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Safe Machine-Learning-supported Model
Predictive Force and Motion Control in Robotics

Janine Matschek, Johanna Bethge, and Rolf Findeisen

Abstract— Many robotic tasks, such as human-robot in-
teractions or the handling of fragile objects, require tight
control and limitation of appearing forces and moments
alongside sensible motion control to achieve safe yet high-
performance operation. We propose a learning-supported
model predictive force and motion control scheme that
provides stochastic safety guarantees while adapting to
changing situations. Gaussian processes are used to learn
the uncertain relations that map the robot’s states to the
forces and moments. The model predictive controller uses
these Gaussian process models to achieve precise mo-
tion and force control under stochastic constraint satis-
faction. As the uncertainty only occurs in the static model
parts - the output equations - a computationally efficient
stochastic MPC formulation is used. Analysis of recursive
feasibility of the optimal control problem and convergence
of the closed loop system for the static uncertainty case
are given. Chance constraint formulation and back-offs are
constructed based on the variance of the Gaussian process
to guarantee safe operation. The approach is illustrated on
a lightweight robot in simulations and experiments.

Index Terms— Force control, motion control, robotics,
model predictive control, machine learning, Gaussian pro-
cesses, safety, constraint-satisfaction, chance-constraints.

I. INTRODUCTION

ROBOTS are increasingly used for interactive and co-
operative tasks in a wide range of applications, which

require safe interaction with the environment. For instance,
robots should safely support humans in production processes,
without the traditional separation between the robotic and
human coworkers [1]. Robots, furthermore, should reliably
assist physicians in medical treatments [2] , should securely
support elderly people [3], or should help in rehabilitation
tasks [4]. Safe interaction requires tight motion control limiting
the forces and appearing moments.

While many force control schemes exist, most do not
ensure satisfaction of constraints, e.g., with respect to the
appearing forces and moments [5]–[7]. Existing approaches
are furthermore often limited with respect to the flexibility to
formulate the force-motion control task in a structured manner.

This work proposes a flexible learning-supported model
predictive motion and force control scheme, which ensures
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the safe satisfaction of force and motion constraints despite
uncertainty in the wrench model.

Model predictive control (MPC), an optimization based
control strategy, allows considering constraints or limita-
tions while optimizing the systems predicted behavior. MPC
schemes are by now widely used for robotic tasks, including
the explicit consideration or limitation of forces, see e.g., [8]–
[12]. A series of motion and force control schemes using MPC
exist [13]–[17], spanning from hybrid motion and force control
[13], admittance control [14], [15] to unified approaches for
MPC force control [16], [17].

Most results, however, rely on the availability of good force
models. They can, e.g., be obtained via the identification of
tailored linear and nonlinear spring and damper models [18].
However, the resulting models are often limited in their pre-
cision. Machine learning approaches can be used to overcome
this challenge, allowing for data-driven or hybrid modeling.
We use Gaussian processes (GPs) [19], [20] to capture and
learn the state-force interactions. Force modelling via Gaussian
processes is, e.g., considered in [21]–[25]. Learning of friction
and grasping forces using GPs is considered in [21], [22],
while [23] uses GPs to process sensor data from a tactile
array. Contact forces occurring in human-robot interactions are
considered in [24] via GPs. The interaction of a robot with a
static environment using GPs to obtain a learned contact force
model for MPC is considered in [25].

This work proposes a combined robot motion and force
control scheme. An MPC scheme is presented assuming
that forces and moments are described by an (unknown or
uncertain) static mapping of the robot’s states and inputs.
This mapping is learned using GPs, while ensuring constraint
satisfaction on the forces with high probability to ensure
safe interaction. Compared to [8]–[17], [25]–[31], we propose
to combine first-principle models, e.g., linear spring models,
with GP models. The resulting hybrid model is used in a
model predictive control scheme for combined motion and
force control. As only the static mapping from the states to
the forces is learned, it is not necessary to propagate the
influence of the resulting (“output”) uncertainty through the
dynamics to ensure safe operation, as often considered in other
learning-supported MPC schemes [32]–[36]. Inspired by [33],
[35], [37]–[41], we utilize the variance in the hybrid output
model to tighten the MPC constraints. In contrast to existing
works, however, we tighten only the constraints mapping from
the states to the “output” (=forces), instead of using tubes
[42] for state constraint tightening of the dynamics. Since
the tightening is based on the variances it leads to a chance
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Fig. 1: Example application: a lightweight robot equipped with
a robotic hand should write on a soft surface.

constraint formulation of the MPC.
The main contribution of this work is the development of

a safe force and motion control scheme combining Gaussian
process model learning and MPC where model uncertainty
enters the static mapping from the states to the controlled vari-
ables. We derive stability/recursive feasibility conditions for
the learning-supported predictive controller. In the predictive
controller, the uncertainty estimates provided by the Gaussian
process are integrated as chance constraints to guarantee
stochastic constraint satisfaction. As the uncertainty is related
to the “static output” mapping, one can calculate it offline ef-
ficiently, i.e., there is no need for computational intense online
propagation through the system dynamics. The approach al-
lows offline learning, as well as learning in between batches of
iterative tasks. Summarizing, the uncertainty estimates allow
us to find suitable back-offs of the constraints to robustify
the model predictive controller. The theoretical findings are
illustrated in simulations and experiments considering force
and motion control of a lightweight KUKA robot, see Figure 1.

The remainder of the paper is structured as follows: The
considered, learning supported control problem is introduced
in Section II. Section III proposes the model predictive force
controller. It is extended by a Gaussian-process-learning com-
ponent, which is introduced in Section IV. The overall resulting
learning-supported force controller is presented in Section V.
Section VI illustrates the proposed approach in simulations
and experiments for a lightweight robot. Finally, Section VII
concludes this work with a summary and an outlook.

