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DeeP-LCC: Data-EnablEd Predictive Leading
Cruise Control in Mixed Traffic Flow

Jiawei Wang, Yang Zheng, Keqiang Li and Qing Xu

Abstract—For the control of connected and autonomous vehi-
cles (CAVs), most existing methods focus on model-based strate-
gies. They require explicit knowledge of car-following dynamics of
human-driven vehicles that are non-trivial to identify accurately.
In this paper, instead of relying on a parametric car-following
model, we introduce a data-driven non-parametric strategy,
called DeeP-LCC (Data-EnablEd Predictive Leading Cruise
Control), to achieve safe and optimal control of CAVs in mixed
traffic. We first utilize Willems’ fundamental lemma to obtain
a data-centric representation of mixed traffic behavior. This is
justified by rigorous analysis on controllability and observability
properties of mixed traffic. We then employ a receding horizon
strategy to solve a finite-horizon optimal control problem at each
time step, in which input/output constraints are incorporated
for collision-free guarantees. Numerical experiments validate the
performance of DeeP-LCC compared to a standard predictive
controller that requires an accurate model. Multiple nonlinear
traffic simulations further confirm its great potential on improv-
ing traffic efficiency, driving safety, and fuel economy.

Index Terms—Connected vehicles, data-driven control, model
predictive control, mixed traffic.

I. INTRODUCTION

IRELESS communication technologies, e.g., vehicle-
Wto-vehicle (V2V) or vehicle-to-infrastructure (V2I),
have provided new opportunities for advanced vehicle control
and enhanced traffic mobility [1]. With access to beyond-the-
sight information and edge/cloud computing resources, indi-
vidual vehicles are capable to make sophisticated decisions and
even cooperate with each other to achieve system-wide traffic
optimization. One typical technology is Cooperative Adaptive
Cruise Control (CACC), which organizes a series of connected
and autonomous vehicles (CAVs) into a platoon and applies
cooperative control strategies to achieve smaller spacing, better
fuel economy, and smoother traffic flow [2]-[4].

In practice, CACC or platooning requires all the involved
vehicles to have autonomous capabilities. Considering the
gradual deployment of CAVs, the transition phase of mixed
traffic with the coexistence of human-driven vehicles (HDVs)
and CAVs may last for decades [5]-[7]. HDVs, connected
to V2V/V2I communication but still controlled by human
drivers, will still be the majority on public roads in the
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near future. Without explicitly considering surrounding HDVs’
behavior, CAVs at a low penetration rate may only bring
negligible benefits on traffic performance [8], [9]. One exten-
sion of CACC to mixed traffic is Connected Cruise Control
(CCC) [10], in which one single CAV at the tail makes its
control decisions by exploiting the information of multiple
HDVs ahead. Another recent extension is Leading Cruise
Control (LCC) that incorporates the motion of HDVs ahead
and behind [11].

Existing CAV control, e.g., CACC and CCC, mainly takes
local-level performance into consideration — the CAVs aim
to improve their own driving performance. Considering the
interactions among surrounding vehicles, a recent concept of
Lagrangian control in mixed traffic aims to focus on system-
level performance of the entire traffic flow by utilizing CAVs
as mobile actuators [5], [6], [12]. In particular, the real-world
experiment in [5] demonstrates the potential of one single CAV
in stabilizing a ring-road mixed traffic system. This has been
subsequently validated from rigorous theoretical analysis [6],
[13] and large-scale traffic simulations [12], [14]. These results
focus on a closed circular road setup [15]. The recent notion
of LCC [11] focuses on general open straight road scenarios
and has provided further insight into CAV control in mixed
traffic: one single CAV can not only adapt to the downstream
traffic flow consisting of its preceding HDVs (as a follower),
but also improve the upstream traffic performance by actively
leading the motion of its following HDVs (as a leader). This
explicit consideration of a CAV as both a leader and a follower
greatly enhances its capability in smoothing mixed traffic flow,
as demonstrated both empirically and theoretically in [11]. One
challenge is to design LCC strategies with safety guarantees
in smoothing traffic flow when the traffic model is not known.

A. Model-Based and Model-Free Control of CAVs

Mixed traffic is a complex human-in-the-loop cyber-
physical system, in which HDVs are controlled by human
drivers with uncertain and stochastic behaviors. Most ex-
isting studies exploit microscopic car-following models and
design model-based control strategies for CAVs, such as linear
quadratic control [6], [16], structured optimal control [13],
H oo control [17] and model predictive control [18]. In practice,
however, human car-following behaviors are complex and
nonlinear, which are non-trivial to identify accurately. Model-
free and data-driven methods, bypassing model identifications,
have recently received increasing attention [19], [20]. For ex-
ample, reinforcement learning [12], [14] and adaptive dynamic
programming [21], [22] have been recently utilized for mixed



traffic control. Instead of relying on explicit dynamics of
HDVs, these methods utilize online and/or offline driving data
of HDVs to learn CAVs’ control strategies. However, these
methods typically bring a heavy computation burden and are
sample inefficient. Safety is a critical aspect for CAV control
in practical deployment, but this has not been well addressed
in the existing studies [12], [14], [21], [22]. Indeed, it remains
challenging to include constraints to achieve safety guarantees
for these model-free and data-driven methods [19].

On the other hand, model predictive control (MPC) has
been widely recognized as a primary tool to address control
problems with constraints [18], [23]. Recent advancements in
data-driven MPC have further provided techniques towards
safe learning-based control using measurable data [24]-[26].
One promising method is the Data EnablEd Predictive Control
(DeePC) [26] that is able to achieve safe and optimal control
for unknown systems using input/output measurements. Rather
than identifying a parametric system model, DeePC relies
on Willems’ fundamental lemma [27] to directly learn the
system behavior and predict future trajectories. In particular,
DeePC allows one to incorporate input/output constraints to
ensure safety. It has been shown theoretically that DeePC
is equivalent to sequential system identification and MPC
for deterministic linear time-invariant (LTI) systems [26],
[28], and empirically that DeePC could achieve comparable
control performance with respect to MPC with accurate model
knowledge for stochastic and nonlinear systems [29], [30].
Recently, practical applications have been seen in quadcopter
systems [31], power grids [32], and electric motor drives [33].

To our best knowledge, data-driven MPC methods, partic-
ularly the recent DeePC method, have not been discussed for
mixed traffic control. Due to distinct and complex dynami-
cal properties of mixed traffic systems, the aforementioned
results [26], [32], [33] are not directly applicable.

B. Contributions

In this paper, we focus on the recent LCC framework [11]
and design safe and optimal control strategies for CAVs to
smooth mixed traffic flow. Our method requires no prior
knowledge of HDVs’ car-following dynamics. In particular, we
introduce a Data-EnablEd Predictive Leading Cruise Control
(DeeP-LCC) strategy, in which the CAVs utilize measurable
driving data for controller design with collision-free guaran-
tees. Some preliminary results were presented in [34]. Our
contributions of this work are as follows.

We first establish a linearized state-space model for a
general mixed traffic system with multiple CAVs and HDVs
under the LCC framework. We directly use measurable driving
data as system output since the HDVs’ equilibrium spacing is
typically not measurable. This issue of unknown equilibrium
spacing has been neglected in many recent studies on mixed
traffic [13], [16], [21], [22], [24], [35]. We further show
that the linearized mixed traffic system is not controllable
(except the case when the first vehicle is a CAV), but is
stabilizable and observable. These results are the foundations
of our adaptation of DeePC [26] for mixed traffic control.

We then propose a DeeP-LCC method for CAV control,
which directly utilizes HDVs’ trajectory data and bypasses an

explicit identification of a parametric car-following model. The
standard DeePC requires the underlying system to be control-
lable [26], [27], and thus cannot be directly applied to mixed
traffic. To resolve this, we introduce an external input signal
to record the data of the head vehicle, i.e., the first vehicle
at the beginning of the mixed traffic system. Together with
CAVs’ control input, this contributes to system controllability.
Our DeeP-LCC formulation incorporates spacing constraints
on the driving behavior and thus provides safety guarantees for
CAVs when feasible. Furthermore, our DeeP-LCC is directly
applicable to nonlinear and non-deterministic traffic systems.

We finally carry out multiple traffic simulations to validate
the performance of DeeP-LCC. DeeP-LCC achieves com-
parable performance in nonlinear and non-deterministic cases
with respect to a standard MPC based on an accurate linearized
model. We also design an urban/highway driving scenario
motivated by the New European Driving Cycle (NEDC) and
an emergence braking scenario. Numerical results confirm the
benefits of DeeP-LCC in improving driving safety, fuel econ-
omy and traffic smoothness. Particularly, DeeP-LCC reduces
up to 24.69% fuel consumption with safety guarantees in the
braking scenario at a CAV penetration rate of 25% compared
with the case of all HDVs.

