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Abstract— This article proposes a model predictive non-sliding
manipulation (MPNSM) control approach to safely transport an
object on a tray-like end-effector of a robotic manipulator. For
the considered non-prehensile transportation task to succeed,
both non-sliding manipulation and the robotic system constraints
must always be satisfied. To tackle this problem, we devise
a model predictive controller enforcing sticking contacts, i.e.,
preventing sliding between the object and the tray, and assuring
that physical limits such as extreme joint positions, velocities,
and input torques are never exceeded. The combined dynamic
model of the physical system, comprising the manipulator and
the object in contact, is derived in a compact form. The
associated non-sliding manipulation constraint is formulated such
that the parametrized contact forces belong to a conservatively
approximated friction cone space. This constraint is enforced
by the proposed MPNSM controller, formulated as an optimal
control problem that optimizes the objective of tracking the
desired trajectory while always satisfying both manipulation
and robotic system constraints. We validate our approach by
showing extensive dynamic simulations using a torque-controlled
7-degree-of-freedom (DoF) KUKA LBR IIWA robotic manip-
ulator. Finally, demonstrative results from real experiments
conducted on a 21-DoF humanoid robotic platform are shown.

Index Terms— Manipulators, robot control, robotics and
automation, robots, service robots.

I. INTRODUCTION

SERVICE robots are developed to assist human beings
in performing tasks that are typically dull, dangerous,

or repetitive. To date, they have been realized in different
forms and structures and employed in various applications
ranging from household and personal assistance to indus-
trial collaboration [1], [2]. These robots usually operate
semi-autonomously in human-centered environments and must
satisfy multiple requirements. One of them consists in exhibit-
ing compliant human-like manipulation skills. However, most
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Fig. 1. Illustration of the main problem addressed in this article: a
robotic manipulator (blue) has to transport an object (black cube) along a
desired trajectory (dashed gray) on a tray-like end-effector (orange/white)
while guaranteeing a sticking behavior, i.e., satisfying both non-prehensile
manipulation (i.e., friction cones) and robotic system constraints such as joint
limits, maximum torques, etc.

robotic systems nowadays are still missing this essential fea-
ture and are equipped with simple, prehensile grippers, which
are used to pick, and only limitedly manipulate, a relatively
narrow variety of objects. The main problem with this solution
is assuring that the grasp holds all the time, which requires
it to resist all the forces that could reasonably act on the
object during the manipulation tasks, without causing too high
internal stresses [3], [4]. When this cannot be guaranteed, e.g.,
due to external interactions or highly dynamic movements, the
object is likely to slip and fall from the fingers.

To extend the set of manipulative actions, manipulate
objects of different size and shape, exhibit bigger operative
workspace, and enhance the dexterity in dynamic tasks, non-
prehensile robotic manipulation has recently emerged as a
valid alternative to grasping manipulation [5]. Non-prehensile
manipulation circumvent the problem of grasping and retain-
ing an object by realizing manipulative actions that jointly
exploiting frictional, gravity, and inertial forces such as push-
ing, throwing, and striking, which humans commonly employ
to carry out everyday manipulation tasks. The success of
non-prehensile manipulation has already been demonstrated
along with several applications, mainly in industrial-like set-
tings, for instance to re-orient parts on a planar surface [6].
The main advantage resides in using simpler robotic end-
effectors, purposely designed to robustly perform manipulation
tasks with a wider variety of objects. However, this comes at
the expense of developing and endowing robots with control
methods that rely on accurate and reliable models of the
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mechanics involved. For this reason, to date few robots have
been shown capable of non-prehensile manipulation skills
which, in principle, would enable them to perform a broader
range of dexterous manipulation tasks, the simplest one being
transporting an object along a trajectory.

In this article, we consider the problem of non-prehensile
transportation of an object along a desired trajectory using a
tray-like end-effector. In the considered setting, it is in general
not possible to prevent any induced motion of the object
relative to the hand. The goal is to satisfy both manipulation
and robotic system constraints along the performed trajectory,
i.e., preventing the object to slide and fall. Solving this
problem would enable service robots to perform dexterous,
waiter-like object transportation tasks, which can be exploited
to, e.g., serve lunch on a tray to patients in a hospital.
A robotic manipulation system composed of a serial robotic
arm endowed with a tray-like end-effector is used to carry
out the considered task (see Fig. 1). Such a system exhibits
several robotic system constraints (such as limited range of
joint motion, maximum feasible torques, etc.) that must always
be satisfied together with non-sliding manipulation constraints
(i.e., friction cones) that prevent sliding of the object and, thus,
task failures. From a technical viewpoint, carrying a payload
modifies the robot’s dynamics which, in turn, must not only
counteract but also opportunely regulate its motion to prevent
sliding and avoid violating robotic system constraints.

Thus, we propose a model predictive non-sliding manip-
ulation (MPNSM) control architecture for a robot arm
transporting an object on a tray-like end-effector in a non-
prehensile configuration. Our MPNSM controller allows the
realization of the considered task encoded as a desired tra-
jectory which must be tracked while taking into account
both manipulation and inherent robot constraints in a unified
and principled way. This is mainly achieved by realizing
contact forces between the hand and the object that satisfy
friction cone constraints, thus enforcing a non-sliding behavior.
In addition, to guarantee a continuous execution of the task,
we consider the rate-of-change of the joint torques as output
of our controller (in literature, this is referred to as jerk con-
trol [7]) which, once integrated over time, returns the overall
input of our robotic system. This procedure makes the obtained
joint torque profile (and thus the system accelerations) con-
tinuous and allows integrating force signals stemming from
the interaction as feedback into the controller [8]. We derive
and incorporate the combined system (manipulator and object)
dynamical model and its related constraints into a nonlinear
model predictive control (NMPC) problem [9]. Its solution
returns the optimal control inputs relying on the most recent
measurement/estimation of the system’s state and accounting
for its evolution over a future time horizon. This is the
first work addressing the tray-based non-sliding manipulation
problem from this perspective to the authors’ knowledge.

II. RELATED WORKS

When a robot does not firmly hold an object, there exist
motions induced by inertial or external forces that can not
always be inhibited [10]. In that case, known as non-prehensile
grasp, the object can still be manipulate typically employing

a sequence of non-prehensile manipulation primitives [5],
[11]. These include throwing [12], catching [13], batting [14],
pushing [15], rolling [16], among others. We restrict the
overview of related works to the so-called non-sliding non-
prehensile manipulation primitive (sometimes also denoted as
dynamic grasping [17]) which aims to immobilize the object
to the end-effector (as it was firmly grasped) by exploiting the
combined action of inertial, gravity, and frictional forces. This
is complementary to the sliding non-prehensile manipulation
primitive, which aims to realize controlled object motions by
exploiting the same system of forces [18], [19]. In the past,
several methodologies were devised for robots equipped with
flat palm end-effectors to carry out non-prehensile manipu-
lation tasks [20], [21]. In the following, a few examples are
reported.

