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ABSTRACT

Security of Distributed Parameter Cyber-Physical Systems (DPCPSs) is of critical importance in the
face of cyber-attack threats. Although security aspects of Cyber-Physical Systems (CPSs) modelled
by Ordinary differential Equations (ODEs) have been extensively explored during the past decade,
security of DPCPSs has not received its due attention despite its safety-critical nature. In this work,
we explore the security aspects of DPCPSs from a system theoretic viewpoint. Specifically, we
focus on DPCPSs modelled by linear parabolic Partial Differential Equations (PDEs) subject to
cyber-attacks in actuation channel. First, we explore the detectability of such attacks and derive
conditions for stealthy attacks. Next, we develop a design framework for cyber-attack detection
algorithms based on output injection observers. Such attack detection algorithms explicitly consider
stability, robustness and attack sensitivity in their design. Finally, theoretical analysis and simulation
studies are performed to illustrate the effectiveness of the proposed approach.

1 INTRODUCTION

Security of Cyber-Physical Systems (CPSs) with respect to cyber-attacks is essential for safe and reliable operation.
Although secure operation and control of CPSs modelled by Ordinary differential Equations (ODEs) has been an active
research area during the past decade (see [1, 2], and the references therein), such framework has been significantly
under-explored for Distributed Parameter Cyber-Physical Systems (DPCPSs) modelled by Partial Differential Equations
(PDEs) [3, 4]. Here, we present a framework to analyze and design cyber-attack detection algorithms for a class of
DPCPSs, namely, CPSs modelled by linear parabolic PDEs.

Safety of Distributed Parameter Systems (DPSs) with respect to physical faults has received moderate attention in
existing literature. For example, the following are some notable works that designed model-based physical fault
diagnosis algorithms for DPSs [5–15]. However, as discussed in [1], physical fault diagnostic algorithms might not be
suitable for attacks as the later possesses intelligence and can be launched in a coordinated manner to satisfy specific
malicious objectives [1]. This motivates the need for separate methodologies specific to cyber-attack analysis and
detection [1]. In this context, the objective of our work is to develop a mathematical framework that enable analysis and
design of cyber-attack detection algorithms for DPCPSs.

There are very few works in existing literature that focus on cyber-attack related issues in DPCPSs. For example, a
PDE-based framework is used to analyze the impact of automotive cyber-attacks on highways in [16]. In [17], a PDE
model is utilized to evaluate the capability of attackers to launch attacks on the freeway traffic control system. However,
these approaches do not discuss design of cyber-attack detection algorithms. In [18], cyber-attack detection algorithms
have been designed for a spatially distributed system. However, the problem setting in [18] assumes the existence
of multiple in-domain sensor-actuator pairs. Such assumption may not be true for most of the existing distributed
parameter systems where only boundary sensing is available. Furthermore, presence of uncertainties make the design of
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model-based detection algorithms significantly challenging. It is desirable that any model-based detection algorithms
should be able to reject the effect of uncertainties (minimizing false alarms) at the same time being highly sensitive to
cyber-attacks (minimizing miss-detection). However, there exists a fundamental trade-off between these two objectives.
Most of the aforementioned detection algorithms do not explicitly consider such trade-off in their design. In summary, a
framework for analyzing and designing cyber-attack detection algorithms which (i) focuses on DPCPSs with boundary
sensing, and (ii) explicitly considers the trade-off between robustness and attack sensitivity, remains an open problem.
In our preliminary work [19], we have studied a similar approach for coupled hyperbolic PDEs with application to traffic
networks. However, such framework has not been explored for parabolic PDE systems to the best of our knowledge.

In context of the above review, the pivotal contribution of this paper is in the development of a cyber-attack analysis
and detection framework for boundary-sensed linear parabolic PDEs considering the trade-off between robustness and
attack sensitivity. Specifically:

i) We consider a class of boundary-measured linear parabolic PDEs where cyber-attacks can potentially compro-
mise the actuation channels.

ii) We explore the fundamental limitations of model-based algorithms by investigating the conditions of launching
a stealthy attack.

iii) We develop a PDE output injection observer based framework to design model-based algorithms. Specifically,
the framework incorporates several design requirements such as stability, robustness to uncertainties, and
sensitivity to cyber-attacks. Furthermore, the framework specifically detects cyber-attacks allowing for a
provision to distinguish them from physical faults.

The rest of the paper is organized as follows. Section II details the problem setup. Section III discusses the fundamental
shortcomings of the model-based algorithms. Section IV details the design of cyber-attack detection algorithms.
Section V presents simulation cases studies that illustrate the performance of the proposed algorithm. Finally, Section
VI concludes the work. We have used the following notation, inequalities and lemmas in this paper.

Notation: We use the following notation: ut = ∂u/∂t, ux = ∂u/∂x, uxx = ∂2u/∂x2; |X| denotes the
absolute value of X; ‖u(.)‖C(D) denotes the supremum norm on the space of continuous functions defined as follows

‖u(.)‖C(D) := supx∈D |u(x)|; ‖u(.)‖ denotes the spatial L2 norm given as ‖u(.)‖ :=
√∫ 1

0
u2(x)dx; ‖u(.)‖H denotes

the following ‖u(.)‖H :=

√
|u(1)|2 + ‖u(.)‖2 + ‖ux(.)‖2.

2 PROBLEM SETUP

We consider a class of DPCPSs where the plant resides in the physical layer and the controller resides in the cyber
layer. The plant operation is enabled by a communication network which exchanges information between the plant
and the controller. The security concerns of such DPCPSs arise from the vulnerability of the communication channels.
Specifically, we consider the cyber-attacks where an adversary can potentially access and modify the information in the
actuation channels. Actuator attacks can impact system functionality significantly and deserves attention while designing
secure CPSs [20–23]. These actuator attacks can be either directly in the actuator (for example, by manipulating the
actuator software) or by injecting false data into the actuator command [20].

The physical plant is modelled by the following class of linear PDEs in time t ∈ [0,∞) and space x ∈ [0, 1]:

ut(x, t) = uxx(x, t) + αu(x, t) +D(x)q(t) +Da(x)δ(t), (1)

with boundary conditions
ux(0, t) = 0, ux(1, t) = 0, (2)

and initial condition u(x, 0) = φ(x) along with the measured boundary state

y(t) = u(1, t), (3)

where u(x, t) is the distributed state, α is the reaction coefficient, q(t) is the nominal in-domain input applied through the
actuation distribution function D(x), δ(t) is the exogenous actuation attack component applied through the distribution
function Da(x) ⊆ D(x). The assumption of Da(x) being a subset of D(x) is due to the fact that the actuation can
be partially compromised. We assume that the distributed parameter plant exhibits stable behavior under the control
system, and hence, α < 0. The PDE (1)-(2) represents systems involving diffusion (captured by uxx) and reaction
(captured by αu), for example, thermal systems [24–26].
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We also consider a class of attack detectors to detect the occurrences of the cyber-attacks. The attack detection algorithm
takes the following form:

A(.) : {MN , y(t)∀t ≥ 0} 7→ r(t), (4)

whereMN indicates the nominal model (1)-(2) with δ(t) = 0 and unknown initial condition φ(x), and r(t) is a residual
signal which is used for cyber-attack detection based on the following logic.

r(t) = 0⇒ No attack, r(t) 6= 0⇒ Attack occurrence. (5)

Under this problem setup, our objective is to understand and quantify the fundamental performance limitation of A(.)
and develop a framework for designing A(.).

