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Abstract— Endowing nonlinear systems with safe behav-
ior is increasingly important in modern control. This task
is particularly challenging for real-life control systems that
must operate safely in dynamically changing environments.
This paper develops a framework for safety-critical con-
trol in dynamic environments, by establishing the notion
of environmental control barrier functions (ECBFs). The
framework is able to guarantee safety even in the presence
of input delay, by accounting for the evolution of the envi-
ronment during the delayed response of the system. The
underlying control synthesis relies on predicting the future
state of the system and the environment over the delay
interval, with robust safety guarantees against prediction
errors. The efficacy of the proposed method is demon-
strated by a simple adaptive cruise control problem and a
more complex robotics application on a Segway platform.

Index Terms— Delay systems, Dynamic environment,
Predictive control, Robust control, Safety-critical control

I. INTRODUCTION

SAFETY is of great importance in many modern control
systems. Safety-critical control covers a wide spectrum of

applications ranging from automated vehicles [1], [2] through
robotics [3]–[6] and multi-robot systems [7]–[9], to controlling
the spread of infectious diseases [10], [11]. Notably, in many
applications safety is affected by a dynamically changing
environment that surrounds the control system. For example,
robots must avoid collision with other agents in multi-robot
systems [12], [13], automated vehicles must be safe with
respect to other road users [14], and robotic manipulators must
collaborate safely with their human operator [15]–[17].

Such strict safety requirements call for theoretical safety
guarantees and provably safe controllers. To achieve safety,
control synthesis must take into account how the control
system interacts with its environment. As the environment of
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Fig. 1. The proposed safety-critical control framework implemented in
high-fidelity simulation of a Segway. The Segway is able to safely avoid
a moving obstacle, even when the obstacle’s future position is unknown
and there is input delay in the control loop. This is accomplished via the
environmental control barrier function (ECBF) plotted at the bottom.

many engineering systems changes over time, one must ensure
that this dynamic evolution does not lead to safety violations.

ar
X

iv
:2

11
2.

08
44

5v
1 

 [
ee

ss
.S

Y
] 

 1
5 

D
ec

 2
02

1



As such, dynamic environments pose a major challenge for
safety-critical control.

An important element of this challenge is that the response
time of control systems may be commensurate with how fast
the environment changes. Response times include sensory,
feedback and actuation delays arising in practice [18]. The
magnitude of the delay depends on the application: it is
milliseconds in robotic systems [19], a few tenths of a second
in connected automated vehicles [20] and days in epidemiolog-
ical models [21]. Delays have significant impact on safety in
the context of dynamic environments: it may occur that by the
time the control system responds, the environment changes and
safety is compromised. To overcome this danger, one needs to
consider how the dynamic – and often uncertain – environment
evolves over the delay period. This yields a major challenge in
designing provably safe controllers. This paper aims to address
this problem by establishing a framework for safety-critical
control in which dynamic environments and time delays are
explicitly taken into account.

A. State of the Art

Formally, safety is often framed as a set invariance problem
by requiring that the state of the system evolves within a safe
set for all time. The theory of control barrier functions (CBFs)
provides an elegant solution to achieve this goal and maintain
safety [22]. While this theory delivers the required formal
safety guarantees, one shall secure these guarantees in dy-
namic environments during practical implementation. Several
works have built on CBFs to transfer safety-critical controllers
from theory to practice, by providing robustness against dis-
turbances [23]–[27], measurement uncertainty [28]–[30] and
model mismatches [31], [32]. These strategies significantly
facilitate controller deployment, however, their formulation
has not yet considered dynamic environments explicitly but is
restricted to quasi-static environments. For the first time, this
paper explicitly involves dynamically changing environments
into the mathematical framework for safety-critical control.

On the other hand, the safety of time delay systems has also
attracted increasing attention in the recent literature. The safety
of continuous-time systems with state delay was established
by safety functionals in [33], [34], which were extended
to control barrier functionals in [35]. Discrete-time control
systems with input delay were studied in [36] for linear and
in [37] for nonlinear dynamics. Linear control systems with
input delays were investigated in continuous time in [38], [39]
via control barrier and control Lyapunov functions. Safety-
critical control of continuous-time nonlinear systems with
measurement delays was tackled in our works [10], [11] in
an application to controlling the spread of COVID-19. In
these papers, we leveraged predictor feedback [40]–[43] to
compensate the delay by predicting the future evolution of
the system. Parallel to our work, [44], [45] used predic-
tor feedback to compensate multiple and time-varying input
delays with robustness against prediction errors. Yet, these
works have not addressed safety-critical scenarios in dynamic
environments that evolve independently of the control input
being synthesized. This paper intends to fill this gap and

tackle the challenges arising from the combination of dynamic
environments and delays.

B. Contributions

Here we build on [10], [11] to establish the theory of safety-
critical control for nonlinear continuous-time systems with
input delay, operating in dynamically changing environments.
Our contributions are threefold:

1. We establish the notion of environmental control barrier
functions (ECBFs) for delay-free systems to explicitly
address scenarios in which safety is affected by a dynamic
environment. This notion is particularly useful when
the dynamics of the environment are inherently more
uncertain than those of the control system.

2. We develop the notions of CBFs and ECBFs for systems
with input delay, and synthesize safety-critical controllers
via predictor feedback. The use of predictors requires
special care in dynamic environments, since the environ-
ment’s future is not controlled and cannot be predicted
accurately. We make controllers robust against prediction
errors, especially those related to the future of the dy-
namically changing environment.

3. We demonstrate the efficacy of this framework on real-life
engineering systems: adaptive cruise control and obstacle
avoidance with a Segway platform.

Figure 1 illustrates a sample of these results. A Segway is
controlled to safely avoid a moving obstacle via the proposed
ECBFs in high-fidelity simulation. Without delay in its control
loop (left) the Segway pitches backwards to go under the
obstacle. With input delay (right) the Segway first approaches
the obstacle, then moves in reverse to make space, and
finally pitches forward to go under it. Remarkably, these safe
behaviors emerge from the ECBF automatically, which handles
reactive planning in a holistic fashion.

The paper is structured as follows. Section II revisits CBFs
for delay-free systems. Section III addresses safety in dynamic
environments by introducing ECBFs. Section IV extends CBFs
and ECBFs to systems with input delays, and discusses safety-
critical control via predictor feedback with robustness against
prediction errors. In these sections, adaptive cruise control is
used as illustrative example, whereas Section V demonstrates
the safety-critical control of a Segway by numerical simula-
tions. We conclude our work in Section VI.

II. PRELIMINARIES TO SAFETY-CRITICAL CONTROL

Consider a control-affine system with state x(t) ∈ X ⊆ Rn
and input u(t) ∈ U ⊆ Rm:

ẋ = f(x) + g(x)u, (1)

where f : X → Rn and g : X → Rn×m are locally Lipschitz
continuous on X that is an open and connected subset of Rn.
Consider the initial condition x(0) = x0 ∈ X . When the con-
trol input u = k(x) is given by a locally Lipschitz continuous
controller k : X → U , then system (1) has a unique solution
over a time interval t ∈ I(x0). For simplicity of exposition, we
assume I(x0) = [0,∞), i.e., the solution exists for all t ≥ 0.



We consider the system safe if its state is contained within
a safe set S ⊂ X for all time. Accordingly, we frame safety-
critical control as rendering set S forward invariant under
dynamics (1): the controller needs to ensure for all x0 ∈ S that
x(t) ∈ S, ∀t ≥ 0. Specifically, we define S as the 0-superlevel
set of a continuously differentiable function h : X → R:

S = {x ∈ X : h(x) ≥ 0}, (2)

where the selection of h is application-driven.

A. Control Barrier Functions

We ensure the forward invariance of the safe set S by
the framework of control barrier functions (CBFs). First, we
briefly revisit the main result in [22] that establishes theoretical
safety guarantees by CBFs. We state the definition of CBFs
and the conditions of safety below. We use the notation ‖.‖
for Euclidean norm, and we call a function α : (−a, b)→ R,
a, b > 0 as extended class K function, if it is continuous,
strictly monotonically increasing and α(0) = 0.

