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Cooperative guidance of multiple missiles: a hybrid
co-evolutionary approach

Xuejing Lan, Junda Chen, Zhijia Zhao, Member, IEEE, and Tao Zou

Abstract—Cooperative guidance of multiple missiles is a
challenging task with rigorous constraints of time and space
consensus, especially when attacking dynamic targets. In this
paper, the cooperative guidance task is described as a distributed
multi-objective cooperative optimization problem. To address
the issues of non-stationarity and continuous control faced by
cooperative guidance, the natural evolutionary strategy (NES) is
improved along with an elitist adaptive learning technique to
develop a novel natural co-evolutionary strategy (NCES). The
gradients of the original evolutionary strategy are rescaled to
reduce the estimation bias caused by the interaction between the
multiple missiles. A hybrid co-evolutionary cooperative guidance
law (HCCGL) is then developed by integrating the highly scalable
co-evolutionary strategy and the proportional guidance law,
with detailed convergence proof provided. Finally, simulations
demonstrated the effectiveness and superiority of this guidance
law in solving cooperative guidance tasks with high accuracy,
with potential applications in other multi-objective optimization,
dynamic optimization, and distributed control scenarios.

Index Terms—Optimal control; cooperative guidance; evolu-
tionary strategy; multi-objective optimization

I. INTRODUCTION

MODERN penetration of air defense systems of the target
requires coordinated attacks with multiple missiles.

However, the rapid development of detection technologies and
close-in weapon systems (CIWS) has decreased the chances
of successful impact with a single conventional missile. [1].
In addition to increasing the difficulty of interception, the
cooperative guidance strategy of multiple missiles is also
crucial to the lethal effect of the final impact. Usually, the
cooperative guidance of multiple missiles belongs to the phase
of terminal guidance, where accurate target information can be
obtained with active radar systems or other detection devices.
The existing cooperative guidance laws can be roughly divided
into two categories. One is the analytical method to find closed-
form solutions, which is mainly based on sliding mode control,
optimal control, and multi-agent consensus theory. The other
is the intelligent method which generally adopts heuristic
intelligent optimization algorithm and reinforcement learning
(RL) theory.

The analytical cooperative guidance method has been proven
to be robust and efficient for practical application [2]–[6].
Based on fundamental proportional navigation (PN), Jeon et.
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al developed cooperative proportional navigation (CPN) where
the on-board time-to-go of the missile is used as the navigation
gain [1]. It is a simple but effective approach for achieving time
consensus. Ma developed a composite guidance law, which can
be decomposed into the direction along the line of sight (LOS)
and the direction perpendicular to LOS [2], corresponding to
time and space cooperative respectively. Furthermore, time
cooperative control is achieved with the combination of PNG
and impact time error feedback [7], where the undirected
topology is adopted to establish communication relationships.
Based on the optimal control approach, a variant of the
hyperbolic tangent function is proposed in [3] to force early
control of velocity and impact angle.

However, with the increasing demand for developing high-
precision weapon systems, intelligent cooperative guidance
method is increasingly regarded as a necessary auxiliary
option. In recent years, the reinforcement learning theory has
attracted much attention because of its ability to learn online
based on environmental feedback [8]–[13]. According to the
training structures, existing reinforcement learning algorithms
for multi-agent systems can be roughly divided into four types,
which are Fully decentralized training, decentralized execution;
Fully centralized training, decentralized execution; Central-
ized training, centralized execution, and value decomposition
methods. Some of these algorithms have achieved satisfactory
results in coping with problems with low complexity and
accuracy requirements. In [14], [5], and [15], the state-of-
the-art reinforcement learning frameworks have demonstrated
their effectiveness in the guidance task. Zhang et.al proposed
a gradient-descent-based reinforcement learning method in
the actor-critic framework and achieved consensus control for
multi-agent systems by following a tracking leader [16]. But
the two challenges of Nonstaionarity and Partial Observability
[17] will lead to saturated output or coordination loss of multi-
agent systems, which greatly reduces the accuracy of the value
function. In addition, the use of value function in reinforcement
learning is not suitable for continuous control tasks with
large search spaces. Thus, these limitations of RL impede the
development of reinforcement learning in cooperative guidance.

It is an excellent way to solve the above problems by
removing the value function of reinforcement learning and
optimizing in solution space with evolutionary strategy (ES),
which is more robust and invariant to real-time rewards because
it optimizes towards the objective function directly [18]. More-
over, as described in [19], ES is tolerant of long horizontal and
implicit solutions, which is exactly consistent with the need for
cooperative guidance. The natural evolutionary strategy (NES)
is the latest branch of ES, and shows good performance in
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solving high-dimensional continuous multimodal optimization
problems, by using the natural gradient information estimated
according to the fitness expectation of the population [18]–
[20]. Similar algorithms named co-evolutionary algorithm have
been discussed in [21] and [22], which focus on solving
multi-objective optimization problems by dividing the overall
objective into sub-objectives, such to optimize and evaluate
together. Another idea is to evolve multiple populations for
the same goal, and manually regulate the constraints of each
population for faster convergence or fuller exploration [22].
As represented in [22], the concept of co-evolution refers to
multi-threads of training processes. Note that these methods
do not use the natural gradient information as in NES, and the
non-stationary issue discussed above is not considered.

When optimizing in continuous parameter(solution) space,
it is very important to apply adaptive technology. While a
learning rate adaption method based on the quality of gradients
is often not easy to estimate, a simple workaround would be
leveraging the shifting distance of parameters to adapt the
learning rate. As shown in [23], the size of population was
adjusted depending on the novelty metric and quantity metric,
which reflected the complexity of the dynamic environment.
The estimation of distribution algorithm (EDA) was applied
to continuous control by searching the optimal parameter
distribution [24], [25]. A variety of evolutionary methods were
investigated to design the multi-objective missile guidance
law [26]. Maheswaranathan proposed a surrogate gradient
to reduce the evaluation costs [27]. These works reveal the
enormous potential of searching in parameter space, rather than
directly searching in parameter space.