3 FUNDAMENTAL LIMITATION OF ATTACK DETECTOR ALGORITHMS

In this section, we analyze the fundamental limitation of A(.) in (4). Specifically, we derive the conditions under which
an attack will be undetectable by A(.), irrespective of their design method. We start with the definition of stealthy or
undetectable attacks adopted from [2].
Definition 1 (Stealthy Attacks). Denoting the output of the PDE (1)-(3) as y(t, φ(x), δ(t), q(t)), a non-zero attack δ(t)
is stealthy or undetectable if and only if y(t, φ1(x), δ(t), q(t)) = y(t, φ2(x), 0, q(t)), t > 0 for some initial conditions
φ1(x) and φ2(x) satisfying well-posedness of (1)-(3).

With this definition, our objective is to analyze the existence and uniqueness of a stealthy attack in the PDE system
(1)-(3). Without loss of generality, we use the following setting in this analysis: q(t) = 0, φ1(x) = φ(x) 6= 0, and
φ2(x) = 0, under which the stealthiness definition boils down to.:

y(t, φ(x), δ(t), 0) = y(t, 0, 0, 0) = 0,∀t > 0. (6)

Generally, the forward problem for the PDE (1)-(3) entails solution of the state u(x, t) knowing the system model,
initial condition φ(x) and input δ(t). On the other hand, an inverse problem for (1)-(3) boils down to solving the input
δ(t) while the state u(x, t) (or, in our case the measurement y(t) = u(1, t)) is known. Accordingly, the question about
existence and uniqueness of stealthy attacks can alternatively be framed as the existence of an unique solution to the
inverse problem for (1)-(3).

In the next, subsection we present a generalized solution for the forward problem of the PDE (1)-(3).

3.1 Generalized solution of the forward problem

In order to formulate the generalized solution, we will introduce some important definitions and assumptions that will
be invoked in our analysis.
Definition 2 (Sobolev space H1(Ω)). The Sobolev space H1(Ω) is a Hilbert space with a norm induced by the
following inner product:

〈h, g〉H1 =

∫
Ω

(h(x)g(x) + h′(x)g′(x))dx

Definition 3 (Spaces H1
0 and H−1). The Hilbert space H1

0 (Ω) is a subspace of H1(Ω) and is defined as

H1
0 (Ω) ={h ∈ H1(Ω) : ∃ a sequence of hn → h in H1(Ω) norm with hn ∈ C∞0 (Ω)},

where C∞0 is the space of compactly supported smooth functions.

On the other hand, the space H−1(Ω) is the dual space of H1
0 (Ω) i.e. it consists of all linear functionals of H1

0 (Ω).

The duality between H−1(Ω) and H1
0 (Ω) is given by 〈., .〉 : H−1(Ω)×H1

0 (Ω)→ R.
Definition 4 (Space of L2(I;X) ). An element h(., t) ∈ L2(I;X(Ω)) is an element in X(Ω) for each t ∈ I , with
property that ‖h(., t)‖X is a measurable function on I and

∫
I
‖h(., t)‖2X dt <∞.

With the definitions of these vector spaces, we are ready to present our assumptions for the derivation of generalized
solution of the forward problem.
Assumption 1. For T > 0, we assume that

(A1) attack Da(.)δ(t) ∈ L2([0, T ];C2(Ω) ∩H−1(Ω)), and Da(1) 6= 0
(A2) initial condition φ(x) ∈ C2(Ω) ∩H1(Ω) and φ′(0) = φ′(1) = 0.

Assumption (A1) enables the attack to be discontinuous in time as long as it is Lebesgue measurable.
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Finally we are ready to define the idea of generalized solution of the PDE (1)-(3) in the following way.
Definition 5 (Generalized Solution of (1)-(3)). A function u(., t) : [0, T ] → H1

0 (Ω) where Ω = (0, 1) is a weak
solution of (1)-(3) if

i) u ∈ L2([0, T ];H1
0 (Ω)) and ut ∈ L2([0, T ];H−1(Ω));

ii) for any “test function" Ψ ∈ H1
0 (Ω))

〈ut,Ψ〉+ b(u,Ψ; t) = δ〈Da,Ψ〉, (7)

for t point-wise almost everywhere (a.e.) in [0, T ] and where b(u,Ψ; t) is the bilinear form given by

b(u,Ψ; t) =

∫ 1

0

uxΨx dx− α
∫ 1

0

uΨ dx. (8)

iii) u(., 0) = φ(.).

The time derivative ut in (7) is defined as distributional time derivative:∫ T

0

ut(., t)v(t) dt = −
∫ T

0

u(., t)v′(t) dt

for any v : [0, T ] → R with v ∈ C∞0 (0, T ). Moreover, a solution u that satisfies (7), automatically satisfies the
condition ux(0, t) = ux(1, t) = 0. This can be proved easily by applying Green’s Theorem to the first term of the
bilinear form and choosing Ψ = ∂u

∂x |∂Ω. Thus, no additional condition other than u(., 0) = φ(.) is necessary in order
for u to be a generalized solution of (1).
Remark 1. The integral equation (7) can be obtained by (i) multiplying (1) with any Ψ ∈ H1

0 (Ω)), (ii) integrating
between (0, 1) and (iii) applying divergence theorem. Thus the generalized solution represents the solution of the
integral version of the original PDE (1). The advantage of generalized solution compared to classical solution is that
they allow solutions of much less restrictive class like L2([0, T ];H−1(Ω)) such as discontinuous attacks.

In order to construct the generalized solution of the forward problem, we follow the subsequent steps.
Step 1: We construct a sequence of approximate solutions to the desired PDE by constructing regular solutions for an
“approximate" version of the original PDE.
Step 2: We show these solutions are uniformly bounded.
Step 3: Using Banach-Alaoglu theorem, we can then claim the existence of a subsequence from this sequence of
approximate solutions, such that they converge “weakly" to a limit.
Step 4: Finally, we argue that the limiting solution solves the PDE in the generalized sense.

Step 1: Construction of the Galerkin approximate solution:

Let χN be a N−dimensional subspace of H1
0 (0, 1) and is given by the span{X1, X2, . . . , XN}, where {X1, X2, . . .}

are the orthonormal basis vectors of L2(0, 1) as well as for H1
0 (0, 1). Next, let us define an orthogonal projection onto

χN , PN : L2(Ω)→ χN ⊂ L2(Ω) as

PN

(∑
n∈N

TnXn(x)

)
=

N∑
n∈N

TnXn(x) (9)

Definition 6 (Approximate solution). An approximate solution of (7) is a function uN : [0, T ]→ χN , if
(i) uN ∈ L2([0, T ];χN ) and uNt ∈ L2([0, T ];χN )
(ii) ∀w ∈ χN ,

(uNt, w)L2 + b(uN , w; t) = δ〈PNDa, w〉, (10)
uN (0) = PNφ (11)

where PNDa, PNg imples the orthogonal projection of functions Da and g onto χN and are defined as below:

Da(x) =
∑
n∈N

dnXn(x), PNDa(x) =

N∑
n=0

dnXn(x), (12)

φ(x) =
∑
n∈N

φnXn(x), PNφ(x) =

N∑
n=0

φnXn(x). (13)
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Next using Sobolev Embedding theorem [27], we can assert that if uN ∈ H1
0 (0, T ;χN ) then uN ∈ C(0.T ;χN ). For

test functions in χN , satisfying condition (ii) implies that the solution satisfies the weak formulation (7).