A motion planning framework that explicitly considers
reaction and friction forces as kino-dynamic constraints for
the non-prehensile transportation of a bottle is proposed
in [22]. A task priority control scheme featuring sliding
mode and admittance control for human-robot collaborative
transportation of an object on a tray is designed in [23]: a
human operator guides a 7-degree-of-freedom (DoF) robot arm
through a force sensor located at the robot tool. A method
to change the inclination of the tray when the object is
rotating around an edge based on the computation of the
zero-moment-point of the object, modeled as an inverted
pendulum, is proposed in [24] for a waiter humanoid robot that
transports objects on a tray. A framework that offline evaluates
and eventually re-plans a trajectory based on the occurrence
of slippage due to inertial forces that occur on a grasped
object during highly dynamic robot tasks is presented in [25].
A shared-control teleoperation architecture exploiting similar
concepts has been designed to safely transport an object placed
on a tray-like end-effector preventing its sliding in [26].

Several recent papers have focused instead on the problem
of executing robotic manipulation and, in general, interaction
tasks using model predictive control (MPC). To date, the
common trend is to integrate contact forces tracking as an
objective and feedback their measure in the controller [8].
For instance, a whole-body MPC for dynamically stabilizing a
mobile manipulator while executing end-effector pose tracking
tasks while skillfully planning for end-effector contact forces is
devised in [27]. The controller directly computes the actuation
torques and the forces exerted on the environment. However,
since the authors do not model the environment, the inter-
action task is accomplished as a force regulation problem,
and it is successful only under the circumstance that the
environment impedance is underestimated. A MPC strategy
that is aware of its environment and can plan whole-body
motion for a mobile manipulator while avoiding collisions
is proposed in [28]. Through task-space admittance control,
it can track any desired interaction forces and torques. System
identification and an adaptive control method extend the MPC
formulation presented in [27] to deal with mobile manipula-
tion tasks in unknown environments in [29]. The employed
modeling strategy was derived under the assumption that
the environment can be described by a linear mass-spring-
damper system rigidly attached to the robot. In the context of
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non-prehensile manipulation, MPC has been used to perform
pushing tasks requiring different levels of accuracy [30].

However, none of the above works has jointly considered the
robotic system and the manipulation constraints in a unified
model predictive non-sliding control approach to perform
non-prehensile object transportation tasks.

A. Contributions

To fill the above-mentioned gap in the literature, this
article introduces an MPNSM control approach to perform
non-prehensile object transportation tasks while jointly sat-
isfying manipulation and robotic system constraints. In the
following, the main technical contributions of this work with
respect to the previous literature are summarized.

1) In our previous work on the topic (see [26]),
an optimization-based architecture for transporting an
object on a tray was preliminarily introduced. How-
ever, only manipulation constraints were formulated
and included in the main optimization problem. The
controller may thus require inputs that actuators can-
not provide and/or the robotic system may exceed its
extreme physical limits. In this work, we address this
problem, extending our previous architecture by inte-
grating robotic system constraints and receding horizon
control capabilities.

2) The work [7] uses the time derivative of input torques
to control a humanoid robot at the jerk level. Building
upon this approach, our work proposes and extensively
validates the use of jerk control within a MPC frame-
work for non-prehensile object manipulation tasks.

3) We derived analytical models for the computation of
(parametrized) contact forces and their time evolution
under mild assumptions. These are used within the sys-
tem dynamics constraint of the devised MPNSM control
approach. Besides this, we mathematically proved the
absence of internal force terms within non-prehensile
manipulation setup, such as the one considered in this
article.

4) Finally, we release the simulation code used to demon-
strate the performance of the devised controller to the
community for a possible future benchmark.

III. SYSTEM MODELING

In this section, the system and the contact models, which
will be employed to implement the devised controller in
Section V, are introduced. The combined manipulator-object
dynamic model is derived in a compact form in Section III-A
while contact models and the parametrization of the contact
forces are dealt with in Section III-B.

A. Combined Manipulator-Object Dynamics

Let us consider a serial robot manipulator whose state can
be uniquely described through the pair (q, q̇) with q 2 Rn

being the vector of generalized coordinates (n denotes the
joints number) and q̇ 2 Rn its time derivative (joint velocities).

The dynamics of the manipulator can be expressed by the
following equation of motion:

Mm(q)q̈ + Cm
�
q, q̇

�
q̇ + nm(q) = ⌧ � ⌧ext (1)

where Mm(q) 2 Rn⇥n is the symmetric positive-definite robot
joint-space inertia matrix, Cm(q, q̇) 2 Rn⇥n is the matrix of
centrifugal/Coriolis terms, nm(q) 2 Rn is the gravity vector,
⌧ 2 Rn is the vector of joint torques (representing the
overall control input of the robotic system), and ⌧ext 2 Rn is
the joint torque vector corresponding to an external load. In the
envisioned scenario, the external load is attributable to the
presence of an object to be transported, which is in contact
with the robot’s end-effector. The object is assumed to be a
rigid body whose dynamics can be expressed as

Mo(xo)V̇ + Co(xo,V)V + no(xo) = Fo (2)

where xo = (p, �) is the object pose composed by the position
p 2 R3 and parametrized orientation � 2 R3 or R4 (e.g.,
ZYX Euler angles, unit quaternion, etc.), Mo(xo) 2 R6⇥6 is the
object positive-definite mass/inertia matrix, Co(q, q̇) 2 R6⇥6

is the matrix of centrifugal/Coriolis terms, no(q) 2 R6 is the
gravity vector, V = (v, !) 2 R6 is the object twist, with
v 2 R3, ! 2 R3 expressing its linear and angular velocities,
respectively; and Fo = ( fo, ⌧o) 2 R6 is the object wrench,
with fo, ⌧o 2 R3 force and torque vectors, respectively, all
specified with respect to the body reference frame {O} whose
origin is placed at the object’s center of mass.

As long as the contact between the object and the tray is
maintained,1 the body wrench Fo can be transformed into the
corresponding manipulator torques ⌧ext through the equation

⌧ext = J T
o (q)Fo (3)

where Jo 2 R6⇥n is the object geometric Jacobian matrix [31].
When the same condition holds, the object parametrized pose
can be retrieved from joint values using the forward kinematic
function, i.e., xo = (q). Substituting (2) and (3) into (1), and
using the following differential kinematics equations:

V = Jo(q)q̇
V̇ = Jo(q)q̈ + J̇ o

�
q, q̇

�
q̇ (4)

leads to the following combined manipulator-object dynamic
model:

M̃(q)q̈ + C̃
�
q, q̇

�
q̇ + ñ

�
q, q̇

�
= ⌧ (5)

where M̃ 2 R6⇥6 is the symmetric and positive-definite
mass/inertia matrix, C̃ 2 R6⇥6 the Coriolis-centrifugal matrix
and ñ 2 R6 the gravitational force of the combined system
that can be written as follows (dropping their arguments):

M̃ = Mm + J T
o Mo Jo

C̃ = Cm + J T
o
�
Co Jo + Mo J̇ o

�

ñ = nm + J T
o no. (6)

As stated above, ⌧ on the right-hand side of (5) represents
the vector of joint torques that are the overall control input

1It is worth noting that this is not an assumption: it is instead a condition
that will later be formulated as a constraint and enforced by the devised
optimization-based model predictive controller.
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Fig. 2. Drawing of the object body wrench Fo = ( fo, ⌧o), i-th contact
force fci and friction cone (shaded green). po,ci is the vector defining the
i-th contact position in the body frame {O}.

of the robotic system manipulating the object. However, as ⌧

contributes to the realization of the object body wrench Fo
through contact forces transmitted to the object (as shown
later), its choice must respect manipulation constraints that
prevent the object from sliding. Moreover, ⌧ must also be
chosen to satisfy the inherent robotic system constraints, i.e.,
it must lay within a specific range and generate the evolution
of the manipulator states that is compatible with the allowable
joint range of motion/velocity. Thus, the primary objective
of this work is to find ⌧ that satisfies both robotic system
and non-sliding manipulation constraints, which are better
described in Section III-B.