Therefore, an NES-based co-evolutionary algorithm naming
as the natural co-evolutionary strategy (NCES) is developed in
this paper to distress the dilemma faced by RL in the cooper-
ative guidance task. Considering the advantages of searching
in parameter space, the co-evolutionary algorithm is improved
in this work by rescaling the gradient information to reduce
the estimation bias introduced by neighboring populations. As
discussed in [28], [29], most of today’s bio-inspired algorithm
innovations are based on experimental observation rather than
meticulous theoretical support. Whereas in this work, we try
to dig into the depths of complex optimization and provide
proof as sensible as possible through the presentation of graphs
and deduction. Via integrating the NCES algorithm, a hybrid
co-evolutionary cooperative guidance law (HCCGL) is further
developed to solve the challenging missile guidance problem.
Extensive empirical results on various engagement scenarios
verified the effectiveness of the proposed guidance law. The
main contributions of this work are summarized as follows:

1) To address the issues of non-stationarity and continu-
ous control faced by cooperative guidance, an NCES
algorithm is formulated and incorporated into a novel
guidance law as an alternative to RL in the cooperative
guidance task.

2) The rigorous constraints of time and space consensus in
cooperative guidance are integrated and designed as the
fitness function for each missile. An MLP-based policy
network is constructed and learned to optimize the fitness
function.

3) The proposed HCCGL has advantages in achieving
high precision for cooperative guidance tasks, even with
dynamic targets and random initial conditions.

The rest of the paper is organized as follows. The problem
formulation is elaborated in Section II, and the proposed coop-
erative guidance law is discussed in Section III. In Section V,
experiments under various configurations are implemented.
Finally, conclusions are made in Section VI.

II. PROBLEM FORMULATION

A. Engagement geometry
The two-dimensional engagement geometry between multi-

ple missiles and one target is shown in Fig. 1, where the inertial
coordinate frame OXY represents the horizontal plane. There
are n missiles in total. The index Mi denotes the ith missile,
and T represents the target. Vmi,Ξmi, αmi, and δmi represent
the velocity, line of sight (LOS) angle, flight-path angle, and
heading angle of the ith missile, respectively. ali and avi
represent the lateral acceleration and the thrust acceleration to
be designed for the ith missile, which are perpendicular to and
align with the direction of Vmi, respectively. VT ,ΞT , αT , and
δT are the velocity, LOS angle, flight-path angle, and heading
angle of the target, respectively. The lateral acceleration of the
target is denoted by aT .
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Fig. 1: Two-dimensional engagement geometry

The dynamic equations of the ith missile and the target are
as follows:

ṙi = −Vmicos δmi + VT cos δTi
riΞ̇mi = −Vmisin δmi + VT sin δTi

˙αmi = ali/Vmi

α̇T = aT /VT

V̇mi = avi

δmi = αmi − Ξmi

δTi = αT − Ξmi

, (1)

where, ri represents the relative range between the ith missile
and the target. The time-to-go of the ith missile tigo refers to
the time left from the current time until the interception:

tigo = −ri
ṙi
, (2)
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Fig. 2: Communication topology

B. Communication Topology

The communication relationship of the multiple missiles
is depicted by a topology, where a set of nodes V =
{v1, v2, ..., vn} represents the n missiles. The communications
are represented by a set of edges ξ ⊆ V ×V with an adjacency
matrix A = [aij ] ∈ Rn×n, where aij = 1 if missile j is able
to communicate directly with missile i , otherwise aij = 0.
Ni = {j ∈ V : (i, j) ∈ ε} is the set of neighboring missiles of
the ith missile. In practical engineering, the communication
topology is determined through comprehensive considerations
of the communication cost and actual demand. In this work,
the undirected topology shown in Fig. 2 is adopted, enabling
neighboring missiles to share information.

C. Observation

For the multi-missile system, the complete observation
information of the entire system is not available to each agent.
Thus, the cooperative guidance problem is a partially observable
Markov decision process (POMDP) described by

Oi ×Ai → O′i, (3)

where, Oi and Ai represent the observation and action of the
ith missile. O′i is the observation of the ith missile at next
time step.

The full state information of each missile consists of
three components: personal features, target features, and
error features shown in Table I. Pmi and PT represent the
positions of the missile i and the target in two-dimensional
coordinates. The target features are estimated or detected
through onboard equipment, and the estimation error is assumed
to be negligible compared with the required guidance precision.
The acquisition of accurate location information requires the
support of powerful global positioning systems, here we only
need relative error information. eit is the consensus error of
time of the missile i:

eit =
∑
j∈Ni

(tigo − tjgo), (4)

The consensus error of LOS angle of the missile i is defined
as:

eia =
∑
j∈Ni

(eiΞ − e
j
Ξ), (5)

where, eiΞ = Ξmi − Ξdi is the LOS angle error of the missile
i, and Ξdi is the desired impact angle of missile i:

Ξdi = Ξd1 +

i−1∑
j=1

δjd, (6)

where, δid is the desired relative impact angle between two
missiles, and Ξd1 is the nominal desired impact angle of the first
missile which is determined online. To increase the flexibility
and autonomy of the intelligent missile system, the desired
Ξdi can be adjusted adaptably instead of being a fixed value.

TABLE I: Full state information of each missile

Features Symbols

Personal Features

Pmi = (xi, yi)
αmi
Ξmi
Vmi

Target Features
PT = (xT , yT )
VT
αT

Error Features eit
eia
eiΞ

D. Fitness evaluation

The reward of each missile at one evaluation step consists
of a terminal reward and a flight reward. The objective of the
cooperative guidance task is to minimize the error eit, e

i
a, and

eiΞ. Then, the terminal reward is defined as:

riT = (γa · e−ξa|e
i
Ξ| + γt · e−ξt|e

i
t|) · ε(k), (7)

where, ξa, ξt, γa, γt are constant coefficients. ε(k) is the step
function defined as

ε(k) =

{
1, if k is terminal step
0, otherwise

. (8)

Thus, the terminal reward only reflects the results at the terminal
step, and riT = γa + γt if and only if eiΞ = 0 and eit = 0. The
flight reward is defined as:

riF = βa(−1 + e−ka|e
i
a|) + βt(−1 + e−kt|e

i
t|), (9)

where, ka, kt, βa, and βt are positive constant coefficients. It
can be inferred that riF ≤ 0 is always true. riF = 0 if and only
if eia = 0 and eit = 0. Then, the fitness function of missile i
for the cooperative guidance task is defined by

Fi =

∫
t

(riF + riT )dt. (10)

Thus, the objective of the cooperative guidance task can be
achieved by maximizing the fitness function of each missile.

