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Model Predictive Control of Time-Varying
Aberrations for Sensorless Adaptive Optics
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Abstract— We propose a model predictive control (MPC)
method to compensate for the time-varying phase aberrations
in a sensorless adaptive optics (AO) system. The approximate
model for the point spread function (PSF) of the imaging system
with phase diversity is mathematically derived, and its validity
is verified. The proposed MPC, which considers the operating
limits of the deformable mirror (DM), computes the optimal
applied voltage of each actuator over a prediction horizon, and
the receding horizon scheme is applied as feedback control.
Numerical case studies with the time-varying phase aberrations
generated by an atmospheric turbulence simulator are presented
to demonstrate the correction performance of the MPC strat-
egy. The proposed method caused a 50% improvement in the
reduction in residual aberration, making it competitive with a
saturation linear quadratic regulator (LQR). The computational
feasibility of the proposed method is validated using fast MPC,
which approximates the primal barrier method.

Index Terms— Model identification, model predictive control
(MPC), phase diversity, phase retrieval method, point spread
function (PSF), sensorless adaptive optics (AO).

I. INTRODUCTION

ATMOSPHERIC turbulence or nonuniform refractive
index distribution of a specimen can cause optical aber-

rations, which degrade the axial resolution and contrast of
the image and limit the depth of focus. To eliminate these
aberrations, adaptive optics (AO) has been introduced to
generate a conjugated wavefront corresponding to the opposite
component of the distorted wavefront. The AO system uses an
adaptive element, such as a deformable mirror (DM) or spatial
light modulator to correct aberrations and a control system that
generates a signal to drive the adaptive element.

Based on an aberration measurement method, AO can
be classified into direct wavefront measurement or indirect
aberration optimization [1]. The direct method uses a
Shack–Hartmann wavefront sensor to measure the spatial
derivative of the wavefront. These sensors require a point-like
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source of light and have disadvantages such as weak
retroreflection and limited focal length [2]. To overcome
these problems, sensorless AO based on the optimization
algorithm measures aberrations using a sequence of images.
The optimization algorithms can be divided into model-free
and model-based algorithms. The former uses the blind
optimization search algorithms such as stochastic parallel
gradient descent [3], [4], genetic algorithms [5], and hill-
climbing [6], [7]. It is challenging to implement the AO system
in real-time since these blind methods require numerous
measurements and iterations [8]. The model-based method,
which uses physical modeling of the image quality metric,
requires only n + 1 photodetector measurements to correct n
aberration modes and has a faster convergence speed than the
model-free method. Booth modeled the point source of the
aberration using predetermined bias functions such as Zernike
or Lukosz–Zernike polynomials according to the magnitude
of aberrations [2], [9]. Meanwhile, a general model-based
approach [10] is insensitive to a set of orthogonal modes
selected as a bias function due to the approximately linear
relationship between the second moment of the wavefront
gradients and the masked detector signal. However, these
model-based approaches are not suitable for the time-varying
aberrations because they assume that aberrations are invariant
while taking measurements.

To correct the time-varying phase aberration, we use a
phase diversity technique with a known diversity function that
retrieves the phase information of the wavefront using in-focus
and out-of-focus images [11], [12], [13]. The main idea of
the phase diversity method is to estimate the aberration from
an approximate point spread function (PSF) model under the
assumption that the magnitude of wavefront aberration is less
than 0.5 rad rms [14], [15]. Many efforts have been under-
taken to develop the phase diversity methods for wavefront
correction. In [16], an iterative linear phase diversity method
based on the first-order Taylor expansion of the PSF was
proposed. A fast wavefront correction approach based on a
linear phase diversity technique, applicable even for a highly
strong atmospheric turbulence situation, was represented by
[17] and [18]. However, these iterative linear phase diversity
methods have been applied only for static aberrations as the
aberrations should not change during the iterative correction
process. In addition, it is necessary to assume that the frame
rate of the imaging camera is sufficiently high and that
the DM can fully compensate for the estimated residual
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Fig. 1. Flowchart illustrating the compensation of the time-varying aberrations for sensorless AO.

aberration. For the time-varying aberrations, many researchers
have developed the temporal dynamics of aberrations and
presented solutions based on various numerical approaches.
Doelman et al. [19] presented a convex heuristic approach for
blind system identification and estimated both phase aberration
and temporal dynamics directly from the PSF assuming small-
phase aberration. Marinica et al. [20] presented a method for
estimating aberrations using an extended Kalman filter and
correcting it with a linear quadratic regulator (LQR) based
on an approximate model using the Kolmogorov turbulence
spectrum. However, the control input determined using this
method does not consider the stroke limitations of the DM.