C. Paper Organization and Notation

The rest of this paper is organized as follows. Section II
introduces the modeling for the mixed traffic system, and
Section III presents controllability and observability analysis.
This is followed by a brief review of the standard DeePC
in Section IV. We present DeeP-LCC in Section V. Traffic
simulations are discussed in Section VI. Section VII concludes
this paper. Some auxiliary proofs and implementation details
are included in the appendix.

Notations: We denote N as the set of natural numbers, 0,,
as a zero vector of size n, and O,,x, as a zero matrix of
size m x n. For a vector a and a positive definite matrix X,
lal|% denotes the quadratic form a' Xa. Given a collection
of vectors aj,as,...,an,, we denote col(ay,as,...,an) =
[a]—,a; e @ZL]T. Given matrices of the same column
size Aq,As,..., A, we denote col(Aj,As,..., An) =
[AI,A;,...,A;]T. Denote diag(x1,...,2,) as a diag-
onal matrix with x1,...,x,, on its diagonal entries, and
diag(D1,...,D,,) as a block-diagonal matrix with matrices
Dy,...,D,, on its diagonal blocks. We use e; to denote a
n x 1 unit vector, with the i-th entry being one and the others
being zeros. Finally, A ® B represents the Kronecker product
between matrices A and B.

II. THEORETICAL MODELING FRAMEWORK

In this section, we first introduce the nonlinear modeling of
HDVs’ car-following behavior, and then present the linearized
dynamics of a general mixed traffic system under the LCC
framework [11].

As shown in Fig. 1, we consider a general mixed traffic
system with n+1 individual vehicles, among which there exist
one head vehicle, indexed as 0, and m CAVs and n—m HDVs
in the following n vehicles, indexed from 1 to n. Note that
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Fig. 1. Schematic of DeeP-LCC for CAVs in mixed traffic. The head vehicle is located at the beginning, indexed as 0, behind which there exist n vehicles
indexed from 1 to n. The n vehicles consist of n —m HDVs, whose car-following dynamics are unknown, and m CAVs, indexed from 41 to %y,. In (offline)
data-collection, DeeP~LCC records measurable data of the mixed traffic system, including velocity errors of each vehicle (represented by the black dashed
arrow) and spacing errors of the CAVs (represented by the blue dashed arrow). Then, DeeP-LCC utilizes these data to construct Hankel matrices for future
trajectory predictions. In (on-line) predictive control, DeeP-LCC employs the collected data to design the optimal future trajectory and sends the control
signal to the CAVs (represented by the red squiggle arrow). Details on DeeP-LCC are presented in Section V.

essentially any HDV ahead of the first CAV can be designated
as the head vehicle. Define 2 = {1,2,...,n} as the index set
of all the following vehicles, ordered from front to end, and
S = {i1,i2,...,im} C Q as the set of the CAV indices,
where i1 < 22 < ... < i,, also represent the spatial locations
of the CAVs in the mixed traffic. The position, velocity and
acceleration of the i-th vehicle at time ¢ is denoted as p;(t),
v;(t) and a;(t), respectively.

A. Nonlinear Car-Following Dynamics of HDVs

There are many well-established models to describe car-
following dynamics of HDVs, such as the optimal veloc-
ity model (OVM) [36], and the intelligent driver model
(IDM) [37]. These models can capture various human driving
behaviors and reproduce typical traffic phenomena, e.g., stop-
and-go traffic waves [38].

In these models, the acceleration of an HDV depends on its
car-following spacing s;(t) = p;—1(t) —pi(t), i.e., the bumper-
to-bumper distance between vehicle ¢ and its preceding vehicle
1 — 1, its relative velocity $;(t) = v;—1(t) — v;(t), and its own
velocity v;(t). A typical form is [39]

0i(t) = F (si(t), 3:(t), vi(t)) , (1)

where F(-) is a nonlinear function. Both OVM and IDM can
be written in this general form. Here, we use the OVM model
to exemplify the HDVs’ car-following behavior in (1), which
has been widely considered in [13], [16], [22], [35]. In OVM,
the dynamics (1) are

0i(t) = a (vaes (si(t)) — vi(t)) + B3i(t), 2)

where «, 8 > 0 denote the driver’s sensitivity coefficients,
and v4es(s) represents the spacing-dependent desired velocity
of the human driver, given by a continuous piece-wise function

1€ Q\S,

i€ Q\S,

07 S S Sst
fo(s),

Umaxa

Vdes () = S5t < 8 < Sgos 3)

8 2> Sgo-

In (3), the desired velocity v4es(s) becomes zero for a small
spacing Sst, and reaches a maximum value vy, for a large
spacing sg,. When sy < s < 540, the desired velocity is given
by a monotonically increasing function f,(s), one typical

choice of which is
Umax <1 _ Cos(ﬂs—ssto .
2 Sgo — Sst

In the following, we proceed to use the general form (1)
of the car-following model to present the parametric system
modeling and controllability/observability analysis.

B. Input/Output of Mixed Traffic System

We now present the state, output and input vectors of the
mixed traffic system shown in Fig. 1.

Equilibrium traffic state: In an equilibrium traffic state, each
vehicle moves with the same velocity v* and the corresponding
spacing s*. When each vehicle follows its predecessor, as
shown in Fig. 1, the equilibrium velocity of the traffic system
is determined by the steady-state velocity of the head vehicle,
indexed as 0. If the head vehicle maintains a constant velocity
vo, we have v* = vy for all other vehicles in Fig. 1.

On the other hand, the equilibrium spacing for each vehicle
might be heterogeneous' and can be non-trivial to obtain. If
the HDVs’ car-following dynamics (1) are explicitly known,
we can obtain the equilibrium spacing via solving

F (s*,0,v™) =0, 5)
which provides equilibrium points (s*,v*). However, s* be-
comes unknown if (1) is not known accurately. The equilib-
rium spacing for each CAV is a pre-designed variable [6].

IWe keep s* instead of a heterogeneous symbol s¥, i1 €{1,2,...,n} for
notational simplicity. Our methodology and results are directly applicable in
the heterogeneous case.



System state: Assuming that the mixed traffic flow is moving
around an equilibrium state (s*,v*), we define the error state
between actual and equilibrium point as (i € €2)

5i(t) = si(t) — 5", 0;(t) = vi(t) — 0", (6)

where §;(t), 0;(t) represent the spacing error and velocity error
of vehicle ¢ at time ¢, respectively. The error states of all the
vehicles are then lumped as the mixed traffic system state
z(t) € R*™, given by

() = [51(0), 51 (t), 32(t), Ba2(t), .., 3 (1), 50 ()] . (D)

System output: Not all the variables in mixed traffic state
z(t) can be measured. As discussed above, the equilibrium
spacing s* for the HDVs is non-trivial to get accurately due
to unknown car-following dynamics (1). It is thus impractical
to observe the spacing errors of the HDVs, i.e., 3;(t) (i ¢ S).
For the CAVs, their equilibrium spacing can be designed [6],
and thus their spacing error signal can be measured.
We thus introduce the following output signal

y@ZWﬁwﬂmuw%@$MW%ﬁﬁ~ﬁm®f®
where y(t) € R"™™ consists of all measurable data, including
the velocity errors of both the HDVs and the CAVs, i.e., ¥;(t)
(i € Q), and the spacing errors of all the CAVs, ie., 5;(t)
(i € S). The measurable output data are also marked in Fig. 1,
with velocity errors and spacing errors represented by black
dashed arrows and blue dashed arrows, respectively.

System input: In mixed traffic flow, the HDVs are controlled
by human drivers, while the CAVs’ behavior can be designed.
As used in [6], [13], [16], [22], [35], the acceleration of each
CAV is assumed to be directly controlled

bi(t) = ui(t), i€S, €))

where wu;(t) is the control input of the CAV indexed as i.
The acceleration signals of all the CAVs are lumped as the
aggregate control input u(t) € R™, given by

() = [wiy (8), iy (£), - s, ()]

In addition to the control input, we introduce an external
input signal €(¢) € R of the mixed traffic system, which is
defined as the velocity error of the head vehicle, given by

€(t) = Do(t) = vo(t) —v™. (11)

This external input signal plays a critical role in our subsequent
system analysis and DeeP—-LCC design. Since the head vehicle
is also under human control, this input cannot be designed
directly, but its past value can be measured and future value
can be estimated.