II. PROBLEM SETUP

We aim to develop a control scheme that guarantees safe
interaction and satisfaction of force constraints, e.g., between a
robot and its environment. An example might be a robot that is
supposed to write on a delicate surface limiting the maximum
force, see Fig. 1, a robot that should polish a surface with
desired intensity, or a robot that should interact safely with
a human not exceeding a certain force. To achieve this goal,
we fuse model-based predictive motion and force controller
with Gaussian process based machine-learning to capture the
occurring, often difficult to model, forces.

MPC allows tackling a wide variety of force and motion
control tasks [12]–[15], [17], [25], [29], spanning from direct

and indirect force control to joint hybrid motion/position and
force control. We focus on hybrid position and force control,
where some positions, as well as specific forces/moments,
should be controlled jointly [7], [43].

Specifically, we focus on motions where a robot should
move (with a tool) along a ”surface”, cf. Fig. 1. To do so,
the interaction forces need to be tightly controlled and should
be limited for safety reasons. To account for changing envi-
ronments and to improve performance, the controller should
be able to adapt and learn based on data. We formalize this
task in the following sections.

A. Constrained safe force and motion control
We consider that the dynamical system for the motion

and force control task, e.g., a robot and its environment, is
described by the nonlinear dynamics

ẋ(t) = f(x(t), u(t)), x(0) = x0, (1a)
y(t) = h(x(t)). (1b)

Here, t ∈ R represents the time, x(t) ∈ Rnx denotes the state,
and u(t) ∈ Rnu is the input of the system. The states might
for example describe the angular positions and velocities of
the robot, while the inputs might represent the torques in the
joints. The map f : Rnx×Rnu → Rnx describes the dynamics,
while the “output” y(t) ∈ Rny , given by h : Rnx → Rny maps
the states to the variables of interest – the controlled variables,
such as positions, velocities, forces and moments1. We assume,
for simplicity of presentation, that full state measurements are
availabe. Note that the output does not relate to measured
variables, it is used to evaluate the control performance via
the controlled variables. Section VI presents an example for
force and motion control of a lightweight robot, cf. Fig. 1.

We want to satisfy constraints on the states, inputs, and
outputs, which are given by the sets X ⊂ Rnx , Y ⊂ Rny , and
U ⊂ Rnu , i.e., to limit the forces, torques, or states. Depending
on the formulation, these will be hard – set based – constraints,
or probabilistic constraints, see Section V. With respect to the
sets we assume that

Assumption 1: The sets X , Y are closed, and U is compact.
With respect to the dynamical system we furthermore assume
that:

Assumption 2: f , and h are sufficiently often continuously
differentiable and locally Lipschitz2. Furthermore, for any
continuous input signal with u(τ) ∈ U and for all x0 ∈ X ,
(1) admits a unique absolutely continuous solution.

The goal is to follow a given reference path, which is
defined as a geometric curve in the “output” space, as good as
possible while satisfying constraints. For example the robot
shown in Fig. 1 should write on a flexible and possibly
uneven surface. Hence, it should follow a given path while
keeping forces at desired values and constrained, even under
disturbances and uncertainty. The reference path is given by

P := {yr ∈ Rny |yr = rpf(θ(t))} , (2)

1The output y might also explicitly depend on the input u. While the
derived results hold for this case, we do not consider the influence of the
inputs directly for simplicity of presentation.

2One might relax this condition to only hold in a region of interest, which
we avoid to streamline the presentation.



with the parametrization rpf : Θ → Rny . Note that the
reference only indirectly depends on the time via the path
parameter θ(t) ∈ Θ = [−1, 0]. The evolution of the path
parameter over time is not fixed a priori – it is adjusted by the
controller online [13], [44], [45], which provides additional
degrees of freedom that can be exploited by the controller.
For example, in case of disturbances, the controller can adjust
the reference speed while compensating for the disturbance,
thus avoiding performance deterioration, cf. [13].

Given the reference path P , we aim to solve the following
task [13], [45], [46]:

Task 1 (Path Following Force and Motion Control): Given
the system (1) and path P , design a controller that achieves:

1) Convergence: The “output” (1b) should converge to the
set P , i.e., lim

t→∞
y(t)− rpf(θ(t)) = 0.

2) Forward Motion along the Path: The reference rpf(θ(t))
moves along P in the direction of increasing θ values,
i.e., θ̇(t) ≥ 0 and lim

t→∞
θ(t) = 0.

3) Constraint Satisfaction: The states, inputs, and “outputs”
should satisfy x∈X , u∈U , and y∈Y .

Note that y and the path P can describe (desired) motions
and forces/moments. Hence, one can include constraints on
the forces by choosing appropriate constraint sets.

In comparison to earlier works [13], [45], [46], we consider
that the “output” mapping h might be unknown or uncertain,
as relations between the robot’s states, the environment and
the forces/moments are, in general, challenging to model. To
do so, we use methods from machine learning, as outlined in
the following subsection.

B. Learning-supported force/output modeling
We propose to use a hybrid model combining machine

learning and first principle model components. The hybrid
model is used in the controller to predict, control, and limit
the forces for a reliable and safe operation. It is given by

h̃(x) = hfp(x) + hml(x), (3)

where the first principle part hfp : Rnx → Rny encodes prior
knowledge, while hml : Rnx → Rny is obtained from data via
machine-learning achieving the following task:

Task 2 (Output/Force Model Learning): Learn a hybrid
model h̃(x) = hfp(x) + hml(x) exploiting data D such that:

1) h̃(x) fits the data, i.e., h̃(xi) ≈ ŷi for (xi, ŷi) ∈ D,
while trading off between complexity and consistency.

2) The error (h̃(x)− h(x)) can be bounded.
We outline in Section IV how to use Gaussian processes
to achieve this task. We use the resulting hybrid model in
a tailored model predictive control scheme to achieve safe
motion and force control, as outlined in Section V.

III. MODEL PREDICTIVE FORCE AND MOTION CONTROL

Model predictive control is a model based approach that
repeatedly solves an optimal control problem [47], [48]. It
allows controlling linear and nonlinear systems, the direct
consideration of constraints, as well as preview informa-
tion about disturbances, changing references, and paths [44].