It is worth noting that, inverting (3), the combined dynamic
model (5) can be alternatively derived in the object coor-
dinates, where manipulation constraints (see later) are more
easily handled. However, the approach followed here allows
to more conveniently treat the robotic system’s physical limits
as state constraints and directly calculate the overall system’s
control inputs, i.e., the manipulator torques.

B. Contact Model and Contact Forces Parametrization

Let us consider the model of the object dynamics in (2).
The object body wrench Fo can be realized by opportunely
generating contact forces Fc between the object and its manip-
ulandum. Before explicitly defining Fc, we must introduce
some modeling assumptions. We assume that the object’s
shape and dynamical properties are known and coincident
with a cuboid of known material. Moreover, we assume that
the overall contact surface between the cuboid object and
the tray can be approximated by discretizing it, i.e., using
a finite number of nc contact points located in the vertexes
of the object in contact (thus nc = 4 in the considered
case). The i-th contact point is thus identified by a contact
frame {Ci } whose pose is known and expressed in {O} by
qo,ci = (po,ci , Ro,ci ) 2 SE(3).

The tray/object interaction behavior can be described intro-
ducing a suitable contact model. In general, the set of wrenches
that can be transmitted across the i-th contact is described by a
wrench basis Bc,i 2 R6⇥mi , where mi denotes the dimension of
the generalized forces at the contact. Bc,i maps the components
of the contact forces, which are transmissible through the
contact point, into the 6-D wrench space. Assuming a point
contact with friction model [32], only the linear forces fci 2

R3 can be transmitted through the i-th contact, thus mi = 3.

Fig. 3. Approximation of circular friction cones (in shaded green) with
polyhedral cones (black lines) with different number of edges k. (a) k = 4.
(b) k = 6. (c) k = 8.

The body wrench Fo can thus be expressed as

Fo = GFc, G =

h
AdT

q�1
o,c1

Bc,1, . . . , AdT
q�1

o,cnc
Bc,nc

i
(7)

where G 2 R6⇥3nc , usually referred to as grasp matrix in
the robotic grasping literature, maps the stacked vector of
contact forces Fc = [ f T

c1
, . . . , f T

cnc
]T 2 R3nc to the body

wrench Fo exerted at the object’s center of mass (see Fig. 2).
The matrices involved in the calculation of G in (7) can be
expressed as ([33])

AdT
q�1

o,ci
=


Ro,ci 0

p̂o,ci Rci ,o Ro,ci

�
, Bc,i =


I3⇥3
03⇥3

�
(8)

where p̂o,ci 2 so(3) denotes the skew-symmetric matrix
associated with the vector po,ci 2 R3 (i.e., the position of the
i-th contact point expressed in {O}).

The non-sliding manipulation constraint coincides with the
contact forces belonging to the friction cone space. This means
that, in the i-th contact, the three components fci ,x , fci ,y, fci ,z
of the contact force fci 2 R3 must satisfy the constraint

q
f 2
ci ,x + f 2

ci ,y  µ fci ,z, fci ,z � 0 (9)

where µ > 0 is the static friction cone coefficient, assumed
to be known and uniform for all the contacts. Whenever the
constraint (9) is satisfied for all the contacts,2 the object can
be manipulated, that is, it is transported along the desired
trajectory while preventing it from sliding on the tray.

To enforce this constraint in the controller, it is convenient to
parametrize the contact forces and make the constraint linear in
the chosen parameters. This can be achieved by conservatively
approximating the i-th friction cone as a polyhedron generated
by a finite number k 2 N of unit vectors f̂ ci ,1, . . . , f̂ ci ,k 2 R3.
When k = 4, the circular friction cone is conservatively
approximated by an inscribed pyramid ([33]). In any case,
to relax the conservativeness of this approach, tighter approxi-
mations of the circular cone can be obtained using more edges,
i.e., increasing k (see Fig. 3).

The procedure for the calculation of the j-th friction cone
edge for a generic k is given by

f̂ ci , j = Rz(2⇡ j/k)Ry(✓)ẑ (10)

where ✓ = arctan µ and it denotes the pyramid (or cone)
semi-aperture angle. However, it is worth noting that the size,
and thus the computational burden, of the optimal controller
presented later will increase with k. With this choice, Fc can
be conveniently parametrized, i.e., it can be written as

Fc = F̂c3, 3 =
�
�c1,1, . . . ,�cnc ,k

�
2 Rknc (11)

2Note that this is a conservative condition we use throughout this article.
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where

F̂c = diag
�
F̂c,1, . . . , F̂c,nc

�
, F̂c,i =

⇥
f̂ ci ,1, . . . , f̂ ci ,k

⇤
(12)

is the matrix describing the friction cone space geometry,
as its columns contain the vectors of the friction cone edges
as calculated in (10), while 3 denotes the vector of contact
force parameters, that constitute the components along the
friction cone borders. At this point, for Fc to belong to the
approximated friction cone space, it is sufficient to choose

3i � 0 8 i = 1, . . . , knc (13)

meaning that Fc must be a non-negative linear combination of
the friction cone boundaries through the vector of the coef-
ficients 3. This constraint will be enforced by the controller
described in Section V.

IV. CONTACT FORCES AND PARAMETERS COMPUTATION

The quantity that more effectively describes the interaction
state is the contact force. However, measuring forces at the
contact is generally complex, especially for extended contact
geometries. Since our goal is to enforce the friction cone
constraints mentioned earlier, in this section, we introduce
the contact force (and the related parameters) calculation
procedure used throughout this work.