(10)

C. Linearized State-Space Model of Mixed Traffic System

After specifying the system state, input and output, we
now present a linearized mixed traffic model. Using (5) and
applying the first-order Taylor expansion to (1), we obtain the
following linearized model for each HDV

{%w—w}m—w@, ) ea\s, 12)

’Ui(t) = oqsi(t) — OégUi(t) + 0531}1‘,1(15),

where a1 = %—f,ag = %—? — %—f,ag = %—I; with the partial

derivatives evaluated at the equilibrium state (s*, v*). To reflect
asymptotically stable driving behaviors of human drivers, we
have oy > 0, ag > a3 > 0 [16]. Taking the OVM model (2)
for example, the equilibrium equation (5) is given by

13)

vdes(S*) = U*,
and the coefficients in the linearized dynamics (12) become
a1 = alges(5”), aa = a+ 3, a3 = 3,
where U4es(s*) denotes the derivative of vges(s) at the equi-

librium spacing s*.
For the CAV, we consider a second-order model

{ 5i(t) = B () — 0i(1),

i€ S. (14)

Based on the state, output and input vectors in (6)-(11), the
linearized HDVs’ car-following model (12) and the CAV’s
dynamics (14), we derive a linearized state-space model of
the mixed traffic in Fig. 1 as

#(t) = Az(t) + Bu(t) + He(t),
y(t) = Cx(t).

In (15), the matrices A € R2"X2n B ¢ R2nXm [ ¢
R2nx1 O ¢ R(n+m)x2n gra given by

(15)

Aia
Ao As;
A: ‘ .. 5
An71,2 Anfl,l
An,2 Aml
[a2in a2is Qi _ [T 3T T17
B=lest,e52,....e5m], H=[h{,hg,...,h)] ,
_ (a2 ad on a2i1—1 f2ia—1 2 —17T
C=le3, e, . ....ednesites=t . egm]

where?

Ailz Plal¢s7 Ai2: P231¢Sv
’ S1, 1 € S; ’ So, 1 €S,

h1: |:1:|,hj: [8],]’6{2,3,...,71},
with

a3
0 -1 0 1 0 -1 0 1
e R R ]
Remark 1 (State-feedback versus output-feedback): Most
existing work on CAV control relies on state feedback which
assumes a known equilibrium spacing s* and requires the sys-
tem state z(t) in (7) (see, e.g., the model-based strategies [6],
[16], [35] and the data-driven strategies [21], [22], [24]). The
output-feedback case has been less investigated (two notable
exceptions are [13], [40]). In practice, the equilibrium spacing
s* is unknown and might be time-varying. Hence, we intro-
duce a measurable output in (8) that does not use the HDVs’
spacing errors. Also, the CAVs’ spacing errors play a critical

2The system matrices A, B, C are indeed set functions with respect to the
value of S [7]. For simplicity, the symbol S is neglected.



role in car-following safety, and they should be constrained for
collision-free guarantees. The output-feedback and constraint
requirements motivate us to use an MPC framework later. O

Remark 2 (Unknown car-following behavior): One chal-
lenge for mixed traffic control lies in the unknown car-
following behavior (1). After linearization, the state-space
model (15) of the mixed traffic system remains unknown. We
focus on a data-driven predictive control method that directly
relies on the driving data of HDVs. Before presenting the
methodology, we need to investigate two fundamental control-
theoretic properties of the mixed traffic system, controllability
and observability, which are essential to establish data-driven
predictive control [26]. Our previous work on LCC has inves-
tigated the special case with only one CAV [11]. In the next
section, we generalize these results to the case with possibly
multiple CAVs and HDVs coexisting (see Fig. 1). O

III. CONTROLLABILITY AND OBSERVABILITY
OF MIXED TRAFFIC SYSTEMS

Controllability and observability are two fundamental prop-
erties in dynamical systems [41]. For mixed traffic systems,
existing research [11], [16] has revealed the controllability
for the scenario of one single CAV and multiple HDVs, i.e.,
|S| = 1. These results have been unified in the recent LCC
framework with one single CAV [11].

Lemma 1 ([11, Corollary 1]): When S = {1}, the linearized
mixed traffic system (15) is controllable if we have

o) — agas + a§ #0. (16)

Lemma 2 ([11, Theorem 2]): When S = {i1} with 1 < i3 <
n, the linearized mixed traffic system (15) is not controllable
but is stabilizable, if (16) holds. Moreover, if (16) holds, the
subsystem consisting of the states 51,01,...,8;,-1,0;,—1 1S
not controllable but is stable, while the subsystem consisting
of the states 5;,, s, ..., Sp, Un is controllable.

One physical interpretation of Lemmas 1 and 2 is that the
control input of the single CAV has no influence on the state
of its preceding HDVs, but has full control of the motion of
its following HDVs, when (16) holds.

We now present the controllability properties of the general
mixed traffic system with multiple CAVs and HDVs in Fig. 1.

Theorem 1 (Controllability): Consider the mixed traffic
system (15), where there exist m (m > 1) CAVs with indices
S = {il,ig,...7im}, i1 < ig < ...<1,. We have:

1) When 1 € S, i.e., i1 = 1, the mixed traffic system is

controllable if (16) holds.

2) When 1 ¢ S, ie., iy > 1, the mixed traffic system
is not controllable but is stabilizable, if (16) holds.
Particularly, when (16) holds, the subsystem consisting
of the states S1,71,...,8;;,-1,0;;—1 is not controllable
but is stable, while the subsystem consisting of the states
SiysViqs - -, 8n, Up 1s controllable.

Proof: The proof combines the controllability invariance
after state feedback with Lemmas 1 and 2. The details are not
mathematically involved, and we provide them in Appendix A
for completeness. ]

This result indicates that the general mixed traffic system
consisting of multiple CAVs and HDVs is not controllable
(but stabilizable) unless the vehicle immediately behind the
head vehicle is a CAV. This is expected, since the motion of
the HDVs between the head vehicle and the first CAV (i.e.,
vehicles indexed from 1 to ¢; — 1) can not be influenced by
the CAVs’ control inputs.

We consider an output-feedback controller design. It is
essential to evaluate the observability of the mixed traffic sys-
tem (15). The notion of observability quantifies the ability of
reconstructing the system state from its output measurements.
By adapting [11, Theorem 4], we have the following result.

Theorem 2 (Observability): The general mixed traffic system
given by (15), where there exist m (m > 1) CAVs, is
observable when (16) holds.

The slight asymmetry between Theorems 1 and 2 is due
to the fact that the control input (10) only includes the
CAVs’ acceleration, while the system output (8) consists of
the velocity error of all the vehicles and the spacing error of
the CAVs. Theorem 2 reveals the observability of the full state
2(t) in mixed traffic under a mild condition. This observability
result facilitates the design of our DeeP-LCC strategy, which
will be detailed in the next two sections.

IV. DATA-ENABLED PREDICTIVE CONTROL

In this section, we give an overview of the data-driven
methodology on non-parametric representation of system be-
havior and Data-Enabled Predicted Control (DeePC); more
details can be referred to [26], [30].

A. Non-Parametric Representation of System Behavior

DeePC works on discrete-time systems [26]. Let us consider
a discrete-time LTI system

{ z(k +1) = Agz(k) + Bau(k), (17)

y(k) = Cqz(k) + Dau(k),

where Aq € R"*", By € R"™*"™, Cyq € RP*™, Dyq € RP*™,
and z(k) € R", u(k) € R™, y(k) € RP denotes the internal
state, control input, and output at time k (k € N), respectively.
By slight abuse of notation, we use the symbols n,m,p to
denote system dimensions only in this section.

Classical control strategies typically follow sequential sys-
tem identification and model-based controller design. They
rely on the explicit system model Aq, Bgq,Cq,Dq in (17).
One typical strategy is the celebrated MPC framework [23].
The performance of MPC is closely related to the accuracy
of the system model. Although many system identification
methods are available [42], it is still non-trivial to obtain an
accurate model for complex systems, e.g., the mixed traffic
system with complex nonlinear human driving behavior. The
recent DeePC [26] is a non-parametric method that bypasses
system identification and directly designs the control input
compatible with historical data. In particular, DeePC directly
uses historical data to predict the system behavior based on
Willems’ fundamental lemma [27].



Definition 1: The signal w = col (w(1),w(2),...,w(T)) of
length T (T € N) is persistently exciting of order 1 (1<
T, 1 € N) if the following Hankel matrix

w(l) w@) o wT=141)
w2 w@B o wT=-142)

Hiw) = | | L : . (18)
wl) wli+1) w(T)

is of full row rank.

The Williem’s fundamental lemma begins by collect-
ing a length-T" (I' € N) sequence of trajectory data
from system (17), consisting of the input sequence ud =
col(ud(1),..., ud(T)) € R™T and the corresponding output
sequence y¢ = col(y4(1),...,y%(T)) € RPT. Then, it aims
to utilize this pre-collected length-T' trajectory to directly
construct valid length-L (L € N) trajectories of the system,
consisting of input sequence u® € R™% and output sequence
y® € RPL,

Lemma 3 (Fundamental Lemma [27]): Consider a control-
lable LTI system (17) and assume the input sequence u< to
be persistently exciting of order L + n. Then, (u®,3®) is a
length- L input/output trajectory of system (17) if and only if
there exists g € RT~L+1 such that

] o= 17
Hyh)] 7T L]
This fundamental lemma reveals that given a controllable
LTI system, the subspace consisting of all valid length-L
trajectories is identical to the range space of the Hankel matrix
of depth L generated by a sufficiently rich input signal. Rather

than identifying a parametric model, this lemma allows for
non-parametric representation of system behaviors.