Definition 1. Function h is a control barrier function (CBF)
for (1) if there exists an extended class K function α such that
for all x ∈ S

sup
u∈U

ḣ(x, u) ≥ −α(h(x)), (3)

where
ḣ(x, u) = ∇h(x)(f(x) + g(x)u) (4)

is the derivative of h along system (1).

With the CBF definition, [22] establishes formal safety
guarantees as follows.

Theorem 1 ([22]): If h is a CBF for (1), then any locally
Lipschitz continuous controller u = k(x) satisfying

ḣ(x, u) ≥ −α(h(x)), (5)

∀x ∈ S renders S forward invariant (safe), i.e., it ensures
x0 ∈ S ⇒ x(t) ∈ S, ∀t ≥ 0.

The proof can be found in [22], and further technical details
with discussion about the selection of α are in [46]. Through-
out the paper, we use variants of the safety condition (5).

Remark 1. Condition (5) is often used in the context of
optimization-based controllers [22]. Given a control input
ud = kd(x) by a desired controller kd : X → U , one can
modify this input in a minimally invasive fashion to guarantee
safety by solving the following quadratic program (QP):

k(x) = argmin
u∈U

‖u− kd(x)‖2

s.t. ḣ(x, u) ≥ −α(h(x)).
(6)

This defines the control law u = k(x) implicitly. The fea-
sibility of this QP is guaranteed by the definition of CBFs
(Definition 1). However, verifying that a particular choice of
h is indeed a CBF is nontrivial when there are input constraints
(U ⊂ Rm). If there are no input bounds (U = Rm), feasibility

guarantees can be proven, and the solution to QP (6) can even
be expressed explicitly based on the KKT conditions [47] as

k(x) = kd(x) + max{−φ0(x), 0}φ+
1 (x),

φ0(x) = ∇h(x)(f(x) + g(x)kd(x)) + α(h(x)),

φ1(x) = ∇h(x)g(x),

(7)

where φ+
1 (x) = φ>1 (x)/(φ1(x)φ>1 (x)) is the right pseudoin-

verse of φ1(x). The derivation of (7) is given in Appendix I.
Note that for φ+

1 (x) to exist, one needs ∇h(x)g(x) 6= 0,
∀x ∈ S. This is often referred to as h has relative degree 1
(i.e., the first derivative of h with respect to time is affected by
u). For higher relative degrees (when a higher derivative of h
is affected by u), there exist systematic methods to construct
CBFs from h and guarantee safety; see [48]–[51] for details.
An example for such extension is given later in Section V.

III. SAFETY IN DYNAMIC ENVIRONMENT

So far we related safety to the state x of the system.
Often safety is also affected by the state of the environment,
which we characterize by e(t) ∈ E ⊆ Rl, where e is a contin-
uously differentiable function of time with ė(t) ∈ E ⊆ Rl and
e(0) = e0 ∈ E. Then the safe set modifies to an environmental
safe set Se:

Se = {(x, e) ∈ X × E : H(x, e) ≥ 0}, (8)

where H : X × E → R is assumed to be continuously differ-
entiable in both arguments.

A. Environmental Control Barrier Functions

We enforce safety in dynamic environments by introducing
the notion of environmental control barrier functions (ECBFs).

Definition 2. Function H is an environmental control barrier
function (ECBF) for (1) if there exists an extended class K
function α such that for all (x, e) ∈ Se and ė ∈ E

sup
u∈U

Ḣ(x, e, ė, u) ≥ −α(H(x, e)), (9)

where

Ḣ(x, e, ė, u) = ∇xH(x, e)(f(x) + g(x)u) +∇eH(x, e)ė
(10)

is the derivative of H along system (1).

With this definition, an extension of Theorem 1 yields
theoretical safety guarantees in dynamic environments, as
given below.

Theorem 2: If H is an ECBF for (1), then any locally
Lipschitz continuous controller u = K(x, e, ė) satisfying

Ḣ(x, e, ė, u) ≥ −α(H(x, e)), (11)

∀(x, e) ∈ Se and ∀ė ∈ E renders Se forward invariant, i.e., it
ensures (x0, e0) ∈ Se ⇒ (x(t), e(t)) ∈ Se, ∀t ≥ 0.

Proof. We couple (1) with its environment into the augmented
system

ż = F (z) +G(z)v, (12)



with augmented state z, input v and dynamics F and G as

z =

[
x
e

]
, v =

[
u
ė

]
, F (z) =

[
f(x)

0

]
, G(z) =

[
g(x)
I

]
.

(13)
For this system, function Hz : X × E → R, Hz(z) = H(x, e)
is a CBF, since H is an ECBF. Hence, safety can be guaranteed
with respect to the 0-superlevel set of Hz based on Theorem 1
via the condition

Ḣz(z, v) ≥ −α(Hz(z)). (14)

Substituting the definitions of z, v, F , G and Hz leads to (11)
and proves the statement in Theorem 2. �

Remark 2. Theorem 2 yields safety-critical controllers of the
form u = K(x, e, ė) with control law K : X × E × E → U .
That is, the control input depends on the environment as well
through e and ė which need to be measured. For example, a
controller based on optimization (specifically, a QP) reads

K(x, e, ė) = argmin
u∈U

‖u−Kd(x, e, ė)‖2

s.t. Ḣ(x, e, ė, u) ≥ −α(H(x, e)),
(15)

analogously to (6), with explicit solution for U = Rm:

K(x, e, ė) = Kd(x, e, ė) + max{−Φ0(x, e, ė), 0}Φ+
1 (x, e),

Φ0(x, e, ė) = ∇xH(x, e)(f(x) + g(x)Kd(x, e, ė))

+∇eH(x, e)ė+ α(H(x, e)),

Φ1(x, e) = ∇xH(x, e)g(x),
(16)

analogously to (7).

B. Robust Safety in Uncertain Environment
ECBFs rely on the environment state e and its derivative

ė. In practice, these quantities are typically estimated with
uncertainty. Therefore, now we robustify safety-critical con-
trollers against uncertainties in the environment. Motivated
by the method developed in [30] for state uncertainty, we
provide robustness based on worst-case uncertainty bounds
(i.e., in a deterministic fashion). For simplicity, we consider no
uncertainty in x, since typically the environment is associated
with more uncertainty than the state of the control system.

Consider that true environment state e and its derivative ė
are not available, only some estimates ê and ˆ̇e. We assume
these estimates have known uncertainty bounds εe and εė:

‖e− ê‖ ≤ εe,
∥∥ė− ˆ̇e

∥∥ ≤ εė. (17)

The main idea is to enforce safety through a conservative lower
bound on the unknown expression Ḣ(x, e, ė, u) +α(H(x, e))
that must be kept nonnegative according to Theorem 2. The
bound uses the known quantities ê and ˆ̇e in the form:

Ḣ(x, e, ė, u) + α(H(x, e))

≥ Ḣ(x, ê, ˆ̇e, u) + α(H(x, ê))− C(εe, εė, u) ≥ 0. (18)

This is stated more formally with the specific expression of
C(εe, εė, u) below, after some additional assumptions.

Assume that the following regularity conditions on H
hold. The functions ∇xH(x, e)f(x), ∇xH(x, e)g(x) and

α(H(x, e)) are Lipschitz continuous in argument e on Se with
Lipschitz coefficients L∇Hf,e, L∇Hg,e and Lα◦H,e, whereas
∇eH(x, e)ė is Lipschitz continuous in arguments e and ė on
Se × E with Lipschitz coefficients L∇Hė,e and L∇Hė,ė. This
implies:

∇xHf |x,e −∇xHf |x,ê ≥ −L∇Hf,e‖e− ê‖,(
∇xHg|x,e −∇xHg|x,ê

)
u ≥ −L∇Hg,e‖e− ê‖‖u‖,

∇eHė|x,e,ė −∇eHė|x,ê,ˆ̇e
≥ −L∇Hė,e‖e− ê‖ − L∇Hė,ė‖ė− ˆ̇e‖,

α ◦H|x,e − α ◦H|x,ê ≥ −Lα◦H,e‖e− ê‖.