The possibility to explicitly account for constraints makes
MPC a valuable tool for the control and decision-making
of autonomous systems and robots. Constraint consideration
enables safe operation by limiting torques, robot positions,
velocities, or forces and taking obstacles directly into account,
as outlined in the following.

A. Optimal control problem formulation

For path following motion and force control (Task 1) we
propose to use a tailored sampled-data MPC formulation [13],
[45], [46]. At every sampling time tk an optimal control
problem, exploiting the reference speed along the path as an
additional degree of freedom, is solved:

min
ū,v̄

Jpf
(
ēpf, θ̄, ū, v̄, x̄, z̄

)
(4a)

subject to ∀τ ∈ [0, T ]

˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(0) = x(tk), (4b)
˙̄z(τ) = g(z̄(τ), v̄(τ)), z̄(0) = z(tk), (4c)
θ̄(τ) = l(z̄(τ)), (4d)
ēpf(τ) = rpf(l(z̄(τ))− h(x̄(τ)), (4e)
x̄(τ) ∈ X , ū(τ) ∈ U , h(x̄(τ)) ∈ Y, (4f)
z̄(τ) ∈ Z, v̄(τ) ∈ V, θ̄(τ) ∈ Θ, (4g)

(x̄(T ), z̄(T ))> ∈ Fpf (4h)

Predictions are indicated by ·̄. Besides the system dynamics
(4b), a “virtual reference dynamics” (4c)-(4d) is used, which
allows shaping the dynamics of the speed along the path [13],
[45]. The virtual (reference) state, input, and output are z(t) ∈
Rnz , v(t) ∈ R, and θ(t) ∈ R, which are described by the
virtual system dynamics g : Rnz × R → Rnz and the virtual
output l : Rnz → R. The virtual input v provides an additional
degree of freedom in the optimal control problem allowing
to adjust the reference path progress/evolution. The constraint
(4h) Fpf ⊆ (X ×Z) ∩ (h−1(Y)× l−1(Θ)) is a final terminal
region constraint. It is used to ensure repeated feasibility and
stability/convergence [13], [45].

The cost function penalizes the error epf(t) (4e) to achieve
path following:

Jpf
(
ēpf, θ̄, ū, v̄, x̄, z̄

)
:=

T∫
0

Lpf
(
ēpf(τ), θ̄(τ), ū(τ), v̄(τ)

)
dτ

+Epf (x̄(T ), z̄(T )) . (5)

Here, Lpf : Rny × R × Rnu × R → R+
0 is a stage cost and

Epf : Rnx × Rnz → R+
0 is a terminal penalty term.

State, input and output constraints are enforced by (4f),
(4g) (Task 1.3). Forward motion along the path (Task 1.2)
is ensured by requiring that Θ := [−1, 0] and that θ̇ ≥ 0.

The optimal control problem is solved at all sampling times
tk. From the resulting optimal input signal, only the first part
until the next sampling instant is used and the optimization is
repeated in a receding-horizon fashion.

Convergence to the path/stability of path following MPC can
be guaranteed, similar to standard MPC, by suitable choice of



the cost function and the terminal constraints [44], [45]. We
consider that the following assumptions and conditions hold:

Assumption 3: The stage cost Lpf : Rny×R×Rnu×Rnv →
R+

0 is continuous and lower bounded by a class K∞ function
α1 such that Lpf(epf, θ, u, v) ≥ α1(‖(epf, θ − θend)>‖).

Assumption 4: The terminal cost Epf : Rnx ×Rnz → R+
0 is

positive semi-definite and cont. differentiable in x and z, and
the terminal set Fpf ⊆ X × Z is closed. Furthermore, for all
(x̃, z̃)> ∈ Fpf there exist inputs (uF , vF )>(·) ∈ U × V such
that for all τ ∈ [0, Ts)(

∂Epf

∂x
,
∂Epf

∂z

)
·
(
f(x(τ),uF (τ))
g(z(τ),vF (τ))

)
+Lpf(epf(τ), θ(τ), uF (τ), vF (τ)) ≤ 0

and that x(τ) = x(τ, x̃|uF ) and z(τ) = z(τ, z̃|vF ) stay in
Fpf, i.e., Fpf is control invariant.

Following [44], [45] one can establish the following result:
Theorem 1: If Assumptions 1-4 hold, and if the optimal

control problem (4) is initially feasible, then (4) is recursively
feasible and the path-following error epf converges to zero
under sampled-data NMPC.
For details we refer to [44], [45]. We use the outlined path
following MPC scheme as a basis and adjust it in Section V to
guarantee constraint satisfaction/safety despite the uncertainty
due to the hybrid uncertain output model.

IV. GAUSSIAN PROCESSES

We propose to use Gaussian processes to learn the unknown
output mapping hml. Gaussian processes (GPs) are stochastic
processes that follow an infinite-dimensional joint normal
distribution [19], [20]. They have gained increasing attention
in the control community [35], [49]–[54]. We propose to use
GPs, as they provide robustness against noise, inclusion of
physical knowledge, and their stochastic nature allows fitting
data without overfitting (Tasks 2.1 and 2.2). Furthermore,
GPs provide a posterior uncertainty measure to calculate a
reliability bound (Task 2.3), which can be used to achieve
safe operation as outlined in Section V-A.

A. Gaussian process force modeling

In the following we focus on modeling a part of the out-
put/controlled variable, e.g., the contact forces, in dependence
of the state of the system/robot. In general, multiple output
parts F ∈ RnF with nF > 1 can be considered. In such
a case multiple one-dimensional GPs or a multidimensional
GP could be used. For dimension i, we assume that noisy
observations F̂i are available that origin from

F̂i = hi(x) + ηi (6)

where the mapping hi (the considered force component of
h) from the system state x ∈ Rnx to the measured variable
F̂i ∈ R is corrupted by the uncertainty or noise ηi. This noise
is assumed to follow an independent, identically distributed
Gaussian distribution ηi ∼ N (0, σ2

i ) with zero mean and
variance σ2

i .