The AO system control problem can be formulated as a
finite-horizon constrained optimal control problem (OCP). The
model predictive control (MPC) strategy solves this problem
by approximating it over a prediction horizon [21], [22], [23],
[24]. MPC is based on the receding horizon control (RHC)
scheme and model-based batch predictions of the behaviors
of controlled dynamic systems. A remarkable advantage of
MPC is to achieve the stable operation of DM because
input constraints can be implemented. In addition, a specific
structure tailored to quadratic cost and linear dynamics can
be applied using numerous open-source toolboxes, such as
CVX and qpOASES. In [25], an MPC approach was used
to compensate for aberrations while considering the physical
constraints of the adaptive elements. However, the simulations
were only implemented for exciting the AO system with
sinusoids, and not the aberrations generated by atmospheric
turbulence. Moreover, the computational burden of large-scale
systems was not considered. Konnik and De Doná [26] used
hot start and bound constraints in an active set quadratic
programming (QP) algorithm to ensure the computational
feasibility of constrained RHC for the AO control problem.
However, a simple DM model was used, assuming weak
coupling between actuators.

To overcome the limitations of the existing methods,
we present an MPC method for sensorless AO. The proposed
method satisfies the operating limits for all the actuators of the
DM, and the receding horizon scheme is applied as a feedback
control. The dynamic model of the time-varying aberrations
is formulated as an autoregressive (AR) model based on a

time-series method. The proposed method is not limited to
sensorless AO but can be scaled to optical systems using
wavefront sensors. In addition, it is applicable to any type of
dynamic aberration caused by the refractive index structure
of the specimen or blood flow. To make it computation-
ally feasible, autonomous coded or programmed algorithms
and fast MPC [27], which approximates the primal barrier
method, were used. A flowchart of the overall simulation
for compensating the time-varying aberrations is illustrated in
Fig. 1. For each time step, the time-varying phase aberration
is combined with the wavefront corrected by the DM in the
previous time step. The reflected beam with residual aberration
is incident on a scientific camera to capture three phase
diversity images, which can be simultaneously or sequen-
tially captured, depending on the optical setup [28], [29].
Different PSFs are measured from three phase diversity
images, and the Zernike coefficient for the residual wavefront
aberrations is estimated using the least-squares method based
on a first-order approximate model. The controller determines
the optimal values of the DM actuator commands, and the DM
is shaped to cancel out the majority of the distortion introduced
in the next time step.

The remainder of this article is organized as follows:
Section II describes the modeling of the AO system and
time-varying aberrations. Moreover, the constrained OCP to
compensate for aberrations is formulated. In Section III,
a method for estimating the residual wavefront based on the
PSF approximation model is presented. Section IV presents
model identification based on the time-series method and the
solution to the constrained OCP using MPC. In Section V,
we illustrate the effectiveness of the proposed computational
methods using a numerical case study with the time-varying
phase aberrations. Finally, Section VI concludes the article
with a perspective on future work.

II. MODELING OF THE OPTICAL SYSTEM

A schematic of the sensorless AO system is shown in Fig. 2.
The incoming light with the time-varying phase aberration
φdistort caused by atmospheric turbulence is directed to the
DM with a corrected wavefront φcor. The reflected beam
with residual wavefront aberration φres = φdistort + φcor is
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Fig. 2. Schematic of sensorless AO setup.

entered onto a scientific camera, such as a charge-coupled
device (CCD) or complementary metal oxide semiconductor
(CMOS), to measure the PSF. The estimator determines the
Zernike coefficient constituting φres without using a wavefront
sensor, based on the approximate model. The controller com-
putes the voltage applied to each actuator of the DM to correct
the aberration of the newly incoming light.

This section describes the modeling of the optical system
components illustrated in Fig. 2 and the formation of a
constrained OCP to correct the wavefront aberration.

A. Overview of AO System

The phase aberration of an input wavefront can be expressed
as a series of n Zernike polynomials orthogonal to each other

φ(χ) =
n�

r=1

αr Zr (χ) = Zα

where Z = [Z1(χ), . . . , Zn(χ)] ∈ R
p2×n is a matrix that

includes the n Zernike polynomials within a unit circle
evaluated in the normalized pupil coordinates χ . p2 is the total
number of pixels, and α = [α1, . . . , αn] ∈ R

n are the Zernike
coefficients. The order of the Zernike polynomial follows the
America/American National Standards Institute (OSA/ANSI)
standards [30]. Therefore, the phase retrieval problem can be
solved by determining the Zernike coefficient corresponding
to the phase aberration.