E. Design of the cooperative guidance law

Based on the requirements of the cooperative guidance task,
the guidance law proposed in this paper includes two parts:
the tracking control part and the consensus control part. The
tracking control part is obtained by proportional navigation
guidance(PNG) :

upi = [βΞ̇miVmi, 0]T , (11)

where, β is the navigation constant. Note that the tracking
control part only designs the lateral acceleration.
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The consensus control part is modeled by a neural network
expressed as

uei = WT
3i · ψ(Z2i),

Z2i = WT
2i · φ(Z1i),

Z1i = WT
1i · φ(Xi),

(12)

where W3i ∈ Rq2×2, W2i ∈ Rq1×q2 , and W1i ∈ R3×q1 denote
the weight matrices of the output layer. Z1i and Z2i are the
outputs of the first and second hidden layers. q1 and q2 are
the numbers of neurons in each layer. ψ(·) is the bounded
activation function Tanh(·) with ||ψ(·)||6 almax, and φ(·) is
the common activation function Sigmoid(.). The input state
vector Xi is selected as:

Xi = [eia, e
i
t, e

i
Ξ]T . (13)

Thus, the guidance law of the missile i is presented as:

ui = (1− η)upi + ηuei, (14)

where η is the guidance gain trading off the tracking control
part and the consensus control part.

III. NATURAL CO-EVOLUTIONARY STRATEGY

A. bottleneck of RL

Reinforcement learning is a generic term for a class of value-
oriented algorithms. It focuses on solving problems of Markov
Decision Process (MDP), which also apply to the guidance
problem.

Assume there are n agents in the environment. The joint
action set is denoted by A = A1×A2×...×An, and the system
state is denoted by S. At each timestep, each agent takes one
step, and with a certain probability, the transition occurs. This
can be represented as S×A→ S′, where S′ is the next system
state after the transition. The reward is given as S×A×S′ →
Rn.In a deterministic environment, the transition probability is
1. For the multi-agent system, the S can be decomposed into
individual observations: S = O1+O2+...+On. A sufficient set
of observations must be capable of representing the complete
system state. In most cases, the agent does not have access to
the complete information of the system. This means they only
get partial observations instead of the complete state, making
the problem a Partial Observable Markov Decision Process
(POMDP).

Two challenges, Nonstationarity and partial observability
[17], impede the research for multi-agent systems. Tons of
algorithms have popped up focusing on solving this kind of
problem. According to the training process, we can roughly
divide them into four types:
• Fully decentralized training, decentralized execution;
• Fully centralized training, decentralized execution;
• Centralized training, centralized execution;
• Value decomposition methods.

The existing works have achieved satisfactory results in coping
with problems of less complexity and less requirement for
precise control. It has been well-investigated that an ill-
distributed value function would seriously stagnate performance.
Exploration technologies, such as Ornstein-Uhlenbeck noise
and stochastic exploration, are used to alleviate this problem.

Applying reinforcement learning (RL) theory, it is possible
to handle control tasks with either a single missile [30], [31],
or discrete action space [11], [32]. However, for control tasks
with multiple agents(missiles), inefficient exploration and non-
stationarity can lead to a deterioration of the accuracy of
the value function, resulting in either saturated control or
coordination loss. Value functions can be advantageous for
discrete control, but can be flawed for continuous control tasks
with large search spaces. Approaches that constrain the policy
space have been discussed in [33], but they heavily rely on
prior knowledge and do not scale well to different scenarios. As
an alternative, evolutionary strategies have abandoned the use
of value functions and have shown the outstanding capability
for the aforementioned issues.

B. Natural evolutionary Strategy in multi-agent POMDP

In the evolutionary strategy, individual agent (or its policy)
is expressed as a population, the group of populations and
the environment constitute the ecosystem. The objective is
to develop the optimal strategy for the group of populations
to maximize the fitnesses of the ecosystem. For cooperative
tasks, the optimal strategy of the ecosystem will be exactly the
optimal policy for each population.

arg max
u∗tot

Ftot(u
∗
tot) =

arg maxu1
F1(u1)

...
arg maxun Fi(un)

 , (15)

where, ui which is defined in (14) represents the policy of
the ith population and u∗tot = [u∗i ]

i=n
i=1 is the joint matrix of

individual optimal policy. Fi(·) is its corresponding fitness
function and Ftot(·) is the joint policy fitness function, more
details can be viewed in [34]. However, the inverse is not true:

arg maxu1 F1(u1)
...

arg maxun Fi(un)

 6= arg max
u∗tot

Ftot(u
∗
tot). (16)

This is because the optimal fitness obtained by one population
may be based on the suboptimal fitness obtained by other
populations. When the other populations evolve, the previous
optima is easy to be broken. To overcome this nonstationary
issue, it is best for all populations to evolve simultaneously,
that is co-evolution. Each generation updates its parameter at
the same time, instead of updating sequentially, mapping in
slight variance in fitness values.