We use a GP to model the underlying function hml,i in h̃i
which approximates hi via

hml,i(x) ∼ GP (m(x), κ (x, x′)) . (7)

Here, m(x) ∈ R denotes the mean of the GP and κ(x, x′) ∈ R
denotes the covariance. This covariance is a measure of the
joint variability of two random variables and the function
κ : Rnx × Rnx → R is positive semi-definite and symmet-
ric. Once a prior assumption on the mean and covariance
function is posed, the training of the GP is performed to
obtain posterior distributions. The GP is trained on the data
D := (x, F̂ ), where x := (x1, . . . , xnD )> and F̂ :=
(F̂ 1−hfp,i(x

1), . . . , F̂nD−hfp,i(x
nD ))>. The superscript i in

xi, F̂ in with i = 1, 2, . . . , nD enumerates the available mea-
suring instances. The training determines the hyperparameters
φ ∈ Rnφ of the GP, which include the parameters of the
mean and covariance functions as well as the noise variance.
The number of the hyperparameters nφ depends hereby on
the assumed prior structure, i.e., on the specific choice of the
mean and covariance functions. Often an estimate of the most
likely hyperparameters is obtained via the maximization of the
logarithmic marginal likelihood [19], [20]. Given these hyper-
parameters, the posterior distribution of the GP conditioned
on the prior and the data can be derived. The joint posterior
distribution at previously seen data points x and at the query
point x∗ is given by

(
F̂

hml,i(x
∗)

)
∼ GP

((
m(x)
m(x∗)

)
,

(
K + σ2I k
k> κ(x∗, x∗)

))
,

where m(x) := (m(x1), . . . ,m(xnD ))>. The covariance
matrix K specifies the covariance between all of the training
data points and is given by

K =


κ(x1, x1) · · · κ(x1, xnD )
κ(x2, x1) · · · κ(x2, xnD )

...
. . .

...
κ(xnD , x1) · · · κ(xnD , xnD )

 .

The cross covariance between the trainings
and the query points is given by k :=
(κ(x1, x∗), κ(x2, x∗), . . . , κ(xnD , x∗))>. Hence, the
GP posterior is given by the posterior mean function
m+ : Rnx → R that is defined by

m+(x∗) :=m(x∗) + k>(K + σ2I)−1
(
F̂ −m(x)

)
(8)

and the posterior covariance κ+ : Rnx × Rnx → R that is
given by

κ+(x∗, x∗) :=κ(x∗, x∗)− k>
(
K + σ2I

)−1
k.

V. LEARNING-SUPPORTED MODEL PREDICTIVE FORCE
AND MOTION CONTROL

We aim for precise and safe control of robot motions and
interaction forces under constraint satisfaction. To do so, we
use GPs for hybrid modeling of the system output (1b) while
we assume negligible model plant mismatch in the system
dynamics (1a) in combination with MPC. We exploit the fact



that the ”output” model uncertainty does not need to be prop-
agated through the dynamics of the system and can be used
for constraint tightening: In MPC, predictions are performed
with the model. If the prediction model of the dynamical
system is uncertain, i.e., contains a GP, uncertainty need to be
propagated through the system and the resulting distribution
is typically non-Gaussian [35]. When the uncertainty only ap-
pears in the output projection, such uncertainty propagation is
unnecessary. Therefore, the output variance, which reflects the
uncertainty in the model, does not need to be approximated.
The posterior of the GP forms a Gaussian distribution over
the full prediction horizon without necessarily growing over
time or becoming increasingly uncertain. We show how this
structure leads to a simplified stochastic MPC formulation and
derive a tailored chance-constrained formulation.

We start the discussion by considering that the model
uncertainty is neglected in the MPC controller. Afterwards,
we consider how the covariance of the GPs can be used
for constraint tightening to achieve safe control via chance
constrained MPC.

A. Nominal model predictive control – neglecting the
uncertainty of the learned model

In practice, the model uncertainty is often neglected in the
MPC predictions, i.e., a nominal MPC scheme with the learned
model is used. The (unknown) output h in the prediction is
replaced by the learned hybrid model h̃(x) = hfp(x)+hml(x).
In case of the hybrid model outlined in Section VI-A we use
the mean value for the prediction. The optimal control problem
(4) with the hybrid output model (3) in constraint (4e) remains
otherwise unchanged.

As a first step, we establish recursive feasibility and con-
vergence with the learned output model, assuming that the GP
matches reality ideally, i.e., E

(
h̃(x)

)
= h(x), and that no

noise is present: σy(x) =
√
κ+(x, x) = 0. To do so, the GP

part of the hybrid model must satisfy the conditions required
for Theorem 1, i.e., Assumptions 1-4. Only Assumption 2,
specifically the smoothness of the output model, is critical.
The required smoothness can be ensured, posing the following
conditions on the GP part of the learned output map:

Assumption 5: The prior mean and covariance function m :
Rnx → R, κ : Rnx ×Rnx → R, and the first-principles model
part hfp : Rnx → Rny are continuously differentiable for all
x, x′ ∈ X .

Provided that these conditions hold, we can establish the
following lemma:

Lemma 1: Assumption 5 implies that the learned output
function h : Rnx → Rny is continuously differentiable and
locally Lipschitz for all x ∈ X .

Proof: The output function h is given by h(x) =
E(h̃(x)) = hfp(x) + m(x) + k>(K + σ2I)−1

(
F̂ −m(x)

)
,

where the entries of K and k are Ki,j = κ(xi, xj) and
ki = κ(xi, x) with i, j ∈ {1, . . . , nD} cf. (3) and (8).
Differentiability of h is guaranteed via differentiability of the
summands. Local Lipschitz continuity of h on each compact
set X̃ ⊂ X follows since the restriction of any continuously
differentiable function on a compact set is Lipschitz.