19)

B. Data-EnablEd Predictive Control

Define Tiy; € N, N € N as the time length of “past
data” and “future data”, respectively. The data Hankel matrices
constructed from the pre-collected data (u?,y?) are partitioned
into the two parts (corresponding to past data and future data):

U, Y,
|:UIf’:| = HTini+N (ud)v |:Y£f):| = HTini+N (yd)a (20)

where U, and U; consist of the first 7i,; block rows and the
last N block rows of Hr, 1 v (ud), respectively (similarly for
Y, and Y;). The same column in col(Up, Ur) and col(Yy, Yr)
represents the “past” input/output signal of length Ti,; and
the “future” input/output signal of length /N within a length-
(Tini + N) trajectory of (17).

At time step ¢, we define uin; = col(u(t — Tini), u(t — Tini +
1),...,u(t —1)),u = col(u(t),u(t + 1),...,u(t + N — 1))
as the past control input sequence with time length 7jy;,
and the future control input sequence with time horizon IV,
respectively (similarly for y;;, ¥). Then, we have the following
proposition, which is a reformulation of Lemma 3.

Proposition 1 ([43]): Consider a controllable LTI sys-
tem (17) and assume the input sequence u< to be persistently
exciting of order Tin; + N + n. Then, col(uini, U, Yini, y) is @

Algorithm 1 DeePC [26]

Input: Offline data (u¢,y?), initial time to, final time ¢y;
1: Construct data Hankel matrices Up, Uz, Y}, Y3
2: Initialize past data (uin;, yin;) before tlme to;
3: while tp <t <ty do
4: Solve (22) to get an optimal input sequence u* =
col(u*(t),u*(t+1),...,u*(t+ N —1);
Apply the input u(t) + u*(t);
t < t+1 and update past input/output data (win;i, Yini);
7: end while

AN

length-(Tin; + N) input/output trajectory of system (17) if and
only if there exists g € RT~Tmi=N+1 gych that

Up Uini
Yp | Yini
Ye Y

In particular, if Ti,; > v, where v denotes the lag3 of
system (17), y is unique from (21), Yuini, Yini, U

A schematic of Proposition 1 is shown in Fig. 2. The formu-
lation (21) indicates that given a past input/output trajectory
(wini, ¥ini ), one can predict the future output sequence y under
a future input sequence u directly from pre-collected data
(ud,yd). It is known that when Ti,; > v, one can estimate
the initial state based on model (17) and the past input/output
trajectory (ini, Yini). Thus, (21) implicitly estimates the initial
state to predict the future trajectory col(u,y) without an
explicit parametric model [26].

At each time step ¢, DeePC relies on the data-centric
representation (21) to predict future system behavior and
solves the following optimization problem [26]

min

J(y,w)
g7u7y
subject to ), ueld,ye),

(22)

where J(y,u) denotes the control objective function, and u €
U,y € Y represents the input/output constraints, e.g., safety
guarantees and control saturation. Problem (22) is solved in a
receding horizon manner (see Algorithm 1). For comparison,
we also present a standard output-feedback MPC

min  J(y,u)
subject to  z(t) = &(t), 23)
(A7), Yk € {t,t +1,...,t+ N —1},
uel,yel,

where Z(t) denotes the estimated initial state at time t.
Despite its well-recognized effectiveness, one crucial chal-
lenge for the standard MPC (23) is the requirement of an ex-
plicit parametric model (17), which is necessary in estimating
the initial state #(¢) and predicting future system behaviors.
By contrast, DeePC (22) focuses on the data-centric non-
parametric representation and bypasses the state estimation
procedure [26]. Recent work has revealed the equivalence

3The lag v of a system (A, B, C, D) is the smallest integer such that the
observability matrix col (C, CA,...,CA"Y _1) has full column rank.
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Fig. 2. Interpretation of the fundamental lemma in (21). Here, we use w to denote input/output trajectory pair (u,y). (a) A consecutive length-T trajectory is
collected wd = col(w?(1),. .., wd(T)). (b) All consecutive length-(T}y; + N) trajectories are extracted to construct the data Hankel matrix Hry ;4 v (w?).
Particularly, each trajectory is partitioned into two parts, past data of length 7i,; colored in blue and future data of length T' colored in red. (c) The range
space of this data Hankel matrix contains all valid length-(Tin; + N) trajectories of the underlying system.

between DeePC and sequential system identification and MPC
for discrete-time LTI systems under mild conditions, and
comparable performance of DeePC with respect to MPC based
on accurate model knowledge in applications to nonlinear and
non-deterministic systems [30].

V. DEEP-LCC FOR MIXED TRAFFIC FLOW

The Willems’ fundamental lemma requires the controlla-
bility of the discrete-time LTI system (17) and the persistent
excitation of pre-collected input data u? [27]. As shown in
Theorem 1, the mixed traffic system is not always controllable,
and thus the original DeePC cannot be directly applied for
mixed traffic control.

In this section, we introduce an external input signal for
mixed traffic. Together with original control input, this leads to
controllability. We first reformulate mixed traffic model (15),
and then present DeeP-LCC for mixed traffic control.

A. Model Reformulation with External Input

Theorem 1 has revealed that the mixed traffic system (15)
is not controllable when 1 ¢ S, i.e., the first vehicle behind
the head vehicle is not a CAV. Still, controllability is a
desired property, which is required in Willems’ fundamental
lemma (Lemma 3) to guarantee the data-centric behavior
representation. To resolve this, we introduce a variant of the
original system (15) that is fully controllable.

The velocity error of the head vehicle €(t) = vg(t)—v™* is an
external input in (15). This signal is not directly controlled, but
can be measured in practice. Define u(t) = col (e(t), u(t)) as
a combined input signal and B = [H , B] as the corresponding
input matrix. The model for the mixed traffic system becomes

{ @(t) = Az(t) + Ba(t), o1

y(t) = Cx(t),
for which we have the following result.

Corollary 1 (Controllability and Observability of the Refor-
mulated Traffic Model): Suppose there exist m (m > 1) CAVs.
Then, system (24) is controllable and observable if (16) holds.

The proof is similar to that of the system when the first
vehicle behind the head vehicle is a CAV [11], i.e., 1 € S;
we refer the interested reader to [11, Corollary 1]. For observ-
ability, it is immediate to see that system (24) shares the same
output dynamics as system (15), whose observability result
has been proved in Theorem 2.

By Corollary 1, we can apply the fundamental lemma
using a combined input @(t) consisting of the internal control
input (i.e., the acceleration signals u(t) of the CAVs) and the
external input (i.e., the velocity error ¢(t) of the head vehicle).
For simplicity, we use the original system model (15) where
the two input signals u(t), €(t) are still separated. Finally, the
system model (15) is in continuous-time domain. We transform
it to the discrete-time domain

x(k+1) = Aqz(k) + Bau(k) + Hae(k),
y(k) = Cax(k),

AAt

(25)

where 4q = e e R By = [MeABdt e
Ranm,Hd — f()At eAtH dt c RZ"lecd =C ¢ R(n+m)><2n7
and At > 0 is the sampling time interval.

Assumption 1: Denote \;, i = 1,...,2n as the eigenvalues
of A in the continuous-time mixed traffic system model (15).
We have [Im [\, — \;]| # 2nk/At, k = 1,2,..., whenever
Re[/\i*)\j} :O, i,j: 1,...,271.

As revealed in [44, Theorem 6.9], Assumption 1 is a
sufficient condition to preserve controllability and observabil-
ity after discretization from (15) to the discrete-time system
model (25).

B. Non-Parametric Representation of Mixed Traffic Behavior

Data collection: We begin by collecting a length-T" trajectory
data from the mixed traffic system shown in Fig. 1. Precisely,
the collected data includes:

1) the combined input sequence a4 = col(ad(1),...,
ad(T)) € R™DT | consisting of CAVs’ acceleration
sequence ud = col(ud(1),..., v4(T)) € R™T and
the velocity error sequence of the head vehicle ¢! =
col(ed(1),...,e4(T)) € RT;

2) the corresponding output sequence of the mixed traffic
system y9 = col(yd(1),...,y4(T)) € RP+™IT,

The pre-collected data are then partitioned into two parts,
corresponding to “past data” of length 7;,; and “future data”
of length N. Precisely, define

[gp:| = Hru+N (ud)7 [gpil = Hﬂr\i+N(€d)?
f f
(26)

Y.
|:Y€:| = Hﬂrxi+N(yd)7
where U, and Uy consist of the first T;,; block rows and the

last NV block rows of Hr, v (ud), respectively (similarly for
E,, E; and Y, Y7).



These pre-collected data samples could be generated offline,
or collected from the historical trajectories of those involved
vehicles. According to Lemma 3, the following assumption is
needed for the pre-collected data (recall that the order of the
mixed traffic system is 2n).

