDMM seeks to optimize the operational costs of the
underlying DERs while ensuring power balance. Together,
they form an overall framework that yields the desired
transactions between the railway and power grid infrastruc-
tures. This overall optimization approach is validated using
simulation studies of the Southbound Amtrak service along
the Northeast Corridor (NEC) in the United States, which
shows a 25% reduction in energy costs when compared to
standard trip optimization based on minimum work, and a
75% reduction in energy costs when compared to the train
cost calculated using a field dataset.

Index Terms— Power Grid, Train Network, Renewable In-
tegration, Railway Dispatch, Train Dispatch, Social Welfare,
Trajectory Optimization.

I. INTRODUCTION

MODERN electric trains can both demand power from
their traction system for locomotion and inject power

back into the electricity network through regenerative braking,
virtually enabling them to store electricity in the form of
kinetic energy [1]. The power profile of a train along a route is
in many cases determined by the conductor based on training

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

This work was supported NSFs Cyber-Physical Systems program
under award 1644877 and 1644874. However, any opinions, findings,
conclusions, or recommendations are those of the authors and do not
necessarily reflect the views of the NSF.

D. D’Achiardi and A.M. Annaswamy are with the Department of
Mechanical Engineering, Massachusetts Institute of Technology, Cam-
bridge, MA, 02139 USA [davidhdp, aanna] @mit.edu.

E. Pilo is with Polytechnic School, Universidad Francisco de Vitoria,
28223 Pozuelo de Alarcn Madrid, Spain eduardo.pilo@ufv.es.

S. K. Mazumder is with the Department of Electrical and Computer
Engineering, University of Illinois at Chicago, Chicago, IL, 60607 USA
mazumder@uic.edu.

and experience, attempting to meet a given schedule with little
regard to the varying electricity price along the route. In this
paper, we propose an alternate operation methodology that
consists of coordination of train schedules and the dispatch of
rail-side distributed energy resources (DERs) and leads to a
determination of prices and schedules of power consumption
for the trains and power generation for the DERs. Together,
this coordinated operation is shown to minimize the overall
electricity cost incurred by the trains. As this coordination
occurs through a transactive framework between the train
dispatch and the dispatch of railway agents such as DERs,
this leads to a transactive control of the two interconnected
systems of train network and the power grid network, similar
to the transactive controller in [2], [3].

A major driver that allows the proposed transactive coordi-
nation framework between the train-network and the power-
network is the transformation of the latter in recent years. This
has been due to the explosive growth of renewable energy
sources [4] and demand response [5], collectively denoted as
DERs. The increasing footprint of these resources enables
them to be dispatchable, and to enter into a transactional
framework where incentive information (pricing) and com-
mitment decisions (quantity) can be iteratively exchanged
and arrived at an optimal solution. This iterative transac-
tional framework is denoted as Dynamic Market Mechanisms
(DMM), and has been explored in [6]–[9]. The origins of
transactive control are very much rooted within the energy
application realm, as the ideas of using an incentive signal to
alter the behavior of demand-side customers in power systems
can be traced back to Schweppe’s 1980 paper on homeostatic
utility control [3]. A large-scale demonstration of this concept
can be found in [2] where electric systems with high renew-
able adoption were considered and shown to meet demand
reduction objectives. The DMM-related results in [6] show
that DERs can engage in market-transactions at the tertiary
control level and ensure grid objectives through a hierarchical
framework. Exactly how these market mechanisms can be
integrated into a real-time market and a regulation market
together with secondary control based AGC was explored in
[9]. Focus was placed on demand response compatible assets
in [7] . The implications of DMM in the context of a combined
heat and power microgrid was explored in [10]. In this paper,
we will enable the coordination of various DERs in a power
network that are located along the railway network through
the use of a DMM, and denote it as rDMM.

The main challenge in the design of the proposed transactive
framework is to coordinate the objectives of the two networks.
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The points of intersection between these two networks is the
need to optimize operational costs and the need to ensure
physics-based constraints such as power balance, capacity
and operational limits, and train kinematics. A combined
optimization problem subject to all underlying constraints can
be posed and used to determine the train schedules and prices,
but can prove to be quite intractable due to the complex
nature of the constraints, space-dependent and time-dependent
constraints with various intractable coupling mechanisms. We
therefore adopt a two-step approach where the first consists of
railway dispatch of schedules and electricity prices for a given
train-demand profile, and the second consists of train dispatch
which determines the train schedules for a given electricity-
price profile. The railway dispatch determines, along each
section of the track, the electrical output of each generator, the
output of all storage assets, and the output of all cogeneration
assets for a given set of profiles of power demand from
trains and renewable generation. The train dispatch solves the
trajectory optimization problem, i.e. the velocity profiles of
the trains, through an energy cost minimization subject to
acceleration limits and kinematic constraints. Our thesis in
this paper is that such a two-step optimization can enable an
effective coordination between the power grid network and
railway network. In particular, we will show that the two-step
optimization will lead to significant reduction in energy costs
through simulation studies. While the methods utilized for
solving this two-step optimization are fairly straightforward,
the main contribution of the paper lies in the novelty of the
proposed approach for trip optimization in electric railway
networks. To our knowledge, such a transactive approach,
which can be viewed as Demand Response using the flexibility
in power consumption of trains, has not been suggested thus
far in the literature except for [11] and [12], where we
presented preliminary results using this approach.

Related work that has addressed trip optimization in rail
networks can be found in [13], [14], [15], [16], and [17].
Reference [13] provides a summary of the trajectory planning
problem in railway systems. Optimal trajectory planning for
electric railways can be found in chapters 3 and 4 of [14],
where pseudospectral methods are used to determine optimal
railway operation based on models of train dynamics. This
work builds upon the work minimization literature developed
by [15] and [16]. Finally, [17] develops a control system to
reduce fuel use in freight locomotives. In all of these lines of
research, the overall objective is to minimize energy use, or
work done by the train, rather than the cost of the electricity
to the infrastructure manager, an important component of our
proposed scheme.

The remainder of this paper is organized as follows. Section
II describes the problem faced by the railway and train
operators in scheduling DERs and trains along the railway
system. In Section III we break out the railway dispatch,
i.e. dispatch of the generators and other assets along the
railway track based on the estimated renewable generation,
traction electric demand and electric and thermal loads for
each section of the electric railway. Section IV establishes
the dynamic model of an electric train and formulates the
energy cost minimization problem that needs to be solved

by each train traveling along the electric railway. Section V
describes the integrated transactive control methodology that
iterates between the Railway Dispatch and the Train Dispatch
solutions to determine the price signals and corresponding
dispatch profiles of the agents and trains that minimize the
operational costs of the entire system. Section VI presents a
case study of the Amtrak service along the Northeast Corridor
in the United States, composed of multiple sections and DER
topologies, and validate the proposed transactive controller.
Realistic accommodation of data has been carried out in this
case study including incorporation of the actual electricity
prices from the wholesale market, actual load profiles, realistic
train data, and renewable energy profiles available in public
database. Using this case study, we compare our approach
with both the current train profile using field data and an
optimization framework based on minimization of work. Con-
cluding remarks and future research extensions are discussed
in Section VII.