C. Optimization in co-evolutionary parameter space

The gradient information is obtained by measuring the
contribution of each sample. The parameters of the population
are defined as θ, and θ′ represents that of the next generation.
pψ(θ′|θ) is the distribution function of θ′ under θ, where ψ
is the intrinsic parameter. Then the expectation fitness of the
next generation is expressed as:

Eθ′∼pψ(θ′|θ)F (θ′) =

∫
θ′
pψ(θ′|θ)F (θ′)dθ′. (17)
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The derivative of Eq. (17) with respect to θ is

OθEθ′∼pψ(θ′|θ)F (θ′) = Eθ′{Oθ′ log pψ(θ′|θ)F (θ′)}. (18)

If we represent θ′ as θ+ε, then we have the similar equation

OθEε∼pψ(ε)F (θ + ε) = Eε{Oεlog pψ(ε)F (θ + ε)}. (19)

In an ecosystem with multiple populations, populations will
interact and affect the evolutionary process. Thus, the fitness
function of the ith population is represented by Fi(ςi), where
ςi = {θi, θj : j ∈ Ni} represents the parameter set of the ith
population and its neighboring populations. The expected joint
fitness of the next generation is expressed as:

E{Fi(ς ′i)} =

∫
ς′i

pψ(ς ′i|ςi)Fi(ς ′i)dς ′i. (20)

where, p(ς ′i|ςi) is the joint probability distribution of the
next generation over ςi. Assume that θ′i and θ′j are sampled
independently, we have p(ς ′i|ςi) = p(θ′i)

∏
j∈Ni p(θ

′
j).

The gradient of the joint fitness with respect to θi is expressed
as

OθiE{Fi(ς ′i)} = Oθi

∫
ς′i

p(ς ′i)Fi(ς
′
i)dς

′
i,

=

∫
θ′i

∫
θ′j

· · ·Oθip(θ′i)Fi(ς ′i)
∏
j∈Ni

p(θ′j)dθ
′
i

∏
j∈Ni

dθ′j

=

∫
θ′j

· · ·
∫
θ′i

[Oθi logp(θ
′
i)Fi(ς

′
i)] p(θ

′
i)
∏
j∈Ni

p(θ′j)dθ
′
i

∏
j∈Ni

dθ′j

= E(ς′i)
{Oθi logp(θ′i)Fi(ς ′i)}.

(21)
Note that it has the same format as the version of a single

population, it seems to be fine if we just keep the original
equation. The influence of θ′c is counteracted through the
calculation of its expectation. However, it is known that the
expectation of the joint distribution is approximated through
sampling with a limited size. Although individuals are sampled
without bias(unbiased estimation), there exists an intrinsic bias
for inadequate sampling, and the bias will grow linearly with
an increment of distribution dimensionality. So it can be a
serious issue when taking the expectation of all neighboring
parameters, and the sample size stays relatively small.

It is not necessary to take account of all parameters since
only the expectation of θi is actually needed. To alleviate
the incremental bias, we propose to approximate only the
expectation of the parameter of the current population θi and
ignore its neighbor parameters, which is

Eθ′iFi(θ
′
i) =

∫
θ′i

Fi(θ
′
i)p(θ

′
i)dθ

′
i. (22)

Though p(θ′i) is available for independent distribution, it is
infeasible to obtain Fi(θ′i), since all agents are sampled and

evaluated together. However, the expectation of individual
fitness can be approximated by the multiplication between
the original fitness Fi(ς ′i) and its confidence. The rectified
expectation is expressed as

Eθ′iFi(θ
′
i) =

∫
θ′i

Fi(ς
′
i)p(θ

′
i)
∏
c∈Ni

p(θ′c)dθ
′
i, (23)

where,
∏
c∈Ni p(θ

′
c) is the confidence, and θ′c represents the

samples that appear along with θ′i. In this way, the bias of
estimating the expectation of the neighboring distributions is
addressed. The gradient after modification is

OθiEθ′iFi(θ
′
i) =

∫
θ′i

[Oθi logp(θ
′
i)Fi(ς

′
i)] p(θ

′
i)
∏
c∈Ni

p(θ′c)dθ
′
i

= Eθ′i

{
Oθi logp(θ

′
i)Fi(ς

′
i)
∏
c∈Ni

p(θ′c)

}
.

(24)

Remark 1. We refer to strategies that use (24) as the updating
policy as the natural co-evolutionary strategy (NCES). The
natural co-evolutionary strategy is a strategy for evolutionary
algorithms that updates the weights of the population in multi-
agent systems. Compared to other existing evolutionary strategy
algorithms, NCES alleviates the incremental bias caused by
neighboring parameters and achieves better performance in
cooperative continuous control tasks.

The core idea is that although the individual fitness Fi(θ′i)
does not exist, the expectation of the individual fitness does, and
is invariant to the parameter distributions of its neighboring
agents, so the expectation of the individual agent’s fitness
should be calculated instead of including the expectation of
neighboring agents. Let’s denote the expectation of the objective
function over (ς ′i), which is Oθi logp(θ

′
i)Fi(ς

′
i), by φ(ς ′i) and

the expectation of the objective function over θ′i by φ(θ′i), such
that

φ(θ′i) =

∫
θ′c

φ(ς ′i)p(θ
′
c)dθ′c. (25)

To visualize the sampling estimation process, we use a
variant of eggholder as the objective function for demonstration,
which is defined in (26), since the real objective is too expensive
to obtain.

Assume there exists one neighboring population θc for θi
with the size of 400, the sampled individuals are shown in Fig. 3,
following a bivariate normal distribution, and the parameter
spaces are confined to θ′i ∈ [−2, 2], θ′c ∈ [−2, 2]. Since θ′i and
θ′c are sampled independently, the individuals can be considered
to be sampled from p(θ′i) only, which is represented by the
sample points in Fig. 4. In this objective graph with single-
dimensional parameter space, the real objective curve expressed
in solid line is obtained by (25). In order to standardize the
scope, all the sampled data including the real objective values
are uniformly scaled to the range [0,1], and such standardization
does not affect the directionality of the estimated gradient.