In order to construct the “Galerkin approximation", we choose the N orthonormal basis vectors of χN to be the
eigenfunctions corresponding to the eigenvalues λn of the following Sturm-Liouville problem

X
′′

n (x) + (α− λn)Xn(x) = 0, X ′n(0) = 0, X ′n(1) = 0, (14)

where λn = α− (nπ)2, Xn(x) = cos(nπx). For uN to be an approximate solution, uN must be in L2([0, T ];χN )
and thus can be expressed as the following sum of its basis vectors:

uN (x, t) =

N∑
n=0

TNn (t)Xn(x), (15)

where TNn (t) : [0, T ]→ R are scalar coefficient functions that are absolute continuous over [0, T ]. Moreover, (15) is
a solution of (10) iff TNn , (T

N
n )t ∈ L2([0, T ]),∀n ∈ {1, . . . , N}. Plugging in (15) into (10)-(11) and using linearity

along with (14), we can assert that

(TNn )′ − λnTNn (t) = dnδ(t), T
N
n (0) = φn. (16)

where dn = 〈Da, Xn〉 and φn = (φ,Xn)L2 as defined previously. To note, φn, dn, represents Fourier coefficient of the
even extension of φ and Da respectively.

Finally using the solution of (16) into (15), we finally arrive at the approximate Galerkin solution

uN (x, t) =

N∑
n=0

φne
λnt cos(nπx) +

N∑
n=0

 t∫
0

dnδ(τ)eλn(t−τ)dτ

 cos(nπx).

Step 2: Uniform Bound on approximate solution: In this step, we invoke the following lemma demonstrating the
uniform bound of the approximate solution uN for each N ∈ N. The proof of this lemma is in the appendix.
Lemma 1 (Uniform Bound on approximate solution). For every approximate Galerkin approximation uN there exists
a constant γ which depends on T,Ω and α such that it uniformly bounds the solution and its derivative in the following
sense [28]:

‖uN‖L∞(0,T ;L2) + ‖uN‖L∞(0,T ;H1
0 ) + ‖(uN )t‖L2([0,T ];H−1) 6 γ

(
‖Daδ‖L2([0,T ];H−1) + ‖φ‖L2(Ω)

)
(17)

Step 3: Convergence of approximate solution: Using the next Lemma, we establish the existence of a limiting weak
solution derived from the sequence of approximate Galerkin solutions.
Lemma 2 ( Convergence of approximate solution). The sequence of approximate solutions uN converges weakly to a
unique function u ∈ L2([0, T ];H1

0 ) and ut ∈ L2([0, T ];H−1) as N →∞ and is given by:

u(x, t) =

∞∑
n=0

φne
λnt cos(nπx) +

∞∑
n=0

 t∫
0

dnδ(τ)eλn(t−τ)dτ

 cos(nπx). (18)

Proof. Since the approximate solutions uN are bounded in L2([0, T ];H1
0 ) (from Lemma 1), we know from the Banach-

Alaoglu theorem that there exists a subsequence of uN that weakly converges to a function in L2([0, T ];H1
0 ). Here we

construct the subsequence to be the sequence uN itself and show that it weakly converges to function u ∈ L2([0, T ];H1
0 )

(18) i.e. uN ⇀ u in L2([0, T ];H1
0 ).

To prove weak convergence in L2([0, T ];H1
0 ), we need to show that (i) L2([0, T ];H1

0 )-norm of (uN − u) goes to zero
as N →∞ and (ii) u in (18) belongs to L2([0, T ];H1

0 ) .

Proving (i): We need to prove the following norm goes to zero as N →∞
T∫

0

‖uN − u‖2H1
0
dt =

T∫
0

‖uN − u‖2L2dt+

T∫
0

‖uNx − ux‖2L2dt

Now expanding the second term of the above expression yields
T∫

0

‖uN −u‖2L2dt 6
∞∑
n=N

[∫ T

0

φ2
ne

2λntdt

∫ 1

0

cos2(nπx)dx

]
+

∞∑
n=N

 T∫
0

t∫
0

d2
nδ

2(τ)e2λn(t−τ)dτ dt

∫ 1

0

cos2(nπx)dx

 .
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φn and dn being Fourier coefficients of C2 functions on bounded interval are bounded and thus we can conclude that
the right hand side of the inequality is a convergent sum and as N →∞, the norm goes to zero. We can similarly show
that

∫ T
0
‖uNx − ux‖2L2dt goes to zero as N →∞ which in turn proves part(i).

Proving(ii): To prove u ∈ L2([0, T ];H1
0 ), we need to show

∫ T
0
‖u‖2

H1
0
dt <∞. This again can be proved using similar

convergence arguments, as used in part (i). �

Step 4: Validation of limiting solution:

To prove that the limiting function is indeed the generalized solution, we present an important lemma regarding weak
convergence.

Lemma 3. If uN converges weakly to u (uN ⇀ u) in L2([0, T ];H1
0 ) and ΨN converges strongly to Ψ (ΨN → Ψ) in

L2([0, T ];H−1), then 〈uN ,ΨN 〉 → 〈u,Ψ〉.

Proof. For any ε > 0, there exists a N1 ∈ N such that as N > N1 we have
∫ T

0
|〈uN ,ΨN 〉 − 〈u,Ψ〉| dt 6∫ T

0
|〈uN ,ΨN 〉 − 〈u,ΨN 〉| dt+

∫ T
0
|〈u,ΨN −Ψ〉| dt< ε.

�

Finally, we are ready to demonstrate that the function derived from the weak limit of the approximate Galerkin solutions
is in fact the unique solutions of the generalized PDE problem formulated in (7).

Theorem 1 (Generalized solution of forward problem). The limiting function u in (18) is the unique generalized
solution to (7).

Proof. Using Lemma 2, we know that uN ⇀ u in L2([0, T ];H1
0 ) and uNt ⇀ ut in L2([0, T ];H−1). Next we choose a

sequence of function ΨN such that ΨN ∈ χN and substitute ΨN in place ofw in (10). It is evident from the definition of
χN that it is dense in H1

0 (Ω). This implies there exists a function Ψ ∈ H1
0 (Ω) such that ΨN → Ψ in L2([0, T ];H−1).

It is also trivial to prove that limN→∞ PNDa = Da. Moreover, for any h ∈ C∞0 (0, T ) we can infer using Lemma 3
the following: ∫ T

0

(uNt, hΨN )L2 dt→
∫ T

0

〈ut, hΨ〉 dt. (19)∫ T

0

b(uN , hΨN ; t) dt→
∫ T

0

b(u, hΨ; t) (20)∫ T

0

δ〈PNDa, hΨN 〉 dt→
∫ T

0

δ〈Da, hΨ〉 dt, (21)

as map t 7→ hΨN is in L2([0, T ];H1
0 ). Hence, if uN satisfies (10) as N →∞, u satisfies the following equation:∫ T

0

h (〈ut,Ψ〉+ b(u,Ψ; t)) dt =

∫ T

0

hδ〈Da,Ψ〉. (22)

Considering (22) is true for any h ∈ C∞0 (0, T ), we can conclude that u satisfies the generalized PDE (7).

�

3.2 Existence and Uniqueness of Stealthy Attacks

In this subsection, we use the derived generalized solution of the forward problem to construct a solution of the inverse
problem in the form of δ(t). Subsequently, we prove the existence and uniqueness of this solution.