The phase diversity method uses modulated point-source
images to recover the phase information of the distorted
wavefront. The 4 f optical system with phase diversity βi is
shown in Fig. 3. The black- and red-dashed lines indicate the
focal plane and defocused plane, respectively. Defocus is com-
monly used as a diversity function because it has no angular
dependence on the pupil coordinates and is straightforward to
implement in an optical setup [31]. The phase aberration with
defocus having a magnitude of βi is represented by

φi (χ) =
n�

r=1

αr Zr (χ) + βi Z5(χ) = Zα + βi Z5(χ).

The PSF y(ζ ; α, βi) corresponding to the i th phase diversity
is represented as the intensity of the Fourier transform of the

Fig. 3. 4 f optical system with phase diversity.

generalized pupil function (GPF) as follows:
y(ζ ; α, βi) = |F(g(χ; α, βi))|2 + ni (1)

where ζ represents the image plane coordinates, and F(·)
is the 2-D Fourier transform. The GPF g(χ; α, βi) =
A(χ) exp(iφi(χ)) is a complex-valued function, where A(·)
represents the amplitude apodization function, which is 1
inside the pupil and 0 outside the pupil. The measurement
noise of the scientific camera ni ∼ N (0, σi ) is the white
Gaussian noise with standard deviation σi . For shorthand
notation, we denote the PSF of the j -th pixel as yi, j :=
y j(ζ ; α, βi) ∀ j = 1, . . . , p2. To estimate the Zernike coeffi-
cient for unknown aberration without using a wavefront sensor,
various PSF approximation models have been proposed [32],
[33]. Here, we define one based on the Taylor series expansion
around zero aberration [16], [20], [34]

yi, j = D0, j (βi) + D1, j (βi)α + 1

2
α� D2, j (βi )α + O(�α�3)

(2)

where

D0, j (βi) = y j(ζ ; α, βi)
��
α=0 ∈ R

D1, j (βi) = ∂y j(ζ ; α, βi)

∂α

����
α=0

∈ R
n

D2, j (βi) = ∂2 y j(ζ ; α, βi)

∂α∂α�

����
α=0

∈ R
n×n

and O(�α�3) denotes terms of higher order than third
degree. The Euclidean norm of a vector α is expressed as
�α� = (α2

1 + · · · + α2
n)

1/2. Fig. 4 represents the root-mean-
square error (RMSE) for the approximate model according to
the magnitude of aberration. As the magnitude of aberration
increases, the accuracy of the first-order approximation model
decreases compared with that of the second-order model.
The details of all the parameters constituting the approximate
model are presented in Appendix A. Based on the first deriv-
ative D1, j (βi) represented in [35], we mathematically derive
the second derivative of the approximate model. Moreover,
the computational burden was reduced by calculating the
Jacobian and Hessian offline. The estimation method based on
the first- and second-order approximation models is described
in Section III.

B. Time-Varying Aberration Model

The temporal dynamics of the Zernike coefficient xt con-
stituting the time-varying phase aberration φdistort can be
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Fig. 4. Comparison of the RMSE for the approximate model according to
the magnitude of aberration. The colored boxes indicate the 25th and 75th
percentiles of the results in a Monte Carlo simulation.

represented by a vector-valued AR (VAR) model of order Nv

as follows [19], [36]:

xt [k] = f (xt [k − 1], . . . , xt [k − Nv ], w[k])
= A1xt [k − 1] + · · · + ANv

xt [k − Nv ] + w[k] (3)

where k represents the time index, Ai ∈ R
n×n ∀i = 1, . . . , Nv

are the coefficient matrices, and w[k] ∼ N (0, Qw) is the
white Gaussian noise. A detailed description of the method for
obtaining the coefficient matrices is provided in Section IV-A.

C. DM Model

The wavefront corrected by the DM is represented by
influence functions to each actuator as

φcor =
m�

j=1

I j (χ)u j = Iu

where m is the number of actuators, u = [u1, . . . , um]� ∈ R
m

are the applied voltage to each actuator, and I =�
I1(χ) I2(χ) · · · Im(χ)

� ∈ R
p2×m are the DM influence

matrix. In this study, I j (χ) was designed as a Gaussian
influence function [37], [38]

I j (χ) = exp

�
ln(c)

(χ − χ0, j )
2

d2

�
where c is the coupling coefficient representing the influence
of neighboring actuators, d is the distance between the actua-
tors, and χ0, j is the center coordinate of the j th actuator. If the
DM is operated as a modal method, the corrected wavefront
and influence functions are decomposed into a set of Zernike
polynomials as follows [39]:

I j (χ) =
n�

r=1

br, j Zr (χ).