A. Contact Forces Computation
Considering (7), for a given Fo (usually directly or indi-

rectly measurable), the considered system of equations must
be solved for Fc to retrieve contact forces. The expression
in (7) denotes a system of six equations in mi ⇥ nc unknowns.
In the considered case (mi = 3 nc = 4), the solution in terms
of Fc is thus indeterminate. Anyway, it is possible to solve and
derive an expression for Fc, solving the following optimization
problem:

min
Fc

kFck
2 (14a)

s.t. GFc = Fo. (14b)

Solving (14) allows finding, among many, the solution
vector having the minimum two-norm. It is worth to note
that the constraint (13), which accounts for the contact forces
feasibility, is not considered in (14). When the constraint (13)
is not binding, it is possible to derive a closed-form solution
for Fc applying the method of Lagrange multipliers. This leads
to

Fc = G†
Fo (15)

where † denotes the Moore–Penrose inverse operator, that
constitutes the minimum two-norm result of the contact forces
vector Fc. Of course, as previously stated, this calculation
procedure generates valid results as long as the object is
stationary to the tray, i.e., Fc belongs to the friction cone space
that, in turn, means (13) is satisfied. Indeed, contact forces that
do not belong to the friction cone space, i.e., lead to at least
one 3i < 0, are impossible to be physically realized.

However, from the mathematical point of view, (15) is not
the unique solution of the original system of equations in (7):

in principle, other solutions can potentially be considered. For
instance, the solution

Fc = G†
Fo + P Fc,0 (16)

where P = PT 2 R3nc⇥3nc � 0 is the projector onto
the null-space of G, i.e., G P = 0, and Fc,0 is a generic
vector, also satisfies (7). It can easily be shown that this
solution can be obtained by modifying the cost function in
the previously-introduced optimization problem (14).

In the following, we show that contact forces compo-
nents lying in the null space of the matrix G must not be
considered since they are representative of internal forces
that feasible contact points displacements can not generate
in non-prehensile manipulation settings. Indeed, for contact
forces to be realized, contact points displacements should be
generated through the manipulator’s actuation system accord-
ing to the following relation:

�Fc = K J (q)�q (17)

where the contact points Jacobian matrix J (q) 2 R3nc⇥n

relates the contact point velocities to actuators’ velocities, i.e.,
vc = J (q)q̇ , and K 2 R3nc⇥3nc is a diagonal positive-definite
matrix, that plays the role of stiffness and relates contact point
displacements to contact forces variation, i.e., �Fc = K �pc
(see [34] for further details). This shows that all the contact
forces that can be generated/controlled by the contact points
displacements are in the range space of the J (q) matrix.
Neglecting for the moment the presence of the manipulator,
i.e., considering that our tray can be actuated by linear and
rotational rigid body displacements �q in the Cartesian space,
we can construct J (q) = J geometrically as the following
constant matrix (see Fig. 2):

J (q) = J =

2

664

...
...

Ro,ci p̂o,ci Ro,ci

...
...

3

775.

The fact that J is constant is a consequence that the tray
can only undergo rigid body motions. Consequently, the set
of contact points can only rigidly translate and rotate in space
but not “deform” (i.e., they cannot modify their relative dis-
tances). Considering now the product between columns of the
null-space projector P and J , that appears substituting (17) in
the second term on the right-hand side of (16), and observing
that J = GT , we get

PT J = PT GT
= O

where O is the null matrix of appropriate dimensions. This
result shows that no contact forces lying in the null space of the
G matrix can be generated/actuated by the tray/contact points
displacements. Alternatively, one may observe that columns
of the null space projector P are linearly independent of the
columns of J . Contrarily, the term G†

Fo is the component
of the solution that is in the range space of J , i.e., such that
rank([J |G†

Fo]) = rank(J ) = 6, denoting that it is the only
one that can be theoretically generated. It is worth remarking
that the practical realization of contact forces depends on the
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satisfaction of the frictional constraints, i.e., (13) needs to be
satisfied.

B. Contact Forces Parameters Computation
Substituting (11) into (14) allows solving for 3 directly

and enforcing the non-sliding condition (13). In the considered
case, the expression Fo = G F̂c3 constitutes a system of six
equations in k ⇥ nc unknowns, and the solution in terms of 3

is again indeterminate in the considered case (k = 4 and nc =

4). Following similar arguments, it is possible to solve and
derive an expression for 3, solving a two-norm minimization
problem analogously to what done for Fc in Section IV-A

min
3

k3k
2 (18a)

s.t. GF̂c3 = Fo (18b)
3i � 0 8 i = 1, . . . , knc (18c)

where (13) has been introduced in (18c). When the con-
straint (18c) is not binding, a closed-form solution can be
derived applying the method of Lagrange multipliers and, after
exploiting (15), it can be written as follows:

3 =
�
GF̂c

�†
Fo (19)

where † denotes the Moore–Penrose inverse operator and
is used to minimize the two-norm of the contact forces
coefficients. It is worth remarking that our goal is to enforce
the constraint in (13), while acting on the manipulator torque
control inputs, and (19) is essential to derive the relation
between these two quantities. The expression (19), and in
particular its time derivative, tells us how the contact forces
parameters vary when the object wrench varies, and it is
included in the dynamics constraint of our MPNSM controller,
which is introduced in Section V.

As mentioned above, Fo can usually be directly or indirectly
measured by a force/torque (F/T) sensor. However, in torque-
controlled manipulators, under the assumption of fast motor
dynamics, a more practical way to obtain Fo, to be used
in (19), is to use the commanded torques ⌧ to obtain V̇

using (4), where q̈ can be obtained through (1) using the
measured ⌧ext. Modern manipulators are indeed equipped with
external torque sensing. In both ways, body force (recon-
structed) measurements and the contact forces computed from
them are feedback to the controller that uses these to compute
the subsequent optimal control inputs.

V. MODEL PREDICTIVE NON-SLIDING MANIPULATION
CONTROL

In this section, we derive the optimization-based MPNSM
controller leveraging the NMPC approach. In general, this
approach aims to find the optimal sequence of control inputs
and the corresponding state trajectory over the finite-length
prediction horizon, subject to constraints on the state trajectory
and the control inputs. Model predictive controllers account for
the model of the system to be controlled and find a solution
starting from the current state on each iteration. The first
timestep of the computed control trajectory is applied before
the controller runs again, and new control inputs are computed.
Denoting with x the system state and u the control input, the

underlying discrete-time optimal control problem (OCP) we
aim to solve has the following form:

min
x,u

kx⇤

e � xek
2
Qe

+

N�1X

i=0

kx⇤

i+1 � xi+1k
2
Qi

+ kuik
2
Ri

(20a)

s.t. x0 = x̄(0) (20b)
xi+1 = fk(xi , ui ) (20c)
x  xi  x̄ (20d)
u  ui  ū (20e)

with N 2 R>0 indicating the steps of the prediction horizon
and where the function (20a) denotes a least square cost
function to be minimized, composed of two weighted two-
norms: the state difference from the desired values x⇤ and
the input u. Here, kvkA = vT Av is the quadratic form
with a suitable weighting matrix, while Qi , Qe 2 Rnx ⇥ Rnx

and Ri 2 Rnu ⇥ Rnu denote the diagonal entries of the
corresponding positive semi-definite weight matrices.