Assumption 2: The combined input sequence @< is persis-
tently exciting of order Tin; + N + 2n. O

Note that the external input, i.e., the velocity error of the
head vehicle €(t), is controlled by a human driver. Although
it cannot be arbitrarily designed, it is always oscillating
around zero since the driver always attempts to maintain the
equilibrium velocity while suffering from small perturbations.
Thus, given a trajectory with length

T>(m+1)(Timi+ N +2n) —1, 27

which allows for a 44 Hankel matrix of order Tp; + N +
2n to have a larger column number than the row number,
and persistently exciting acceleration input u(t) of the CAVs
(e.g., i.1.d. noise with zero mean), the persistent excitation in
Assumption 2 is naturally satisfied.

Behavior Representation: Similar to Proposition 1, we have
the following result: at time step ¢, define

= col (u(t — Tini),u(t — Tins + 1), ..., u(t — 1))
w=col (u(t),u(t+1),...,u(t+ N —1)),

Uini

" (28)

as the control sequence within a past time length 7;,;, and
the control sequence within a predictive time length N,
respectively (similarly for €;,;, € and yini, y).

Proposition 2: Suppose (16) and Assumptions 1 and 2
hold. Any length-(Ti; + N) trajectory of the mixed traffic
system (25), denoted as col(Uini, €ini, Yini, Us €, Y), can be con-
structed via

Up Uini
Ep €ini
Y, _ | Yini
o= (29)
Ef €
Y Yy

where g € RT=Twmi=N+1L If T} .. > 2n, y is unique from (29),
Vuini, €ini, Yini, U, €.

Proof: Condition (16) and Assumption 1 guarantee the
controllability and observability of the mixed traffic sys-
tem (25), and Assumption 2 offers the persistent excitation
property of pre-collected data. Then, this result can be de-
rived from Proposition 1. Since the mixed traffic system is
observable under condition (16), its lag is not larger than its
state dimension 2n, and thus we have the uniqueness of y by
Proposition 1. ]

Proposition 2 reveals that by collecting traffic data, one
can directly predict the future trajectory of the mixed traffic
system. We thus require no explicit model of HDVs’ car-
following behavior. Note that HDVs are controlled by human
drivers and have complex and uncertain dynamics. This result
allows us to bypass a parametric system model and directly
use non-parametric data-centric representation for the behavior
of the mixed traffic system.

C. Design of Cost Function and Constraints in DeeP—-LCC

Motivated by DeePC (22), we show how to utilize the non-
parametric behavior representation (29) to design the control
input of the CAVs. We design the future behavior (u, €, y) for
the mixed traffic system in a receding horizon manner. This
is based on pre-collected data (u?, ¢?,y9) and the most recent
past data (Uini, €ini, Yini) that are updated online.

Compared to the standard DeePC (21), one unique feature
of (29) is the introduction of the external input sequence, i.e.,
the velocity error € of the head vehicle. The past external
input sequence €;,; can be collected in the control process,
but the future external input sequence e cannot be designed
and is also unknown in practice. Although its future behavior
might be predicted based on traffic conditions ahead, it is
non-trivial to achieve an accurate prediction. Since the driver
always attempts to maintain the equilibrium velocity, one nat-
ural approach is to assume that the future velocity error of the
head vehicle is zero, i.e.,

€= ON. (30)

Similar to LCC [11], we consider the performance of the
entire mixed traffic system in Fig. 1 for controller design. Pre-
cisely, we use a quadratic cost function J(y, u) to quantify the
mixed traffic performance by penalizing the output deviation
(recall that y in (8) represents the measurable deviation from
equilibrium) and the energy of control input u, defined as

t+N-—1

Ty = 3 (l®)IL + ek}

k=t

(€19

where the weight matrices () and R are set as @ =
diag(Q,, Qs) with Q, = diag(w,,...,w,) € R**™, Q, =
diag(ws,...,ws) € R™™ and R = diag(ws,...,wy) €
R™>*™ with w,, ws, w, representing the penalty for the veloc-
ity errors of all the vehicles, spacing errors of all the CAVs,
and control inputs of the CAVs, respectively.

Now, we introduce several constraints for CAV control in
mixed traffic. First, the safety constraint for collision-free
guarantees need to be considered. To address this, we impose
a lower bound on the spacing error of each CAV, given by

gi > §mina 1€ S, (32)
with S;, denoting the minimum spacing error for each CAV.
With appropriate choice of sy, the rear-end collision of the
CAVs is avoided whenever feasible.

Second, to attenuate traffic perturbations, existing CAVs
controllers tend to leave an extremely large spacing from the
preceding vehicle (see, e.g., [5] and the discussions in [13,
Section V-DJ), which in practice might cause vehicles from
adjacent lanes to cut in. To tackle this problem, we introduce
a maximum spacing constraint for each CAV, shown as

§'L S §maxa S Sa (33)

where 5, represents the maximum spacing error. Recall that
the spacing error of the CAVs is contained in the system
output (8), whose future sequence y serves as a decision
variable in behavior representation (29). Thus, we translate the



constraints (32) and (33) on the spacing errors to the following
constraint on future output sequence

§min S IN & [Omxn Im] ) S gmax- (34)

Finally, the control input of each CAV is constrained con-
sidering the vehicular actuation limit, given as follows

(35)

Gmin S u S Gmax

where apin and ap.x denote the minimum and the maximum
acceleration, respectively.

D. Formulation of DeeP-LCC
We are now ready to present the following optimization
problem to obtain the optimal control input of the CAVs

min  J(y,u)
9,u,y

subject to  (29), (30), (34), (35).

(36)

Note that unlike u and y, the future velocity error sequence ¢
of the head vehicle, i.e., the external input of the mixed traffic
system, is not a decision variable in (36); instead, it is fixed
as a constant value, as shown in (30).

Further, it is worth noting that the non-parametric behavior
representation shown in Proposition 2 is valid for determin-
istic LTT mixed traffic systems. In practice, the car-following
behavior of HDVs is nonlinear, as discussed in Section II-A,
and also has certain uncertainties, leading to a nonlinear and
non-deterministic mixed traffic system. Practical traffic data
collected from such a nonlinear system is also noise-corrupted,
and thus the equality constraint (29) becomes inconsistent,
i.e., the subspace spanned by the columns of the data Hankel
matrices fails to coincide with the subspace of all valid
trajectories of the underlying system.

Motivated by the regulated version of DeePC [26], we
introduce a slack variable o, € R("*™7Ti for the system
past output to ensure the feasibility of the equality constraint,
and then solve the following regularized optimization problem

T(y,u) + Ag lgll3 + Ay lloy 12

min
9,0y
Up Uini 0
Ep €ini 0
- Yol _ |Vini oy (37)
subject to U 9=1", + K
Ef € 0
Yr Yy 0

(30), (34), (35).

This formulation (37) is applicable to nonlinear and non-
deterministic mixed traffic systems. In (37), the slack variable
oy is penalized with a weighted two-norm penalty function,
and the weight coefficient A, > 0 can be chosen sufficiently
large such that o, # 0 only if the equality constraint is
infeasible. In addition, a two-norm penalty on g with a weight
coefficient A, > 0 is also incorporated. Intuitively, the regu-
larization term A, [|g||3 reduces the “complexity” of the data-
centric behavior representation and avoids overfitting, while
the term A, ||ay||§ improves the prediction accuracy whilst
guaranteeing the representation feasibility. The introduction of

Algorithm 2 DeeP-LCC for mixed traffic control

Input: Pre-collected traffic data (u9,ed,yd), initial time ¢,
terminal time #y;
1: Construct data Hankel matrices Uy, Uy, By, E, Yy, Yy
2: Initialize past traffic data (win;, €ini, Yini) before the initial
time tg;
3: while typ <t <ty do
: Solve (37) for optimal predicted input uw* =
col(u*(t),u*(t+1),...,u*(t+ N —1));
5: Apply the input u(t) « u*(t) to the CAVs;
: t + t+ 1 and update past traffic data (uini, €ini, Yini);
7: end while

the practical constraints (34), (35) provides safety guarantees
for the CAVs when they are feasible. The notion of recursive
feasibility plays a critical role for safety guarantees. We refer
the interested readers to a recent result [45, Proposition 1] on
recursive feasibility of the standard DeePC under an upper-
level bounded condition on the slack variable o, and a terminal
constraint of stabilizing the system at equilibrium within the
predictive horizon N. Due to the page limit, we leave the
recursive feasibility of DeeP-LCC for future work.

As shown in Fig. 1, our proposed DeeP-LCC mainly
consists of two parts:

1) offline data collection, which records measurable in-
put/output traffic data and constructs data Hankel ma-
trices;

2) online predictive control, which relies on data-centric
representation of system behavior for future trajectory
prediction.