In matrix representation, I = ZB , where the coefficient
matrix B ∈ R

n×m , whose element is br, j , can be obtained using
the least-squares method as B = Z†I. The notation † forms a

Moore–Penrose pseudoinverse of a matrix Z† = (Z�Z)−1Z�.
Consequently, the Zernike coefficient constituting the cor-
rected wavefront can be described by

xcor = Bu. (4)

The wavefront correction by the DM is denoted as
φcor = Zxcor. Therefore, the Zernike coefficient constituting
the residual aberration is expressed as

xres = xt + xcor. (5)

D. Operating Constraints

In this study, we used an MEMS-based DM (Boston
Micromachines Inc.) with 144 actuators in a 12 × 12 grid.
The voltage applied to each actuator should be limited by the
stroke limitations of the DM

u[k] ∈ [umin, umax].
If the time to attain the DM steady state is shorter than

the sampling time of the control system, the settling time to
reach the required large stroke may be delayed [40]. Therefore,
we consider a ramp rate constraint to reduce the stress applied
to each actuator of the DM as

u[k] − u[k − 1] ∈ [	umin,	umax].

E. OCP Formulation

In this section, we propose a constrained OCP that deter-
mines the sequence of the optimal applied voltage u∗[·] :=
(u∗[0], . . . , u∗[t f − 1]) to correct the time-varying phase
aberrations. The objective function is defined in the quadratic
form of residual aberration and control input as follows:

min{u[·]}

t f�
k=1

�xres[k]�2 + �u[k − 1]�2

s.t. xres[k] = xt [k] + xcor[k − 1]
xt [k] = f (xt [k − 1], . . . , xt [k − Nv ], w[k])
u[k − 1] ∈ [umin, umax]
u[k] − u[k − 1] ∈ [	umin,	umax]

xres[0] = x̂res (6)

where t f is the terminal time, and all the constraints must be
satisfied for all the time indices k = 1, . . . , t f . The temporal
dynamics of xt and the relationship between xcor and the
control input are defined by (3) and (4), respectively. It is
assumed that the equality constraint xres[0] = x̂res is obtained
from the estimator because the initial state of the system
cannot be directly measured in sensorless AO.

III. ABERRATION ESTIMATION

Because the sensorless AO does not use a wavefront sensor,
the Zernike coefficient for the residual wavefront is estimated
based on the PSF measured using the scientific camera. In this
section, we describe a method for estimating the Zernike
coefficients based on the PSF approximation model (2).
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A. Least-Squares Method Based on the First-Order
Approximate Model

The first-order Taylor series approximation of the PSF is the
same as that of D2, j (βi) = 0n in (2), where the null matrix
and identity matrix are denoted by 0n ∈ R

n×n and In ∈ R
n×n,

respectively. A vector representation of each pixel j for all the
phase diversities i = 1, . . . , n p is expressed as

y = bs + Asα

where

y = �
y1,1 · · · yi, j · · · yn p,p2

��
bs = �

D0,1(β1) · · · D0, j (βi) · · · D0,p2(βn p)
��

As = �
D1,1(β1) · · · D1, j (βi ) · · · D1,p2(βn p)

��
.

The estimate of α is obtained using the least-squares method
as follows:

α̂ := A†
s (y − bs).

In general, the number of pixels p2 is greater than the
number of Zernike modes n. Therefore, α̂ always exists under
the assumption that As ∈ R

(p2n p)×n has full column rank (i.e.,
rank(As) = n).

B. QP Based on the Second-Order Approximate Model

The second-order Taylor series approximation of the PSF
has less model error against the actual PSF (1) in specific
pixels compared with the linear approximation. Using the
lifting technique in [41], (2) can be reformulated as

yi, j = �
1 α��

⎡
⎢⎣ D0, j (βi)

1

2
D1, j (βi)

1

2
D1, j (βi)

� 1

2
D2, j (βi )

⎤
⎥⎦
�

1

α

�

= Tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎣ D0, j (βi)

1

2
D1, j (βi)

1

2
D1, j (βi)

� 1

2
D2, j (βi)

⎤
⎥⎦

� �� �

 j (βi )

�
1

α

��
1 α��

� �� �
X

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The problem of estimating α based on the second-order
Taylor series approximation can be solved using QP. The
corresponding problem is formulated as follows:

min
X

�yi, j − Tr
�

 j(βi )X

��2

s.t. X1,1 = 1, rank(X) = 1, X � 0

for all i = 1, . . . , n p and j = 1, . . . , p2. This problem
is known to be nonconvex and nondeterministic polyno-
mial time-hard because of the rank constraint, and various
approaches have been proposed to approximate the corre-
sponding solution [42]. In this study, we reformulate the
rank-constrained optimization problem into convex semidef-
inite programming (SDP) by replacing the rank constraint

with the �1-norm. The corresponding problem is formulated
as follows:

min
X

�yi, j − Tr
�

 j (βi)X

��2 + λ�X�1

s.t. X1,1 = 1, X � 0

where λ denotes a trade-off parameter between the cost
function and the rank constraint. If the optimal solution X∗
is determined, α̂ is obtained by rank-1 decomposition via
singular value decomposition [43].