To account for the contact state of the object/tray interaction,
we opted for defining an extended system state including,
besides the proper state q and q̇ , the manipulator input torques
⌧ and the contact force coefficients 3. In this way, we can
more easily feedback both the manipulator torques and the
contact forces into the controller via (20b). Our extended
state vector thus reads as x = (⌧ T , qT , q̇T , 3T )T . With this
choice, we increase the relative degree of our system dynamics
and choose as a control input u = ⌧̇ . This is convenient
since it gives rise in any case to a continuous torque profile,
which constitutes the real input to our robotic system. The
matrix Q in (20) can thus be partitioned into Q⌧ , Qq , Qq̇ ,
Q3 of opportune dimensions, where the generic Q� block
corresponding to the related � quantity.

It is worth mentioning that our ultimate goal is to transport
the object to the target pose following the desired trajectory
(see Fig. 1), i.e., we aim to realize xo = x⇤

o (t) and ẋ o = ẋ⇤
o(t),

where x⇤
o (t), ẋ⇤

o(t) are the desired object states while satisfying
both non-sliding manipulation and robotic system constraints.
From this, we can calculate the reference values for the
extended state x⇤, in particular q⇤

o , q̇⇤
o using a standard inverse

kinematics routine, under the assumption that the object is
rigidly attached to the manipulator. For this, we used the
closed-loop inverse kinematic (CLIK) algorithm, i.e., a Jaco-
bian pseudo-inverse-based Newton–Raphson method [31].

With the state/input choice made, the continuous-time
dynamic evolution of the extended state, which is ultimately
used in (20c), can be thus written as

ẋ = f (x, u) =

8
>>><

>>>:

⌧̇ = u
q̇ = q̇
q̈ = M̃�1(x)(⌧ � C̃(x)q̇ � ñ(x))

3̇ =
�
G F̂c

�†�A⌧̇ + B⌧ + C
�

(21)

where the matrices A, B, and C write as follows:

A = Mo J M̃�1, B = Mo J̇ M̃�1, C = �2Mo J̇ M̃�1ñ. (22)

Equation (21) describes the dynamic evolution of the
combined manipulator-object system and of parametrized con-
tact forces between them. It is worth mentioning that the
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Fig. 4. Dynamic simulation scenario: a torque-controlled robotic manipulator
(orange) has to transport an object (red cube) along a desired trajectory
(black) on a tray-like end-effector (dark gray) while guaranteeing sticking
behavior, i.e., satisfying both (non-sliding) non-prehensile manipulation and
robotic system constraints such as joint limits, maximum torques, etc.

TABLE I
SIMULATION MPNSM CONTROL PARAMETERS

TABLE II
SIMULATED ROBOTIC SYSTEM JOINT LIMITS

expression for 3̇ has been retrieved by differentiating (19),
substituting (2) and (5), under the assumptions that all the
matrices entering the dynamic model hold constant over the
time horizon.

As for the constraints, (20b) denotes the feedback term
read from the system at each time step. Note that while the
measure of q, q̇, ⌧ is readily available in torque-controlled
manipulators, the measure of 3 or Fc must be retrieved
indirectly from the measure of Fo (which can be conveniently
measured through a F/T sensor installed at the end-effector of
the manipulator) and using (19). The constraint on the system
dynamics (20c) is constructed discretizing (21). We denote
with q = (q

1
, . . . , q

n
), q̇ = (q̇1, . . . , q̇n), ⌧ = (⌧ 1, . . . , ⌧ n),

3 = (31, . . . ,3nc,k) the lower bounds on joint positions,
joint velocities, joint torques, and contact force coefficients,
respectively. Similarly q̄ = (q̄1, . . . , q̄n), q̇ = (q̇1, . . . , q̇n),
⌧̄ = (⌧̄ 1, . . . , ⌧̄ n), and 3̄ = (�̄1, . . . , �̄nc,k) denote the
upper bounds on the respective quantities. Thus, in (20d),
x = (q, q̇, ⌧ , 3)T and x̄ = (q̄, q̇, ⌧̄ , 3̄)T represent the lower
and the upper bounds on the extended system states. These
include both the physical bounds of the robotic system and
the non-sliding manipulation constraints. Similarly, the control
inputs to the system are bounded with lower bound, u =

(u1, . . . , un)
T , and upper bound, ū = (ū1, . . . , ūn)

T , which
are free to be chosen.

VI. DYNAMIC SIMULATION SETUP

The proposed controller is implemented in C++ using the
ROS middleware. The simulations are performed using the
physics-based Gazebo dynamic simulator. We considered a

robotic system that consists of a 7-DoF KUKA LBR IIWA
manipulator equipped with a purposely designed tray-like end-
effector and a cube-shaped object (see Fig. 4). The object of
dimension 40 ⇥ 40 ⇥ 40 mm is placed in contact with the
top of the tray attached to the manipulator flange. In order to
keep the simulation setup as realistic as possible, we assign
the dynamic properties of the KUKA LBR IIWA manipulator
within the simulation environment, corresponding to those
identified for the real robotic manipulator [35]. The robotic
system joint limits are given in Table II. The properties
associated with the object have been chosen as follows:
mass mo = 0.5 kg and diagonal inertial matrix, Io =

diag(1e�4) kgm2. However, our controller is conceived for the
non-prehensile transportation of a cuboid object with general
dynamic parameters using a robotic manipulator. The Coulomb
static friction coefficient between the tray and the object was
chosen as µ = 0.5. During the simulations, we placed the
object at x = �0.04 m, y = 0.05 m from the tray center.

The desired trajectory for the state of the object,
x⇤

o (t), ẋ⇤
o(t), is obtained using a quintic polynomial with

rest-to-rest object velocity and acceleration. The beginning
of the desired trajectory coincides with the initial posi-
tion of the object’s geometric center, that is po(0) =⇥
0.59 �0.31 0.52

⇤T m in the robot base frame. Unless oth-
erwise stated, the desired trajectory completion time is set
T = 1.5 s and the final desired position of the object is
po(T ) =

⇥
0.59 0.31 0.52

⇤T m. The object is, thus, required to
cover a distance of 0.62 m along the ŷ-axis of the robot base
frame. During the simulation, the manipulator is controlled
at the joint torque level to track the desired trajectory. The
solution of the problem in (20) (i.e., the rate of change of the
joint torques) is used to obtain the required updated torque at
each simulation step i according to the following update rule:

⌧i+1 = ⌧i + ⌧̇ i1t (23)

with 1t being the control loop cycle time. In the MPNSM
controller, we close the feedback loop of the joint values,
joint velocities, joint torques and contact forces by reading the
entire extended system state from the simulation environment.
It is worth noting that the contact forces cannot be directly
measured in the real case instead. In Section VII, we will
retrieve them by plugging the reading of the body wrench
measurements into (19).