Corollary 1: Provided that Assumptions 1 - 5 hold. Then
the model predictive feedback resulting from repeatedly solv-
ing (4) using the nominal learned output model (3) for predic-
tion without model-reality mismatch and noise is recursively
feasible, and the control error converges to zero.

Common prior mean and covariance functions that allow
satisfying Assumption 5 are the squared exponential covari-
ance, periodic covariances, or specific parametrization of the
Matérn covariance [20].

B. Ensuring safety – output chance constraint model
predictive control

Neglecting the uncertainty in the output does not allow
to ensure constraint satisfaction. We outline how to use the
posterior variance to include a measure of the modeling errors
into the controller and thus increase safety. To do so, we
reformulate the output constraints as chance constraints and
tighten them by a set which includes most of the uncertainty.
Doing so requires that the following assumption with respect
to the error of the hybrid model holds:

Assumption 6: There exists a finite bound bj : X̃ → R for
each approximation error

(
hj(x)− E

(
h̃j(x)

))
on a compact

set X̃ ⊂ Rnx such that p
(
|hj(x)− E(h̃j(x))| > bj(x)

)
<

1− ε for all x ∈ X̃ , j ∈ {1, . . . , ny} and ε ∈ (0, 1), where p
denotes the probability.
Deriving such bounds is, for example, outlined in [55] and
in [56]. In practice, often the posterior variance of a GP
is assumed to approximate these error bounds bj directly,
cf. [38], [41], [52]. It has been reported that this posterior
variance can lead to an underestimation of the uncertainty,
especially in multi-step-ahead predictions [50]. In our setup,
no uncertainty propagation is needed. Hence, we exploit
multiples of the posterior standard deviation as a measure for
the approximation quality. Including chance constraints for the
output, the optimal control problem (4) is slightly modified.
In particular the control error equation (4e) is changed into

epf(τ) = rpf (l(z(τ)))− E
(
h̃ (x(τ))

)
. (9)

This way, the control error and objective function are
deterministic. Also, the output constraints in (4f) are altered
into chance constraints p

(
h̃(x(τ)) ∈ Y

)
≥ pY , where pY ∈

(0, 1) denotes a chosen probability for the satisfaction of the
constraints. This chance constraint can be reformulated into

E
(
h̃(x(τ))

)
∈ Ỹ, (10)

where the modified constraint set Ỹ is defined via Ỹ := Y	R.
The set R is constructed via the respective confidence level or
error bound that belong to the desired reliability pY . For exam-
ple,R = [−2σy(x), 2σy(x)] for a one dimensional output with
pY ≈ 95.45, where σy is the standard deviation of the learning
based output h̃(x). Alternatively, the constraint tightening can
consider the worst case realization of the uncertainty over
a compact set X̃ such that σy,max := max

x∈X̃
σy(x) is used in
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(a) Based on the posterior variance (gray area) of the output
model the original constraints (red dashed line) are tightened.
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(b) Based on the maximum value σy,max of the posterior variance
(gray area) the original constraints (red dashed) are tightened.

Fig. 2: Constraint tightening.

the construction of R instead of σy . Figure 2 illustrates the
constraint tightening. In both cases, we need to ensure the
existence of solutions and (initial) feasibility of the optimal
control problem with tightened constraints. Therefore, we rely
on the following assumptions.

Assumption 7: The tightened output set Ỹ is closed. Fur-
thermore, the intersection of the state constraint set X and the
preimage h−1

(
Ỹ
)

of the tightened output constraint set Ỹ is
nonempty and contains the reference rpf.

When considering the uncertainty in the output via tightened
constraints, the following Output Chance Constrained MPC
setup is used:
Output Chance Constraint MPC: In the repeatedly solved
optimal control problem (4), the learned output model h̃(x) =
hfp(x) + hml(x) is used in the control error formulation epf

(9). Furthermore, the tightened output constraint set Ỹ instead
of Y is used in (4f) and (4h).

In comparison to the nominal case, alterations in the output
constraints are performed. In contrast to classical stochastic
MPC, the state constraints remain untouched by the uncer-
tainty. Hence, stability/convergence results can be established
similarly as in Section V-A. The assumption on the closedness
of Ỹ is the only assumption at stake, which is, however,
guaranteed by Assumption 7. Moreover we pose additional
conditions on the nonemptyness of the intersection of Ỹ and
h−1

(
Ỹ
)

which is necessary for an (initial) feasible solution

x y

z

Fig. 3: Illustration of the base frame and the reference for the
robot writing task.

to exist.
Observation 1: Given that Assumptions 1- 7 hold, then the

output chance constrained predictive controller is recursively
feasible with the probabilistic satisfaction of the constraints
and the control error epf from (9) converges to zero.

Note that the constraint satisfaction of the true outputs h(x)
with respect to Y can be guaranteed only with probability pY .

VI. APPLICATION EXAMPLE

The benefits of a learning-supported MPC force controller
are shown here on a robotic application example. The robot
should follow a Cartesian reference path. At the same time,
the robot is in contact with a flexible surface and should
apply a desired force along the Cartesian reference normal
to the contact surface. As an illustrative example, we use a
calligraphic writing task, where different contact forces along
the reference are desired. The y- and z-axes of the base frame
are parallel to the whiteboard surface, while the x-axis is
normal to the surface, see also Fig. 3. The position reference
is a sinusoidal curve depicted as a black line in Fig. 3 and
the force reference is indicated via a blue shaded area along
the x-axis. Since the reference consists of three dimensions,
we consider the control of three joints of the robot to obtain
a square input-output structure ny = nu = 3.