(19)

Then, the following sufficient condition for safety can be
constructed.

Proposition 1: If H is an ECBF for (1) and the regularity
conditions in (19) hold, then any locally Lipschitz continuous
controller u = K(x, ê, ˆ̇e) satisfying

Ḣ(x, ê, ˆ̇e, u)− C(εe, εė, u) ≥ −α
(
H(x, ê)

)
, (20)

with

C(εe, εė, u) = (L∇Hf,e + Lα◦H,e + L∇Hė,e)εe
+ L∇Hė,ėεė + L∇Hg,eεe‖u‖, (21)

∀(x, ê) ∈ Se and ∀ˆ̇e ∈ E renders Se forward invariant, i.e., it
ensures (x0, e0) ∈ Se ⇒ (x(t), e(t)) ∈ Se, ∀t ≥ 0.

Proof. The steps of the proof follow those of Theorem 2
in [30]. We prove the Proposition by showing that (20)
implies (11) and by applying Theorem 2. We relate (20)
to (11) by introducing the difference between their correspond-
ing terms. Applying (10) to express both Ḣ(x, e, ė, u) and
Ḣ(x, ê, ˆ̇e, u), we get

Ḣ(x, e, ė, u) + α(H(x, e))

= Ḣ(x, ê, ˆ̇e, u) + α(H(x, ê))

+∇xHf |x,e −∇xHf |x,ê +
(
∇xHg|x,e −∇xHg|x,ê

)
u

+∇eHė|x,e,ė −∇eHė|x,ê,ˆ̇e + α ◦H|x,e − α ◦H|x,ê.
(22)

These differences show up on the left-hand side of (19).
Thus, the regularity conditions (19) on H , the uncertainty
bound (17) and condition (20, 21) sufficiently provide (11),
which completes the proof. �

Less conservative problem-specific bounds than the one
given by (21) also work as long as they sufficiently pro-
vide (11). Furthermore, we highlight that (21) involves a term
‖u‖. This, when incorporated into an optimization problem
like (6), leads to a second-order cone program (SOCP) rather
than a QP if L∇Hg,e 6= 0.

Example 1 (Adaptive Cruise Control). We consider an adap-
tive cruise control (ACC) problem, where an automated ve-
hicle (AV) intends to follow a human-driven vehicle (HV)
without collision; see Fig. 2. This problem was studied in [1],
[2] without the notion of ECBFs. We revisit this problem and
use ECBFs to tackle it, which will play an essential role to



Fig. 2. Strategies for adaptive cruise control where an automated
vehicle (AV) intends to safely follow a human-driven vehicle (HV). The
HV represents an environment for the AV. In the ideal scenario where the
HV’s position and speed are accurately known to the AV, controller (15)
ensures safety (black). When the HV’s position and speed are measured
with error (the environment is uncertain), controller (15) violates safety
(red). When controller (15) is robustified via constraint (20), safety is
maintained even in the presence of environment uncertainty (blue).

extend the resulting safety-critical controller to safe ACC with
input delay in Section IV.

We denote the length of the AV by l, the position of its rear
bumper by s and its speed by v, and we model its longitudinal
motion by [

ṡ
v̇

]
︸︷︷︸
ẋ

=

[
v

−p(v)

]
︸ ︷︷ ︸
f(x)

+

[
0
1

]
︸︷︷︸
g(x)

u, (23)

where p(v) indicates resistance terms. The input u is the
commanded acceleration that is assumed to be realized by a
low-level controller. We denote the HV’s position and speed
by s1 and v1. These quantities characterize the environment
for the AV: e = s1 and ė = v1.

To avoid collisions, the AV intends to keep its speed v
below a safe limit V̄ (d) = κ̄d for a selected κ̄ > 0, where
this limit depends on the distance d = s1 − s− l. Thus, we
use the ECBF:

H(x, e) = κ̄(s1 − s− l)− v, (24)

and select a linear class K function α(h) = γh with γ > 0.
For this choice, we have ∇xH(x, e)f(x) = −κ̄v + p(v),
∇xH(x, e)g(x) = −1 and ∇eH(x, e)ė = κ̄v1.

Substituting these expressions, while using (10), into the
safety condition (11) leads to

κ̄(v1 − v) + γ(κ̄(s1 − s− l)− v) + p(v) ≥ u. (25)

This implies that the AV should not accelerate more than
how much the expression on the left-hand side dictates. This
expression resembles the desired acceleration of simple ACC
controllers, in fact, for p(v) = 0 it is equivalent to the one
in [2] with a special choice of feedback gains and range policy.
Enforcing (25), for example, through the QP (15), guarantees
safety based on Theorem 2.

Fig. 2 shows numerical simulation results with the safety-
critical controller for p(v) = 0.1 + 0.0003v2, γ = 3 and κ̄ = 2
(with units in SI). The speed of the HV is presented in panel
(b): it performs constant speed cruising, braking with 2 m/s2

and constant speed cruising again. The AV intends to travel
at a constant speed higher than the HV’s speed with desired
controller Kd(x, e, ė) = 0. By applying the QP (15) with the
constraint (25), the AV is able to slow down safely behind the
HV; see the black curve.

The controller relies on the position and speed of the HV.
These can be obtained by on-board sensors such as radar,
lidar, cameras or ultrasonics, or by means of vehicle-to-vehicle
connectivity with the HV. If these quantities are measured with
error, safety may be violated. This is demonstrated by red color
in Fig. 2, where the controller relies on the measured value
ê = ŝ1 = s1 + 1 m and ˆ̇e = v̂1 = v1 + 1 m/s instead of the
true values e = s1 and ė = v1. That is, both the position and
speed of the HV are overestimated, which causes the system
to leave the safe set.

The controller can be made robust to such uncertainties in
the environment by replacing the safety condition (11) with the
robustified constraint (20) in the QP (15). If the HV’s position
and speed estimates have known error bounds εs and εv , that
is, |s1 − ŝ1| ≤ εs and |v1 − v̂1| ≤ εv , then, after substitution
into (20) and using (21), the robustified constraint becomes

κ̄(v1− εv − v) + γ(κ̄(s1− εs− s− l)− v) + p(v) ≥ u, (26)

where we used the Lipschitz coefficients L∇Hf,e = L∇Hg,e =
L∇Hė,e = 0, Lα◦H,e = γκ̄, L∇Hė,ė = κ̄. In this example, the
additional robustifying terms are equivalent to considering the
worst-case (smallest possible) position and speed for the HV.

The effect of these robustifying terms is shown by blue color
in Fig. 2 for εs = 1.4 m and εv = 1.4 m/s. The AV is able to
safely slow down behind the HV despite the uncertainty in
the HV’s measured state. Notice that the controller is slightly
conservative: the AV stays farther from the boundary of the
safe set than in the case without uncertainty.

IV. SAFETY OF SYSTEMS WITH INPUT DELAY

Now consider the system with input delay τ > 0:

ẋ(t) = f(x(t)) + g(x(t))u(t− τ), (27)

where f and g are the same as in (1), and u is bounded and
continuous almost everywhere (with a potential discontinuity
at t = 0 when the controller is turned on). We still assume
that there exists a unique solution x(t) over t ≥ 0.

A. Solution of the System and Predictors

To synthesize safety-critical controllers, we ensure that
given the state x(t) at time t the solution of (27) continues
to be safe over [t, t+ τ ]. This property depends on the
instantaneous control input u(t) that will be synthesized via
CBFs and also on the control input over [t− τ, t) given by
the input history ut ∈ B:

ut(θ) = u(t+ θ), θ ∈ [−τ, 0). (28)



Here B denotes the space of functions mapping from [−τ, 0)
to U that are bounded and continuous almost everywhere.

The solution over [t, t+ τ ] is characterized by the semi-flow
Ψ as a function of the state x(t) and as a functional of the
input history ut:

x(t+ ϑ) = Ψ(ϑ, x(t), ut), ϑ ∈ [0, τ ]. (29)

The semi-flow Ψ : [0, τ ]×X × B → X can be obtained by
the forward integration of (27) as follows:

Ψ(ϑ, x, ut)

= x+

∫ ϑ

0

(
f
(
Ψ(ϕ, x, ut)

)
+g
(
Ψ(ϕ, x, ut)

)
ut(ϕ−τ)

)
dϕ.