The controller has been implemented using acados [36]
which is a high-performance software package for non-
linear optimization problems. The package inherently uses
CasADi [37] to formulate nonlinear functions as a front
end. The controller was first implemented in MATLAB, which
was later used to generate the C/C++ code library of our
OCP. The generated library was then included within our
software framework written in C++. We used the sequential
quadratic programming (SQP) approach, where the quadratic
programs (QPs) resulting from the approximation of the
NMPC problem (20) are solved sequentially to obtain Newton
directions leading to the solution starting from the provided
guess. To obtain faster convergence of the NMPC problem,
we relied on the real-time iteration (RTI) scheme of the SQP
method [38]. The RTI scheme exploits the fact that the OCPs
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obtained at two consecutive time instants are closely related,
and thus it performs only one complete Newton step per
sampling time. In order to provide a reasonable guess at time
instant i , we employ a warm-started SQP that utilizes the
shifted solution obtained at time instant i � 1. We further
use the condensing approach to solve the resulting QPs by
reducing the variable space of a QP and forwarding simulation
of the system dynamics. The resulting QP sub-problem can be
solved much faster using dense general-purpose QP solvers.
We perform partial condensing of the QP before calling the
solver [39]. This exploits the structure of the QP resulting from
the reformulation of an NMPC problem. After the implemen-
tation of the controller using acados, with an NMPC horizon
length N = 10, the solver takes 5.4 ms on an average (1.3 ms
standard deviation) to solve one step of the problem on an
Intel3 Core4 i7-9750H CPU @ 2.60 GHz. The cost function
and the object’s inertial parameters are given in Table I. The
simulation cycle time is then set to 5 ms, using the previ-
ous time step solution if the computation takes longer. The
simulation code can be downloaded from the following link:
https://github.com/prisma-lab/nonprehensile-object-transp

VII. DYNAMIC SIMULATION RESULTS

In this section, we present the dynamic simulation
results obtained using our MPNSM control approach for
non-prehensile object transportation tasks.

A. Validation of the Contact Forces Calculation Procedure
In this subsection, we present the validation of contact force

calculation procedure introduced in Section IV. We compared
the forces calculated from the readings of the body wrench
Fo using (15) and the one directly extracted from the Gazebo
dynamic simulation environment. This is possible since, in the
simulation environment (as also considered in our model), the
contact surface is discretized with nc = 4 contact points, and
the friction cone is approximated with a pyramid. According to
the simulator documentation, the default open dynamic engine
(ODE) internal solver calculates the contact forces using the
quick step method that relies upon an iterative projected
Gauss-Seidel procedure whose accuracy depends on the num-
ber of iterations set. The friction parameter between the object
and the tray is set to µ = 0.5. For this simulation, we used the
quintic-polynomial desired trajectory explained in Section VI,
and employed the proposed MPNSM control method to track
the desired trajectory. The comparison between the calculated
(continuous line) and the measured (dashed line) contact force
components for each contact point is shown in Fig. 5 for
a L = 0.62 m long linear trajectory performed in 1.5 s.
It is possible to note that the computed contact forces closely
follow the measured ones with a maximum discrepancy of
less than 0.1 N, which can be attributed to the different
calculation procedures. This result validates our contact force
calculation routine, which can now be effectively used in a
practical case where direct contact force measurement is not
possible. In Sections VII-B–VII-E, we show that our approach

3Registered trademark.
4Trademarked.

Fig. 5. Validation of the contact forces calculation procedure: comparison
between calculated (continuous line) and measured (dashed line) contact force
components for each contact point (ci ) along a L = 0.62 m long linear
trajectory performed in T = 1.5 s.

Fig. 6. Evaluation of the contact forces calculation procedure tracking
performance: trend of the mean (black squares) and max (gray dots) norm
of the instantaneous error vector for each contact point (ci ) along a linear
trajectory with variable length L performed in T = 1.5 s.

works robustly in simulated/real setups using body wrench
measurements despite the simplified model considered here.

To additionally evaluate the tracking performance of mea-
sured versus calculated forces, we performed a set of dynamic
simulation experiments with varying trajectory length L
involving the same setup. In more detail, we considered the
trajectory length L varying from a minimum value of 0.48 m
to a maximum value of 0.8 m with increments of 0.01 m (33
simulations). The trajectory duration has been kept 1.5 s, such
that longer trajectories involve higher accelerations, which in
turn changes the required contact forces. Fig. 6 shows for each
contact point (ci ) the mean (black squares) and max (gray dots)
norm of the error vector, which is constructed as follows:

eFci
=

2

664

�
Fmeas

ci
(0) � Fci (0)

�T

...�
Fmeas

ci
(T ) � Fci (T )

�T

3

775

where Fmeas
ci

(t) 2 R3 denotes the contact force measured at the
instant t in the i-th contact, T denotes the trajectory duration
and the norm operator is intended to be applied row-wise.
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Fig. 7. Validation of the tracking performance along a slow (T = 2.5 s)
linear trajectory. The norm of the error terms ep and eo is contained as no
manipulation and robotic system constraints are met.

As noted from the figure, both the mean and the maximum
error norms are low for shorter (thus slower) trajectories while
they increase for longer (faster) trajectories. The explanation
is readily available: the proposed calculation procedure does
not account for the physical friction cone constraints becoming
binding along trajectories requiring high accelerations.

B. Tracking Performance—No Constraints

In this subsection, the devised MPNSM control approach’s
tracking performance is showcased when no manipulation and
robotic system constraints are met, i.e., they are satisfied with
a strict inequality sign. This case is reproduced by slowing
down the trajectory execution, i.e., by setting the desired
trajectory completion time to T = 2.5 s. In Fig. 7 we show
the tracking error E = (ep, eo), with ep(t) = ||p⇤

o(t) � po(t)||
and eo(t) = ||�e(t)||, where �e is the vector of Euler angles
extracted from the rotation matrix error, i.e., R⇤T

o Ro, where
R⇤

o and Ro are is the desired and the current rotation matrix,
respectively. In the considered case, the motion executed by
the object closely follows the desired one with a maximum
position error norm of emax

p = 6 ⇥ 10�3 m and a maximum
orientation error norm of emax

o = 1.5 ⇥ 10�3 m. It is worth
noting that the errors decrease to zero before the trajectory
ends thanks to the predictive capabilities of the controller.
Moreover, the shape of the error can be attributed to the
particular choice of the cost function and its weights in the
OCP (20) and may be further reduced by refined tuning. The
result shown here can be used as a baseline to compare how
the tracking performance results are affected when constraints
are met or when external disturbance torques are applied,
as considered in Sections VII-C and VII-D.

C. Tracking Performance—Non-Sliding and Robot Constraint

In this subsection, the tracking performance of the devised
MPNSM control approach is showcased when both input
and manipulation/robotic system constraints are met. This
case is reproduced by re-scaling down to T = 1.5 s the
completion time of the desired linear trajectory considered
in Section VII-B. This makes the non-sliding manipulation
constraints binding, i.e., the inequality constraint 3 � 0 holds
with equality for some 3i at the optimal point in some portions
of the trajectory as shown in Figs. 8 and 9. As it is possible
to note, this is in general associated with higher tracking
errors when compared to the baseline case (i.e., no constraints)
previously shown in Section VII-B.

Fig. 8. Validation of the tracking performance along a fast (T = 1.5 s)
trajectory. The norm of the error terms (ep and eo—top graph) is higher as
manipulation (3—middle graph) and input constraints (⌧̇—bottom graph) are
met.