A. Robot and force model
The derivation of the dynamical system equation based on

first principles is given in Appendix I. In this subsection, the
hybrid output modeling is discussed in more detail. The system
outputs are given via y = (pe,y, pe,z, Fn, z1)>, where pe,y and
pe,y are the Cartesian end-effector (pen tip) position in y- and
z-direction. These are obtained via the direct kinematics of
the robot. The third output Fn ∈ R denotes the normal contact
force between the pen and the whiteboard in x-direction of
the base frame and θ = z1 represents the path parameter. We
assume that sufficiently precise first-principle output models
for pe,y, pe,z exist. In contrast, the contact forces also depend
on the robots surroundings and can vary in their complexity
arbitrarily. Therefore, the modeling of the contact forces is
performed with a hybrid model. We use a simple first-principle
models to capture the basic physical knowledge and enhance
extrapolation. It is supported by a Gaussian process to increase
the model accuracy and flexibility. To underline the benefits of
the hybrid model (increased model accuracy and uncertainty
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Fig. 4: The penetration depth δ is the distance between the
end-effector pose pe = hfk(q) and the initial contact position
p0 along the normal of the environment surface. The resulting
normal force Fn is modeled as a function of δ.

quantification for robustification), three different modeling
schemes are investigated and compared in the following.

Among the purely elastic models, which can be used to
quantify the interaction, are the linear spring model of Hook

Fn,Hk := hFn,Hk(x) = Keδ (11)

and the nonlinear spring model of Hertz

Fn,Hz := hFn,Hz(x) = Keδ
α (12)

where Ke ∈ R is a spring constant and the coefficient α ∈ R+
0

introduces nonlinearity and is equal to 1.5 in the original work
of Hertz. The penetration depth δ is shown in Fig. 4. As the
third model, we propose a hybrid model composed of a linear
spring model and a GP via hml(x) ∈ R. It is given by

Fn,HkGP := hFn,HkGP(x) = Kehδ(q) + hml(x). (13)

Training data: The parameters of the first-principle mod-
els are estimated on data that was collected by a baseline
controller. This baseline controller is outlined in [13] for
a similar control task. Multiple runs of the controller are
performed in the vicinity of the original reference. The full
available data set consists of 20000 data points, where each
data point represents the measured joint angle positions and
the corresponding contact force, as depicted in Fig. 5 as gray
crosses. The training data used for the GP consisted of 85
data points, which is a subset of the evaluation data set. These
points are shown in Fig. 5 (right hand side) as black crosses.
They have been chosen with 0.015 rad minimum Euclidean
distance in terms of the angular positions between each other
to obtain an equally spread coverage of the considered space.

Modeling and learning results: Fig. 5 plots from top to
bottom the measured and modeled forces over the Cartesian
x-, y-, and z-directions of the base frame. Additionally to
the data, the results for the linear spring (Fig. 5, left), the
nonlinear spring (Fig. 5, middle) and the hybrid model (Fig. 5,
right) are depicted. An optimization-based identification of
the parameters resulted in Ke = 341.56 for the linear, and
Ke = 2.5276 · 108, α = 3.7651 for the nonlinear model.
The latter was parameterized using a two-stage identification
procedure [57]. The hybrid model combines the linear model
with a Gaussian process with zero prior mean and squared
exponential prior covariance function. Since, the board surface

is assumed to be placed parallel to the y-z-plane of the robots
base frame, the penetration depth is defined along the x-axis
with a assumed initial contact position of -0.49m.

As can be seen in Fig. 5 (left), the linear model (solid
gray line) is a poor approximation of the measured forces.
The root mean square error between the linear force model
output and the data is 1.06 N. The nonlinear force model
(black dashed line) approximates the interaction forces better
than the linear one, cf. Fig. 5, middle. The corresponding
root mean square error is 0.91 N. The hybrid model can also
take the non-perfect alignment of the whiteboard as well as
small unevenness and stiffness changes of it into account. This
can also be seen in Fig. 5, middle and bottom. While the
contact forces are often underestimated by the linear model,
the nonlinear spring model sometimes overestimates them, see
Fig. 5 (center) in y ∈ [0.16, 0.22] or Fig. 5 (bottom middle)
in z ∈ [0.66, 0.7]. In contrast, the hybrid model nicely fits
the data without overfitting its noise. It shows a root mean
square error of 0.41 N, which corresponds to an error reduction
of 61 % compared to the linear spring model and of 55 %
compared to the nonlinear model.

B. Controller setup
Using the hybrid model, a model predictive controller is

implemented. The simulations of the system are performed in
MATLAB and the optimal control problem is solved using
ACADO [58]. In the experiments, the fast research interface
establishes the communication between the KUKA lightweight
robot and the work station PC [59]. Joint torques are sent over
the interface as inputs to the robot and the robot’s inbuild
joint position and velocity sensors are used to measure the
states which are sent back to the PC. A CAN-bus builds
the connection to the wrist force-torque sensor [60], which
provides the contact force data. The communication interface
for the control of the robot from MATLAB was designed
in [61]. The sensor interface is outlined in [62]. Figure 6
describes this overall setup. For the following simulations and
experiments the same cost function and control parameters are
used, which are given in Appendix II.

C. Simulation results
Learning-supported hybrid force control simulation: First

simulations are performed following a reference path. In
these simulations, no model-plant mismatch in the dynamic
equations is assumed. Instead, a simulated mismatch in the
contact forces is considered. To do so, a purely data based
force model using 515 data points was trained. Since this
model is using more than 6 times as much data as the hybrid
GP, it gives an even better representation of the true contacts.
Note that the computational demand for GP inference grows in
general cubically with the amount of data points. Thus, such
a big GP model is neither suited for fast online simulations
nor for the use in a real-time optimal controller. Nevertheless,
it allows us to test model-plant mismatch in simulations.

The Cartesian end-effector position in this simulation in the
y-z-plane can be seen in Fig. 7. The reference path is shown
in black dashed line, while the simulated robots position is



Fig. 5: Comparison of linear (left), nonlinear (middle), and hybrid force model (right) plotted over the Cartesian x-direction
(top), y-direction (middle), and z-direction (bottom).