II. PROBLEM FORMULATION

Electric railway systems can be owned and operated by
multiple parties. In some systems, the track and electric system
that powers the trains are owned by an entity that charges a
fee for the utilization of their facilities. This entity is typically
responsible for the maintenance of the track, procuring the
electric power to feed the trains, dispatching rail-side DERs
and controlling traffic along the system. These entities are
commonly known as Railway Operators. We will denote
Train Operators as those who are in charge of the use of
the track based on their projected train schedules, maintain
and dispatch the trains and pay usage fees to the Railway
Operator. The problem that we consider in this paper is a
combined optimization of both the railway dispatch and the
train dispatch, with Railway Operator and Train Operator
acting as the interface between the grid network and the train
network (see Figure 4 for an overall schematic).

In Section II-A we will discuss how Railway Operators
procure electricity and thermal energy from wholesale energy
markets, distribution operators (i.e. utility companies) and
DERs. In Section II-B we formulate the underling optimization
problem where the cost is Social-Welfare like, and depends on
the costs incurred by the DERs, the electrical and thermal
loads of the railway system and the electric trains. The
resulting solution will then provide optimal profiles for various
generation assets as well as the train consumption/generation
profiles, i.e. the railway dispatch and the train dispatch.
Deriving such a solution however proves exceedingly difficult
to solve due to the presence of several dynamic nonlinear
constraints and the fact that the timescale required to solve
the trajectory optimization problem needs to approach real-
time, especially for the train dispatch. This motivates the two
part solution proposed in Sections III-V.

A. Traction System Preliminaries
A wide range of traction system architectures and tech-

nologies have been developed for electrified railway systems,
across low frequency (DC, 16.6Hz, 20 Hz and 25Hz) as
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Fig. 1: Summary of the existing activities (power, cost and
information flows) between the four entities (wholesale en-
ergy markets, retail energy sales, railway dispatch and train
dispatch) to power within the electric railway network.

well as industrial frequency (50Hz and 60Hz) networks which
are powered by overhead and third rail traction distribution
systems. Additionally, electric trains have been both powered
by rail-side generators as well as grid-tied systems. In some
scenarios, electrical connections to a large-scale electricity
distribution or transmission system are complemented with
distribution lines that travel along the rail, and can be designed
such that they improve the reliability of the traction system by
providing redundant power supplies to the traction substations
feeding the traction system. These various architectures have
a direct impact on the flexibility of the demand of the train
and therefore a possible energy cost reduction.

A typical architecture of energy procurement and dispatch
that occurs along the electric railway is provided in Fig. 1 and
will be adopted for the discussions in this paper. This architec-
ture is typically adopted in deregulated electricity markets such
as Amtrak in the Northeastern United States, and will be used
in the case study presented in Section VI. That is, we assume
that Railway Operators face delivery charges as distribution-
level customers of electric utilities which own and operate the
distribution system. However, due to their energy requirements
and the regulatory setting in which they procure energy,
they could access wholesale markets for electrical supply.
Additionally, we assume that third-parties could invest in rail-
side DERs, seeking to provide energy services to the Railway
Operator. Competitive retail sales of electricity from power
marketers [18] and on-site Power Purchase Agreements (PPAs)
offered by Energy Services COmpanies (ESCOs) [19] are both
established and growing energy procurement mechanisms for
commercial companies including electric railways.

B. Overall Constrained Optimization Problem

With the architecture chosen as in Fig. 1, we now introduce
a problem formulation for energy procurement and dispatch
for optimal grid-railway interaction. A first component of this
problem formulation is the Area Control Centers(ACCs) (see
Fig. 1) managed by a Railway Operator. An ACC is charged
with serving the electric railway traction system, limited to
a portion of contiguous electric railway with the property

that marginal injections or demands for power have the same
cost to the operator for all time t. Along this portion of
the track, all rail-side DERs and trains that interface with
the traction system are enabled to provide price and quantity
information regarding their dispatch, and are compensated and
charged based on their actions by the ACC. The Railway
Operator manages the ACC with the objective of reducing
overall operational costs while maximizing the value of the
DERs along the track and meeting all thermal and electric
loads in the system. That is, the overall objective of the railway
dispatch is to schedule energy resources, which includes trains,
so as to minimize the cost of energy resources and trains along
the railway system. Such an optimization has to be carried
out subject to the various constraints of the grid and railway
networks.

More formally, the underlying problem is the dispatch of
electric railway power systems across N ACCs for a time
horizon τ = [t0, tf ] in an optimal manner. This includes the
electric traction loads of Ln trains, with power profiles denoted
as P ln for the electric profile of train l in ACCn over the time
interval

[
tln,0, t

l
n,f

]
. The Railway Operator is charged for its

electric loads at a rate λn (t).
On the generation side, we consider Dn dispatchable gen-

erators (including DERs and electric utility imports) at each
ACCn with electric and thermal power profiles P den and P dthn .
For compactness, we will use P dn , a tuple of the electric and
thermal generation for each generator d. These agents incur a
cost Cdn

(
P dn
)
, which is private to their owner and operator.

All other electric and thermal power demand in the electric
railway system, such as the thermal conditioning and lighting
loads at passenger stations, are considered price-inelastic and
are included within the power balance constraints of the
problem but are not included in the objective function due
to their fixed nature.

Given that the utility of the trains and generators are fixed,
the social welfare maximization problem, which is commonly
used for economic dispatch problems in power grids, reduces
to a cost minimization problem with two terms in the objective
function, the generator cost of generating the electricity and
the energy cost of operating the trains.

With the above definitions, the overall grid-railway opti-
mization can be posed thus:

min
PD

n (t),PT
n (t)

N∑
n=1

(
Dn∑
d=1

Cdn(P
d
n) (1)

+

Ln∑
l=1

∫ τ=tln,f

τ=tln,0

P ln (τ)λn (τ) dτ

)
s.t. Nodal Electric Power Balance (2)

Nodal Thermal Power Balance (3)
DER - Agent Capacity Limits (4)
Train Dynamics (5)
Train Electric Motor Power Limits (6)
Train Traction Force Limits (7)
Train Acceleration Limits (8)
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Train Velocity Limits (9)
Train Schedules. (10)

We note that in the constrained optimization problem in
Equations (1)-(10), the decision variables are composed of
the power profiles of the dispatchable agents and the trains
at each of the ACCs as well as the price of electricity paid by
the electric trains.