Theorem 2 (Existence and Uniqueness of Stealthy Attacks). Consider the PDE system (1)-(3) that satisfies Assumption
1, with q(t) = 0 and the stealthiness condition (6). Then there exists an unique solution δ(t) ∈ L2[0, T ] with
0 < T <∞ for which y(t) = u(1, t) = 0.

Proof. In this part, we solve the following inverse problem: with the knowledge of y(t) = u(1, t) = 0 and the system
dynamics, solve for δ(t). Substituting (3) in (18), we get the following Volterra integral equation of the first kind with

6



respect to δ(t):

u(1, t) = 0 = −a(t) +

t∫
0

δ(τ)b(t, τ) dτ, (23)

where

a(t) := −
∞∑
n=0

(−1)nφne
λnt, b(t, τ) :=

∞∑
n=0

(−1)ndne
λn(t−τ). (24)

As dn and φn are Fourier coefficient, we can again argue that the series given in a(t) and b(t, τ) converge and are
continuously differentiable functions in t under assumptions (A1) and (A2).

Next, we prove that limt→0 an(t) exists. This is needed to show that (23) is valid as t → 0. Now, the existence of
limt→0 an(t) is equivalent to the uniform convergence of the sum of limits for each term. Performing term-by-term
limit of (24) yields

lim
t→0

∞∑
n=0

(−1)nφne
λnt =

∞∑
n=0

(−1)nφn

(
lim
t→0

eλnt
)

=

∞∑
n=0

(−1)nφn. (25)

In order to show uniform convergence of (25), we need to find a convergent majorizing series. Using integration by
parts and condition φ′(0) = φ′(1) = 0 in (A2), we can show that |φn| < 2Cφ

n2π2 . This implies the majorizing series
∞∑
n=0

2Cφ
n2π2 is absolutely convergent. Hence

∞∑
n=0

(−1)nφn converges uniformly. This implies that the limit of (24) as

t→ 0 exists and can be obtained by summing the limits of the terms. Finally, we evaluate the limit of a(t) as t→ 0 we
get

a(0) = −
∞∑
n=0

(−1)nφn = −φ(1) = −u(1, 0) = 0. (26)

Hence, it is evident that (23) is valid as t→ 0.

Next, using similar arguments we can evaluate the limit of t→ τ for b(t, τ) to obtain

b(t, t) =

∞∑
n=0

(−1)ndn = Da(1) 6= 0, t > 0 (27)

using the condition (A2). This is needed subsequently in the proof.

Furthermore, under the conditions (A1) and (A2) and the properties of a(t) and b(t, τ) derived above, we can differentiate
(23) to obtain a Volterra integral equation of the second kind as follows:

δ(t)b(t, t) +

t∫
0

δ(τ)bt(t, τ) dτ = a′(t), (28)

which can be equivalently written as

δ(t)−
t∫

0

K(t, τ)δ(τ) dτ = m(t), (29)

where

m(t) =
at(t)

b(t, t)
and K(t, τ) = −bt(t, τ)

b(t, t)
(30)

bt(t, τ) =

∞∑
n=0

(−1)nλndne
λn(t−τ). (31)

Let us define an integral operator K with the kernel K(t, τ) as follows

Km(t) =

t∫
0

K(t, τ)m(τ) dτ. (32)
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Since b(t, t) = Da(1) is a non-zero constant function given in (27), using standard iterative methods [29] we obtain a
unique function δ(t) that is the solution of (28). The solution is formally given by the following Liouville-Neumann
series:

δ(t) = m(t) +

∞∑
n=1

Knm(t). (33)

Now, to assert the L2-convergence of the formal series given in (33), we need to show that (i) the kernel K(t, τ) ∈
L2(I, I) where I = [0, T ], T < ∞, (ii) the operator norm of K is finite over a finite interval I and (iii) sum in (33)
converges in L2(I).

To prove the kernel is square-measurable we need to show
∫ T

0

∫ t
0
|K(t, τ)|2dτdt < ∞. Now ‖K(t, .)‖2L2 =∫ t

0
|k(t, τ)|2dτ = 1

|b(t,t)|2
∫ t

0
|bt(t, τ)|2dτ . Using Cauchy product for |bt(t, τ)|2 and observing |bt(t, τ)|2 6 |bt(t, t)|2

(since λn < 0), we can write ‖K(t, .)‖2L2 < Ct, where C = |bt(t, t)|2/|b(t, t)|2. This implies ‖K‖2L2 = CT 2/2 <∞.

To prove that the operator K : L2(I) → L2(I) have a finite operator norm, we chose m(t) ∈ L2(I), then ‖K‖2 =

sup‖m‖
‖Km‖2

L2

‖m‖2
L2

< C
∫ T

0
t21
2 dt1 = C T 3

3! < ∞. This means that the operator maps from the space of measurable

functions to itself.

Similarly, it is straightforward to verify that ‖Knm‖2L2 < C‖m‖2L2
Tn+2

(n+2)! . Therefore, we can write ‖δ‖L2 6∑∞
n=0 ‖Knm‖2L 6 ‖m‖L2T

∑∞
n=0

√
(CT )n

(n+2)! . Using ratio test it can be easily verified that this series is convergent.

From these three arguments we can infer that the series of measurable functions mapped by the operator converges to
a measurable function δ(t). Hence, the existence of a solution of the inverse problem is proven by construction of a
series solution (33) to the inverse problem. The iterative method of this construction also guarantees uniqueness of such
construction. This concludes the proof of existence of a unique solution δ(t) to the inverse problem (1)-(3). �

Once we find that there exists a unique solution of the inverse problem that provides δ(t), our next objective is to explore
the stability of such solution in L2. We know that a solution is locally well-posed in the sense of Hadamard [30] if the
following conditions are satisfied for some time T > 0 : (i) a solution exists, (ii) it is unique, and (iii) it “continuously"
depends on the initial data.

Now let us define a linear operator T δ(t) :=
t∫

0

δ(τ)b(t, τ) dτ ). Next referring to (23), we observe that the linear

problem T δ(t) = a(t) is ill-posed as T is not continuous but L2. Hence, even though the solution δ(t) exists and is
unique, the solution remains ill-posed. This implies that the computation of such solution will not provide a correct
answer directly regardless of the uniqueness of the solution. Accordingly, our next objective is to find a stable solution
using Tikhonov Regularisation so that the solution δ(t) obtained in (33), “continuously" depends on the initial data in
the sense of L2-regularity. That is, for arbitrarily small changes in initial data φ(x), the change in δ will also be small in
L2 sense. To this end, we first introduce the regularisation method.
Lemma 4 (Tikhonov Regularisation [31]). The stable solution to an ill-posed linear problem Tm(t) = δ(t), where
T : L2(I)→ L2(I) and m(t), δ(t) ∈ L2(I) is given by

δγ = argmin
w∈L2(I)

‖Tw − a‖2L2 + γ‖w‖2L2 , (34)

where γ is a positive regularization parameter.

Theorem 3 (Continuous dependence of stealthy attack upon initial data). Let φ and φ̃ be the nominal and perturbed
initial conditions that satisfy the assumptions (A1) and (A2) of Theorem 2, then the change in attack δ to δ̃ depends
continuously upon the change in initial data.