(30)

Of particular interest will be the state x(t+ τ), that reads

x(t+ τ) = Ψ(τ, x(t), ut). (31)

We remark that since u is bounded, u(t) does not affect the
value of the integral and thus ut is defined over [−τ, 0). That
is, the input history ut does not include the instantaneous
control input u(t). This will allow us to utilize the input history
ut when synthesizing a control input u(t).

Hereinafter, x(t+ τ) = Ψ(τ, x(t), ut) is called predicted
state and (30) serves as predictor. The predicted state will
play a key role in safety-critical control. It can be calculated by
forward integration of (27) over [t, t+ τ ]. Explicit expressions
may also be available for linear systems

ẋ(t) = Ax(t) +Bu(t− τ), (32)

with A ∈ Rn×n, B ∈ Rn×m, where the predicted state is given
by the convolution integral

Ψ(τ, x(t), ut) = eAτx(t) +

∫ τ

0

eA(τ−ϑ)But(ϑ− τ)dϑ. (33)

B. Control Barrier Functions with Input Delay

The following definition generalizes CBFs for systems with
input delay in the form (27) with τ > 0.

Definition 3. Function h is a control barrier function (CBF)
for (27) with τ > 0 if there exists an extended class K function
α such that for all x ∈ S and ut ∈ B

sup
u∈U

ḣ(xp, u) ≥ −α(h(xp)), (34)

where xp = Ψ(τ, x, ut) with Ψ given by (30).

Notice that the definition recovers Definition 1 for the
delay-free case, since xp = x if τ = 0. We use this definition
to guarantee safety analogously to Theorem 1. We assume
that safety-critical control starts at t = 0. According to (29),
x(ϑ) = Ψ(ϑ, x0, u0), ϑ ∈ [0, τ ], that is, the solution over [0, τ ]
evolves based on the initial input history u0 which we cannot
prescribe. Therefore, we need the following assumption to
ensure the system is safe over [0, τ ].

Assumption 1. The initial history u0 of the control input
satisfies x(ϑ) = Ψ(ϑ, x0, u0) ∈ S, ∀ϑ ∈ [0, τ ].

Now we are ready to state our main theorem that ensures
safety in the presence of the input delay τ > 0.

Theorem 3: If h is a CBF for (27) with τ > 0,
then any locally Lipschitz continuous controller u = k(xp),
xp = Ψ(τ, x, ut) with input history ut satisfying

ḣ(xp, u) ≥ −α(h(xp)), (35)

∀x ∈ S and ∀ut ∈ B renders S forward invariant under
Assumption 1, i.e., it ensures x0 ∈ S ⇒ x(t) ∈ S, ∀t ≥ 0.

Proof. Since Assumption 1 ensures x(ϑ) ∈ S, ∀ϑ ∈ [0, τ ],
it is sufficient to prove x(τ) ∈ S ⇒ x(t) ∈ S, ∀t ≥ τ . By
differentiation of (30) with respect to ϑ we have

d

dϑ
Ψ(ϑ, x(t), ut) = f

(
Ψ(ϑ, x(t), ut)

)
+ g
(
Ψ(ϑ, x(t), ut)

)
u(t+ ϑ− τ). (36)

Furthermore, by noticing d
dϑx(t+ ϑ) = d

dtx(t+ ϑ) and by
using (29), we get d

dϑΨ(ϑ, x(t), ut) = d
dtΨ(ϑ, x(t), ut). Sub-

stituting this into (36) and using ϑ = τ , we get the following
delay-free system for xp(t) = Ψ(τ, x(t), ut):

ẋp(t) = f(xp(t)) + g(xp(t))u(t). (37)

For this system, Theorem 1 can be applied since (34, 35) hold,
thus we get xp(0) ∈ S ⇒ xp(t) ∈ S, ∀t ≥ 0 that is equivalent
to x(τ) ∈ S ⇒ x(t) ∈ S, ∀t ≥ τ . �

Remark 3. As opposed to the delay-free case, the controller
in Theorem 3 is no longer a state-feedback controller, but it
also depends on the input history ut through feedback of the
predicted state xp = Ψ(τ, x, ut). Furthermore, optimization-
based controllers for systems with input delay can be synthe-
sized via Theorem 3 similarly to (6). The following QP can
be solved if τ > 0:

k(xp) = argmin
u∈Rm

‖u− kd(xp)‖2

s.t. ḣ(xp, u) ≥ −α(h(xp)).
(38)

Here the desired controller kd : X → U may also account
for the delay and can potentially depend on the predicted
state. The solution to (38) is equivalent to applying the
control law (6) of the corresponding delay-free system on the
predicted state xp = Ψ(τ, x, ut). This allows one to extend
explicitly available delay-free control laws, such as (7), for
systems with input delays. However, an explicit expression for
k is not always available, especially if additional constraints
are added to (6). In such cases, one cannot construct u by
separately solving the delay-free QP (6) and calculating the
predicted state xp, but one needs to solve QP (38) directly.

Remark 4. In practice, predicting the future state may not be
perfectly accurate. Often only an estimate x̂p of the predicted
state xp is available. Classically, this estimate is provided by
the numerical forward integration of (27). Alternatively, state
prediction can also be done by more modern tools such as data-
driven methods and machine learning. Theorem 3 guarantees
safety for the ideal scenario of accurate prediction, x̂p = xp.
However, mismatches between x̂p and xp inevitably occur



due to model uncertainties and computation errors [42]. Ro-
bustness against the prediction error x̂p − xp can be provided
analogously to Proposition 1 using the following condition:

ḣ(x̂p, u)− (L∇hf + Lα◦h)εx − L∇hgεx‖u‖ ≥ −α
(
h(x̂p)

)
,

(39)
where εx is the prediction error bound, ‖x̂p − xp‖ ≤ εx, and
L is the Lipschitz coefficient of the subscripted function on
S. Moreover, safety can also be studied under the notion of
input-to-state safety [24], [27] as we did in [11], where it
was shown that without robustification the input disturbance
d = k(x̂p)− k(xp) may make a larger set Sd ⊇ S forward
invariant.

C. Safety with Input Delay in Dynamic Environment

Finally, we consider the scenario when safety needs to
be guaranteed for the time delay system (27) in a dynamic
environment described by the state e(t) and the environmental
safe set Se. In Theorem 3, the key step to achieve safety
was to predict the state of the system over the time interval
[t, t+τ ]. Similarly, this section will rely on a prediction for the
environment. For simplicity of exposition, we assume that the
future state of the environment is determined by the current
state in the form:

e(t+ ϑ) = Γ(ϑ, e(t)), ϑ ∈ [0, τ ].

ė(t+ ϑ) = Γ̇(ϑ, e(t), ė(t)), ϑ ∈ [0, τ ].
(40)

where the maps Γ : [0, τ ]× E → E and Γ̇ : [0, τ ] × E ×
E → E may be unknown. We call e(t+ τ) = Γ(τ, e(t)) and
ė(t+ τ) = Γ̇(τ, e(t), ė(t)) as the prediction of the environ-
ment.

For this setup, we establish safety by extending the notion
of ECBFs to systems with input delay.

Definition 4. Function H is an environmental control barrier
function (ECBF) for (27) with τ > 0 if there exists an ex-
tended class K function α such that for all (x, e) ∈ Se, ė ∈ E
and ut ∈ B

sup
u∈U

Ḣ(xp, ep, ėp, u) ≥ −α(H(xp, ep)), (41)

where xp = Ψ(τ, x, ut) with Ψ given by (30), while
ep = Γ(τ, e), ėp = Γ̇(τ, e, ė) with Γ, Γ̇ defined by (40).

With this definition, Theorems 2 and 3, that separately
guarantee safety in dynamic environment and for input delay,
respectively, can be integrated into Theorem 4 below. Again,
we need a preliminary assumption that the system is safe over
the first delay interval t ∈ [0, τ ] when safety depends on the
input history u0.