It is clear that the objective function in Eq. (1) is composed
of the sum of the cost of the dispatchable generators (which
we will denote as agents) and the energy expenses of the
electric trains. These two costs are the fundamental building
blocks of the two part railway dynamic market mechanism
(rDMM ) developed in Sections III-V. When broken down
into the individual ACCs, the first term captures the railway
dispatch problem with fixed loads, which in turn is subject to
power balance and agent capacity limit constraints (2)-(4). The
second term corresponds to the train dispatch problem, and is
in turn subject to train dynamics and scheduling constraints
(5)-(10).

The optimization problem as in (1)-(10) is difficult to
solve, highly intractable, and poses several challenges. First,
its solution requires that all of the traction system agents
share their private cost information C

(
P dn
)

to appropriately
capture and minimize the overall system cost. This feature
would likely inhibit private investment in rail-side DERs. The
timescale of electric train dispatch may not individually align
with that of the ACCn dispatch. Trajectory optimization of
electric railway power profiles occurs in the seconds timescale
whereas energy asset dispatch is unlikely to be used at a
timescale faster than 5 minutes. Additionally, the trains are
entering and exiting each of the ACCn at different times
which are dependent on the pricing signal. All of these cause
an intricate coupling between spatial and temporal constraints
that are nonlinear and convex. In an effort to simplify the
process and make the problem more tractable, we propose a
two step approach that iterates between the electric railway
and the train dispatch problems in Sections III - V.

III. ELECTRIC RAILWAY DISPATCH

This section describes the minimization of energy asset
costs in an electric railway where the Railway Operator must
guarantee that all electric and thermal constraints must be met.
We will explicitly accommodate the constraints and timescales
of each energy agent along the railway. Both thermal and
electrical energy assets powering the electric railway are
included in this optimization. Section III-A describes the
different agents that operate in the system and introduces
the timescales in which they interact. Section III-B discusses
the model used for agent costs and operations within the
Railway Dispatch problem. Lastly, Section III-C uses the agent
costs and operations to state and solve the Railway Dispatch
problem, following a similar procedure as the one developed
in [10].

A. Agent Types and Timescales
Within each of the railway segments n the Railway Operator

must meet the electrical and thermal demand or load during

the next M future dispatch intervals which are indexed as K =
{1, ...,M}. Moreover, in managing the electrical system of the
railway, the Railway Operator is tasked with dispatching and
compensating the electrical agents or assets within ACCn in a
way that minimizes the total cost of the operation. The electric
railway dispatch problem described in this section determines
optimal dispatch for each future time interval; however, the
pricing and dispatch is only binding and executed for K = 1
after the Railway Dispatch problem has been solved.

We define five types of dispatchable agents within the
railway power system at each node n that are classified into the
following sets: heating assets (e.g. boilers), Hn; electric gen-
eration assets (e.g. fuel cell, microturbines), En; cogeneration
assets (e.g. combined heat and power units), Cn; storage assets
(e.g. batteries), Sn; low voltage side network connections (i.e.
points of common coupling), Nn. The set of all dispatchable
agents at node n is denoted as An , Hn ∪ En ∪ Cn ∪ Nn.
It is assumed that within each dispatch interval K there are
two faster timescales, where the first corresponds to instances
j ∈ {1, ..., j∗∗}, at each of which forecast updates of all non-
dispatchable loads and generation are received. Between each
[j, j+1], we introduce a faster timescale k ∈ {1, ..., k∗} where
at each instance k, all dispatchable agents negotiate electric
and thermal generation schedules and prices (see Fig. 2). It is
assumed that these timescales with j∗∗ and k∗ are such that
they are nested, and that the time-intervals permit a useful
forecast data and sufficient negotiations, respectively.

In addition to the above agents, we also consider three
types of non-dispatchable agents at each node n, classified
into the following sets: renewable generators, ren; electrical
loads (e.g. lighting at the passenger station), en; and thermal
loads (e.g. heating of the passenger stations), thn. The set
of these non-dispatchable agents at node n is denoted as
Fn , ren ∪ en ∪ thn, all of whom inject and demand electric
and thermal energy from the same network as the dispatchable
agents but are not dispatched by the Railway Operator. Instead,
the operators in charge of each of these passive resources (i.e.
the renewable asset operator for ren and the passenger station
operator for en and thn) communicate the best load estimate
over ACCn’s future time intervals K. This forecast update
occurs every j when new updates arrive for the renewable
assets, or any of the loads. The periods associated with the
time scales k and j need to be such that it should accommodate
new information related to the forecast and at the same time,
the convergence rates of the negotiations.

Lastly, we consider electric trains l = {1, ..., L} injecting
and demanding electric power from ACCn. We denote the
set of all trains at node n as Tn. For the purpose of the
Railway Dispatch problem, the trains are no different from
the set of passive agents Fn in that they provide an update
to their electric power profile for the dispatch intervals K =
{1, ...,M} at each forecast instance j. However, as shown
below, once we define the Train Dispatch problem faced by the
train operators for each train in Section IV and the composition
of the transactive controller in Section V, the train update will
transform from a simple forecast update to a price-dependent
minimum cost dispatch update.
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Fig. 2: Time scales within the Railway Dispatch problem.
Dispatch intervals K = {1, ...,M} constitute the rolling
dispatch horizon considered by the Railway Operator of
ACCn. The passive agents Fn and electric trains Tn provide
a thermal and electric load forecast for each dispatch interval
during forecast instances j = {1, ..., j∗∗}. Active agents An
negotiate price and quantity during each negotiation instance
k = {1, ..., k∗} based on the forecast updates and their private
cost information. It is assumed that train l traverses ACCn
over the period [tl,n−1, tl,n] which overlaps with the forecast
intervals K = 1 and K = 2.

B. Agent Costs and Operation

The overall goal of Railway Dispatch is to arrive at pricing
information that can yield optimal setpoints for generators and
utility power import. Over the time horizon of M dispatch
intervals, the electric and thermal power profiles for each of the
agents considered (dispatchable, non-dispatchable, and trains)
is assumed to take positive (generation) and negative (load)
values.

In order to capture the electric and thermal components of
generation for dispatchable agents in An at each time period
M , the output of the generators is denoted by the decision
variable

yi ∈ RM ∀ i ∈ An (11)

and the K’th element of yi as yi,K .This decision variable maps
to an electric and a thermal output as given by:

gei (yi) = deiyi ∀ i ∈ An, (12)

and

gthi (yi) = dthi yi ∀ i ∈ An. (13)

In other words, yi is a dispatch setpoint associated with
a particular electric and thermal output. For electric-only
generator i, the thermal conversion coefficient vector, dthi ∈
RM , is the zero vector and the electric conversion coefficient
vector, dei ∈ RM takes positive values. We make the following
assumptions regarding their constraints and costs.