In particular, at each time step during online predictive
control, we solve the final DeeP-LCC formulation (37) in
a receding horizon manner. For implementation, the optimiza-
tion problem (37) is solved in a receding horizon manner.
Algorithm 2 lists the procedure of DeeP-LCC. We note that
problem (37) amounts to solve a quadratic program, for which
very efficient and reliable solvers exist.

Remark 3 (Regularization): The regularization approach
in (37) is common in the recent work on employing Willems’
fundamental and DeePC for nonlinear and stochastic con-
trol [29], [31]-[33], [45], [46]. From a theoretic perspective,
it has been revealed in [29], [32] that the regulation on g
coincides with distributional robustness. Some closed-loop
properties, such as recursive feasibility and exponential stabil-
ity, have also been rigorously proved in [45], [46] for nonlinear
and stochastic systems by imposing terminal constraints and
typical auxiliary assumptions (e.g., linear independence con-
straint qualification). In addition, the effectiveness of the reg-
ularization has been demonstrated in multiple empirical stud-
ies on practical nonlinear systems with noisy measurements,
including quadcopter systems [31], power grids [32], and
electric motor drives [33]. Motivated by the aforementioned
research, we introduce this regularization into DeeP-LCC
for the nonlinear and non-deterministic traffic systems. Note
that unlike previous work [29], [32], [45], [46], our formula-
tion (37) has an external disturbance input signal €, and we
leave its theoretical investigation for future research. Indeed, it



is observed from our nonlinear simulations in Section VI and
our follow-up real-world miniature experiments in [47] that the
proposed regularized formulation (37) achieves effective wave-
dampening performance for CAVs in practical mixed traffic
systems. ]

Remark 4 (External input): Compared to standard DeePC,
we introduce the external input signal and utilize (30) to
predict its future value. To address the unknown future external
input, another approach is to assume a bounded future velocity
error of the head vehicle. This idea is similar to robust DeePC
against unknown external disturbances; see, e.g., [32], [48]. It
is interesting to further design robust DeePC for mixed traffic
when the head vehicle is oscillating around an equilibrium
velocity, but this is beyond the scope of this work. In the next
section, our traffic simulations reveal that by assuming (30)
and updating equilibrium based on historical velocity data of
the head vehicle, the proposed DeeP-LCC has already shown
excellent performance in improving traffic performance. O

Remark 5 (Computational complexity):

For mixed traffic control, both MPC and DeeP-LCC can
be formulated into a quadratic program for numerical com-
putation. In the DeeP-LCC formulation (37), one could use
g € RT-Tmi=N+1 a5 the main decision variable, with an
equality constraint given by Upg = uin; € RT=™ (here the
influence of the external input is neglected without loss of
generality). As revealed in (27), the pre-collected data length
T is lower bounded by (m + 1)(Tini + N + 2n) — 1, and
thus DeeP-LCC has at least 2mn + 2n + Nm free decision
variables. For MPC, its optimization size is captured by the
future control sequence u € RN™. Therefore, the online
optimization size of DeeP-LCC is slightly larger than that of
MPC with 2mn+2n additional decision variables, but it is ob-
served in Section VI that the computation time of DeeP-LCC
is acceptable for small-scale simulations (about 28.07 ms).
Meanwhile, the simplicity of DeeP-LCC is worth noting:
it directly utilizes a single trajectory for online predictive
control based on one integrated optimization formulation (37).
Particularly, it requires no prior knowledge of the system
model, and circumvents an offline model identification step
and an online initial state estimation step, which are necessary
steps in standard output-feedback MPC. Still, it is an important
future direction to improve the computational efficiency of
DeeP-LCC for large-scale mixed traffic flow. We refer the
interested readers to [49] for a recent potential approach by
distributed optimization. O

VI. TRAFFIC SIMULATIONS

This section presents three nonlinear and non-deterministic
traffic simulations to validate the performance of DeeP-LCC
in mixed traffic. The nonlinear OVM model (2) is utilized to
depict the dynamics of HDVs. A noise signal with the uniform
distribution of U[—0.1,0.1]m/s? is added to acceleration
dynamics model (2) of each HDV in our simulations.*

For the mixed traffic system in Fig. 1, we consider eight
vehicles behind the head vehicle, among which there exist two

4The algorithm and simulation scripts are available at https:/github.com/
soc-ucsd/DeeP-LCC.

CAVs and six HDVs, ie., n = 8, m = 2 (this corresponds to
a CAV penetration rate of 25%). The two CAVs are located at
the third and the sixth vehicles respectively, i.e., S = {3,6}.
The parameter setup for DeeP-LCC is as follows.

e Offline data collection: the length for the pre-collected
trajectory is chosen as 7' = 800 with a sampling interval
At = 0.05s. When collecting trajectories, we consider
an equilibrium traffic velocity of 15m/s, and the pre-
collected data sets from this equilibrium are used for
all the following experiments. For the system inputs, we
utilize the OVM model (2) as a pre-designed controller
for the CAVs with random noise perturbations, and as-
sume a random slight perturbation on the head vehicle’s
velocity. Given a sufficiently long trajectory, this design
naturally satisfies the persistent excitation requirement in
Assumption 2 and is also applicable to practical traffic
flow. More details and an illustration of a pre-collected
trajectory can be found in Appendix B.

o Online control procedure: the time horizons for the future
signal sequence and past signal sequence are set to N =
50, Tin; = 20, respectively. In the cost function (31), the
weight coefficients are set to w, = 1,ws = 0.5,w, =
0.1; for constraints, the boundaries for the spacing of
the CAVs are set to Syax = 40m, Spin = 5m, and the
limit for the acceleration of the CAVs are set t0 amax =
2m/s?, amin = —5m/s? (this limit also holds for all the
HDVs via saturation). In the regulated formulation (37),
the parameters are set to Ay = 10, A, = 10000.

A. Performance Validation around an Equilibrium State

Motivated by [16], [22], [35], our first experiment (Exper-
iment A) simulates a traffic wave scenario, where vehicles
accelerate and decelerate periodically, by imposing a sinu-
soidal perturbation on the head vehicle around the equilibrium
velocity of 15m/s (see the black profile in Fig. 3 for the
velocity trajectory of the head vehicle), and investigates the
performance of CAVs in dampening traffic waves. Particu-
larly, we aim to compare the performance of the proposed
DeeP-LCC with the standard output-feedback MPC (23)
based on an accurate mixed traffic system model (25). The
dynamical model for all the HDVs is set to follow the nominal
parameter values [6], [13], [16]: & = 0.6,5 = 0.9, Vpax =
30,55t = 5,850 = 35,v* = 15. The MPC controller is
designed using the accurate linearized model (25) around
the same equilibrium velocity of 15m/s as that in offline
data collection, while DeeP-LCC is designed according to
the procedures in Section V. The other parameters, e.g., the
coefficients in cost function and past/future time horizon,
remain the same between MPC and DeeP-LCC.

When all the vehicles are HDVs, it is observed in Fig. 3(a)
that the amplitude of such perturbation is amplified along the
propagation. This perturbation amplification greatly increases
fuel consumption and collision risk in mixed traffic. By
contrast, with two CAVs existing in traffic flow and employing
either MPC or DeeP-LCC, the amplitude of the perturbation
is clearly attenuated, as shown in Fig. 3(b) and Fig. 3(c),
respectively. This demonstrates the capabilities of CAVs in
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Fig. 3. Velocity profiles in Experiment A, where a sinusoidal perturbation
is imposed on the head vehicle. The black profile represents the head vehicle
(vehicle 0, and the gray profile represents the HDVs with different darkness
denoting different vehicle indices. The red profile (vehicle 3) and the blue
profile (vehicle 6) represent the first and the second CAV, respectively. (a)
All the vehicles are HDVs. (b) The CAVs utilize the MPC controller. (c) The
CAVs utilize the DeeP-LCC controller.

dissipating undesired disturbances and stabilizing traffic flow
using either MPC or DeeP-LCC.

We note that Fig. 3(c) demonstrates the performance of
DeeP-LCC using one single pre-collected trajectory. Different
pre-collected trajectories might influence the performance of
DeeP-LCC, as DeeP-LCC directly relies on these data to
design the CAVs’ control input. To see the influence, we
collect 100 trajectories of the same length 7' = 800 to
construct the data Hankel matrices (37) and carry out the
same experiment. Fig. 4 shows the cost value J given by (31)
at each simulation under DeeP-LCC or MPC. Recall that
MPC utilizes the accurate linearized dynamics for control
input design, and its performance can be regarded as the
optimal benchmark for the nonlinear traffic control around the
equilibrium state. In comparison, DeeP-LCC directly relies
on the raw trajectory data, and the regularization in (37)
might influence the optimality of the original cost J(y,u).
From our random experiments, we observe that DeeP-LCC
achieves a mean real cost that is quite close to the benchmark
(losing only 4.8% optimality) for the noise-corrupted nonlinear
traffic system without requiring any knowledge of the under-
lying system. These random experimental results validate the
comparable wave-dampening performance of DeeP-LCC with
respect to MPC based on accurate dynamics. This observation
is consistent with previous studies of DeePC on other non-
linear dynamical systems such as quadcopters [26] or power
grid [32].