Fig. 9. Validation of the tracking performance along a fast (T = 1.5 s)
trajectory. The norm of the error terms (ep and eo—top graph) is higher
as manipulation (3—middle graph) and robotic system velocity constraints
(q̇—bottom graph) are met.

In addition, to show the influence of input and state
constraints on the tracking performance, we restrict the
upper/lower bounds on ⌧̇ to ±200 and relax those on joint
positions, velocities, and torques in the case considered in
Fig. 8, while we re-apply the original robotic system bounds
and relax those on the input in the case considered in Fig. 9.
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Fig. 10. Evaluation of the tracking performance: the trend of the mean
(black squares) and max (gray dots) norm of the error along a variable length
L linear trajectory performed in T = 1.5 s.

In the first case, ⌧̇ 1 is saturating to the upper limit in some
portions of the performed trajectory. In the second case, q̇4 is
saturating to the upper/lower limits in some portions of the
performed trajectory. In both cases, the tracking error is larger
compared to the baseline case (no constraints) reaching a
maximum of emax

p = 0.06 m, emax
o = 0.09 rad and emax

p =

0.07 m, emax
o = 0.12 rad, respectively, along the performed

trajectory.
Finally, we evaluated the tracking performance when the

trajectory length is varied as done in Section VII-A. Fig. 10
shows the trends of the mean (black squares) and max (gray
dots) norm of the position (ep) and orientation (eo) errors.
These are constructed as follows:

ep =

2

664

�
p⇤

o(0) � po(0)
�T

...�
p⇤

o(T ) � po(T )
�T

3

775, eo =

2

64
(�e(0))T

...

(�e(T ))T

3

75

where p⇤
o denotes the desired position extracted from the

desired path, �e is the vector of Euler angles extracted from
the rotation matrix error, and T is the trajectory duration. The
norm operator is intended to be applied row-wise. As noted
from the figure, both the mean and the maximum error norm
are low for shorter (thus slower) trajectories, while they
increase for longer (faster) trajectories. The explanation is
readily available: the tracking performance is penalized by the
robotic and manipulation constraints becoming binding along
trajectories requiring high accelerations.

The variation of the object dynamic properties, initial
position, and dimension is not causing significantly different
results in terms of tracking performance, as also shown in [40].

D. Tracking Performance—External Disturb Applied
Torque-controlled robots have the advantage of ensuring

compliant behavior to external environment interactions. This
is an advantage compared to position-control robots since
compliance avoids giving rise to high contact forces when
unintended interactions occur. To demonstrate the ability of
our torque-based MPNSM control approach to handling this
situation, we applied a disturbance torque in simulation, emu-
lating an unwanted collision of the end-effector along the
x̂-direction (orthogonal to the performed motion). We again
consider a T = 2.5 s trajectory duration to show the effect of
the disturbance isolated from those of the potential constraint
violation. The considered disturbance torque ⌧d is computed
as follows:

⌧d = J T
e


A
✓

sin
✓

td
D

⇡

◆◆
, 0, 0, 0, 0, 0

�T

, 0 < td < D (24)

Fig. 11. Validation of the tracking performance along a slow (T = 2.5 s)
trajectory. The norm of the error terms (ep and eo—top graph) is higher as
the torque disturbance is applied between t = 1 s and t = 1.5 s. Manipulation
force coefficients (3—middle graph) and input (⌧̇—bottom graph) trends are
shown.

Fig. 12. Comparison of the tracking performance and control torques between
acceleration- and jerk-based MPNSM controllers along a T = 1.5 s linear
trajectory. The norm of the error terms (ep and eo—top graph) is comparable
in the two cases while smoother torques (⌧—bottom graph) can be obtained
by the jerk-based one.

where td = t�tmin and D = 0.5 s is the duration of the disturb-
ing torque signal and A = 20 N denotes its amplitude. During
the time frame tmin = 1 s and tmin+ D = 1.5 s, the robotic sys-
tem control input is computed as ⌧ (t) = ⌧mpc(t) + ⌧d(t), with
⌧mpc being the controller output calculated as in (23). Results
are shown in Fig. 11. As it is possible to note, the system is
perturbed by the applied disturbance torque, and the tracking
performance is significantly deteriorated when compared to
the baseline experiment (shown in Section VII-B). Moreover,
when disturbance torque is applied, contact force parameters
touch their lower bound. However, our controller can readily
compensate for and recover from the perturbed state using
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TABLE III
REAL ROBOTIC SYSTEM JOINT LIMITS

Fig. 13. Experiments using the proposed model-predictive non-sliding manipulation control approach. The desired trajectory is shown as a white dashed line.
(a)–(d) Key frames of RoDyMan robot tracking a 1.5 s linear trajectory. (e)–(h) Key frames of RoDyMan robot tracking a 5.5 s Lemniscate-like trajectory.
(i)–(l) Key frames of RoDyMan robot tracking a 4.5 s rectangular trajectory featuring three via points.

TABLE IV
REAL MPNSM CONTROL PARAMETERS

the optimal control input shown in the bottom graph. Further
simulation results can be seen in the video accompanying this
article.

E. Comparison With Acceleration-Based Controller

In this subsection, we compared the performance of our
jerk-based MPNSM controller with an acceleration-based one.
This is derived by reducing the system state to x = (qT , q̇T )T ,
and considering ⌧ as an output of the controller. Robotic sys-
tem constraints are thus imposed as state/input bounds while
non-sliding manipulation constraints are easily formulated as
an inequality relation on a nonlinear function of the two.

Results of the comparison are shown in Fig. 12 where
we report the tracking error and the torque control input
for the two controllers along the same T = 1.5 s linear
trajectory where only manipulation constraints are becoming
binding. The superscript a or j denotes the terms related to
the acceleration and the jerk case, respectively. Despite the
two controllers showing comparable tracking performance (ep
and eo—top graph) with our jerk-based MPNSM controller

we obtained smoother control torques (⌧—bottom graph) that
is sometimes beneficial when vibration and actuators’ stress
reduction is of interest. This is due to the integration rule
shown in (23) and to the additional constraints on control
torque time derivative that can be imposed in our jerk-based
controller.

It is worth mentioning that the acceleration-based MPNSM
controller is slightly more efficient exhibiting an average
computation time of 0.048 ms along the considered trajec-
tory. However, comparing acceleration- and jerk-based control
approaches is beyond the scope of this article.