Assumption 1: Electric and thermal power capacity of
agent i are bound by {P ei , P ei } and {P thi , P thi } respectively.

Assumption 2: Capacity constraints are not binding and
losses are negligible for all electrical and thermal equipment
in the system other than the dispatchable agents.

Assumption 3: The cost function of each dispatchable
agent i ∈ An is a convex quadratic function.

For a single dispatch interval K = {1, ...,M}, this quadratic
cost is denoted as:

Ji,K(yi,K) = ai,K + bi,Kyi,K +
1

2
ci,Ky

2
i,K (14)

and over the multi-periods as

Ji(yi) =

M∑
K=1

Ji,K (yi,K) ∀i ∈ An. (15)

For the agents representing low voltage side network connec-
tions N , the cost function can be updated as a function of the
equilibrium price in an external market, such as a wholesale
energy market. Labeling the external market price for the low
voltage side network connections as πNn,j , the cost function
parameters ai,K , bi,K , and ci,K in (14) are determined for
i ∈ N at each forecast instance j. Given that these market
prices commonly represent marginal prices, the cost function
parameters may be simply chosen as: ai,K = 0, bi,K = πin,j ,
and ci,K = 0.

Each of the passive agents in Fn determine their power
output for the dispatch intervals K = {1, ...,M} at each
forecast instance j (see Fig. 2), which are denoted by P̂ rej,K
for renewable generators, P̂ ej,K for electric loads and P̂ thj,K for
thermal loads. We drop the subscript K to denote the power
output vector over the dispatch intervals in RM as P̂ rej , P̂ ej ,
and P̂ thj . In order to determine the train demand, suppose
that train l traverses ACCn over the period [tl,n−1, tl,n] over
the dispatch interval K and Pl(t, n) is the corresponding
forecasted demand at instance j, we denote this demand as
P ∗l,j,K . This in turn can be summed over all L trains to yield

P̂Tj,K =

l=L∑
l=1

P ∗l,j,K . (16)

For ease of exposition, we drop the subscript K in (16) and
simply denote the total train demand at forecast instance j as
P̂Tj .

C. Railway Dispatch Algorithm
With the overall costs and constraints related to all agents

specified as above, we state the Railway Dispatch problem at
ACCn at a fixed forecast instance j = {1, ..., j∗∗} over the
dispatch intervals K = {1, ...,M} in RM as:

min
yi,j ∀ i ∈ An

∑
i∈An

Ji (yi,j) (17)

s.t. ce = P̂ rej + P̂Tj + P̂ ej +∑
i∈An

gei (yi,j) = 0 (18)

cth = P̂ thj +
∑
i∈An

gthi (yi,j) = 0 (19)

m+
i (yi,j) = yi,j − yi,j ≤ 0 (20)

m−i (yi,j) = yi,j − yi,j ≤ 0. (21)

The output values for each dispatchable agent i ∈ An over
the dispatch interval K = {1, ...,M} at dispatch instance
j are denoted as yi,j ∈ RM and constitute the decision
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variables of the problem. These decision variables are bound
at each dispatch interval K by the sum of the electric loads
per (18), the thermal loads per (19), the maximum capacity
constraint per (20) where yi,j = min{P ei /dei , P thi /dthi } and
the minimum capacity constraint per (21) where yi,j =

max{P ei /dei , P thi /dthi }.
At each forecast instance j = {1, ..., j∗∗}, the power profile

for each renewable generator, P̂ rej ∈ RM , electric load,
P̂ ej ∈ RM , thermal load, P̂ thj ∈ RM , and the total traction
load, P̂Tj ∈ RM , are updated for the dispatch interval K =
{1, ...,M}. The new forecasts are used to update constraints
(18) and (19), with the resulting optimization problem in (17)-
(21) solved again.

With each forecast update j = j +1, the decision variables
of the problem, denoted as y∗i,j optimize the cost in (17). For
the dispatch intervals K = {1, ...,M} these decision variables
can in turn be mapped to the electric and thermal output of
the agents as [gei (y

∗
i,j), g

th
i y
∗
i,j)] ∈ RM .

The underlying optimization problem that the Railway
Operator has to solve is therefore given by the solution of
(17)-(21) for a given set of forecasted profiles. We propose
that each ACCn solves this through an iterative negotiation
process amongst the dispatchable agents within this ACC.
This is proposed to be carried out by the faster timescales,
k = 1, 2, ...k∗ for each j. That is, at each forecast instance
j the negotiation process starts at k = 0, where P̂ rej , P̂ ej ,
P̂ thj , and P̂Tj are fixed, allowing the Railway Operator at
ACCn to establish the electric and thermal loads for the
dispatch horizon. And at k = 0, it is assumed that the
Railway Operator for ACCn broadcasts an initial price duple
λn,j,k=0 =

[
λen,j,0, λ

th
n,j,0

]
∈ RM consisting of electric and

thermal prices.
With these initial conditions, using a Lagrangian and a

gradient-based update, the decision variables yki,j ∈ RM and
the prices λen,j,k ∈ RM and λthn,j,k ∈ RM are updated at each
negotiation instance k as:

yk+1
i,j = yki,j − βyi

(
∇yki,jJi(y

k
i,j) +

[
∇yki,jh

e
]T
λen,j,k

−
[
∇yki,jh

th
]T
λthn,j,0 ∓ µ±ki,j

)
(22)

λen,j,k+1 = λen,j,k + βλe(P̂ rej + P̂Tj + P̂ ej

+
∑
i∈An

gei (y
k
i,j)) (23)

λthn,j,k+1 = λthn,j,k + βλth(P̂ thj +
∑
i∈An

gthi (yki,j)) (24)

where βyi , βλe , βλth ∈ R ∀ i ∈ An are positive step-
size parameters and µ±i,j ∈ R ∀ i ∈ An is the penalty
for violating capacity constraints (20) and (21). The penalty
function updates are given by:

µ±k+1
i,j = max{0 , µ±ki,j + βµiµ

±k
i,j } (25)

where βµi is a positive step-size parameter.

It is assumed that these iterations occur at each k and
converge as k → k∗ for some k∗. As outlined in [9], under
suitable convexity conditions, it can be shown that convergence
to unique optimal values takes place.

Defining P̂Fj = [P̂ rej + P̂ ej , P̂
th
j ] as the estimate of the

fixed assets at j, these estimates can be updated with j
as the new forecasts arrive. The forecast update enables an
improved dispatch of the agents across the dispatch intervals
K = {1, ...,M}.