B. Traffic Improvement in Comprehensive Simulation

In Experiment A, we consider a fixed traffic equilibrium
state and a nominal parameter setup for all HDVs. Here in
Experiment B, we design both an urban driving trajectory and

2
@)
=
Q
~ ——DeeP-LCC
2.8+ —_MPC 4
0 20 40 60 80 100

Pre-collected Trajectory No.

Fig. 4. Comparison of real cost between DeeP-LCC and MPC in 100
experiments in Experiment A. The dashed line represents the average real
cost of each controller, which is 2.91 x 10* for MPC and 3.05 x 10* for
DeeP-LCC with a standard deviation of 0.003 x 10% and 0.077 x 104,
respectively.

TABLE I
HETEROGENEOUS PARAMETER SETUP FOR HDVS
IN EXPERIMENTS B AND C

o B Sgo

HDV 1 0.45 0.60 38
HDV 2 0.75 0.95 31
HDV 3 0.70 0.95 33
HDV 4 0.50 0.75 37
HDV 5 0.40 0.80 39
HDV 6 0.80 1.00 34
Nominal Setup 0.60 0.90 35

I The HDVs are indexed from front to end. For example, HDV 1 and
HDV 2 are the two HDVs between the head vehicle and the first CAV.
2 The other parameters follow the nominal setup: sst = 5, Umax = 30.

a highway driving trajectory for the head vehicle motivated
by ECE-15 and Extra-Urban Driving Cycle (EUDC) from
the New European Driving Cycle (NEDC) [50], and validate
the capability of DeeP-LCC in improving traffic performance
with time-varying equilibrium states. In addition, we assume
a heterogeneous parameter setup around the nominal value for
all the HDVs by utilizing the OVM model (2); see Table 1.
The MPC controller still utilizes the nominal parameter setup
to design the control input, while DeeP—-LCC relies on pre-
collected trajectory data as usual. Note that practical traffic
flow might have different equilibrium states in different time
periods. In DeeP-LCC, we design a simple strategy to esti-
mate equilibrium velocity by calculating the mean velocity of
the head vehicle during the past horizon 7Tj,; (the same time
horizon for past signal sequence in DeeP-LCC). Meanwhile,
the equilibrium spacing for the CAVs is chosen according
to (13) using the OVM model with a nominal parameter setup;
see Appendix C for more details.

To quantify traffic performance, we consider the fuel con-
sumption and velocity errors for the vehicles indexed from 3
to 8, since the first two HDVs cannot be influenced by the
CAVs (recall that n = 8 and S = {3,6}). Precisely, we utilize
an instantaneous fuel consumption model in [51]: the fuel
consumption rate f; (mL/s) of the i-th vehicle is calculated
as

0.444 + 0.090R;v; + [0.054a2v;]4,50, if R; > 0,

fi= 0.444, if R; <0,

where R; = 0.333 + 0.001081@»2 + 1.200a; with a; denoting
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(c) DeeP-LCC in Urban Scenarios

Fig. 5.

(d) DeeP-LCC in Highway Scenarios

Velocity profiles in Experiment B, which is designed motivated by NEDC. (a)(b) denote the case where all the vehicles are HDVs in the urban and

highway scenarios repsectively, while (c)(d) denote the case where there are two CAVs utilizing DeeP-LCC. The color of each profile has the same meaning

as that in Fig. 3.

the acceleration of vehicle ¢. To quantify velocity errors, we
use an index of mean squared velocity error (MSVE) given
by

MSVE = — (1)),

ZZ%

tf*to t=to i=1

where to,t; denote the begin and end time of the simulation
respectively. This MSVE index depicts the tracking perfor-
mance towards the velocity of the head vehicle and measures
traffic smoothness.

The results of velocity trajectories of each vehicle are
shown in Fig. 5. Compared to the case with all HDVs,
DeeP-LCC allows the CAVs to rapidly track the trajectory
of the head vehicle without overshoot, and thus mitigates
velocity perturbations and smooths the mixed traffic flow in
both urban and highway scenarios. In addition, we observe that
the improved traffic behavior under DeeP—-LCC is close to that
under MPC. By dividing the urban and highway driving cycles
into different phases (see Fig. 5), we illustrate the reduction
rate of fuel consumption and MSVE by MPC and DeeP-LCC
with respect to the case with all HDVs in Fig. 6. Both MPC
and DeeP—-LCC contribute to a significant improvement in fuel
economy and traffic smoothness. In particular, DeeP-LCC
saves up to 9.05% fuel consumption during Phase 3 of urban
driving scenarios and up to 43.82% velocity error during Phase
1 of highway driving scenarios.

Note that MPC utilizes the nominal model to design the
control input, while DeeP-LCC relies on the trajectory data
to directly predict the future system behavior. Thus, MPC is
not easily applicable in practice, since the nominal model
for individual HDVs is generally unknown. By contrast,
without explicitly identifying a parametric model, DeeP-LCC
achieves a comparable performance with MPC using only pre-
collected trajectory data, which are easier to acquire for the
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Fig. 6. Performance improvement of MPC and DeeP-LCC compared with
the case where all the vehicles are HDVs in the comprehensive experiments.
In the horizontal axis of each panel, P# is abbreviated for Phase #, denoting
the phase number shown in Fig. 5.

CAVs via V2V/V2I communications. In addition, although the
optimization complexity of DeeP-LCC is slightly higher than
MPC (see Remark 5), its mean computation time during this
experiment is 28.07ms in a laptop computer equipped with
Intel Core i7-11800H CPU and 32 G RAM. This computa-
tional cost is acceptable for real-time implementation in the
underlying system scale (8 vehicles with 2 CAVs).

Remark 6: Previous work on validating CAVs’ wave-
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Fig. 7. Simulation results in Experiment C, where a sudden brake perturbation
is imposed on the head vehicle. (a)(c)(e) demonstrate the velocity, spacing,
and acceleration profiles, respectively when all the vehicles are HDVs, while
(b)(d)(f) demonstrate the corresponding profiles where there are two CAVs
utilizing the DeeP-LCC controller. In (c)-(f), the profiles of other HDVs are
hided. The color of each profile has the same meaning as that in Fig. 3.

dampening performance mostly considers a similar simula-
tion scenario to Experiments A and C (sinusoidal or brake
perturbation); see, e.g., [13], [16], [22], [35]. In our work, we
have introduced the driving cycle, which is indeed mostly used
for measuring fuel consumption and emission of one single
vehicle, to further demonstrate the performance of DeeP-LCC
in various traffic scenarios. Additionally, note that in our
data collection for DeeP-LCC, the traffic conditions around
the fixed equilibrium velocity of 15m/s are considered to
capture the system behavior; see Appendix B for illustration
of the pre-collected trajectory. In the simulations, however, the
equilibrium is time-varying, and we assume that the HDVs
have a similar behavior around different equilibrium states
in order to make the fundamental lemma directly applicable
with the data collected from one single equilibrium. This
assumption indeed may not hold, and thus the performance
of DeeP-LCC might be compromised in this simulation. We
provide further discussions and potential approaches to address
time-varying equilibrium in Appendix C. O

C. Experiments in Emergence Braking Scenarios

To further validate the safety performance of DeeP-LCC,
we design an emergence braking scenario motivated by Exper-

iment B. As shown by the black profile in Fig. 7, the velocity
of the head vehicle is: it maintains the normal velocity at the
beginning; then it takes a sudden emergency brake with the
maximum deceleration and maintains the low velocity for a
while; finally, it accelerates to the original normal velocity
and maintains it in the rest time. This is a typical emergency
case in real traffic, and it requires the CAVs’ control to
avoid rear-end collision. Note that the same pre-collected
data set around the equilibrium velocity of 15m/s as the
previous experiments is utilized in this simulation, and thus as
discussed in Section VI-B and Appendix C, the performance
of DeeP-LCC could still be compromised.

The results are shown in Fig. 7. When all the vehicles are
HDVs, they have a large velocity fluctuation in response to the
brake perturbation of the head vehicle. By contrast, when two
vehicles utilize DeeP-LCC, they have a different response
pattern from the HDVs: the CAVs decelerate immediately
when the head vehicle starts to brake, thus achieving a larger
safe distance from the preceding vehicle (see the time period
0 — 10s in Fig. 7(d)); the CAVs also accelerate slowly when
the head vehicle begins to return to the original velocity (see
the time period 9 — 12 s in Fig. 7(f)). In the case of all HDVs,
they take a delayed rapid acceleration (see the time period
12 — 20s in Fig. 7(e)), which lead to worse driving comfort
and larger fuel consumption.