IV. ABERRATION CORRECTION

In this section, we propose a model predictive controller
for correcting the time-varying aberrations. When the current
time is k and the prediction horizon used in predictive
control is N , we present x[i |k] := x((k + i)ts), k ∈ Z+,
and i = 0, 1, . . . , N − 1 for a signal x(t) with t ≥ 0,
where ts is the sampling interval. At each time step k, the
controller computes the optimal applied voltage u∗[k] :=
(u∗[0|k], . . . , u∗[N − 1|k]) ∈ R

Nm over the prediction hori-
zon. Then, the DM is required to generate the conjugate
wavefront φcor[k] = Bu[k], where u[k] = u∗[0|k], which
corrects the input phase aberration φdistort[k + 1] at time
step k + 1. This feedback control scheme is known as the
RHC. The proposed MPC algorithm is further investigated
in Section IV-B.

A. Model Identification

To determine the VAR model (3), any system identification
method, such as time-series, machine learning, and extrapola-
tion method, can be used, in principle [44], [45]. Doelman et
al. proposed an iterative approach based on a convex heuristic
to identify blind systems. To reduce the computational burden
for large-scale systems, the coefficient matrix of the VAR
model parametrized as the sum of the Kronecker product is
estimated using an alternating least-squares method [46], [47].
In this study, we designed an AR model based on a time-
series method. An open-loop wavefront dataset {xt [k]|k =
1, . . . , ttrain} was used to identify the model parameters Ai as
follows:⎡
⎢⎢⎢⎢⎢⎣

xt [Nv + 1]
xt [Nv + 2]

...

xt [ttrain]

⎤
⎥⎥⎥⎥⎥⎦

�

� �� �
x�

pred∈Rn(ttrain−Nv )×1

=

⎡
⎢⎢⎢⎢⎢⎣

A1

A2

...

ANv

⎤
⎥⎥⎥⎥⎥⎦

�⎡⎢⎢⎢⎢⎢⎣

xt [Nv ] · · · xt [ttrain − 1]
xt [Nv − 1] · · · xt [ttrain − 2]

...
. . .

...

xt [1] · · · xt [ttrain − Nv ]

⎤
⎥⎥⎥⎥⎥⎦

� �� �
xpast

�∈R(n Nv )×(ttrain−Nv )

∴ A� = �
A1 A2 · · · ANv

��
=

�
x�

pastxpast

�−1
x�

pastxpred. (7)

To verify the existence of (7), we assume that the number
of columns of x�

past is greater than the number of its rows, and
it has full row rank (i.e., rank(x�

past) = nNv ). As the order
of the VAR model increases, there is a trade-off relationship
between the model accuracy and simplicity, where the model
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Fig. 5. Comparison of prediction error for different VAR model orders
according to the prediction horizon.

TABLE I

COMPARISON OF PERFORMANCE FOR

DIFFERENT VAR MODEL ORDERS

accuracy increases and the simplicity decreases. Fig. 5 shows
the prediction error for the order of each VAR model accord-
ing to the prediction horizon when the validation data for
time-varying aberrations generated in Section V-A are used.
The average values of the prediction error in Fig. 5 are listed in
Table I. While the accuracy of the prediction model decreases
as the prediction horizon increases, the prediction error reduces
significantly as the order of the VAR model increases. When
Nv increases from 1 to 2, the enhancements in VAR model
errors according to the prediction horizon are 62.8%, 49.4%,
38.3%, 29.1%, and 21.3%, respectively. However, when Nv

increases from 2 to 3, the improvements are 30.5%, 26.9%,
25.5%, 25.3%, and 25.7%, respectively, which is insignificant
compared with the disadvantages caused by the increase in
model complexity. Therefore, Nv was set to 2, considering
the trade-off relationship between the model simplicity and
accuracy.