Note that in practice, exit conditions based on the agent
output and price profile updates within the negotiation process
can be established such that the forecast update is promptly ini-
tiated. These exist conditions follow the form:

∣∣yk+1
i,j − yki,j

∣∣ ≤
γyk & |λn,k+1,j − λn,k,j | ≤ γλk . If these conditions are met,
the equilibrium agent output and price profiles can be set as
y∗i,j = yk+1

i,j ∀i ∈ An, and λ∗n,j = λn,k+1,j respectively.
Similarly, exit conditions can be established for the fore-

cast update process, such that the agent output and price
profile updates can be communicated for dispatch and set-
tlement if so desired. These exit conditions follow the form:∣∣y∗i,j+1 − y∗i,j

∣∣ ≤ γyj &
∣∣λ∗n,j+1 − λ∗n,j

∣∣ ≤ γλj . If these
conditions are met, dispatch for the first interval K = 1 can be
established using agent output profiles y∗∗i = y∗i,j+1∀i ∈ An
and price profiles λ∗∗n = λ∗n,j+1.

In summary, the Railway Dispatch algorithm for K = 1
starts at k = 1, j = 1 with a forecast of the power profile
for each renewable generator, P̂ rej ∈ RM , electric load, P̂ ej ∈
RM , thermal load, P̂ thj ∈ RM , and the total traction load,
P̂Tj ∈ RM , and returns the optimal agent output profiles y∗∗i ,
the total traction demand profile PT∗∗ and the price profiles
λ∗∗n that can be used for dispatch and settlement of dispatch
interval K = 1. The dispatch interval window then shifts over,
with K = 2 corresponding to the active dispatch interval and
the process repeats.

IV. TRAIN DISPATCH

In the previous section, we assumed that at each ACCn, the
train loads Tn were fixed, and the dispatch of the active agents
An was optimized. In this section, we address the fact that
these train loads are indeed flexible, and pose a constrained
optimization problem for determining the optimal profiles of
generation and consumption of their power profiles. In Section
IV-A, we describe the physical model of the train. Next, we
define the cost minimization problem for a track with multiple
pricing regions, managed by ACCn in Section IV-B. With this
Train Dispatch accomplished, in Section V, we describe how
the Railway Dispatch optimization described in Section III
can be stitched together with the Train Dispatch optimization
to result in an overall transactive control framework for the
combined grid-railway infrastructure. This overall framework
is validated using numerical simulation of the Amtrak NEC in
Section VI.

A. Dynamic Model of Electric Trains
The power consumption of the electric train depends on

the traction force, which in turn depends on the overall train
dynamics. In this section, we derive the underlying dynamic
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Fig. 3: Free body diagram of electric train l. The resulting
traction force FT,l, friction and drag force FDF,l and the
gravitational force component in the direction of motion of
the train mlgsinαl(xl) are identified. Newton’s second law
of motion is written for the ı̂ direction, along the direction of
motion of the train.

model of the train and the corresponding power consumption
profile. The position, velocity and acceleration of train l in the
direction of motion ı̂ are denoted by xl, ẋl, and ẍl respectively.
We proceed by defining the three forces with a component
in the direction of motion of the train ı̂ as it travels at an
angle αl(xl) from the horizon. The gravitational force on the
train can be decomposed into the direction of motion ı̂ as
−mlgsin(αl(xl)) and the direction normal to the ground ̂ as
−mlgcos(αl(xl)), where ml is the total mass of the train.

The electric motors converting electrical into mechanical
power is assumed result in the traction force FT,l in the ı̂
direction. An opposing force FDF,l is also included in the
model, which includes a drag force and a friction force [20].
With these definitions, we can derive the equation of motion
in the direction of motion ı̂ as

mlẍl = FT,l − FDF,l −mlgsinαl(xl). (26)

The traction force FT l is a function of both the electric power
Pl and ẋl, and is in general a mapping of the ratio Pl/ẋl. The
drag-friction force can be represented as∑

FDF,l = Al +Blẋl + Clẋl
2. (27)

known as Davis Equation [20]. This industry standard approx-
imation captures the rolling resistance effect at low speed
through the linear term and the drag force through the
quadratic term. More detailed drag-friction models for train
cars can be found in [21].

B. The Constrained Optimization Problem

In the analysis henceforth, we consider the cost minimiza-
tion problem of train l that departs location x0 at time t0
and arrives at a final destination xf at time tf . The train
stops at passenger stations denoted by s ∈ {0, ..., D} between
t ∈ [tl,a(s), tl,d(s)], where tl,a(s) is the arrival time and
tl,d(s) is the departure time from station s and xl,s denotes the
position of station s. And as indicated by (26), xl is determined
by the train dynamics.

The train trajectory is assumed to traverse n subsections,
each dispatched by an Area Control Center, denoted as
ACCn,∀n ∈ {1, ..., N}. It should be noted that these sections

may not coincide with the railway sections between passenger
stations. Section n of the track is bound by the position interval
[xn−1, xn] and, as mentioned earlier, train l is assumed to
travel within this section during the time interval [tl,n−1, tl,n]
for ACCn. The operator of train l must choose the electric
power demand profile given by the set of functions Pl(t, n),
over this interval, ∀ n ∈ {1, ..., N}. The power demand
profile of train l is therefore composed of the profiles at each
ACC:

Pl(t) =


Pl(t, 1) t ∈ [tl,0, tl,1]

...
Pl(t,N) t ∈ [tl,N−1, tl,N ].

(28)

We assume that the railway is level at the passenger stations
(i.e. α(xl,s) = 0, ∀ s ∈ 0, ..., D) implying that the power
demand of the train during the stop is equal to zero, Pl(t) =
0 ∈ [tl,a(s), tl,d(s)], ∀ s ∈ 0, ..., D.

For each ACC, the operator of train l faces the price
of energy given by the set of functions λl(t, n) ∀ t ∈
[tl,n−1, tl,n], ∀ n ∈ {1, ..., N}. The price of energy for train
l is therefore composed of the profiles at each ACC:

λl(t) =


λl(t, 1) t ∈ [tl,0, tl,1]

...
λl(t,N) t ∈ [tl,N−1, tl,N ].

(29)

Note that these profiles are a function of time as well
as the ACC traversed by the train. The price faced by the
operator of the train can be determined from the Railway
Dispatch problem equilibrium prices λ∗∗n as follows. Suppose
we consider the time horizon [tl,n−1, tl,n] over which train
l traverses ACCn, and we chose an arbitrary time tK ∈
[tl,n−1, tl,n], and suppose it corresponds to the K’th interval
(for example, the time horizon corresponds to K = 1 in the
example shown in Fig. 2). Then λl(t, n) corresponds to the
Kth element of λe∗∗n ∈ RM . A similar procedure can be
utilized to determine λl(t) for all intervals in (29). In practice,
trains may need to preemptively terminate the portion of the
schedule included in the Train Dispatch problem or use proxy
pricing if they operate within a particular ACCn outside of
the dispatch horizon included in the Asset Dispatch problem.