The original objective value φ(θ′i) for each sample varies as
the corresponding p(θ′c) changes, which introduces additional
estimation bias. As shown by the blue dots in Fig. 4, the
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TABLE II: A variant of the eggholder function

φ(ς′i) =
(30θ′c + 47) sin

√
|30θ′c + 15θ′i + 47| − 30θ′i sin

√
|30θ′i − (30θ′c + 47)|

200
− 0.2 (26)

Fig. 3: Estimate gradient through sampling

Fig. 4: Estimate gradient through sampling from single
distribution

distribution of the objective values before rescale is significantly
different from the distribution of the true objective values. From
Fig. 3, it can be seen that as sample points deviate from the
distribution center, their probability of being sampled also
decreases, which means that the accuracy or confidence of the
fitness of each sample φ(ς ′i) decreases with the decrease of
p(θ′c). If the original objective is rescaled by its confidence
p(θ′c), which is the probability of the appearance of the ς ′i
given the existence of θ′i, the reconstructed objective values
represented by the green square dot in Fig. 4 is closer to the
real φ(θ′i), which obviously reduce the estimation bias.

The above proof indicates that in the case of limited
population size and a large number of neighboring populations,
applying the rescaled gradient will keep the approximation
bias to the level of a single population, resulting in a more
accurate estimation of gradient information, empirical results
also supported this conclusion. However, when the population
size is large enough (e.g., thousands), this approach may not
result in additional accuracy improvements.

The modified expression is also desirable for parallel comput-
ing, as only the perturbation of the neighboring populations is
needed, which can be easily obtained through communication
among processes, and the probabilities can be calculated in a
distributed approach.

D. Elitist adaptation Techniques

The performance of NES is sensitive to hyper-parameters,
and the learning rate is usually the most critical hyper-parameter
of NES. Thus, an elitist adaptation method for the learning
rate is applied in this paper. First, a list of learning rates is
linearly selected in the neighborhood of the original learning
rate ηα as:

ηcad = {clip((1 + 0.1k)ηα, ηαmin, ηαmax) : k ∈ Z,
− l/2 ≤ k ≤ l/2},

(27)

where, ηcad ∈ Rm+1. The ηαmin and ηαmax are the minimum
and maximum value of ηα. l is the size of perturbations which
is clipped by clip(·). To evaluate the quality of the candidate
learning rates, the evaluation function Gi(·) is defined:

Gi(ηcad) =


Fi(θi + η

−l/2
cad gθi)− Fi(θi + ηαgθi)

...
Fi(θi + η

l/2
cadgθi)− Fi(θi + ηαgθi)

 , (28)

where ηkcad is the kth sampled learning rate of the candidate
list. The gradient gθi is kept after evaluation. Therefore, by
comparing the candidate learning rates with the original one,
the next update can be better than the previous one. Considering
peer pressure, each missile is assigned the same learning rate.
The learning rate of the next generation is obtained by

η′α = arg max
ηkcad

(

n∑
i=1

Gi(ηcad)). (29)

A similar approach is employed to obtain the optimal Ξ∗d1

during the training process.

Ξ∗d1 = arg max
Ξkd1

H(Ξ1
d1)
...

H(Ξhd1)

 (30)

where, Ξkd1 is uniformly sampled from the region [−π, π]. H(·)
is the fitness function of sampled LOS angle that is defined as

H(Ξkd1) = Ftot(θinit)|Ξd1=Ξkd1
, (31)

where θinit = [θiniti ] is the joint initial individual parame-
ters. In this way, the desired impact angles are established
automatically.

A rank-based fitness shaping method that is in the same
spirit as the one proposed in [20] is employed in shaping
the raw fitness. Conventionally, we still let Fi(·) denote
the fitness function after shaping. Another technique called
mirrored sampling [18] is also applied for sampling parameter
perturbations.
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IV. HYBRID CO-EVOLUTIONARY COOPERATIVE GUIDANCE
ALGORITHM

To achieve coordinated attack, the natural co-evolutionary
strategy is applied to optimize the parameter matrices θi =
[W3i,W2i,W1i] of the neural network controller.

The univariate Gaussian distribution with zero means and
standard deviation σ is used to sample perturbations. According
to (24), it can be obtained that:

(32)

gθi = Eεi∼N(0,σ2)

{
Oθi logp(θ

′
i)Fi(ς

′
i)
∏
c∈Ni

p(θ′c)

}

=
1

mσ2

m∑
i=1

Fi(ς
′
i)εi

∏
c∈Ni

p(εc).

The complete implementation algorithm of the proposed
guidance law is shown in Algorithm 1. The conceptual diagram
in Fig. 5 figuratively revealed the parallel simulation process.
A master-slave (or fully-distributed) model [35] [36] is used for
large-scale parallel computation. In this case, each population is
evaluated in a separate process and the results of the ecosystem
are aggregated to calculate the rescaled gradient (32) and sent
to produce guided generations. The sampled generations are
then distributed to each parallel process, and the gradient is
recalculated and updated.

Algorithm 1 Hybrid Cooperative Co-Evolutionary Guidance
Law (HCCGL)

Require: ηα, η, σ, θinit = [θiniti ],agent number n.
Sample [Ξkd1] ∈ Rh ∼ U(−π, π), obtain Ξ∗d1 using (30)

repeat
for k= 1... m do

Sample group of individuals:
εk = {εki ∼ N(0, σ2I) : i ∈ {1, ..., n}},
ςk = {ςki = {θki , θkj : j ∈ Ni} : i ∈ {1, ..., n}}
evaluate fitness Fi(ςki ), for i ∈ {1, ..., n}

end for
for each agent i = 1... n do

calculate natural gradient:
gθi ← 1

mσ2

∑m
k=1 Fi(ς

k
i )εki

∏
c∈Ni p(ε

k
c )

θi ← θi + ηα · gθi
end for
if time for adaptation then

sample ηcadi using (27)
ηα ← arg maxηkcad(

∑n
i=1Gi(ηcad))

end if
until stopping criterion is met

Theorem 1. Under the control policy (14) and the update
strategy shown in Algorithm 1, by selecting an appropriate
learning rate, sampling variance, and population size, the
obtained control policy will converge to a small neighborhood
of the optimal control policy when l→∞.