Assumption 2. The initial history u0 of the control input satis-
fies (x(ϑ), e(ϑ)) = (Ψ(ϑ, x0, u0),Γ(ϑ, e0)) ∈ Se, ∀ϑ ∈ [0, τ ].

Now we can state the main theorem to ensure safety for
systems with input delay in dynamic environment.

Theorem 4: If H is an ECBF for (27) with τ > 0, then
any locally Lipschitz continuous controller u = K(xp, ep, ėp),

xp = Ψ(τ, x, ut), ep = Γ(τ, e), ėp = Γ̇(τ, e, ė) with history ut
satisfying

Ḣ(xp, ep, ėp, u) ≥ −α(H(xp, ep)), (42)

∀(x, e) ∈ Se, ∀ė ∈ E and ∀ut ∈ B renders Se

forward invariant under Assumption 2, i.e., it ensures
(x0, e0) ∈ Se ⇒ (x(t), e(t)) ∈ Se, ∀t ≥ 0.

Proof. Assumption 2 yields (x0, e0) ∈ Se ⇒ (x(ϑ), e(ϑ)) ∈
Se, ∀ϑ ∈ [0, τ ], thus what remains to prove is
(x(τ), e(τ)) ∈ Se ⇒ (x(t), e(t)) ∈ Se, ∀t ≥ τ . This is
equivalent to (xp(0), ep(0)) ∈ Se ⇒ (xp(t), ep(t)) ∈ Se,
∀t ≥ 0 based on the definitions of xp and ep. According to
the proof of Theorem 3, xp(t) is governed by the delay-free
dynamics (37). Hence, Theorem 2 is directly applicable to
this delay-free system considering the environment given by
ep. This provides (xp(0), ep(0)) ∈ Se ⇒ (xp(t), ep(t)) ∈ Se,
∀t ≥ 0 as desired, which completes the proof. �

Remark 5. Theorem 4 ultimately leads to controllers that
depend on the state x, the input history ut, and the state of
the environment given by e, ė. An example is the following
quadratic program:

K(xp, ep, ėp) = argmin
u∈U

‖u−Kd(xp, ep, ėp)‖2

s.t. Ḣ(xp, ep, ėp, u) ≥ −α(H(xp, ep)),
(43)

with xp = Ψ(τ, x, ut), ep = Γ(τ, e) and ėp = Γ̇(τ, e, ė),
cf. (15, 38).

Remark 6. In practice, the future state of the environment
given by ep is unknown, we can only potentially provide an
estimate êp with corresponding estimate ˆ̇ep for the derivative.
Robustness with respect to environment prediction errors is a
significant problem since the evolution of the environment is
often more uncertain than the dynamics of the control system.
Robustness can be addressed similarly to Section III-B, as
discussed below. For simplicity, we assume that the dynamics
of the control system (27) is well-known and its state can be
predicted with negligible error (x̂p = xp); otherwise prediction
errors could be overcome based on Remark 4. Then, the
approach of Proposition 1 can be applied to achieve robustness
against environment prediction errors, via the condition:

Ḣ(xp, êp, ˆ̇ep, u)− C(εe, εė, u) ≥ −α
(
H(xp, êp)

)
, (44)

with C(εe, εė, u) defined in (21), where εe and εė are
the error bounds on the environment prediction, satisfying∥∥ep − êp

∥∥ ≤ εe and
∥∥ėp − ˆ̇ep

∥∥ ≤ εė.
Example 2 (Adaptive Cruise Control with input delay).
Consider the adaptive cruise control problem outlined in
Example 1, now with input delay:[

ṡ(t)
v̇(t)

]
︸ ︷︷ ︸
ẋ(t)

=

[
v(t)

−p
(
v(t)

)]︸ ︷︷ ︸
f(x(t))

+

[
0
1

]
︸︷︷︸
g(x(t))

u(t− τ), (45)

where τ represents powertrain delays. For passenger vehicles,
this delay is around 0.5–1 s [20], hence it is not negligible for
safety-critical applications.



Fig. 3. Strategies for adaptive cruise control with input delay. The naı̈ve
implementation of the delay-free control design (15) violates safety
(black). The controller (43) that relies on predictor feedback enforces
safety as long as the prediction of the HV’s motion is accurate, and
violates safety otherwise (red). When controller (43) is robustified via
constraint (44), safety is maintained despite prediction errors (blue).

The effect of this delay is demonstrated in Fig. 3 by
black color. Simulation results are shown with a large delay
τ = 1, zero initial input history, and the same parameters
as in Example 2: p(v) = 0.1 + 0.0003v2, γ = 3 and κ̄ = 2
(with units in SI). If one implements the delay-free control
design (15) relying on (25), it fails to keep system (45) safe
due to the delay τ . Safety violations happen even when the
HV drives with constant speed.

Thus, we use Theorem 4 to maintain safety for
τ > 0. We predict the AV’s motion by forward integrat-
ing (45) over the delay interval [t, t+ τ ] using the in-
put history ut. The resulting predicted state is denoted
by xp(t) = [sp(t), vp(t)]>. Furthermore, we predict the
HV’s motion by assuming constant speed over [t, t+ τ ]:
ˆ̇ep(t) = v1(t) and êp(t) = s1(t) + v1(t)τ . These predictions
can be incorporated into the safety condition (42) to synthesize
a control input satisfying

κ̄
(
v1−vp

)
+γ
(
κ̄(s1 +v1τ −sp− l)−vp

)
+p(vp) ≥ u, (46)

cf. (25).
Red color in Fig. 3 shows the result of executing the corre-

sponding controller given by QP (43) with desired controller
Kd(xp, ep, ėp) = 0 and constraint (46). The controller is able
to maintain safety as long as the HV travels at constant
speed and the corresponding prediction accurately captures
HV’s future motion (ˆ̇ep(t) = ėp(t) and ˆ̇ep(t) = ėp(t)). Then,
safety is violated once the HV starts to slow down and the
prediction is no longer equal to the true future motion of
the HV (ˆ̇ep(t) 6= ėp(t) and ˆ̇ep(t) 6= ėp(t)). While one can
argue that the constant speed prediction is overly simplistic
and more sophisticated predictions exist, the HV’s future
motion is inherently uncertain. Hence, we need to robustify
the controller with respect to this uncertainty.

Assuming that the HV’s acceleration is limited to a range
[−amin, amax], we have the following physical bounds for the

Fig. 4. (a) The Ninebot E+ Segway platform. (b) Its mechanical model
illustrated in equilibrium position. (c) The Segway in motion aiming to
avoid a moving obstacle. (d) Simplified representation of the Segway.

environment prediction error: εė = āτ and εe = āτ2/2 with
ā = max{amin, amax}. Then the robustified condition (44)
leads to the form

κ̄
(
v1 − āτ − vp

)
+ γ
(
κ̄(s1 + v1τ − āτ2/2− sp − l)− vp

)
+ p(vp) ≥ u, (47)

cf. (46). Besides, it can be shown that replacing ā with amin

in (47) also implies (42). This provides a problem-specific
bound that is less conservative than (47) if amin < amax.

The blue curve in Fig. 3 shows simulation results for
amin = amax = 2.5 m/s2 using controller (43) with the robus-
tified constraint (47). By Theorem 2, the controller ensures
safety even in the presence of the input delay, in a dynamic,
uncertain environment. The price of robustness is slight con-
servatism: the system does not exactly get to the boundary of
the safe set but keeps a small distance, since the controller
considers the 2.5 m/s2 braking limit as opposed to the actual
2 m/s2 braking over the 1 s delay interval.

V. CASE-STUDY: CONTROL OF A SEGWAY

Now we apply the theoretical constructions of this paper to a
real-life robotic system: we consider the control of a Ninebot
E+ Segway platform [52] shown in Fig. 4(a). We intend to
drive the Segway so that it safely avoids a moving obstacle,
even when the obstacle position is uncertain and there is a
delay in the control loop. We conduct numerical simulations
of the Segway’s motion using a high-fidelity dynamical model.