B. Model Predictive Control

When the order of the VAR model is 2, the Zernike
coefficient for the residual wavefront (5) is expressed as

xres[k + 1] = xt [k + 1] + xcor[k]
= A1xt [k] + A2xt [k − 1] + Bu[k]
= A1xres[k] + A2xres[k − 1] + Bu[k]

− A1 Bu[k − 1] − A2 Bu[k − 2]. (8)

The constrained OCP (6) is reformulated as the MPC
problem as follows:

min
{u[k]}

Jk =
N−1�
i=1

�xres[i |k]�2
Q + �xres[N |k]�2

P +
N−1�
i=0

�u[i |k]�2
R

s.t. xres[i + 1|k] = A1xres[i |k] + A2xres[i − 1|k] + Bu[i |k]
−A1 Bu[i − 1|k] − A2 Bu[i − 2|k]

umin ≤ u[i |k] ≤ umax

	umin ≤ u[i |k] − u[i − 1|k] ≤ 	umax

xres[0|k] = x̂res[k], xres[−1|k] = x̂res[k − 1]
u[−1|k] = u[0|k − 1], u[−2|k] = u[0|k − 2] (9)

where all the constraints must be satisfied for all the time
indices i = 0, 1, . . . , N − 1. The weighting matrices for the
state and input, Q and R, are listed in Table III. The weighting
matrix for the terminal state P is designed as a solution to
the discrete-time algebraic Riccati equation of the LQR [48].
The initial values of the state variables are estimated based
on the approximate model described in Section III. The
last two equality constraints imply that the previous values
u[−1|k] and u[−2|k] for the control input at time k use the
predetermined optimal control input at times k − 1 and k − 2,
respectively.

V. NUMERICAL EXPERIMENTS

A. Simulation Setup

This section describes a case study with the time-varying
phase aberrations due to atmospheric turbulence, which was
generated using Object-Oriented MATLAB & Adaptive Optics
(OOMAO) Toolbox [49], to validate the performance of our
proposed method. To illustrate a complex environment such
as the real-world atmosphere, we designed a mainly frozen-
flow model with three layers at different heights, wind speeds,
and directions [50]. This implies that the time-varying phase
aberrations used in the simulation make the environment
more realistic than the single-period signal used in [25]. The
specific parameter values are listed in Table II. In addition, the
time-varying aberrations were split into three parts, as shown
in Fig. 6: 50% as the training data, 25% as the validation
data, and 25% as the test data. The training data were used as
an open-loop wavefront dataset to identify the VAR model
described in Section IV-A. The accuracy of the identified
model was evaluated using the validation data, and the test data
were used in the simulations to demonstrate the effectiveness
of the aberration correction of the proposed method.

To solve the MPC problem, we used the generic opti-
mization solver SDPT3 [51] by importing it from CVX,
a MATLAB package for convex optimization [52]. The specifi-
cations of the computer for the simulation are as follows: Intel
Core (TM) i7-10700 CPU Hexa Core 2.90 GHz and RAM
64.00 GB. The numerical values of the control parameters
are listed in Table III. These values must be carefully chosen
based on the numerical experiments so that the proposed MPC
method compensates for the aberrations regardless of their
shape.
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Fig. 6. Time-varying phase aberration used in the numerical experiments.

TABLE II

SIMULATION PARAMETER VALUES FOR

TIME-VARYING ABERRATION

TABLE III

CONTROL PARAMETER VALUES

USED IN MPC SIMULATION

B. Estimation Based on Approximate PSF Model

This section describes the estimation results of the numer-
ical simulation based on PSF approximation. The estimation
error according to the aberration magnitude is shown in Fig. 7
to compare the estimation accuracy for the order of the PSF
approximation model described in Section III. All 100 sam-
ples, normalized to 0.5, 1.0, and 1.5 rad rms for aberration
magnitudes, were tested in a Monte Carlo simulation. The
measurement noise ni was set at a signal-to-noise ratio (SNR)

Fig. 7. Comparison of estimation error according to the aberration magnitude.

Algorithm 1 Closed-Loop Correction Process

of 10 dB over the pupil. The estimation error and variance
of the convex SDP are slightly better than those of the least-
squares method. However, a least-squares solution based on
a first-order approximation model was used as an estimate
because the convex SDP is computationally intensive. The
overall simulation procedure is outlined in Algorithm 1.

C. Comparison by VAR Model Order

In this section, we demonstrate the correction performance
of the time-varying phase aberration for the proposed MPC
method according to the order of the VAR model. In addition,
to compare the identified model that affects the accuracy, the
results obtained using a static model A1 = In, A2 = 0n are
shown in Fig. 8. When using a static model, the average value
of the residual error after compensation is 0.321 rad, which
means that the proposed method can provide a certain level
of correction performance even if the model is inaccurate.
When the first- and second-order VAR models are used, the
residual error after five correction steps is reduced to 0.275 and
0.169 rad, respectively. As shown in Fig. 5, this is because the
accuracy of the identified model improved as the order of the
VAR model increased.
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Fig. 8. Residual error in closed loop obtained by control strategies based on
the time-varying phase aberration.