Proof. The approximation error of the control policy at the
lth iteration is defined by

E
[l]
ui = u

[l]
i − u

∗
i , (33)

Parallel Workers

System
Dynamic

Model
Tracking

controller

Consensus

controller

Action

H
ybrid G

uidance law

Observation

Rescaled

Natural

Gradient

Gradient 

ascent

Fig. 5: Conceptual framework of our proposed HCCGL, the
upper box connected by dotted lines is a detailed expansion

of the evaluation and evolutionary processes in the lower box.

where u∗i is the optimal control policy of the ith agent, and
we have

u
[l]
i = (1− η)upi + ηu

[l]
ei . (34)

The control policy of the neural network is represented by its
parameter set. Since a neural network with a single hidden
layer can approximate a multivariate continuous function with
arbitrary precision [37], which implies that a single hidden
layer perceptron with sufficient units is equivalent to the neural
network with three hidden layers used in this work. In this
way, the neural network controller can be represented by

u
[l]
ei = W

[l]T
i , (35)

which is a column matrix and the activation function parameters
are regarded as constants. By combining (35) and (34) and
substituting it into (33), we have

E
[l]
ui = (1− η)upi + ηW

[l]T
i − u∗i , (36)

E
[l−1]
ui = (1− η)upi + ηW

[l−1]T
i − u∗i . (37)

Further combining (36) and (37), the term of fixed controllers
are eliminated, and we have

E
[l]
ui − E

[l−1]
ui = η(W

[l]T
i −W [l−1]T

i )

= ηηαg
[l−1]
θi

,
(38)

where ηα is the learning rate and η the guidance gain, with
ηα, η > 0. The focus of this equation, g[l−1]

θi
, is the policy
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update gradient at the l-1th iteration, which follows by (32).
Expanding this equation, we have

E
[l]
ui − E

[l−1]
ui = ηηαg

[l−1]
θi

= ηηα
1

mσ2

m∑
k=1

Fi(E
[k]
ui )εki

∏
c∈Ni

p(εkc )

= ηηα
1

mσ2

m∑
k=1

Fi(E
[k]
ui ) ∗ (E

[k]
ui − E

[l−1]
ui )

∏
c∈Ni

p(εkc ).

(39)
Note that in (39), Fi(E

[k]
ui ) : Rp → Rp is the transformed

fitness function for the evaluation of the policy error, with p as
the number of parameters. Thus, it is different from the fitness
function discussed in the previous sections, which evaluates the
policy directly. It is assumed that Fi(E

[k]
ui ) is fully differentiable

to the policy controller, and

∂Fi(|E[k]
ui |)

∂|E[k]
ui |

< 0, (40)

considering that |E[k]
ui | represents the quality of the policy

globally.
In an effort to linearize the fitness evaluation function,

Taylor’s formula is utilized to expand the equation at |E[l−1]
ui |

and the higher order terms are ignored, and we obtain

Fi(|E[k]
ui |) = G

[l−1]
i [|E[k]

ui |−|E
[l−1]
ui |] + Fi(|E[l−1]

ui |), (41)

where G[l−1]
i ∈ Rp×p is a diagonal Jacobian matrix defined

by

G
[l−1]
i =

∂Fi(|E[k]
ui |)

∂|E[k]
ui |

∣∣∣∣∣
|E[l−1]
ui |

, (42)

with negative entries and p as the number of total parameters.
Since |E[k]

ui | is located within a tiny vicinity of |E[l−1]
ui |, (41)

is of considerable accuracy.
Then, by taking the absolute value of the approximation

error and substituting (41) into (39), and considering ∆Eki =

|E[k]
ui |−|E

[l−1]
ui | we obtain

∆|E[l]
ui| = |E

[l]
ui|−|E

[l−1]
ui |

= ηηα
1

mσ2

m∑
k=1

[G
[l−1]
i ∆Eki + Fi(|E[l−1]

ui |)]∗

∆Eki ∗
∏
c∈Ni

p(εkc )

= ηηα
1

mσ2
G

[l−1]
i

m∑
k=1

[∆Eki ∗∆Eki +

Fi(|E[l−1]
ui |) ∗ [|E[k]

ui |−|E
[l−1]
ui |]] ∗

∏
c∈Ni

p(εkc )

= ηηα
1

mσ2
[G

[l−1]
i

m∑
k=1

∆Eki ∗∆Eki ∗
∏
c∈Ni

p(εkc )

+ Fi(|E[l−1]
ui |) ∗

m∑
k=1

∆Eki ∗
∏
c∈Ni

p(εkc )].

(43)

For brevity, we define Aki , P
k
i , and Bki by

Aki = ∆Eki ∗∆Eki ;

P ki =
∏
c∈Ni

p(εkc );

Bki =

m∑
k=1

|E[k]
ui |∗P

k
i −

m∑
k=1

|E[l−1]
ui |∗P

k
i ,

(44)

such that

∆|E[l]
ui| = ηηα

1

mσ2
[G

[l−1]
i

m∑
k=1

Aki ∗ P ki +

Fi(|E[l−1]
ui |) ∗B

k
i ].

(45)

Since |E[k]
ui | is sampled from an unbiased normal distribution

which is centered at |E[l−1]
ui |, as shown in the analysis of

Section III-C, we have

Bki → 0, as m→∞. (46)

Also, from the matrix Hadamard product we have

Aki > 0, (47)

and
P ki > 0. (48)

G
[l−1]
i is negative definite. Given sufficient large m, it is evident

that
∆|E[l]

ui|< 0, l = 1, 2, ... . (49)

Therefore, by adjusting the learning rate ηα attentively, the
approximation error can be decreased to a considerably small
range δe, such that

lim
l→∞
|E[l]
ui|= δe,

δe → 0, as m→∞.
(50)

Thus, the control policy ui converges to a small neighborhood
of the optimal control policy u∗i , resulting in a stabilizing
control system.

V. SIMULATIONS AND ANALYSIS

To verify the validity of the proposed method, a variety of
simulations based on the cooperative guidance framework are
designed. Both cases with stationary target and maneuvering
target are simulated. Further, comparison experiments are
performed to fully demonstrate the superiority of the proposed
guidance method.

A. Paremeter setup

The acceleration constraint and velocity constraint of the
missiles are listed in Table III. The hyper-parameters of the
algorithm are listed in Table IV.