We characterize the planar motion of the Segway using its
position p and pitch angle ϕ via the mechanical model shown
in Fig. 4(b,c). Fig. 4(b) illustrates the Segway in equilibrium,
where the center of mass of its frame (point G) is located
above the wheel center (point C). Notice that the frame is
asymmetric and its axis is tilted in equilibrium at an offset
angle ϕ0. Fig. 4(c) shows the Segway in motion, executing
the obstacle avoidance, and Fig. 4(d) illustrates a simplified
representation of the wheel and frame.

Our goal is to drive the Segway forward with a desired
speed ṗd while avoiding a moving, circular obstacle centered
at [e, y]> (point E in Fig. 4) with radius r. The obstacle
represents the environment of the Segway. We intend to control
the Segway such that its tip – point T in Fig. 4, located at
distance ` from the wheel center – does not collide with the
obstacle. The obstacle moves horizontally with constant speed
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Fig. 5. Safety-critical control of the Segway to avoid a moving obstacle.
The dynamics (48) are delay-free and the obstacle position is known.
Using a controller that satisfies (53), the Segway successfully and safely
avoids the obstacle.

vobs: e = e0 − tvobs, ė = −vobs, ẏ = 0. For numerical case-
study, we consider ṗd = 1 m/s, r = 0.2 m, vobs = 0.5 m/s,
e0 = 1 m and y = 1.0418 m (for this value, point T is located
0.05 m above the bottom of the obstacle when the Segway
is in equilibrium). First, we consider safety-critical control
by neglecting the time delay that may arise in the Segway’s
control loop, then we address the effects of delays.

A. Safety-Critical Control in Dynamic Environment
We describe the dynamics of the Segway using its po-

sition p and pitch angle ϕ as a planar, two-degrees-of-
freedom system with general coordinates q = [p, ϕ]> ∈ Q.
With the general velocities q̇ = [v, ω]> ∈ R2, the state be-
comes x = [p, ϕ, v, ω]> ∈ X . Note that the configuration
space is Q = R× [0, 2π] and the state space is X = Q× R2.
The control input u is the voltage applied on the motors at the
wheels, u ∈ R. The dynamics are governed by

ṗ
ϕ̇
v̇
ω̇

 =


v
ω

fv(ϕ, v, ω)
fω(ϕ, v, ω)

+


0
0

gv(ϕ)
gω(ϕ)

u. (48)

For the derivation of this equation and the detailed expressions
of fv , fω , gv and gω , please refer to Appendix II-A. The model
parameters were identified in [52] and are listed in Table I.

We track the desired speed ṗd by the desired controller

Kd(x, e, ė) = Kṗ(ṗ− ṗd) +Kϕϕ+Kϕ̇ϕ̇ (49)

with gains Kṗ = 8 Vs/m, Kϕ = 40 V/rad, Kϕ̇ = 10 Vs/rad,
that also stabilizes the Segway to the upright position. To avoid
the moving obstacle, we construct the ECBF candidate

H(x, e) = d>d− r2,

d =

[
p+ ` sin(ϕ+ ϕ0)− e
R+ ` cos(ϕ+ ϕ0)− y

]
,

(50)

where d is the vector pointing from the obstacle center to the
tip of the Segway.

We seek to maintain safety with respect to the environ-
mental safe set (8) using Theorem 2. However, H is not
a valid ECBF since Ḣ does not depend on the input u
since ∇xH(x, e)g(x) = 0. Therefore, we consider a dynamic
extension of the ECBF based on [48]. We define the following
extended environmental control barrier function:

He(x, e, ė) = Ḣ(x, e, ė) + γeH(x, e), (51)

with γe > 0, whose derivative depends on the control input u:

Ḣe(x, e, ė, ë, u) = ∇xḢ(x, e, ė)(f(x) + g(x)u)

+∇eḢ(x, e, ė)ė+∇ėḢ(x, e, ė)ë+ γeḢ(x, e, ė). (52)

With this choice, He(x, e, ė) ≥ 0 is equivalent to (11) in
Theorem 2 considering a linear class K function with gradient
γe. Thus, safety is achieved if He is kept nonnegative for all
time, which can be enforced if He(x0, e0, ė0) ≥ 0 and

Ḣe(x, e, ė, ë, u) ≥ −α
(
He(x, ê, ė)

)
, (53)

according to Theorem 2. Notice that this condition involves
the second derivative ë as well.

We implement a QP-based controller similar to (15), with
desired controller (49) and constraint (53) using linear class
K function α(He) = γHe with γ = 7.5 s−1 and γe = 7.5 s−1.
The performance of the controller is demonstrated in Fig. 5
for a scenario with known obstacle position. Snapshots of the
motion are illustrated at the bottom whereas the characteristics
of the motion are quantified at the top. Panel (a) shows that the
Segway tracks the desired velocity (ṗ ≈ pd) in upright position
(ϕ ≈ 0) until it has to evade the obstacle. Panel (b) indicates
that the obstacle is safely avoided as H is positive for all time.
Panel (c) shows the corresponding phase portrait, whereas
panel (d) indicates the desired and actual control inputs.

B. Safety-Critical Control with Input Delay
Now we consider the dynamics with input delay τ > 0

arising from sensory, feedback and actuation latencies:
ṗ(t)
ϕ̇(t)
v̇(t)
ω̇(t)

 =


v(t)
ω(t)

fv(ϕ(t), v(t), ω(t))
fω(ϕ(t), v(t), ω(t))

+


0
0

gv(ϕ(t))
gω(ϕ(t))

u(t− τ),

(54)
cf. (48). The effect of the delay is illustrated in Fig. 6. Here
the same delay-free control design is used as in Fig. 5, but the
dynamics are subject to the input delay τ = 0.1 s. Although
the Segway realizes a stable motion, the delay leads to safety
violation: the Segway collides with the obstacle (H becomes
negative in Fig. 6(b)). While collision could be avoided by
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Fig. 6. Safety-critical control of the Segway to avoid a moving obstacle.
The dynamics (54) involve an input delay. The naı̈ve implementation of
the delay-free control design based on (53) fails to avoid the obstacle.

buffering the obstacle, formal safety guarantees no longer hold
with delay. Moreover, the control input is much larger for the
case with input delay than without delay, cf. Fig. 5(d) and
Fig. 6(d). Although this example did not consider physical
bounds on the control input, large inputs are undesired, and
safety-critical control could become infeasible when consider-
ing input bounds. To overcome the unsafe behavior, the delay
needs to be incorporated into the control design.

The input delay can be tackled via predictor feedback,
using Theorem 4. We assume that the state xp is accurately
predicted (x̂p = xp), while the predictions ep, ėp and ëp of
the environment are uncertain. Hence the controller relies on
estimates êp, ˆ̇ep and ˆ̈ep and their error bounds

∥∥ep − êp

∥∥ ≤ εe,∥∥ėp − ˆ̇ep

∥∥ ≤ εė and
∥∥ëp − ˆ̈ep

∥∥ ≤ εë. Analogously to (44), we
use the robustified safety constraint

Ḣe(xp, êp, ˆ̇ep, ˆ̈ep, u)−C(εe, εė, εë, u) ≥ −α
(
He(xp, êp, ˆ̇ep)

)
,

(55)
with

C(εe, εė, u) = (L∇Hef,e+Lα◦He,e+L∇Heė,e+L∇Heë,e)εe

+ (L∇Hef,ė + Lα◦He,ė + L∇Heė,ė + L∇Heë,ė)εė

+ L∇Heë,ëεë + (L∇Heg,eεe + L∇Heg,ėεė)‖u‖, (56)

cf. (21). Here L denotes the Lipschitz coefficient of the
subscripted function with respect to the argument at the end
of the subscript. These coefficients were determined based on
the detailed expressions of the Segway dynamics, and they are
listed in Appendix II-B.