Proof. Let us first denote a and ã from (24) corresponding to the nominal and perturbed initial conditions. Then the
two linear problems becomes: T δ = a and T δ̃ = ã. Using the Tikhonov regularization from Lemma 4, we can claim
the regularised solutions to the two ill-posed linear problem are given by δγ to δ̃γ respectively. Now, we can write

‖δ − δ̃‖L2 6 ‖δ − δγ‖L2 + ‖δγ − δ̃γ‖L2 + ‖δ̃γ − δ̃‖L2 . (35)

The first and the third terms on the right hand side of this inequality are due to approximation errors occurring from
the approximation in the regularization method. Thus these terms can be bounded by a constant. Then it is clear that
‖δ − δ̃‖L2 solely depends on the second term.
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On the other hand, from [31] we can claim that

‖δγ − δ̃γ‖L2 6 γ−1‖a− ã‖L2 . (36)

and it can be easily derived that

‖a− ã‖L2 6M‖φ− φ̃‖C(Ω). (37)

This completes the proof. �

4 DESIGN OF ATTACK DETECTION ALGORITHM

In this section, we discuss the detailed design of attack detection algorithm for detectable attacks. We choose the
following output error injection based PDE observer as the attack detection algorithm A(.).

ût(x, t) = ûxx(x, t) + αû(x, t) +D(x)q(t) + L(x)ỹ(t), (38)

ûx(0, t) = 0, ûx(1, t) = L1ỹ(t), û(x, 0) = φ̂(x), (39)
ŷ(t) = û(1, t), r(t) = ỹ(t) = ũ(1, t), (40)

where ỹ(t) = y(t) − ŷ(t) is the output error of the observer, and L(x) and L1 are the observer gains and tuning
parameters of the algorithm.
Remark 2. We resort to a late lumping approach where the observer design is done in an infinite dimensional space, as
opposed to designing it on a finite dimensional approximation of the original PDE. Such late lumping approach helps
the proposed design to eliminate the following issues associated with finite dimensional approximation: (i) spillover
effect [32], and (ii) loss of accuracy and physical significance of the original PDE model [12].

In practical settings, the attack detection algorithm and its residual signal should have the certain desirable properties.
First, stability is the primary requirement for the residual signal dynamics. Next, the residual signal should be robust
with respect to model uncertainties. Finally, the residual signal should be highly sensitive to the attacks.

Besides robustness to uncertainties, another relatively less obvious challenge in attack detection lies in distinguishing
cyber attacks from physical faults. Although cyber attacks and physical faults both can negatively impact the system, the
subsequent management could be very different for these two types of anomalies. Hence, it is essential to distinguish
their occurrences, if possible. However, under certain scenarios it might be impossible to distinguish them, for example,
if the adversary deliberately designs the attack to mimic a physical fault scenario. Apart from these scenarios, we resort
to the following approach to distinguish the faults from attacks [33]. We consider the physical faults as undesirable
disturbances and subsequently desensitize their effect on the residual signal. In effect, we design our residual signal
generator to be robust towards both uncertainties and physical faults. In order to do the same, knowledge about probable
physical faults in system would be useful which can be acquired by performing a thorough apriori physical Failure
Modes and Effect Analysis (FMEA) study [34]. Accordingly, the proposed algorithm will only raise a flag when there is
a cyber-attack. In the next subsections, we formulate the observer design problem that considers these aforementioned
properties.
Remark 3. The proposed framework allows for a provision to distinguish between cyber-attacks and physical faults.
One possible solution can be running this algorithm in parallel with another fault detection algorithm. In case of a
cyber-attack, the proposed algorithm will raise a flag whereas the fault detection algorithm will not. By comparing the
outputs of these two algorithms, one can distinguish between cyber-attacks and faults.
Remark 4. The attacks considered in this section are detectable attacks. That is, they exclude the attack set discussed
in the previous section. The analysis in the previous section discusses existence of undetectable attacks which cannot
be detected by the algorithm A(.). Indeed, it is possible to generate such perfectly stealthy attacks if the adversary
possesses detailed knowledge of the system, as discussed in [2]. On the other hand, it is still difficult to detect detectable
attacks that are generated based on partial knowledge of the system due to the presence of uncertainties. The goal of
A(.) discussed in this section is to minimizes the effect of such uncertainties and maximizes the detectability of such
detectable attacks.

4.1 Residual Signal Generation and Design Requirements

First, we re-write the PDE dynamics (1)-(3) as:

ut(x, t) = uxx(x, t) + αu(x, t) +D(x)q(t) +Da(x)δ(t) + η(x, t), (41)
ux(0, t) = 0, ux(1, t) = 0, u(x, 0) = φ(x), (42)
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y(t) = u(1, t), (43)

where η(x, t) represents the effect of distributed modeling uncertainty and physical faults. Subtracting the observer
dynamics (40) from the system dynamics (41)-(42), we write the residual signal dynamics as

ũt(x, t) = ũxx(x, t) + αũ(x, t) +Da(x)δ(t) + η(x, t)− L(x)ũ(1, t), (44)
ũx(0, t) = 0, ũx(1, t) = −L1ũ(1, t), (45)
r(t) = ũ(1, t), (46)

where ũ(x, t) = u(x, t)− û(x, t) is the distributed error with ũ(x, 0) = ũ0(x) = φ(x)− φ̂(x) being the initial error.
Next, we state the following design requirements.
Design Requirement 1. (Exponential Stability) In case of η(x, t) = 0, δ(t) = 0, the residual should exponentially
approach zero. We mathematically express this requirement as:

|r(t)|2 6 K1e
−K2t |r(0)|2 , (47)

where K1 ∈ R and K2 ∈ R+ are some constants.
Design Requirement 2. (Attack/Uncertainty-to-Residual Stability) In case of η(x, t) 6= 0, δ(t) 6= 0, the residual signal
should be bounded. We mathematically express this requirement as:

|r(t)|2 6 K3e
−K4t |r(0)|2 +K5(t) |δ(t)|2 +K6 ‖η(., t)‖2H , (48)

where K3,K4,K5,K6 ∈ R+.
Design Requirement 3. (Robustness) The residual signal should be robust with respect to the uncertainty and physical
faults. We mathematically express this requirement as:∫ ∞

0

|r(τ)|2 dτ 6 β2
1

∫ ∞
0

‖η(., τ)‖2H dτ + ε, η(x, t) 6= 0, δ(t) = 0, (49)

where β1 ∈ R+ is an user-defined constant representing desired robustness level, and ε ∈ R+ is a constant that depends
on initial observer errors.
Design Requirement 4. (Attack Sensitivity) The residual signal should be sensitive to the attack. We mathematically
express this requirement as:∫ ∞

0

|r(τ)|2 dτ > β2
2

∫ ∞
0

‖Da(., τ)‖2H |δ(τ)|2 dτ − ε, η(x, t) = 0, δ(t) 6= 0, (50)

where β2 ∈ R+ is an user-defined constant representing desired sensitivity level, and ε ∈ R+ is a constant that depends
on initial observer errors.
Remark 5. The Design Requirements 3 and 4 are inspired by the H∞/H− criteria used in fault detection of ODE
systems [35]. Furthermore, the term ε in (49) and (50) can be interpreted following the notion of Input-to-State
Practical stability [36].