Now that frameskip has been extensively employed in
continuous control problems [19]. In this work, this parameter
of frameskip is set to 12 for case 1 and case 2, and 40 for
case 3. Appropriate adjustment of this parameter will facilitate
the training process without affecting the final results.
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TABLE III: Constraints of the missiles

Parameter Value

maximum lateral overload (g) , almax 50
maximum trust overload (g), avmax 5
Upper bound of velocity (m/s), Vmax 900
Lower bound of velocity (m/s), Vmin 350

TABLE IV: Hyper-parameters of the cooperative guidance
algorithm

Parameter Value

simulation step (ms), τ 5
guidance gain, η 0.3
Initial learning rate, ηα 0.015
standard deviation for sampling population, σ 0.2
size of learning rate adaptation, l 20
size of population, m 140
adaptation cycle, ρ 50
navigation constant, β 4
ka 1
kt 0.2
ξa 10
ξt 1
λa 4000
λt 2000
βa 10
βt 2

B. Case 1: Comparison Experiments

In this section, the proposed guidance law is compared
with the time and space cooperative guidance law (TASCGL)
proposed in [38], which considers the space and time coopera-
tive guidance under the distributed communication topology.
However, different from the method proposed in this work,
the compared method is susceptible and brittle to the initial
conditions. Therefore, in order to verify the generalization
ability of the control methods, a uniform initial condition was
adopted in the comparison simulation, which differs slightly
from the initial condition in the comparison method. The initial
conditions as shown in Table V. Four missiles are engaged in
the cooperative scenario with different desired relative impact
angles δid as 20°, 60°, and 30°, for each i = 1, 2, 3, respectively.
The target is located at (9500, 9000)m.

Although the reference method is primarily designed for
directed topology, it can be well extended to an undirected
topology condition, thus in order to conduct effective compari-
son experiments, we additionally implemented a comparison
experiment under an undirected topology the same as the
one used in the proposed method. We use TASCGLa and
TASCGLb to denote the comparative experiments performed
under directed and undirected communication topologies,
respectively.

TABLE V: Initial conditions of case 1.

Missile Position (m) Flight-path Velocity
Angle (°) (m/s)

M1 (1900, 17000) -25 700
M2 (1500, 13000) 0 650
M3 (1400, 4000) 5 700
M4 (3000, 1300) 10 680

(a) TASCGLa

(b) TASCGLb

(c) HCCGL

Fig. 6: Trajectories of the two methods

Fig. 6 shows the trajectories of the two guidance laws. As
depicted in the figure, the trajectory of TASCGL is twisted at
the initial stage, as the missiles try to consensus their LOS
angles and velocities. In comparison, the trajectory of the
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(a) TASCGLa

(b) TASCGLb

(c) HCCGL

Fig. 7: Consensus angle error profiles of the two methods

(a) TASCGLa

(b) TASCGLb

(c) HCCGL

Fig. 8: Time-to-go profiles of the two methods
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Fig. 9: Decomposition of acceleration commands in Case 1

proposed HCCGL exhibited better damping performance with
no oscillations.

It can be seen from Table VI that the Zero-Effort Miss
(ZEM) and the consensus angle error for both guidance laws
have achieved competitive final accuracy. The consensus time
error of TASCGL was up to 5 seconds under both directed and
undirected topologies, whereas the proposed method achieved
an error of less than 0.1 seconds. Further analysis of the
velocity curve shows that in the case of TASCGL, the velocities
are prohibited from reaching their ideal values due to the
velocity boundary, which is not considered in its design, thus
leading to desynchronization in impact time. The profiles of
the two methods are shown in Fig. 7 and Fig. 8, it can be
observed that the flight time of all missiles under HCCGL
trends to be identical. For HCCGL, the decomposition of
acceleration commands is shown in Fig. 9. The left figure shows
the decomposition of lateral accelerations, in which the solid
line represents the command from the tracking controller while
the dashed line represents the command from the consensus
controller before weighing. Since the tracking part is derived
from proportional navigation, the vertical acceleration shown
on the right one is completely derived from the consensus

controller. The two parts of accelerations have similar trends
but do not coincide, demonstrating the effectiveness of the
consensus controller, which is trained with the improved co-
evolutionary strategy.

The result reveals that the proposed guidance law out-
performs the compared method with higher precision in
consensus performance and smoother trajectories. Moreover, as
the traditional guidance law is usually constrained to boundary
conditions and missile’s superb maneuverability, the proposed
guidance law is more resilient to limited conditions and more
intelligent to be aware of the time-varying states of missiles
of collaboration.

TABLE VI: Comparison results of two guidance laws in case
1.

Algorithm Index M1 M2 M3 M4

TASCGLa
eit(s) 5.54 3.23 -4.02 -4.75
eia(°) -9.83E-3 -1.58E-3 -1.80E-1 1.91E-1
ZEM(m) 2.24E-7 5.06E-7 -7.00E-2 3.00E-4

TASCGLb
eit(s) 6.15E-1 5.5E-1 3.655 -4.82
eia(°) -6.11E-3 -1.28E-3 -3.38E-4 7.73E-3
ZEM(m) 1.19E-5 5.11E-8 4.81E-7 5.53E-5

HCCGL
eit(s) -1.00E-2 1.00E-2 -5.00E-2 5.00E-2
eia(°) 1.79E-2 9.67E-2 9.20E-2 4.69E-3
ZEM(m) 4.19E-5 7.66E-6 3.11E-4 4.09E-5

C. Case 2: Non-stationary target

In this part, an engagement scenario with a non-stationary
target is designed and simulated to verify the effectiveness of
the proposed method against unknown dynamic target. The
target is maneuvering with lateral acceleration at = 5g sin

(
π
7 t
)

with its velocity fixed at Vt = 130m/s, and its initial flight-
path angle αT = 162°. Other initial conditions are the same
in case 1. Simulation trajectory and the result can be seen in
Fig. 10 and Table VII.