Fig. 7 shows the implementation of the corresponding QP-
based controller, similar to (43), with desired controller (49)
applied on the predicted state and with constraint (55).
The true future of the environment is given by ëp = 0,
ėp = −vobs and ep = e− vobsτ , which is unknown to the
controller. Instead, the controller relies on the prediction
ˆ̈ep = 0, ˆ̇ep = −(vobs −∆v) and êp = e− (vobs −∆v)τ . That
is, we consider that the speed of the obstacle is underesti-
mated by ∆v = 0.05 m/s. The controller is robustified with
respect to the prediction error using the error bounds εë = 0,
εė = 0.055 m/s and εe = τεė = 0.0055 m. With the proposed
robust controller, the Segway is able to safely execute the
obstacle avoidance task, despite the delay in the control loop
and the uncertainty in the obstacle’s future position. The
Segway achieves this with a qualitatively different motion than
in the delay-free case. For zero delay in Fig. 5, the Segway
pitches backwards to go under the obstacle. For nonzero delay
in Fig. 7, the Segway first moves in reverse to get away from
the obstacle, then pitches forward to go under it. Notably,
this behavior is automatically generated by the control barrier
function, and with provable guarantees of safety.

VI. CONCLUSIONS

We have discussed safety-critical control for systems with
input delay that operate in dynamically evolving environment.
We have provided formal safety guarantees and proofs thereof.
We have established a method for safe control synthesis by
proposing environmental control barrier functions and inte-
grating them with predictor feedback. We have strengthened
the underlying safety condition to provide robustness against
uncertain environments, in which the future of the environment
cannot be predicted accurately but bounds on the related
prediction error are known. The resulting control design uti-
lizes worst-case uncertainty bounds and is provably safe. We
have demonstrated the method by an adaptive cruise control
problem where the motion of other road participants create an
uncertain environment, and by a Segway controller executing
a moving obstacle avoidance task. Our future work includes
further analysis of prediction errors, control of systems with
both state and input delays, and considering control barrier
functionals acting on delayed states.

APPENDIX I
KKT CONDITIONS

This appendix shows the derivation of the solution (6) to the
quadratic program (7) for the case without input constraints
(U = Rm). Let us define ∆k(x) = k(x)− kd(x) and consider
the expressions of ḣ(x, u) in (4) and φ0(x), φ1(x) in (7) with
φ1(x) 6= 0. Then, we can restate (6) as

∆k(x) = argmin
∆u∈Rm

‖∆u‖2

s.t. φ0(x) + φ1(x)∆u ≥ 0.
(57)

This optimization problem has convex objective and affine
constraint, hence the Karush-Kuhn-Tucker (KKT) condi-
tions [47] provide the necessary and sufficient conditions for
optimality. The KKT optimality conditions imply that there
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Fig. 7. Safety-critical control of the Segway to avoid a moving obstacle.
The dynamics (54) involve an input delay that is compensated via
predictor feedback. The controller is designed based on (55), taking
into account prediction errors. The Segway successfully accomplishes
the obstacle avoidance task despite the delay and the uncertain future
motion of the obstacle.

exists a Lagrange multiplier µ : X → R such that µ(x) and
∆k(x) satisfy

µ(x) ≥ 0, (58)

∆k(x) = µ(x)φ>1 (x), (59)
φ0(x) + φ1(x)∆k(x) ≥ 0, (60)
µ(x)(φ0(x) + φ1(x)∆k(x)) = 0, (61)

which are referred to as dual feasibility, stationary, primal fea-
sibility and complementary slackness conditions, respectively.

We decompose the dual feasibility condition (58) into two
cases: µ(x) = 0 and µ(x) > 0. For µ(x) = 0, the stationary
condition (59) gives

∆k(x) = 0, (62)

and with the primal feasibility condition (60) this leads to

φ0(x) ≥ 0. (63)

For µ(x) > 0, the complementary slackness condition (61)
implies

φ0(x) + φ1(x)∆k(x) = 0. (64)

Recall that φ0(x) is a scalar (φ0(x) ∈ R), φ1(x) is a vector
(φ1(x) ∈ Rn), φ1(x) is nonzero, and its right pseudoinverse
is denoted by φ+

1 (x) = φ>1 (x)/(φ1(x)φ>1 (x)). Then, we can
express ∆k(x) from (64) as

∆k(x) = −φ0(x)φ+
1 (x). (65)

Furthermore, we can show that φ0(x) < 0 holds by expressing
φ0(x) from (64) and substituting the stationary condition (59):

φ0(x) = −φ1(x)∆k(x) = −µ(x)φ1(x)φ>1 (x) < 0, (66)

where we used that µ(x) > 0 and φ1(x)φ>1 (x) > 0.
In summary, for µ(x) = 0 we have ∆k(x) = 0 and

φ0(x) ≥ 0, while µ(x) > 0 implies ∆k(x) = −φ0(x)φ+
1 (x)

and φ0(x) < 0. These can be written as

∆k(x) =

{
0 if φ0(x) ≥ 0,

−φ0(x)φ+
1 (x) if φ0(x) < 0,

(67)

or more compactly as [10]

∆k(x) = max{−φ0(x), 0}φ+
1 (x). (68)

Since k(x) = kd(x) + ∆k(x), we finally obtain (7) as the
solution to the quadratic program (6).

APPENDIX II
TECHNICAL DETAILS OF THE SEGWAY APPLICATION

Here we derive the governing equations of the Segway
model described in Section V, using Lagrange equations of
the second kind. This reproduces the model in [52]. Then,
we describe the ECBF and the corresponding Lipschitz coef-
ficients for the obstacle avoidance task.

A. Segway Dynamics
The Segway’s mechanical model is shown in Fig. 4. This

planar model contains two rigid bodies: the frame and the
wheels. The two wheels are considered to be identical, hence
they are treated together with their combined mass and inertia,
while the voltage and torque at the two motors are assumed
to be the same. We denote the center of the wheels by point
C, the center of mass (CoM) of the frame by point G, their
distance by L and the wheel radius by R. We measure the
pitch angle such that ϕ = 0 in equilibrium position, where G
is located above C. Note that since the frame is asymmetric,
the frame axis is not vertical in equilibrium, but it has an offset
angle ϕ0.

Assuming the wheels are rolling without slipping, the an-
gular velocities ωw and ωf of the wheel and the frame and the
velocities vC and vG of points C and G can be calculated by

ωw = ṗ/R, ωf = ϕ̇,

vC =

[
ṗ
0

]
, vG =

[
ṗ+ Lϕ̇ cosϕ
−Lϕ̇ sinϕ

]
.

(69)

Then, with the mass M and mass moment of inertia JC of
the wheels and the mass m and mass moment of inertia JG

of the frame the kinetic energy of the Segway is

T =
1

2
Mv2

C +
1

2
JCω

2
w +

1

2
mv2

G +
1

2
JGω

2
f

=
1

2
m0ṗ

2 +mLṗϕ̇ cosϕ+
1

2
J0ϕ̇

2,
(70)

where m0 = m+M + JC/R
2 and J0 = mL2 + JG. The po-

tential energy of the Segway is

U = mgL cosϕ. (71)



The power of the total driving torque Md exerted by the two
motors at the wheels can be expressed as

P = Md(ωw − ωf) = Qpṗ+Qϕϕ̇, (72)

yielding the general forces Qp = Md/R and Qϕ = −Md.
The driving torque Md can be related to the voltage u of

the motors. We regard the voltage as control input, obtained
from the following motor model:

u = Rai+Kb(ωw − ωf),

Md = Kti,
(73)

where i is the armature current, Ra is the armature resistance,
Kb is the back electromagnetic field constant of the motors
and Kt is the torque constant of the motors. This implies the
driving torque

Md = Kmu− bt(ṗ−Rϕ̇), (74)

with constants Km = Kt/Ra and bt = KtKb/(RaR).
With these preliminaries, we can write Lagrange’s equations

d

dt

∂T

∂ṗ
− ∂T

∂p
+
∂U

∂p
= Qp,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+
∂U

∂ϕ
= Qϕ,

(75)

which, after substitution, lead to

m0p̈+mL cosϕϕ̈−mL sinϕϕ̇2 =
Md

R
,

mL cosϕp̈+ J0p̈−mgL sinϕ = −Md.
(76)

Ultimately, we obtain the equations of motion in the form

D(q)q̈ +H(q, q̇) = Bu, (77)

with the inertia matrix D(q), Coriolis and gravity terms
included in H(q, q̇) and input matrix B:

D(q) =

[
m0 mL cosϕ

mL cosϕ J0

]
, B =

[
Km/R
−Km

]
,

H(q, q̇) =

[
−mL sinϕϕ̇2 + bt/R(ṗ−Rϕ̇)
−mgL sinϕ− bt(ṗ−Rϕ̇)

]
.