4.2 Backstepping Transformation of Residual Dynamics

In this section, we use a backstepping transformation to transform the residual dynamics (44)-(45) to a target system
dynamics [37]. Such target system dynamics will be useful for analyzing and designing the residual signal properties.
The following transformation ũ(x, t) 7→ ψ(x, t)

ũ(x, t) = ψ(x, t)−
∫ 1

x

P (x, y)ψ(y, t)dy, (51)

transforms (44)-(45) to the following target system dynamics:

ψt(x, t) = ψxx(x, t)− cψ(x, t) +D(x)δ(t) + θ(x, t), (52)
ψx(0, t) = 0, ψx(1, t) = −cψ(1, t), (53)

where c > 0 is a design parameter to be determined, and D(x) and θ(x, t) are the transformed versions of Da(x) and
η(x, t), respectively, given by

η(x, t) = θ(x, t)−
∫ 1

x

P (x, y)θ(y, t)dy, (54)
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Da(x) = D(x)−
∫ 1

x

P (x, y)D(y)dy. (55)

Starting from the transformation (51), and subsequently comparing the original residual dynamics (44)-(45) and the
target system (52)-(53), it turns out that the kernel P (x, y) must satisfy the following PDE [37]:

Pyy(x, y)− Pxx(x, y) = (c+ α)P (x, y), (56)

P (x, x) = − (c+ α)

2
x, Px(0, y) = 0. (57)

with the following closed-form solution

P (x, y) = −(c+ α)y
I1(
√

(c+ α)(y2 − x2))√
(c+ α)(y2 − x2)

, (58)

where I1(.) is the modified Bessel function of first kind. Furthermore, the observer gains can be computed as:
L(x) = −cP (x, 1)− Py(x, 1), L1 = c− P (1, 1). (59)

Next, we focus on the inverse transformation Q(x, y) 7→ P (x, y) which is given by

ψ(x, t) = ũ(x, t) +

∫ 1

x

Q(x, y)ũ(y, t)dy. (60)

The condition on the kernel Q(x, y) is derived following a similar approach as the backstepping kernal P (x, y). It turns
out that Q(x, y) must satisfy the following PDE:

Qyy(x, y)−Qxx(x, y) = −(c+ α)Q(x, y), (61)

Q(x, x) = − (c+ α)

2
x, Qx(0, y) = 0. (62)

with the following closed-form solution

Q(x, y) = −(c+ α)y
J1(
√

(c+ α)(y2 − x2))√
(c+ α)(y2 − x2)

, (63)

where J1(.) is the Bessel function of first kind. Consequently, the inverse relationships of (54) and (55) can be written
as:

θ(x, t) = η(x, t) +

∫ 1

x

Q(x, y)η(y, t)dy, (64)

D(x) = Da(x) +

∫ 1

x

Q(x, y)Da(y)dy. (65)

Remark 6. Due to the existence of an inverse transformation (60), we can conclude that the stability properties of
target system dynamics (52)-(53) confirm the stability of the original system dynamics (44)-(45).
Lemma 5. The upper bounds of Q(x, y) and Qx(x, y) are given by:

|Q(x, y)| 6 Q = sup
06x6y61

|Q(x, y)| = c+ α

2
, (66)

|Qx(x, y)| 6 Qx = sup
06x6y61

|Qx(x, y)| = c+ α

16
. (67)

Proof. Staring from (63) and using properties of Bessel functions [37], the upper bounds can be found equating the first
derivative of Q(x, y) and Qx(x, y) to zero, and subsequently computing the supremum values of the functions. �

Lemma 6. The upper bounds of D(x) and θ(x, t) in (52) are given by:

|D(1)| = |Da(1)| , ‖D(.)‖ 6
(

1 +
c+ α

2

)
‖Da(.)‖ , (68)

‖Dx(.)‖ 6
(

1 +
c+ α

16

)
‖Dax(.)‖ , (69)

|θ(1, t)| 6 |η(1, t)| , ‖θ(., t)‖ 6
(

1 +
c+ α

2

)
‖η(., t)‖ , (70)

‖θx(., t)‖ 6
(

1 +
c+ α

16

)
‖ηx(., t)‖ , (71)

Proof. Staring from (64)-(65), and using the results from Lemma 5 and Cauchy-Schwarz inequality, the proof is
straightforward. �
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4.3 Main Result of Attack Detection Algorithm

In this section, we present the main result of the attack detection algorithm. First, we make the following assumptions.
Assumption 2. Consider the target system (52)-(53). The initial conditions are bounded as follows:

‖ψ(x, 0)‖ 6 ψ0 <∞, ‖ψx(x, 0)‖ 6 ψx0 <∞, (72)

0 < ψ
10
6 |ψ(1, 0)| 6 ψ10 <∞. (73)

Next, the following theorem establishes the conditions on the design parameter c in target system (52)-(53) which will
lead to the satisfaction of the Design Requirements 1-4.
Theorem 4. Consider the residual signal definition (40), Design Requirements (47)-(50) and the target system dynamics
(52)-(53). If there exists a c > λ > 0 that satisfies the following conditions:

A 6 0, B > 0, (74)

where λ being an arbitrary positive constant and A = [Aij ] ∈ R6×6 with

A11 = 1− c2 +
cα1λ1

2
,A22 = −c+ (1 +

c+ α

2
)
α2λ2

2
,

A33 = −c+ (1 +
c+ α

16
)
α3λ3

2
,A44 =

cα1

2λ1
− β2

1 ,

A55 = (1 +
c+ α

2
)
α2

2λ2
− β2

1 ,A66 = (1 +
c+ α

16
)
α3

2λ3
− β2

1 ,

A14 = A41 =
c(1− α1)

2
,A25 = A52 =

(1 + c+α
2 )(1− α2)

2
,

A36 = A63 =
(1 + c+α

16 )(1− α3)

2
, (75)

and rest of the elements Aij = 0; B = [Bij ] ∈ R6×6 with

B11 = 1 + c2 − cα4λ4

2
,B22 = +c− (1 +

c+ α

2
)
α5λ5

2
,

B33 = +c− (1 +
c+ α

16
)
α6λ6

2
,B44 = −cα4

2λ4
− β2

2 ,

B55 = −(1 +
c+ α

2
)
α5

2λ5
− β2

2 ,B66 = −(1 +
c+ α

16
)
α6

2λ6
− β2

2 ,

B14 = B41 = −c(1− α4)

2
,B25 = B52 = −

(1 + c+α
2 )(1− α5)

2
,

B36 = B63 = −
(1 + c+α

16 )(1− α6)

2
, (76)

and rest of the elements Bij = 0 with αi ∈ R, λi > 0, i ∈ {1, 2, .., 6};
then the following statements (P1)-(P4) are true:

(P1) In the absence of uncertainty and attack, i.e. η(x, t) = 0, δ(t) = 0, the residual signal will exponen-
tially converge to zero as follows:

|r(t)|2 6 K1e
−K2t |r(0)|2 , (77)

where K1 = 2
c ( c2 + ψ0+ψx0

2ψ
10

), and K2 = 2c.

(P2) In the presence of uncertainty and attack, i.e. η(x, t) 6= 0, δ(t) 6= 0, the residual signal is Input-to-State (ISS)
stable with respect to the attack and uncertainty as follows:

|r(t)|2 6 K3e
−K4t |r(0)|2 +K5 sup

t>0

(
‖Da(.)‖2H |δ(t)|

2
+ ‖η(., t)‖2H

)
, (78)

where K3 = 2
c

(
c
2 + ψ0+ψx0

2ψ
10

)
,K4 = 2(c− λ),K5 = M2

c(c−λ) , and

M2 = max
{ c2

2γ
,

(
1 + c+α

2

)2
2γ

,
(1 + c+α

16 )2

2γ

}
. (79)
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(P3) The residual signal satisfies the robustness requirement (49) as∫ ∞
0

|r(τ)|2 dτ 6 β2
1

∫ ∞
0

‖η(., τ)‖2H dτ + ε, (80)

with η(x, t) 6= 0, δ(t) = 0 where ε = c
2ψ

2

10 + ψ
2

0 + ψ
2

x0.