Can busFRI Matlab +
ACADO

Work station PC

KUKA
Lightweight
Robot IV

Barrett
F/T Wrist
Sensor

Fig. 6: Linux Work station PC with Ubuntu 12.04 and an Intel
Xeon(R) X5675 processor with 3.07 GHz x6 connected to the
KUKA robot via the fast research interface (FRI) and to the
force/torque sensor via can bus.

depicted as solid blue line. To achieve an optimal tracking
performance, the model predictive controller is adjusting the
reference evolution. The virtual system states are depicted in
Fig. 8. The path parameter θ starts at −1 and moves toward
its end value 0 without exceeding it. The non-admissible area,
i.e., the area where the constraints are violated, is depicted

Fig. 7: Cartesian end-effector position in simulations.

as a red-shaded area. The path parameter derivative is shown
in Fig. 8, bottom. As can be seen, the path-following control
formulation leads to a nontrivial velocity profile. It enables
optimal path following while considering limitations, e.g., in
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Fig. 8: Virtual system in simulation. The path parameter θ
(top) is constrained to non-positive values (red area depicts
constraints) while the path speed (represented by θ̇, bottom)
is restricted to non-negative values for forward motion.

Fig. 9: Contact force in simulation. Simulated force (solid blue
line) and predictions inside the optimal control problem (thin
gray solid line). The dark red area depicts original constraints,
medium red shows constraint tightening based on state depen-
dent variances, light red area depicts shrunken constraints for
state-independent over-approximation of uncertainty.

the joint velocities.
The evolution of the contact force over time is depicted in

Fig. 9. The model-plant mismatch in the output equation leads
to a deviation of the achieved contact force from its reference,
cf. Fig. 9. Even though the MPC prediction model claims that
the contact force is close to the reference (thin gray line),
the true contact force (blue solid line) deviates from it. The
original force constraint (dark red area) might be violated due
to this model-plant mismatch. To cope for this model-plant
mismatch the original force constraint is adjusted using the
posterior variance of the GP. The reliability of the hybrid GP
model along the motion is calculated via the 2σy confidence
bound. It is tightening the original constraint [0 N 6 N] , which
is indicated by the medium red area. An over-approximation
of this uncertainty related tightening is performed, which is
indicated by the light red area in Fig. 9. The resulting robustly

tightened box constraints are [0.7 N 5.3 N]. The MPC controls
the system such that the force model predictions stay inside the
feasible area (white space). Hence, the true contact force (blue
solid line) stays inside the original constraints of [0 N 6 N]
with a chosen probability.

Disturbance rejection: Additionally, a disturbed case is con-
sidered to underline the effect of the constraint tightening. In
this case an additive input disturbance at the fourth joint of
−1.3 Nm occurs between t = 8 s and t = 9 s. The effect
on the contact force is illustrated in Fig. 10. The resulting
contact force without constraint tightening is depicted in the
left subplot. Additionally, the disturbed simulation results with
constraint tightening are plotted in Fig. 10 right. For both
cases, the prediction used inside the controller is plotted as
black thin line. As can be seen in Fig. 10, the disturbance
pushes the robot away from the board between t = 8 s
and t = 9 s, which leads to smaller forces. The hybrid GP
model (thin black line) overestimates the contact forces in this
area, such that it calculates minimum forces of 0.1 N in the
untightened case. However, the simulated force of the large
GP (blue line) is falling below zero, i.e., indicating that the
robot has lost contact. Hence, the original lower constraint of
0 N is violated, due to the model-plant mismatch. In contrast,
the tightened constraints prevent from this contact loss, cf.
Fig 10 right. They become active at around t = 8.5 s, limit the
occurring force error, and introduce a safety margin such that
the true force (blue line) obeys the original force constraints,
cf. Fig. 10, right. Hence, a safe and stable contact between
the robot and the whiteboard is guaranteed at least with the
chosen probability despite the occurring disturbance.

Comparison to first-principle model-based controllers: Addi-
tional simulation studies are performed to compare the closed
loop control performance of the learning-supported controller
with controllers using the first-principle models. To do so, the
same controller parameters are used as listed in Section VI-B
for all simulations. The difference between the three controller
setups compared in this section lies mainly in the force
output model. The linear first-principle model, the nonlinear
first-principle model and the hybrid model from Section VI-
A are used, respectively. Fig. 11 shows the system outputs
for the linear spring model (Hk), the nonlinear force model
(Hz) and the hybrid model (Hk+GP). As can be seen, the
influence of the different force models on the performance in
the position controlled subspace (Cartesian x- and y-direction)
is comparably small. A clear difference between the controller
performances can be seen in the force controlled output, cf.
Fig. 11 left. The model-plant mismatch in the linear case
(depicted as gray solid line) is so large, that a constraint
violation of the maximum and minimum force limit occurs.
In the nonlinear case, all constraints on the contact forces
are satisfied and the root mean square force control error is
0.77 N. Still, the hybrid case outperforms the nonlinear force
model MPC, cf. Fig. 11. The controller with hybrid model
shows a root mean square error for the force of 0.25 N. This
corresponds to a force error reduction of 91.3 % compared to
the MPC with linear force model and 67.5 % with respect to
the MPC with nonlinear first-principle force model.
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Fig. 10: Comparison of control performance for using original constraints and tightened constraints when disturbance occurs.
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Fig. 11: Comparison of controllers with first-principle and hybrid force model in simulation.
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Fig. 12: Comparison of controllers with first-principle and hybrid force model in experiment.