The energy cost minimization of the train can now be
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formulated as:

min
xl,ẋl

∫ τ=tf

τ=t0

Pl(τ)λl(τ)dτ (30)

s.t. mlẍl + FDF,l(ẋl)+

mlgsin(αl(xl)) = FT,l

(
Pl
ẋl

)
(31)

Pl(xl) ≤ Pl ≤ Pl(xl) (32)

FT,l(ẋl) ≤ FT,l ≤ FT,l(ẋl) (33)

al ≤ ẍl ≤ al (34)
vl(xl) ≤ ẋl ≤ vl(xl) (35)
tl,a(s) ≥ tl(s), s ∈ {0, ..., D}

(36)
tl,d(s) ≤ tl(s), s ∈ {0, ..., D}.

(37)

In the above, (30) represents the energy cost incurred by the
train across all ACCs between t0 and tn. Constraint (31)
enforces the train motion dynamics described in Section IV-
A, rearranging (26) to solve for the traction force FT,l as a
function of the position, velocity and acceleration of the train.
The power demand of train l from the traction system at each
ACC, Pl(t), is constrained by (32) which imposes a lower
bound at Pl(xl) and an upper bound at Pl(xl). Note that the
limits are functions of the ACC in question as the particular
track segment might not be able to receive or provide more
than a given power magnitude.

Next, we define the limits of the traction force FT,l
in (33) reducing the feasible traction force window
[FT,l(ẋl), FT,l(ẋl)] based on the traction force curve of the
manufacturer. The acceleration rate of the train ẍl is lim-
ited per (34) due to safety considerations of the passengers,
who may be standing during moments of deceleration al
or acceleration al. Similarly, the velocity of the train ẋl
is bound from below by vl(xl) and from above by vl(xl)
through equation (35) where the limits are functions of the
position xl. This dependency traces back to civil speed limit
restrictions which reduce the window of allowed speeds in
sections of the track with rail crossings, densely populated
areas and passenger stations. Finally, constraints (36) and
(37) represent the schedule constraint of train l, achieved by
limiting the time spent at the stations to the minimum arrival
time tl(s)∀s ∈ {0, ..., f} and the maximum departure time
tl(s)∀s ∈ {0, ..., f} respectively.

In summary, in this section we have posed the problem
of optimizing the power consumption of a train for a time-
schedule in the form of a non-convex constrained optimization
problem in (30)-(37). The resulting solution is in the form of
power demand profiles P ∗l (t) for a train l at time t for a given
set of price profiles λl(t), constructed by determining the cor-
responding time interval K and the corresponding equilibrium
price λe∗∗n . The solution of the Train Dispatch problem may
be determined using any one of several commercial software
packages such as Matlab’s fmincon [22]. Note that the decision
variables used by the optimization problem are position xl
and velocity ẋl, the two state variables used to represent
the dynamical system. Also, numerical solvers can be used

to transform the continuous variables (including the decision
variables)to discrete-time variables of length (tf−t0)δτ , where
δτ is the time step.

V. OVERALL TRANSACTIVE CONTROL ARCHITECTURE -
RAILWAY DYNAMIC MARKET MECHANISM (RDMM)

In Section II, we posed a combined optimization problem
of Railway Dispatch and Train Dispatch in the form of (1)-
(10). In order to make the problem more tractable, we divided
it into two steps, which were addressed in Sections III and
IV. In Section III, we presented a constrained optimization
problem that solves for the optimal dispatch of energy assets,
where loads including those of trains as well as renewable
generation were assumed to be fixed and the electric and
thermal schedules and prices for the generators along the
track are determined as [gei (y

∗∗
i ), gthi (y∗∗i )] ∈ RM and λ∗∗n =[

λe∗∗n , λth∗∗n

]
∈ RM respectively for dispatch intervals K =

{1, ...M} respectively in (17)-(21). This formulation captures
the agent operational cost in the first term of (1) and ensures
that the agent constraints (2)-(4) are met. In Section IV, we
focused on the optimization of the train power consumption
profiles themselves. In particular, we showed how each train
operator can solve a constrained optimization problem in
(30)-(37) to minimize energy costs given the track prices
and required schedule. Minimizing the sum of trains’ energy
costs is equivalent to the second term of (1), subject to the
constraints (5)-(10) for each train.

In this section, we show how the results of Sections III
and IV can be interleaved to solve the combined optimization
problem posed initially in Section II. This is accomplished
by adjusting the power demand of the trains as a function of
the prices from the Railway Dispatch problem, as a form of
automated Demand Response at fast time-scale, also referred
to as transactive control [23], [24]. This transactive control-
based ACCn price provides an incentive for the electric
trains to modify their dispatch by iteratively solving the
cost minimization problem (30)-(37) with the updated prices.
In what follows, we describe the overall transactive control
architecture (see Fig.4 for an overall schematic and Algorithm
1 for details).

The top block in Fig. 4 denotes the Agent Dispatch, and
corresponds to the following functionality: at each forecast
instance j = {1, ..., j∗∗}, the Agent Dispatch block takes as
inputs the traction power demand P̂Tj , passive agent output
curves P̂Fj and the energy prices from the low voltage side
network connections πNn,j , and returns the price profiles λ∗n,j
and the Railway Dispatch profiles y∗i,j . As mentioned in
Section III, the energy prices from the low voltage side
network connections are used to determine the quadratic cost
curve of these agents as in (14). Next, these cost curves are
used to update the objective function (17) and the traction
and passive agent output curves are used to update constraints
(18)-(19). The iterative dynamics in (17)-(21) are solved using
(22)-(25) for negotiation instances k = {1, ..., k∗}, stopping
when the negotiation exit conditions defined earlier in Section
III are met at each ACCn.

The block on the right in Fig. 4 corresponds to the func-
tionality of the Train Operator, who composes the price
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Fig. 4: Process flow of the two step rDMM optimization
including Railway Dispatch and Train Dispatch. The train and
Railway Operators are shown as the intermediaries between
the problems that are being solved. Note that train operators
and Railway Operators interact in a similar fashion with a
growing number of ACCn∀n ∈ {1, ..., N} and trains l ∈
{1, ..., L}.

of energy profile for each train l = 1, ..., L in (29) using
the electricity portion of the price profiles from the Agent
Dispatch block, by determining the corresponding dispatch
interval K and the corresponding element of the price vector
λe∗∗n . These are then used in the Train Dispatch block
(bottom) to determine the next dispatch profile forecast for
each train P ∗l .