(P4) The residual signal satisfies the attack sensitivity requirement (50) as∫ ∞
0

|r(τ)|2 dτ > β2
2

∫ ∞
0

‖Da(., τ)‖2H |δ(τ)|2 dτ − ε, (81)

with η(x, t) = 0, δ(t) 6= 0 where ε = c
2ψ

2

10 + ψ
2

0 + ψ
2

x0.

Proof. Considering the target system dynamics (52)-(53), we start with the following Lyapunov functional candidate:

W (t) =
c

2
|ψ(1, t)|2 +

1

2
‖ψ(., t)‖2 +

1

2
‖ψx(., t)‖2 . (82)

Differentiating W with respect to t along the trajectory of (52)-(53), and applying integration by parts and Cauchy-
Schwarz inequality multiple times, we can write the upper bound of Ẇ as

Ẇ 6 −c2 |ψ(1)|2 − c ‖ψx‖2 − c ‖ψ‖2 + c |δ| |D(1)| |ψ(1)|+ |δ| ‖ψ‖ ‖D‖+ |δ| ‖ψx‖ ‖Dx‖
+c |θ(1)| |ψ(1)|+ ‖ψ‖ ‖θ‖+ ‖ψx‖ ‖θx‖ . (83)

Now, we are ready to present the proofs of the parts separately.

Proof of the statement (P1): In the absence of uncertainty and attack, i.e. θ(x, t) = 0, δ(t) = 0, (83) becomes

Ẇ 6 −c2 |ψ(1)|2 − c ‖ψx‖2 − c ‖ψ‖2 = −2cW, (84)

the solution of which can be written using comparison principle as W (t) 6 e−2ctW (0). Considering the bounds
in assumption 2, we can write W (0) 6 ( c2 + ψ0+ψx0

2ψ
10

) |ψ(1, 0)|2. Furthermore, by the choice of (82), we have
c
2 |ψ(1, t)|2 6W (t). Considering these two facts, and r(t) = ũ(1, t) = ψ(1, t), we arrive at (77).

Proof of the statement (P2): In the presence of uncertainty and attack, i.e. θ(x, t) 6= 0, δ(t) 6= 0, we apply the upper
bounds from Lemma 6 and re-write (83) as

Ẇ 6 −c2 |ψ(1)|2 − c ‖ψx‖2 − c ‖ψ‖2 + c |δ| |Da(1)| |ψ(1)|+
(

1 +
c+ α

2

)
|δ| ‖ψ‖ ‖Da‖ (85)

+
(

1 +
c+ α

16

)
|δ| ‖ψx‖ ‖Dax‖+ c |η(1)| |ψ(1)|+

(
1 +

c+ α

2

)
‖ψ‖ ‖η‖+

(
1 +

c+ α

16

)
‖ψx‖ ‖ηx‖ . (86)

Next, we apply Young’s inequality on the last six terms of right hand side of (86) and get

Ẇ 6 −c2 |ψ(1)|2 − c ‖ψx‖2 − c ‖ψ‖2 +
λ

2
|ψ(1)|2 +

c2

2λ
|Da(1)|2 |δ|2 +

(1 + c+α
2 )2

2λ
) ‖Da‖2 |δ|2 (87)

+
λ

2
‖ψ‖2 +

λ

2
‖ψx‖2 +

(1 + c+α
16 )2

2λ
‖Dax‖2 |δ|2 +

λ

2
|ψ(1)|2 +

c2

2λ
|η(1)|2 +

λ

2
‖ψ‖2 (88)

+
(1 + c+α

2 )2

2λ
‖η‖2 +

λ

2
‖ψx‖2 +

(1 + c+α
16 )2

2λ
‖ηx‖2 . (89)

⇒ Ẇ 6 −2(c− λ)W +M2(‖D‖2H |δ|
2

+ ‖η‖2H). (90)

where λ is a constant and M2 is given in (79). Applying comparison principle, the solution of the differential inequality
(90) can be written as

W (t) 6 e−2(c−λ)tW (0) +
M2

2(c− λ)
sup
t>0

(
‖D‖2H |δ|

2
+ ‖η‖2H

)
. (91)
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Again, considering the facts W (0) 6 ( c2 + ψ0+ψx0
2ψ

10

) |ψ(1, 0)|2, c2 |ψ(1, t)|2 6W (t), and r(t) = ũ(1, t) = ψ(1, t), we
arrive at (78).

Proof of the statement (P3): Consider (86) under the condition η(x, t) 6= 0, δ = 0. The seventh term of right hand side
of (86) can be written as:

c |η(1)| |ψ(1)| = α1c |η(1)| |ψ(1)|+ (1− α1)c |η(1)| |ψ(1)| , (92)

where α1 ∈ R is a constant. Furthermore, we apply Young’s inequality on the first term of the right hand side of (92)
and get

c |η(1)| |ψ(1)| 6 α1c
λ1

2
|η(1)|2 + α1c

1

2λ1
|ψ(1)|2 + (1− α1)c |η(1)| |ψ(1)| , (93)

with λ1 > 0. In a similar manner, we can write the upper bounds of the eighth and ninth term of right hand side of (86)
as (

1 +
c+ α

2

)
‖ψ‖ ‖η‖ 6

(
1 +

c+ α

2

)(α2λ2

2
‖ψ‖2 +

α2

2λ2
‖η‖2 + (1− α2) ‖ψ‖ ‖η‖

)
, (94)

(
1 +

c+ α

16

)
‖ψx‖ ‖ηx‖ 6

(
1 +

c+ α

16

)(α3λ3

2
‖ψx‖2 +

α3

2λ3
‖ηx‖2 + (1− α3) ‖ψx‖ ‖ηx‖

)
, (95)

with α2, α3 ∈ R are constants and λ2, λ3 > 0. Next, applying the upper bounds (93)-(95), we can write the upper
bound Ẇ 6 B1 where

B1=|ψ(1)|2
(
−c2+cα1λ1

2

)
+‖ψ‖2

(
−c+(1+

c+α

2
)
α2λ2

2

)
+‖ψx‖2

(
−c+(1+

c+α

16
)
α3λ3

2

)
+|η(1)|2

(cα1

2λ1

)
(96)

+‖η‖2
(

(1+
c+α

2
)
α2

2λ2

)
+‖ηx‖2

(
(1+

c+α

16
)
α3

2λ3

)
+|ψ(1)||η(1)|(c(1−α1))+‖ψ‖‖η‖((1+c+α

2
)(1−α2)) (97)

+‖ψx‖‖ηx‖((1+
c+α

16
)(1−α3)). (98)

Next, we define the following metric

K1 =

∫ ∞
0

(
|ψ(1)|2 − β2

1 |η(1)|2 − β2
1 ‖η‖

2 − β2
1 ‖ηx‖

2
)
dτ. (99)

Note that the condition K1 − ε 6 0 is same as the condition (80). Furthermore, we know from (98) that

W (∞)−W (0)−
∫ ∞

0

B1dτ 6 0. (100)