VIII. REAL EXPERIMENTS SHOWCASE

To demonstrate the validity of our approach, we conducted
additional simulations and real experiments employing the
RoDyMan humanoid robot. It is a 21-DoF robot made of
a custom-built mobile base, a two-DoFs torso, two one-
Dof shoulders, and two six-DoFs Shunk Powerball arms.
Additional construction details can be found in [41]. For our
experiments, we employed only the kinematic chain starting
at the torso and ending at the tip of the robot’s right arm
(nine DoFs). A plastic tray-like end-effector was attached to
it through a 3-D printed support, which embedded a Shunk 6-
Axis F/T sensor. A calibrated Intel RealSense Depth Camera
D415 was mounted on the tray with the purpose of tracking
and recording the object displacement thanks to a QR-code
pattern and the VISP auto tracker module [42]. The object is
a steel hollowed cuboid of dimensions 60 ⇥ 60 ⇥ 70 mm,
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Fig. 14. Comparison of the trajectory tracking performance along a 1.5 s
reference trajectory using RoDyMan robot. The norm of the error terms (ep
and eo—top graph) is higher when the MPNSM control is used. Evolution
of the non-sliding manipulation coefficients (3—middle graph) and norm of
the object displacement (d—bottom graph) in the two cases.

whose inertial properties are: mass mo = 0.236 kg and
diagonal inertial matrix, Io = diag(4.5375 ⇥ 10�5) kgm2. The
friction coefficient between the object and the tray has been
experimentally identified in µ = 0.2. The robot was position-
controlled, and its set point was extracted from the output
trajectory solution of the MPNSM controller given in (20).
The robot control cycle time is set to 8 ms. In-text citation for
Table III contains the real system control parameters while the
robot physical limits are given in Table IV. A picture of the
experimental setup is given in Fig. 1.

We compared the system’s performance while tracking
the reference trajectory using the robot-embedded position
control and the MPNSM controller. The first object trajectory
chosen for the real experiment is a quintic polynomial rest-
to-rest linear Cartesian trajectory with initial point pi =

[0.7, �0.5, 1.34] m, and final point pe = [0.7, 0.15, 1.34] m
expressed in the robot base frame, whose duration is T =

1.5 s. As in the simulation, the desired orientation is kept
constant and corresponding to the tray facing the upward direc-
tion. The corresponding joint trajectory was computed using
the Jacobian pseudo-inverse CLIK routine. A timed sequence
of key frames taken during the performed experiments is
shown in Fig. 13(a)–(d). At the same time, quantitative data
are plotted in Fig. 14 in terms of tracking error E , manip-
ulation constraint 3 and object displacement D for the two
cases. The subscript r and m denote the tracking of the
reference and of the NPNSM trajectory, respectively. The
MPNSM controller performance trends in the real experiments
are close to what was achieved and widely discussed in
Section VII. In summary, when manipulation (or robotic
system) constraints become binding (one or multiple 3i = 0 in

the middle graph), tracking performance (ep,m and eo,m in the
top graph) are penalized with respect to the reference case
(ep,r and eo,r in the same graph) in favor of safety, i.e., the
manipulator does not exceed its limits and the object does not
slide and fall from the tray. This can be seen from the norm of
the object displacement d(t) = ||po(0)� po(t)|| in the bottom
graph shown for the two cases. Better insights can be captured
from the complete video of the experiments.5

To additionally prove the robustness of our controller we
consider two additional trajectories: 1) a rectangular path in
the horizontal plane, shown at the top of Fig. 15, featuring
three via points obtained imposing trapezoidal velocity profiles
with acceleration time equal to 0.2 s at the transitions between
segments and 2) a Lemniscate-like path in the vertical plane,
shown at the top of Fig. 16, obtained employing a piecewise
cubic B-spline curve enclosed by its control points. The vali-
dation of the performance using the proposed MPNSM control
onto the Rodyman robot is shown in the graphs of Figs. 15
and 16, respectively. A timed sequence of keyframes taken
during the performed experiments is shown in Fig. 13(e)–(l),
where the desired trajectory is shown in the overlay. In both
cases, it can be noted that when the robotic system constraints
become binding (q̇—bottom graph), the tracking performance
is penalized (E—top graph), while the contact force coeffi-
cients (3—middle graph) are still kept greater than zero.

IX. DISCUSSION

The proposed MPNSM controller relies on the knowledge
of the manipulated object dynamic model and its friction coef-
ficient. While in industrial settings, it is reasonable to assume
knowledge about the manipulated objects, this is generally
not the case in unknown environments. One interesting future
research direction can be exploring online dynamic parameter
estimation procedures for non-prehensile manipulation setups,
such as the one considered in this article. However, to solve
this problem, one must account for the dichotomy between
moving safely (i.e., avoid sliding) and exciting the object
dynamics (required to identify its parameters). To this end,
the naturally smooth object transportation task considered in
this work can easily become hybrid in view of the stick and
slip phenomenon: uncertainties in the transported object model
can indeed trigger the transition between static and viscous
friction. In this case, the advantages of using jerk-based MPC
to obtain smoother torque profiles for manipulation will be
even more evident.

Although our controller achieved encouraging results over-
all, several points need to be better discussed. Regarding the
mathematical formulation of our controller, it is worth men-
tioning that in the extended state, we could have considered
adding only ⌧ . Indeed, the object wrench, the contact forces,
and their coefficients (on which we formulate the non-sliding
constraint) can all be expressed as a function of the proper
manipulator state plus ⌧ . However, including 3 in the extended
state allowed to more easily formulate its constraint as a state
constraint and more straightforwardly feedback the contact
force measurement [8]. This redundancy, however, increased

5https://github.com/prisma-lab/nonprehensile-object-transp
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Fig. 15. Validation of the tracking performance along the rectangular,
4.5 s duration trajectory. The black dot denotes the start/endpoint, the arrows
indicate the direction. The norm of the error terms (ep and eo—top graph) is
higher as manipulation (3—middle graph) and input constraints (⌧̇—bottom
graph) are met.

the number of states and thus the solving time of our controller.
In the future, we aim to investigate the gain in terms of
accuracy and solving time by removing 3 from the extended
state. Moreover, matrices appearing in the time derivative of
3 in (22) were derived under the assumption that the dynamic
model holds constant over the time horizon. This might not
always be true, e.g., for longer prediction horizons, and needs
further attention.

From the experimental point of view, the solver convergence
time is decreased when a shorter horizon length is utilized;
however, the solver’s trajectory tracking performance also
decreases. A trade-off between the solution time, the tracking
performance, and the computational complexity involved must
be found depending on the task requirements. We experi-
mentally found a good trade-off using a prediction horizon
N = 10. This choice makes the proposed controller suitable
for online implementation with a real robotic manipulator.
However, the success of the solver in finding a solution at

Fig. 16. Validation of the tracking performance along the Lemniscate-like,
5.5 s duration trajectory. The black dot denotes the start/endpoint, the arrows
indicate the direction. The norm of the error terms (ep and eo—top graph) is
higher as manipulation (3—middle graph) and input constraints (⌧̇—bottom
graph) are met.

each time step heavily depends on the selected cost function
and its gains.

X. CONCLUSION

This article proposed a model-predictive non-sliding manip-
ulation control approach for non-prehensile object transporta-
tion using robot manipulators. We derived the combined
manipulator/object dynamic model and formulated the associ-
ated non-sliding constraints that are enforced by the controller.
The proposed optimization-based controller has been shown
capable of safely accomplishing a trajectory tracking task
with an object being transported in a non-prehensile way on
a tray-like manipulator end-effector. The controller imposes
that the manipulation and physical constraints of the robotic
system are always respected during the executed trajectory
at the expense of tracking performances. Extensive dynamic
simulations and real-world experiments validated our approach
and provided interesting insights for future research directions
on this topic.
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