(78)

The equations of motion can be rearranged to the first-order
control-affine form (1):[

q̇
q̈

]
=

[
q̇

−D(q)−1H(q, q̇)

]
+

[
0

D(q)−1B

]
u, (79)

which leads to
ṗ
ϕ̇
v̇
ω̇

 =


v
ω

fv(ϕ, v, ω)
fω(ϕ, v, ω)

+


0
0

gv(ϕ)
gω(ϕ)

u, (80)

cf (48). The expressions of the drift terms are

fv(ϕ, v, ω) =
a sinϕω2 − g sinϕ cosϕ

b− cosϕ2
− κgv(ϕ)(v −Rω),

fω(ϕ, v, ω) =
− sinϕ cosϕω2 + c sinϕ

b− cosϕ2
− κgω(ϕ)(v −Rω),

(81)

TABLE I
PARAMETERS OF THE SEGWAY MODEL

Description Parameter Value Unit
gravitational acceleration g 9.81 m/s2

radius of wheels R 0.195 m
mass of wheels M 2×2.485 kg

mass moment of inertia of wheels JC 2×0.0559 kgm2

distance of wheel center and frame CoM L 0.169 m
distance of wheel center and frame tip ` 0.75 m

mass of frame m 44.798 kg
mass moment of inertia of frame JG 3.836 kgm2

offset angle ϕ0 0.138 rad
torque constant of motors Km 2×1.262 Nm/V

damping constant of motors bt 2×1.225 Ns

combined parameters

m0 52.710 kg
J0 5.108 kgm2

a 0.6768 m
b 4.7274 -
c 68.5205 1/s2
κ 0.9713 Vs/m
A 1.1605 m/s2/V
B 0.3344 m/s2/V
C 1.7147 1/s2/V
D 2.3355 1/s2/V

whereas those of the control matrix read

gv(ϕ) =
A+B cosϕ

b− cosϕ2
, gω(ϕ) = −C cosϕ+D

b− cosϕ2
, (82)

with parameters

a =
J0

mL
, b =

m0J0

m2L2
, c =

m0g

mL
, κ =

bt
Km

,

A =
KmJ0

m2L2R
, B =

Km

mL
, C =

Km

mLR
, D =

Kmm0

m2L2
.

(83)

The values of all parameters are listed in Table I. These were
identified for the Ninebot E+ Segway platform in [52].

B. Expression of the ECBF and its Lipschitz Coefficients

Now we give the detailed expressions of the extended ECBF
in (51) and the corresponding Lipschitz coefficients in (56).
The ECBF candidate in (50) is of the form

H(x, e) = h0(x) + h1(x)e+ e2, (84)

with coefficients

h0(x) =
(
p+ ` sin(ϕ+ ϕ0)

)2
+
(
R+ ` cos(ϕ+ ϕ0)− y

)2 − r2,

h1(x) = −2
(
p+ ` sin(ϕ+ ϕ0)

)
.

(85)

Then, the extended ECBF in (51) becomes

He(x, e, ė) = H0(x) +H1(x)e+ h1(x)ė+ γee
2 + 2eė, (86)

where

H0(x) = ∇ph0(x)v +∇ϕh0(x)ω + γeh0(x),

H1(x) = ∇ph1(x)v +∇ϕh1(x)ω + γeh1(x).
(87)

Notice that h0 and h1 depend on the states p and ϕ only,
whose derivatives are independent of the control input u.



The Lipschitz coefficients in (56) belong to the functions

∇xHef(x, e, ė) = C0(x) + C1(x)e+ C2(x)ė,

∇xHeg(x, e, ė) = C3(x) + C4(x)e,

∇eHeė(x, e, ė) = H1(x)ė+ 2γeeė+ 2ė2,

∇ėHeë(x, e, ė, ë) = h1(x)ë+ 2eë,

α ◦He(x, e, ė) = γH0(x) + γH1(x)e+ γh1(x)ė

+ γγee
2 + 2γeė,

(88)

where
C0(x) = ∇xH0(x)f(x),

C1(x) = ∇xH1(x)f(x),

C2(x) = ∇xh1(x)f(x),

C3(x) = ∇xH0(x)g(x),

C4(x) = ∇xH1(x)g(x).

(89)

For example, to identify the Lipschitz coefficients of
∇eHeė, we can write

∇eHeė(x, e, ė)−∇eHeė(x, ê, ˆ̇e)

= H1(x)(e− ê) + 2γe(eė− êˆ̇e) + 2
(
ė2 − ˆ̇e2

)
= H1(x)(e− ê) + 2γeė(e− ê) + 2γeê(ė− ˆ̇e)

+ 2ˆ̇e(ė− ˆ̇e) + 2ė(ė− ˆ̇e)

≥ −(|H1(x)|+ 2γe max
ė∈Dė

|ė|)|e− ê|

− (2γe|ê|+ 2|ˆ̇e|+ 2 max
ė∈Dė

|ė|)|ė− ˆ̇e|,

(90)

hence the corresponding Lipschitz coefficients are

L∇Heė,e = |H1(x)|+ 2γe max
ė∈Dė

|ė|,

L∇Heė,ė = 2γe|ê|+ 2|ˆ̇e|+ 2 max
ė∈Dė

|ė|.
(91)

Here we considered that the unknown environment state
derivative ė is restricted to a domain Dė ⊆ E to get local
Lipschitz coefficients. Similarly, the unknown environment
state e and acceleration ë can also be restricted to some
domains De ⊆ E and Dë ⊆ Rl. In the case of the Segway,
we assumed that the obstacle’s position and velocity are re-
stricted to De = [−3, 3] m and Dė = [−0.55, 0.55] m/s (while
its acceleration was known to be zero).

After similar calculation, the list of the remaining Lipschitz
coefficients is
L∇Hef,e = |C1(x)|,
L∇Hef,ė = |C2(x)|,
L∇Heg,e = |C4(x)|,
L∇Heg,ė = 0,

L∇Heë,e = 2 max
ë∈Dë

|ë|,

L∇Heë,ė = 0,

L∇Heë,ë = |h1(x)|+ 2|ê|,
Lα◦He,e = γ|H1(x)|+ γγe(|ê|+ max

e∈De

|e|) + 2γ max
ė∈Dė

|ė|,

Lα◦He,ė = γ|h1(x)|+ 2γ|ê|.
(92)

Note that these coefficients may depend on the state x or the
estimates ê, ˆ̇e and ˆ̈e to reduce conservatism, while they are
independent of the unknown values e, ė and ë.

REFERENCES

[1] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. Ames, J. W. Grizzle,
N. Ozay, H. Peng, and P. Tabuada, “Correct-by-construction adaptive
cruise control: Two approaches,” IEEE Transactions on Control Systems
Technology, vol. 24, no. 4, pp. 1294–1307, 2016.

[2] C. R. He and G. Orosz, “Safety guaranteed connected cruise control,”
in 21st IEEE International Conference on Intelligent Transportation
Systems, 2018, pp. 549–554.

[3] S. Teng, Y. Gong, J. W. Grizzle, and M. Ghaffari, “Toward safety-
aware informative motion planning for legged robots,” arXiv preprint,
no. arXiv:2103.14252, 2021.

[4] J. Tordesillas, B. T. Lopez, and J. P. How, “Faster: Fast and safe
trajectory planner for flights in unknown environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2019, pp.
1934–1940.

[5] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasudevan,
“Bridging the gap between safety and real-time performance in receding-
horizon trajectory design for mobile robots,” The International Journal
of Robotics Research, vol. 39, no. 12, pp. 1419–1469, 2020.

[6] J. Nubert, J. Köhler, V. Berenz, F. Allgöwer, and S. Trimpe, “Safe and
fast tracking on a robot manipulator: Robust MPC and neural network
control,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3050–
3057, 2020.
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