Hence, proving

K1 − ε 6W (∞)−W (0)−
∫ ∞

0

B1dτ, (101)

would be sufficient to achieve K1 − ε 6 0. Furthermore, noting W (∞) > 0 and W (0) − ε 6 0 with the choice
ε = c

2ψ
2

10 + ψ
2

0 + ψ
2

x0, we find that

K1 +

∫ ∞
0

B1dτ 6 0, (102)

is a sufficient condition for proving (101). Using (99), we can write the condition (102) as∫ ∞
0

(
|ψ(1)|2 − β2

1 |η(1)|2 − β2
1 ‖η‖

2 − β2
1 ‖ηx‖

2
+B1

)
dτ 6 0. (103)

Finally, we find that proving

|ψ(1)|2 − β2
1 |η(1)|2 − β2

1 ‖η‖
2 − β2

1 ‖ηx‖
2

+B1 6 0, (104)

would be sufficient for proving (103). In summary, proving (104) would automatically satisfy the original robustness con-
dition (80). The condition (104) can be expressed as XT1 AX1 6 0 with X1 = [|ψ(1)| , ‖ψ‖ , ‖ψx‖ , |η(1)| , ‖η‖ , ‖ηx‖]T
and where A is defined in (75). Consequently, satisfying the LMI A 6 0 would be sufficient to satisfy the robustness
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condition (80).

Proof of the statement (P4): Consider (86) under the condition η(x, t) = 0, δ(t) 6= 0. Following the same approach as
in (P3), we can write the upper bound Ẇ 6 B2 where

B2=|ψ(1)|2
(
−c2+cα4λ4

2

)
+‖ψ‖2

(
−c+

(
1+
c+α

2

)
α5λ5

2

)
+‖ψx‖2

(
−c+

(
1+
c+α

16

)
α6λ6

2

)
+|δ|2|Da(1)|2

(
cα4

2λ4

)

+|δ|2‖Da‖2
((

1+
c+α

2

)
α5

2λ5

)
+|δ|2‖Dax‖2

((
1+
c+α

16

)
α6

2λ6

)
+|ψ(1)||δ||Da(1)|c(1−α4)

+‖ψ‖|δ|‖Da‖
(

1+
c+α

2

)
(1−α5)+‖ψx‖|δ|‖Dax‖

(
1+
c+α

16

)
(1−α6), (105)

with α4, α5, α6 ∈ R are constants and λ4, λ5, λ6 > 0. Next, we define the following metric

K2 =

∫ ∞
0

(
|ψ(1)|2 − β2

2 |δ|
2 |Da(1)|2 − β2

2 |δ|
2 ‖Da‖2 − β2

2 |δ|
2 ‖Dax‖2

)
dτ. (106)

Note that the condition K2 + ε > 0 is same as the condition (81). Next, following a similar approach as in (P3), we find
that

K2 −
∫ ∞

0

B2dτ > 0, (107)

is a sufficient condition for proving (81) and consequently, proving

|ψ(1)|2−β2
2|δ|

2|Da(1)|2−β2
2|δ|

2‖Da‖2−β2
2|δ|

2‖Dax‖2−B2>0, (108)

would be sufficient for satisfying (81). The condition (108) can be expressed as XT2 BX2 > 0 with X2 =
[|ψ(1)| , ‖ψ‖ , ‖ψx‖ , |δ| |Da(1)| , |δ| ‖Da‖ , |δ| ‖Dax‖]T and where B is defined in (76). Consequently, satisfying
the LMI B > 0 would be sufficient to satisfy the sensitivity condition (81). �

Remark 7. For design purposes, one can solve the Linear Matrix Inequalities (LMIs) (74) along with the condition
c > λ > 0. The parameters αi ∈ R and λi > 0 can be utilized as tuning parameters. To account for the presence of
uncertainty in the system, we modify the attack detection logic (5) as: r(t) 6 εth ⇒ No attack, r(t) > εth ⇒ Attack.
where εth is a pre-defined threshold. There are multiple ways one can compute such threshold, for example, εth =
maxδ=0,η 6=0 r(t).

5 SIMULATION CASE STUDIES

In this section, we perform simulation studies to illustrate the performance of attack detection algorithms. We consider
battery under cyber-attack. Cyber-attacks on electric vehicle or power-grid batteries can have severe implications [38].
Specifically, we focus on cyber-attacks that attempt manipulate battery current to cause over-temperature conditions.
We adopt the battery model from [24]. Under the assumption sufficient boundary insulation and applying transformation
of time and spatial variables, the battery model can be written as:

Tt(x, t) = Txx(x, t) +D(x)q(t) +D(x)δ(t), (109)
Tx(0, t) = 0, Tx(1, t) = 0, (110)

where T (x, t) is the distributed battery temperature; D(x) = K,∀x ∈ [0, 1] where the constant K depends on battery
dimension and thermal properties; the measured output is the boundary temperature y(t) = T (1, t); q(t) is the nominal
heat generated within the battery due to current flow and δ(t) is the attack signal that modifies the heat generation by
corrupting battery current. The distributed state response under constant current discharge and nominal conditions (i.e.
no attack and no uncertainty) are shown in Fig. 1. Next, we present the following case studies to illustrate the ideas
presented in the previous sections.

In the first study, we illustrate the existence of a stealthy cyber-attack in the sense of Definition 1. We compare two
cases: (i) Case 1: where the system is subjected to initial condition T (x, 0) = 290K and a short pulse type stealthy
cyber-attack δ(t) applied at t = 0. (ii) Case 2: where the system is subjected to initial condition T (x, 0) = 298K and
no cyber-attack has been applied. Note that the initial conditions fall within reasonable range for both cases and the
response under attack resembles the response under nominal scenario. The responses for these cases are shown in Fig.
2. Hence, by Definition 1, the applied cyber-attack possesses stealthiness.
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Figure 1: Distributed battery temperature response under constant current scenario.

Figure 2: Comparison of boundary temperature response with and without attack.

In the next study, we illustrate the performance of the attack detection algorithm discussed in Section IV. We illustrate
the results in ψ-domain. The states of the PDE observer were initialized incorrectly to verify the convergence. We
consider three scenarios: (i) without any uncertainty and attack, (ii) with uncertainty and no attack, and (iii) with
uncertainty and attack. The uncertainty is chosen as N (0, 1) distributed spatially. The attack signal is chosen as
δ(t) = 0.0015(1− e−0.0003(t−Ta)) with Ta = 10s being the attack injection time. The threshold εth has been chosen
according to Remark 7. The responses of the residual signal under these three scenarios are shown in Fig. 3. As proved
in Theorem 3, the residual signal (i) exponentially converges to zero in the absence of any attack or uncertainty, (ii)
exhibits Input-to-State (ISS) stability in the presence of attack and/or uncertainty, (iii) remains bounded within the
threshold in the absence of an attack, and (iv) crosses the threshold 2 s after the attack occurrence thereby detecting the
attack. In summary, the statements of Theorem 3 have been verified by this case study.

Figure 3: Residual responses under uncertainty and attack.

6 CONCLUSION

In this paper, we have explored security of DPCPSs modelled by linear parabolic PDEs with boundary measurements.
The focus is on cyber-attacks that affect the actuation channel. First, we consider the detectability aspects of such
cyber-attacks. Subsequently, we analyze existence of stealthy attacks under a special class of algorithms utilizing system
model and measurements. Next, we develop a design framework that explicitly considers stability, and the trade-off
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between robustness and attack sensitivity in its design phase. As a future work, we plan to extend the framework to
n-dimensional PDE systems.
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