In addition, for this braking scenario, DeeP—-LCC achieves
a comparable performance with respect to MPC which is
designed based on prior linearized mixed traffic dynamics.
Both strategies save a considerable rate of fuel consumption at
a CAV penetration rate of 25% compared with the case of all
HDVs (DeeP-LCC: 24.69%, MPC: 25.12%). This experiment
result further demonstrates the capability of DeeP—-LCC: it
allows the CAVs to eliminate velocity overshoot, improve fuel
economy, and constrain the spacing within the safe range,
whilst requiring no knowledge of HDVs’ driving behaviors,
contributing to more practical applications than MPC in real-
world mixed traffic flow.

VII. CONCLUSIONS

In this paper, we have presented a novel DeeP-LCC
for CAV control in mixed traffic with multiple HDVs and
CAVs coexisting. Our dynamical modeling and controllabil-
ity/observability analysis guarantee the rationality of the data-
centric non-parametric representation of mixed traffic behavior
in the linearized setup, and further supports the feasibility of
applying it to the nonlinear and stochastic mixed traffic system
in real scenarios. In particular, DeeP-LCC directly relies
on the trajectory data of the HDVs, bypassing a parametric
HDV model, to design the CAVs’ control input. Multiple
numerical experiments confirm that DeeP-LCC achieves great
improvement in traffic efficiency and fuel economy.

It is very interesting to adapt our current DeeP-LCC for
time-varying traffic equilibrium states, in which we need to
investigate how to update pre-collected data for constructing
Hankel matrices. Communication delays are another important
practical issue to consider in DeeP-LCC. Existing research
have revealed the great potential of standard DeePC in ad-
dressing problems with delays [32]. In addition, the recursive
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Fig. 8. [Illustration of the pre-collected trajectory utilized in Experiments B
and C. (a)(b) demonstrate the system inputs, including the control input, i.e.,
the acceleration of the CAVs, and the external input, i.e., the velocity error of
the head vehicle. (c)(d) demonstrate the measured system output, including
the velocity of all the vehicles and the spacing of the CAVs.

feasibility of DeeP-LCC needs further investigation, which
guarantees CAV control inputs within safety constraints. Fi-
nally, computational efficiency of DeeP-LCC is worth further
investigation for large-scale systems. Similar to distributed
MPC [18] in CAV control, distributed versions of DeeP-1CC
will also be extremely interesting.

APPENDICES

This appendix provides the proof of Theorem 1, detailed
elaboration of offline data collection, and further discussions
on the implementation of DeeP-LCC.

A. Proof of Theorem 1

The following lemma is useful for proving Theorem 1.

Lemma 4 (Controllability invariance [41]): (A, B) is con-
trollable if and only if (A — BK, B) is controllable for any
matrix K with compatible dimensions.

Based on Lemma 4, we transform system (A, B) in (15)
into (A, B) by introducing a virtual input %(¢), defined as

_ _ _ T
u(t) = [uil (t)v Uiy (t)a sy Uy, (t)] 3
where for r = 2,...,m, we define
ﬂir (t) = Uy, (t) — (04151; (t) — OéQ’DiT (t) + Oé3’t~}iT_1(t)) .

Then, we have

(38)

a(t) = u(t) — Ka(t), (39)

where K = [0,,, €%

nySn -

0
koo ko

..,em]TK, and K is given by

7% 2
K= e Rvn,

kn,Q

kn,l

with
ki,l = [041 *042] s ki72 = [0 043} .

According to (39), we have A = A — BK. By Lemma 4,
controllability is consistent between (A, B) and (A, B). For
system (A, B), the physical interpretation of the virtual input
u(t) in (38) is that except the control input of the first CAV, the
control input signals of all the other CAVs contain a signal that
follows the linearized car-following dynamics of HDVs (12).

Letting w;, (t) = 0 (r = 2,...,m), system (A, B) is
converted to a mixed traffic system with one single CAV —
only the CAV indexed as i1, i.e., the first CAV in the mixed
traffic, has a control input. By Lemmas 1 and 2, which state
the controllability of the mixed traffic system with one single
CAV, system (A, B) thus has the same controllability property.
Since the controllability of (A, B) and (A, B) are the same,
we complete the proof of Theorem 1.

The proof of Corollary 1 is similar to that of Lemma 2 when
S = {1}. We refer the interested readers to [11] for details.

B. Offline Data Collection in DeeP-LCC

One critical issue in offline data collection of DeeP-LCC
is to guarantee the persistent excitation requirement in As-
sumption 2 for the system input, consisting of CAVs’ control
inputs u(t) and the external input €(¢), i.e., velocity error of
the head vehicle. To satisfy this assumption, we present the
detailed discussions and the specific implementation method
in our simulations below.

« For the control input of the CAVs, in practice we need a
pre-designed controller (e.g., a car-following model or an
ACC-type controller) to control the motion of the CAVs
in order to achieve CAV normal driving. Meanwhile, one
could add certain i.i.d noise signal into the control model
to enrich the control inputs. In our experiments, we utilize
the OVM model (2) as a pre-designed controller for the
CAVs, and the control inputs are designed as

u;(t) = o (Vdes (8:(t)) — vi(8)) + B3i(t) + du, 1 €S,
(40)
where 6, € [—1,1]m/s?, and the parameters follow the
nominal parameter setup in Table I.

o For the external input, it is known that in practice, the
velocity of the head vehicle is under human control, and
it is always oscillating slightly around the human driver’s
desired velocity. To simulate this scenario, we assume that

the external input signal is given by
€(t) = de(k) ~ U[=1,1]m/s, (A1)

where ¢t = 10k + b with £ € N,b € {0,1,2,...,9}
and 6. ~ U[—1,1]m/s. Recall that in the offline data
collection for our experiments, we consider a fixed equi-
librium velocity of 15m/s, i.e., the head vehicle should
have a mean velocity of 15m/s. This design (41) means
that its velocity changes randomly and slightly around

the equilibrium velocity every 10 time steps (0.55s).
Due to the stochasticity of the input signals (40) and (41),
the persistent excitation requirement can be satisfied when the
input length is sufficiently long (since a longer trajectory leads



to more columns in the Hankel matrix, making it easier to be
full row rank). The theoretical lower bound on the input length
Tis (m+ 1)(Tini + N + 2n) — 1, as revealed in (27), which
is of value 257 in our experiments in Section VI, and we
choose T' = 800 for redundancy considerations. One could
verify the full rank condition by Definition 1 before applying
the pre-collected data set into controller design. We present
one pre-collected trajectory in Fig. 8 for illustration, which is
also utilized in Experiments B and C in Section VI.

C. Practical Implementation with Time-Varying Equilibrium

In Section VI-A, we consider a fixed equilibrium state of
15m/s for the simulated traffic flow. The trajectory data is
collected around this state and the simulations are also carried
out around it. In Sections VI-B and VI-C, we have utilized the
average velocity of the head vehicle among the past horizon
Tini to estimate the equilibrium velocity. Precisely, at time ¢,
we have

1 t—1
=7, 2 vl

t—Tini

.
v Sgo — Sst
s§* = arccos (1—2 ) &
Umax 7T

where the parameter values follow the nominal setup in
Table I. This consideration enables the CAV to estimate the
real-time equilibrium velocity and meanwhile have a human-
like desired spacing policy, according to the OVM model (2).
Combining this simple design (42) with DeeP-LCC, our sim-
ulation results have revealed the great potential of DeeP—-LCC
in improving traffic performance, although (42) might lead to
mismatched equilibrium states.

When collecting trajectory data, we still consider the traffic
flow around a fixed equilibrium velocity of 15m/s to construct
the data Hankel matrices. In DeeP—-LCC, however, we obtain
Uini, Yini DY calculating the deviation from the time-varying
equilibrium state obtained from (42). By assuming that the
HDVs have a similar behavior around different equilibrium
states, one could still apply the fundamental lemma to obtain
valid control input.

This assumption does not always hold in practice, and thus
the performance demonstrated in the comprehensive simu-
lation in Section VI-B and the braking simulation in Sec-
tion VI-C might not fully reveal the potential of DeeP-LCC.
Particularly, there could be a mismatch between the current
mixed traffic behavior and the predicted behavior generated
from the pre-collected data sets by the Willems’ fundamental
lemma. To address this problem, one approach is to collect
trajectory data from multiple equilibrium states, and when
implementing DeeP-LCC, one can choose appropriate data
(e.g., those data around the estimated current equilibrium state)
to construct data Hankel matrices and design the control input.
Another potential method is to update trajectory data utilized
for data Hankel matrices by recording the real-time historical
trajectory data in the control procedure. This method is also
applicable to the case of time-varying mixed traffic behavior
in order to capture the latest dynamics; see, e.g., [48] for

applications in building control, where the new input/output
measurements are appended on the right side of the Hankel

(42)

+ Sst

matrices and the old data on the left side are discarded. Finally,
it is also an interesting future direction to investigate the
robustness performance of DeeP—-LCC in mixed traffic in the
case of behavior mismatch between data collection and real-
time implementation.
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