The bottom block in Fig. 4 denotes the Train Dispatch
and uses the prices λl(t) as in (29) to determine the cost-
minimizing train dispatch for every train. This is accomplished
using the optimization procedure discussed in Section IV: the
energy price profiles from the Agent Dispatch block are used
to update the objective function of the Train Dispatch problem
in (30). Once this update is complete, a new power demand
profile of the train P ∗l is determined by solving (30)-(37).

The block on the left in Fig. 4 represents the Railway
Operator, who collects the new power demand profiles for
each of the trains l = 1, ..., L after each forecast instance j
and assembles the total traction power demand for each ACC
in (16). This new profile is used in the negotiations (22)-(25),
in addition to new forecasts that may become available from
other passive agents P̂Fj = [P̂ rej + P̂ ej , P̂

th
j ] at each j and

energy prices from the low voltage side network connections
πNn,j used to determine the cost function parameters ai,K , bi,K ,
and ci,K in (14) for i ∈ N .

The cycling between the Agent Dispatch and Train
Dispatch blocks repeats for forecast instances j =
{1, ..., j∗∗}. If the resulting price λ∗n,j and Railway Dispatch
y∗i,j profiles meet the forecast exit conditions for the network
(
∣∣y∗i,j+1 − y∗i,j

∣∣ ≥ γyj &
∣∣λ∗n,j+1 − λ∗n,j

∣∣ ≥ γλj ), then the
algorithm stops, dispatching the agents at the last negotiation
equilibrium y∗∗i and are compensated based on the price
profiles λ∗∗n from the top block. Similarly, the trains are
dispatched based on the last forecast update PT∗∗ from the
bottom block and their operators are required to pay the last

Fig. 5: Map of the four pricing regions identified along Am-
trak’s NEC between University Park Station in Massachusetts
and New Haven Station in Connecticut. This graphic was
developed using Google Earth Pro [25].

negotiation equilibrium price λ∗∗n . As mentioned before, the
overall iteration is ensured to stop by using suitable exit
conditions. A settlement procedure may be designed to collect
the payments of the agents at a slower frequency than the
convergence of the rDMM (i.e. monthly payments). Once
dispatch takes place for K = 1 the dispatch horizon shifts
by one interval, and the procedure set forth with j = 1 starts
again.

Algorithm 1 Railway Dynamic Market Mechanism rDMM

j = 1; λn,0 = 0
while

∣∣y∗i,j − y∗i,j−1∣∣ > γyj OR
∣∣λ∗n,j − λ∗n,j−1∣∣ > γλj do

for l = [1, ..., L] do
Update (29) using λ∗n,j
Solve (30)-(37) for P ∗l

end for
for n = [1, ..., N ] do

Update (16) using P ∗l ∀ l ∈ [1, ..., L]
Update (17)-(19) using P̂Tj , P̂Fj , πNn,j
k = 0
while |λn,k+1 − λn,k| > γk do

Solve for yk+1
i in (22)

Solve for λen,k+1 in (23) and λthn,k+1 in (24)
k ++

end while
Update λn,j = λn,j+1 and λn,j+1 = λn,k∗

end for
j ++

end while
Dispatch λ∗∗n , y∗∗i , PT∗∗ for K = 1.

VI. SIMULATIONS

The northern Amtrak NEC between Boston, MA and New
Haven, CT (within the ISO-NE power system) emerges from
a review of the electric railway systems in the United States as
a prime case study for our analysis, due to its four segmented
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Fig. 6: Schematic of the Area Control Centers proposed
for Amtrak’s northend NEC used in simulation. The four
ACCs have varying levels of load, renewable deployment,
dispatchable agents and network energy pricing.

rail power zones that result in the pricing regions identified in
Fig. 5. The four area control centers, ACCn identified with
n ∈ {1, 2, 3, 4} are powered by the substations at Sharon, MA;
New Warwick, RI; London, CT; and Branford, CT respectively
and are considered separate pricing regions, each with price
πn∀n ∈ {1, 2, 3, 4}.

Using the location of these substations, publicly available
electric utility tariff information [26]–[28] and real-time en-
ergy market data from ISO-NE [29], we estimate the real-
time energy cost to the operator at each one of the four ACCn
which are in turn used as the low-voltage side network connec-
tion costs πNn,j of the four network connection agents Nn that
are used to update the quadratic cost curve of these agents in
(15). Based on the characteristics of the Route 128/University
Park (ACC1) and Providence (ACC2) passenger stations and
their surrounding commercial spaces we also add cogeneration
assets Cn and boilers Hn using NREL’s System Advisory
Model (SAM) [30] for sizing and estimation of the quadratic
cost function coefficients in (15).

Due to the large roofs and parking lots near the University
Park, Providence and New Haven passenger stations, we also
assumed that three PV solar arrays ren can be added at ACC1,
ACC2 and ACC4, and use SAM alongside satellite imagery
to size the arrays and estimate their yearly production. We
also used the satellite imagery to measure the footprint of the
passenger stations and estimate the electric en and thermal
thn load using the EPA commercial building templates that
can be accessed through SAM.

Amtrak’s high-speed Acela Express service along the NEC
utilizes high-speed locomotives developed by Bombardier in
the late 1990s based on the French TGV [31]. Acela Express
trains have a total empty weight of 531.2MT and a full
capacity weight of 556.7MT . In simulation we assume a
partially occupied weight of ml = 545MT . Although the
Acela trains are designed to achieve a 264km/h top speed,
they are limited in operation to 240km/h which is equivalent
to vl,max = 66.67m/s.

The maximum train traction power Pl,max is 9.2MW ,
while regenerative braking is limited in operation to Pl,min =
−6.0MW [1]. In the absence of public data on the acceler-
ation rates of high-speed trains like the Acela, the estimates
used in our simulation (al,min = −0.5ms−2 and al,max =
0.5ms−2) were adopted from models of electric train systems
used by EPRail. Fitting the Davis equation (27) to the Acela
Express drag and rail friction curve we have that Al =
10, 195.16, Bl = 65.81, and Cl = 25.02.

Using the pricing information of the nodes along the track
and the Amtrak Acela Express train timetable [32], we sim-
ulate a train following a power profile that minimizes total
work as a baseline and a train dispatched by the rDMM
methodology summarized in Algorithm 1.

We now report the results obtained using the rDMM out-
lined in Section V, which we will denote as the transactive
controller. In particular Algorithm 1 was run with all numerical
parameters as in Table I. The results are shown in Fig. 7 for
a single trains travel profile corresponding to for the 6:21AM
University Park departure of Acela 2155 on January 18, 2018,
a day that exhibited large network pricing differentials. These
results include the energy prices λn as the train traverses
the four ACCs, and the position and velocity profiles of the
train. It can be seen that the train schedules are met, and the
velocity limits are accommodated. The most interesting result
corresponds to the energy price shown in the top plot in Fig.
7, and corresponds to the minimization of the cost function in
Eq. (17). This price profile in turn leads to an optimized cost
in Eq. (30) of $200.62 for this single train travel.