D. Experimental validation

Figure 13 underlines that the controller is real-time feasible,
showing the computation time of the experimental implemen-
tation. Real time feasibility is given due to the total calculation
time Tcalc (blue) being smaller than the sampling time of
Ts = 0.01 s at all times. The controlled system outputs for
the experimental validation of the learning-supported model
predictive controller are shown in Fig. 12 in blue dash-dotted
lines. For comparison, the MPC with linear and nonlinear
spring force models are depicted in Fig. 12 in gray solid
and black dashed lines, respectively. Compared to the sim-
ulation results, an additional model-plant mismatch in the
dynamics as well as additional noise in the sensor readings
occur. Therefore, all controllers show larger control errors in
the experiments compared to the simulation studies. Due to

the large model-plant mismatch in the linear force model,
the controller even became unstable, cf. Fig. 12 gray line.
The MPCs with nonlinear and hybrid force model perform
better than the linear case. Their performance in the position
controlled subspace is comparable, see Fig. 12 (middle and
right). Comparing their force control errors shows that the
learning-supported controller shows around 12 % smaller max-
imum errors and around 14 % smaller average control errors.
Hence, the superior force tracking performance of the learning-
supported controller over the first-principle based MPC is not
only valid in simulations but also in experiments. Moreover,
the MPC with nonlinear first-principle force model violates
the maximum force constraints, see black line in Fig. 12 (left).
The GP not only approximates the real forces more accurately,
but also enables the variance-based constraint tightening for
increased safety.
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Fig. 13: Total calculation time Tcalc (blue) in each sampling
instance and its main components, the sensor communication
delay Tsens and the calculation time of the optimal control
problem TOCP.

VII. CONCLUSION

This paper proposes a learning-supported model predictive
controller for hybrid position and force control. It exploits that
the stochastic uncertainty affect only the static model parts,
e.g., mappings from states to the controlled variables, and
not the dynamics itself. Driven by the increasing demand for
sensitive, and interactive, yet safe robots, we propose a model-
and data-based controller that directly controls the forces of the
robot along with its motion. The model predictive controller
considers directly constraints on inputs, states, and outputs.
This way, constraints for positions, motions, and forces are
satisfied. A path following predictive controller is used, where
the reference speed is adjusted during runtime to provide an
additional degree of freedom to the MPC. A Gaussian process
supports the controller with learned hybrid force models. The
presented approach achieves improved approximation quality
compared to standard first-principle force models and addition-
ally improves the closed-loop system performance. Moreover,
additional robustness is achieved by using the stochastic
uncertainty description of the Gaussian process force model.
It builds the basis for constraint tightening that allows for safe
and reliable contacts even in case of disturbances and model-
plant mismatch.

Further research focuses on improving the controller perfor-
mance via online updates of the force models. Furthermore,
changing environmental conditions, such as moving objects
or cooperating robots, should be addressed in future research.
For example, learning from past measurements/batches might
allow to build up an increasing set of possible models that
allow transfering and adapting knowledge between differ-
ent situations. Moreover, online adaptation and learning is
promising, yet leads to challenges such as a priori unknown
constraints that we aim to address in future works, for example
using the approach presented in [63].

APPENDIX I
MODEL OF THE CONSIDERED LIGHT-WEIGHT ROBOT

The model of the robotic manipulator is derived based on
first principles using the Lagrangian formulation [64] leading

to 
ẋ1

...
ẋnq
ẋnq+1

...
ẋ2nq

=


xnq+1

...
x2nq

B−1(x1,...,xnq )(u−J>(x1,...,xnq )F−N(x))


︸ ︷︷ ︸

f(x,u)

N(x)=C(x)

(xnq+1

...
x2nq

)
+τf(xnq+1, ..., x2nq)+τg(x1, ..., xnq).

Here, x1, . . . , xnq denote the joint angles, while
xnq+1, . . . , x2nq represent the joint angle velocities. For
the example, we use joint one, two and four of the
lightweight robot depicted in Figure 1. Hence, nq = 3 and
x = (q1, q2, q4, q̇1, q̇2, q̇4)>, where qi denotes the angle of
the ith joint. The configuration dependent inertia matrix of
the robot is denoted by B : Rnq → Rnq×nq . The input
u represents the joint actuation torques. The Coriolis and
centrifugal effects are captured by C : Rnq × Rnq → Rnq×nq .
While the gravitational force τg : Rnq → Rnq for a rigid link
manipulator depends only on joint positions, the friction torque
τf : Rnq → Rnq can be modeled via viscous and Coulomb
friction such that is depends on joint velocities. We consider
contact of the robot with the environment at the end-effector.
The contact forces and moments occurring at the end-effector
in a three-dimensional Cartesian space are captured by
F ∈ R6. They can be mapped to the corresponding joint
torques via τext = J(q)>F with the manipulator Jacobian
J : Rnq → R6×nq . The model parameters are taken from
[61], supplemented by the modifications presented in [62]
to account for the used force-torque sensor. The standard
deviation σ of the noise is approximately 0.0388 N. This
dynamical model is used for simulations as well as for
prediction in the MPC. In contrast to [61], N(x) = 0 is
considered, as we use gravity compensation provided by the
internal KUKA controller. Furthermore, friction and Coriolis
effects only have a minor influence for small velocities, as
considered here. Finally, a compensation of external torques,
e.g., due to the environment contact, outside of the predictive
controller is added to the optimal inputs. For the virtual
system dynamics, a double integrator ż1 = z2, ż2 = v is used
with virtual input v and virtual output z1 = θ.

APPENDIX II
CONTROLLER PARAMETERS

A quadratic cost function is used, where:
Lpf = (e>pf , θ)Q(e>pf , θ

>)> + (u>, v)R(u>, v)>,
Epf = (x>, z>)QE(x>, z>)>. The weightings are
Q = diag(9 · 106, 9 · 106, 6, 1 · 102), R = diag(6, 6, 6, 6),
QE = diag(0, 0, 0, 0, 0, 0, 1 · 102, 0). The prediction horizon
spans T = 150 ms, while the sampling time is Ts = 10 ms.

The state constraints are X =
[−170◦, 170◦] × [−120◦, 120◦] × [−120◦, 120◦] ×
[−0.04 rad s−1, 0.04 rad s−1] × [−1 rad s−1, 1 rad s−1] ×
[−0.05 rad s−1, 0.03 rad s−1]. The virtual states in path
following are constrained by Z = [−1, 0] × [0 s−1, 1 s−1].



Furthermore, box constraints on the input and virtual inputs
are present: U = [−13 Nm, 10 Nm] × [−5 Nm, 5 Nm] ×
[−5 Nm, 5 Nm], V = [−10 s−2, 0.5 s−2], while the contact
force should satisfy [0 N, 6 N].
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