TABLE IV

COMPARISON OF PERFORMANCE FOR DIFFERENT
RAMP RATE CONSTRAINTS

D. Saturation LQR Solution

To verify the optimality performance, we compared the
solution of the proposed method with the saturation LQR
solution. When there are no constraints on the control input,
the optimal solution of the MPC problem (9) can be derived
by considering the derivative of Jk with respect to u[k].
Subsequently, the stroke limitation and ramp rate constraint
of each actuator can be considered by simply saturating the
unconstrained control input

�
max {umin, u∗[i − 1|k] + 	umin} ≤ u∗[i |k]
u∗[i |k] ≤ min{umax, u∗[i − 1|k] + 	umax}

for i = 0, 1, . . . , N − 1. Table IV presents the average values
of residual error for different ramp rate constraints obtained
using the saturation LQR and our proposed method. In the
extreme condition wherein the ramp rate constraint is set to
a tight bound, the residual error of saturation LQR compared
with MPC is increased. Fig. 9 shows the results of correction
performance determined using saturation LQR and MPC for
the test data shown in Fig. 6 for 	u = ±5 [V]. The average
values of the residual error after five correction steps when
using the saturation LQR and MPC are 0.253 and 0.169 rad,
respectively. The saturation LQR considers the constraint sub-
optimal, whereas the MPC can handle it optimally, resulting in
an average 50% higher correction performance in the operation
time interval.

Fig. 9. Comparison of the residual error determined using saturation LQR
and MPC.

Fig. 10. Comparison of residual error in closed loop obtained using saturation
LQR and MPC according to the intensity of the atmospheric turbulence.

E. Discussion With Case Studies

The results of numerical simulations will be discussed in
this section. First, we verified the correction performance of
the proposed method and saturation LQR for large aberra-
tions by varying D/r0, which represents the intensity of the
atmospheric turbulence. As the value of D/r0 increases, the
strength of atmospheric turbulence intensifies as atmospheric
conditions deteriorate [17]. The time-varying aberrations with
D/r0 = 10, 15, 20 were generated in this study by fixing
the telescope diameter D and changing the Fried parame-
ter r0 to 0.1, 0.067, 0.05 m. The magnitude of aberrations
with different D/r0 and the residual error compensated
by the predictive control algorithm are shown in Fig. 10,
and the corresponding average values are listed in Table V.
The average value of the residual error after five correction
steps is 0.781 rad for an aberration with a maximum magnitude
of 8 rad generated when D/r0 is increased to 20, proving that
the correction performance of our proposed method is effective
even for large aberrations.
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TABLE V

AVERAGE VALUE OF RESIDUAL ERROR ACCORDING TO THE
INTENSITY OF THE ATMOSPHERIC TURBULENCE

Fig. 11. Comparison of residual error for different measurement noise levels.

TABLE VI

MEDIAN VALUE OF RESIDUAL ERROR ACCORDING TO

DIFFERENT MEASUREMENT NOISE LEVELS

Second, we illustrated a Monte Carlo simulation decreasing
the SNR to validate the robustness to measurement noise.
The effect of the camera measurement noise reduces the
PSF intensity and brightness of the photon flux. Fig. 11 and
Table VI show a comparison of residual error according to
different measurement noise levels. When SNR = 10 dB, the
residual error after five correction steps is 0.132 rad, which
is similar to that in the case without measurement noise.
Even if the noise level increases to SNR = 1,−2 dB, the
residual errors are 0.202, 0.256 rad. Because the proposed
method is insensitive to noise, it is possible to estimate the
aberration of the residual wavefront from the PSF containing
slight measurement noise without significant degradation of
the correction performance. When the SNR is −10 dB, the
residual error of the proposed method increases to 0.569 rad.
In the case of measurement noise with an SNR smaller than
−10 dB, the correction performance significantly deteriorates
because the PSF images for estimating the Zernike coefficient
are severely distorted.