ACCn Agent P e,thi
dei dthi bi,K

1 H1 10,432 0 1 0.0303
1 C1 1,550 1 1.02 0.0629
1 N1 10,000 1 0 π1,j

2 H2 20,864 0 1 0.0303
2 C2 4,560 1 2 0.0818
2 N2 10,000 1 0 π2,j

3 N3 10,000 1 0 π3,j

4 N4 10,000 1 0 π4,j

TABLE I: Agent numerical parameters used in simulation.
Maximum capacity is expressed for the binding thermal or
electric characteristic and can be identified by the mapping
coefficient dei or dthi that is equal to 1. The other cost function
parameters in 14 were used at a minimum in simulation,
setting ci to a small positic quantity.

In order to evaluate the optimality of the proposed transac-
tive architecture, we compare the above results with two other
profiles which are shown in Fig. 7. The first one corresponds
to a field dataset that was collected using the GPS of a mobile
phone and the MyTracks iOS application [33] on the Acela
2171. It can be seen that the maximum speed of 66.7m/s as
well as the position datasets corresponding to the transactive
controller are consistent with our field dataset. We computed
the corresponding train cost for this field dataset assuming
the same dynamical model for the Acela train employed in
simulation, summarized in Equation (31), which allows us to
solve for the traction force FT,l as a function of the position,
velocity and acceleration datasets collected with the phone
GPS and accelerometers. This force dataset can in turn be
used in conjunction with the volatility dataset to arrive at the
tractive power profile for the route. Finally, the marginal cost
along the route, set by the low voltage side network connection
cost, can be applied to the profile to determine the total cost.
It was observed that this cost was $865.01, which shows that
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Fig. 7: Plot of average energy price [$/MWh], position [km]
and velocity [m/s] against time for the train that minimizes
work (blue), the one dispatched following rDMM (red),
and the field train (yellow) of a southbound trip on Amtrak
Acela between University Park Station in MA and New Haven
Station in CT with a stop in Providence Station in RI. The
power trajectory [MW] for the train dispatched by the rDMM
methodology is also plotted on the price plot, showcasing the
power injection from the train into the electric railway during
regenerative braking.

our rDMM results in a 75% reduction. It is possible that the
actual reduction from the rDMM may be somewhat smaller, as
we have not incorporated other speed limit restrictions along
the track such as rail crossings and densely populated areas in
the simulation of the rDMM.

The second profile shown in Fig. 7, denoted as minimum
work, was obtained by solving the Train Dispatch problem
in (30)-(37) with a uniform price profile λl(τ) = 1. This
yielded a position and velocity profile as shown in Fig. 7.
The corresponding price profile is shown in Fig. 7 as well,
which led to a total trip cost $273.69. Note that the train
dispatched by the rDMM methodology can achieve a 25%
cost reduction when compared to the train dispatched under the
standard minimum work (from $273.69 to $205.62), providing
an initial estimate of the value of incorporating dynamic, price-
responsive train dispatch in the electric railway operation.

To our knowledge, the current procedure adopted by Amtrak
for the train profile does not have such an optimization
approach, but rather allows train operators to accelerate and
decelerate the train at their discretion with the supervision
and intervention of the Positive Train Control system. The
approach in [17], implemented in freight locomotives, employ
algorithms similar to the Minimum Work method reported
above.

VII. CONCLUSIONS AND FUTURE WORKS

Electric trains are a major untapped source of demand-
side flexibility in electricity networks. Our findings contribute
to the evolution of transportation control systems devoted
to work minimization toward higher-level objectives such as
the social welfare maximization of joint transportation-electric
infrastructures. In particular, our proposed 2-step optimization
of railway dispatch of all DER agents along the train track fol-
lowed by train dispatch, facilitated by coordinated operations
of the Railway Operator and Train Operator suggests that the

inclusion of time and space varying pricing information mod-
ifies the optimal power profiles of DERs and trains, yielding
reductions in electricity costs for relatively small increases in
work. Simulation studies of the Southbound Amtrak service
along the Northeast Corridor in the United States shows a
25% reduction in energy costs when compared to standard trip
optimization based on minimum work, and 75% reduction in
energy costs when compared to the train cost calculated using
a field dataset.

Fundamentally, the rDMM introduces transactive energy as
an additional degree of freedom in the control of a system,
capitalizing on technology advancement (e.g. communication
cost reductions, GPS, widespread adoption of regenerative
braking) to bridge the objectives of individual agents (e.g.
trains, DERs) with those of global infrastructure (e.g. traction
system, wholesale energy markets). That is, through adjust-
ments of incentives in the form of electricity prices, we were
able to ensure a coordinated set of profiles for all DERs and
trains.

This technology could further motivate the deployment of
automation technologies in train systems, as the business case
improves when factoring electrical cost reductions. We expect
that our findings could be developed into a software package
for train operators, similar to GEs Trip Optimizer technology
which has been adopted by heavy haul train operators to
decrease fuel use [17].

1) Demand Charge Management: Although our work is a
step towards including the electric traction system’s costs
within the Train Dispatch problem, we only reflect energy-
related costs ($/MWh). In reality the Railway Operator will
also incur demand or capacity charges ($/MW ) from the
utility or ISO. These charges can also be reduced, in principle,
using a transactive control methodology where the incentive
signal shifts and smooths the power profile of the individual
trains such that a reduction in demand at the main intercon-
nection (traction substation) is met. We considered including
the demand charge component within the cost function of
low voltage side network connections Nn as a second order
term, but this methodology did not appropriately capture the
time-scale (typically months) at which demand charges are
evaluated. A means of achieving demand charge management
is to update constraints within the optimization problem,
modifying the minimum and maximum power limits Pl(xl)
and Pl(xl) in (32).

2) Regulation and Reserve Market Participation: Similar to
the research direction regarding demand charges, we would
like to extend the services provided by the transactive control
system to the electrical network beyond energy and onto
products for frequency regulation and operational reserves.
Practical limitations of providing these services as well as
the incentive and compensation mechanisms remain to be
explored.

3) Mass Transit Systems: Our analysis focused on the
practical intricacies of high-speed rail systems. Although our
simulations were based on the high-speed rail example in the
United States, the Amtrak Acela service, we are aware that
other systems, such as the MBTA mass transit T service also
evidences discontinuities in energy price along their track and
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have strategic plans to add rail-side generation [34]. Extending
our simulation work to mass transit systems would widen the
applicability of our proposed transactive control architecture.
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