From Table VII we can see that the consensus angle error
is within one degree, which is sufficient for the accuracy
requirement, and salvo attack is achieved with negligible
consensus time error. The result demonstrates the effectiveness
of the proposed guidance method in intercepting the dynamic
target. As far as the author knows, it is the first time achieving
cooperative guidance against non-stationary target with intelli-
gent control, which shows its extraordinary robustness against
disturbance from non-stationary objectives.

TABLE VII: Result for Case 2.

Index M1 M2 M3 M4

eia(°) -3.43E-1 -6.53E-2 -1.23E-1 -1.49E-1
eit(s) 6.00E-2 1.85E-2 2.10E-1 -4.55E-1
ZEM(m) 1.83E-3 6.38E-3 2.49E-2 9.28E-1

D. Case 3: Monte-Carlo simulation

Monte-Carlo simulation has been extensively employed
to examine the robustness of an algorithm under varying
initial conditions, thus it is applied in this section. In the
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Fig. 10: Trajectory in case 2

existing literature, the target is usually regarded as stationary
as interception of a stationary target is more exclusive of unpre-
dictable disturbance. In this case, five missiles are engaged, and
each missile’s position is randomly sampled from a uniform
distribution, which is denoted by U(·, ·). Specifically, for the
ith missile, the x-coordinate of its position is U(2000, 2600)
and the y-coordinate is U(11000, 13000)−2000i, which makes
the missiles arranged in an orderly manner. The initial flight-
path angles of all missiles are set to 0°, with identical velocities
of 600m/s and the same desired relative impact angles of 25°.
Additionally, the target’s position is (10000m, 9000m).

Simulations with randomly sampled conditions are conducted
in 200 episodes. The diverse trajectories are depicted in Fig. 12,
and the statistical result after taking the absolute value is shown
in Table VIII. From the result, we can see that the mean errors
of impact angles are within 1°, and the consensus error of
impact time holds within 1s most of the time. The result shows
that for any initial state with limited error, the proposed scheme
can always find the relative optimal solution.

TABLE VIII: Result for Case 3.

Index M1 M2 M3 M4 M5

eia(°)
Mean 4.50E-1 8.20E-1 7.10E-1 2.20E-1 9.30E-1

Max 1.85E-0 3.37E-0 1.96E-0 6.10E-1 2.37E-0

Min 4.56E-3 6.40E-3 7.01E-4 4.58E-4 6.46E-3

eit(s)
Mean 6.10E-1 5.50E-1 5.30E-1 4.50E-1 5.50E-1

Max 1.78E-0 1.57E-0 1.63E-0 1.54E-0 1.44E-0

Min 1.50E-2 1.00E-2 1.78E-15 5.00E-3 1.78E-15

ZEM(m)
Mean 5.85E-3 5.89E-3 3.74E-4 9.05E-4 9.93E-4

Max 1.03E-2 1.07E-2 7.77E-4 2.53E-3 3.39E-3

Min 2.18E-3 2.04E-3 6.42E-5 1.68E-5 2.72E-6

(a) Consensus angle error profile

(b) Time-to-goes profile

Fig. 11: Flight data profiles in Case 2

E. Optimization process analysis

Fig. 13 shows the learning curves in the three cases. The
mean fitness in case 1 keeps moving upper and merges together
at the final phase. From the curve of case 2, we can see that
two of the missiles get ahead about 1000 scores, but finally
back to meet with the other missiles. A similar phenomenon
also appears in case 3. It can be inferred that the policies
asymptotically evolved to the equilibrium state, and one reason
is that the rescaled gradient prohibited the ever-increasing
gap between individual groups, which is crucial for mutual
improvement. If one group gets ahead too much, then the other
groups may never chase up due to the interrelationship, which
is to say that the improvement of the poorer-performed group is
prohibited when more significant drops in the better-performed
ones will occur. Fig. 14 presents the adaptation profiles of
learning rates applying the aforementioned technique. For case
1 and case 2, the learning rates start from high values and
gradually converge to the minimal value, which corresponds
with the quality of estimated gradients. However, due to the
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Fig. 12: Diverse trajectories of the Monte-Carlo simulation

random initial conditions in case 3, the learning rates will not
settle easily. The extensive empirical result shows that without
the learning rate adaptation, the fitness profiles will jitter in
the end instead of converging to satisfactory ranges (regardless
of the types of optimizer). Note that it is pretty common
when training neural networks and may presumably have been
caused by overfitting, according to related research in the
field. Employing the simple adaptation technique contributes
to distressing this deficiency.

VI. CONCLUSIONS

In this paper, an improved co-evolutionary strategy NCES has
been developed to solve the non-stationarity issue in multi-agent
dynamic environments. The hybrid co-evolutionary cooperative
guidance law(HCCGL) has been proposed to integrate with
the improved strategy, and the neural network has been used
to construct the consensus controller. To fully demonstrate its
effectiveness in synchronizing impact time and angles, three
experiments under different conditions have been carried out.
Experiment on maneuvering target has been proven effective
with satisfactory precision. The proposed method is shown
to be robust and can be well scaled to solve the cooperative
guidance problem for the multi-agent system, which is the
first time an intelligent cooperative guidance law is applied to
intercept a non-stationary target with time and angle constraints
in the existing studies.

The proposed algorithm combines traditional control theories
with intelligent algorithms, revealing the enormous potential
in this field. It is always meaningful to explore the limits of
modern control tasks. Despite the satisfactory results that have
been acquired, this work still left space to be improved. Future
works may include exploring the effectiveness of incremental
guidance gain, or control strategies that tackle actuation failure
and system uncertainty.

(a) Case 1

(b) Case 2

(c) Case 3

Fig. 13: Mean fitness profiles over iterations of three cases
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(a) Case 1

(b) Case 2

(c) Case 3

Fig. 14: Learning rate profiles over evaluation iterations of
three cases
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[24] P. Larrañaga and J. A. Lozano, Estimation of distribution algorithms: A
new tool for evolutionary computation. Springer Science & Business
Media, 2001, vol. 2.

[25] H. Karshenas, R. Santana, C. Bielza, and P. Larrañaga, “Regularized
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