F. Validation of Computational Feasibility

In this section, we verify the computational feasibility of
the proposed method using fast MPC, which approximates
the infeasible start primal barrier method [27]. The general

TABLE VII

COMPARISON OF PERFORMANCE
FOR DIFFERENT QP SOLVERS

primal barrier method replaces the inequality constraints with
a barrier function in the objective function and finds a solution
while reducing the barrier parameter κ . When the barrier
parameter has a certain value, the solution to the convex
optimization problem with linear equality constraints can be
obtained using Newton’s method. To reduce the computational
burden of the barrier method, the authors of [27] presented
simple variations that fix κ and the Newton iteration step K max.
Table III lists the numerical values of the barrier parameter
and iteration limit based on numerous numerical simulations.
The results of using fast MPC to correct the time-varying
aberrations are compared with those of a generic optimization
solver such as SDPT3 called by CVX and built-in function
fmincon in MATLAB. The stroke limitation of the DM
was considered for the constraints on the applied voltage
of each actuator. Table VII presents the residual error and
computation time determined using different QP solvers for
the time-varying aberrations shown in Fig. 6. For each solver,
no significant difference was observed in the average values
of residual errors after five correction steps; however, in terms
of computation time, fast MPC was 80 and 60 times faster
than CVX and fmincon, respectively. This implies that the
proposed method can be implemented in real-time for an AO
system. The MATLAB code for our simulation is available
online [53].

VI. CONCLUSION AND FUTURE WORK

This study presented an MPC method to compensate for the
time-varying aberrations in sensorless AO. To estimate aber-
rations without using a wavefront sensor, we mathematically
derived a PSF approximation model based on the Taylor series
expansion around zero aberration. The proposed controller
explicitly considers the operating limits of actuators for the
stable and reliable operation of a DM. We designed an AR
model based on a time-series method to identify the VAR
model of the time-varying aberrations. Numerical case studies
were presented to verify the correction performance of the
AR model according to the VAR order and to demonstrate the
computational efficiency and optimality performance of our
MPC according to the magnitude of aberration and measure-
ment noise level. In addition, we used fast MPC, an algorithm
that fixes the barrier parameters and the Newton steps of
the interior-point method, to solve the resultant constrained
OCP to be feasible in real-time. In future work, we will
consider the improvement of estimation accuracy of the phase
diversity method for large-phase aberrations, which assumes
small-phase aberrations. Moreover, uncertainties in the AO
system and dynamic models need to be carefully investigated.
In addition, a robust MPC that satisfies the stability and
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performance criteria for model uncertainties in the form of
bounded input disturbances needs to be investigated.

APPENDIX

A. Derivative of PSF Approximate Model

In this section, the first and second derivatives of the
approximate model are derived. The uth element of D1, j (βi)
is

D1, j (βi)u = ∂y j (ζ ; α, βi)

∂αu

����
α=0

∀u = 1, . . . , n.

Applying the product rule to (1)

∂y j (ζ ; α, βi)

∂αu
= ∂F(g(χ; α, βi ))

∂αu
F(g(χ; α, βi ))

∗

+F(g(χ; α, βi ))
∂F(g(χ; α, βi))

∗

∂αu

= 2�
�
∂F(g(χ; α, βi))

∂αu
F(g(χ; α, βi ))

∗
 
. (10)

The �(·) and �(·) operators denote the real and imaginary
parts of a complex number, respectively. The first derivative
of the Fourier transform of the GPF is

∂F(g(χ; α, βi))

∂αu
= ∂

∂αu

�F(A(χ) · exp(iφi(χ)))
�

= iF(g(χ; α, βi)Zu(χ)). (11)

By combining (10) and (11), the derivative of αu with
respect to the PSF corresponding to the j th pixel is given
by

∂y j (ζ ; α, βi)

∂αu
= 2��iF(g(χ; α, βi)Zu(χ))F(g(χ; α, βi))

∗�
= −2��F(g(χ; α, βi)Zu(χ))F(g(χ; α, βi))

∗�.
Based on the first derivative described above, the second

derivative can be derived as follows: The element at the uth
row and vth column of D2, j (βi ) is

D2, j (βi)u,v = ∂2 y j(ζ ; α, βi)

∂αu∂α�
v

����
α=0

∀u, v = 1, . . . , n.

The derivative of αu and αv with respect to the PSF
corresponding to the j th pixel is expressed as

∂2 y j(ζ ; α, βi)

∂αu∂α�
v

= 2�
�
∂2F(g(χ; α, βi))

∂αu∂α�
v

· F(g(χ; α, βi))
∗

+∂F(g(χ; α, βi))

∂αu

∂F(g(χ; α, βi))
∗

∂α�
v

 
.

(12)

The second derivative of the Fourier transform of the GPF
is

∂2F(g(χ; α, βi))

∂αu∂α�
v

= −F(g(χ; α, βi)Zu(χ)Zv(χ)).

Therefore, (12) can be rewritten as

∂2 y j(ζ ; α, βi)

∂αu∂α�
v

= 2��F(g(χ; α, βi)Zu(χ))F(g(χ; α, βi)Zv(χ))∗

−F(g(χ; α, βi)Zu(χ)Zv(χ))F(g(χ; α, βi))
∗�.
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