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Abstract—This paper introduces the notion of danger aware-
ness in the context of Human-Robot Interaction (HRI), which
decodes whether a human is aware of the existence of the
robot, and illuminates whether the human is willing to engage
in enforcing the safety. This paper also proposes a method to
quantify this notion as a single binary variable, so-called danger
awareness coefficient. By analyzing the effect of this coefficient
on the human’s actions, an online Bayesian learning method is
proposed to update the belief about the value of the coefficient.
It is shown that based upon the danger awareness coefficient and
the proposed learning method, the robot can build a predictive
human model to anticipate the human’s future actions. In order
to create a communication channel between the human and
the robot, to enrich the observations and get informative data
about the human, and to improve the efficiency of the robot, the
robot is equipped with a danger signaling system. A predictive
planning scheme, coupled with the predictive human model, is
also proposed to provide an efficient and Probabilistically safe
plan for the robot. The effectiveness of the proposed scheme
is demonstrated through simulation studies on an interaction
between a self-driving car and a pedestrian.

I. INTRODUCTION

The aim in Human-Robot Interaction (HRI) is to enable

efficient and safe interaction among all participating agents. In

general, this is a very challenging task, as safety enforcement

techniques depend on some presumptions and assumptions that

will not necessarily be true in practice, which may hamper the

efficiency of the robot. More precisely, robots will inevitably

encounter incomplete and possibly erroneous knowledge of

the environment and other agents; humans in particular. For

instance, a human might be less attentive than normal when

facing a self-driving car, presuming that the self-driving car

will undertake the safety satisfaction. Thus, robots must be

able to safely and timely reason over the uncertainty of the

environment they operate in to maintain their efficiency.

Reasoning in uncertain environments is an area where

humans excel. Inspired by this, this paper uses models of

human decision-making from cognitive science to develop a

framework that enables robots to reason over the uncertainties

inherent in predicting the actions of humans to enforce safety.

In particular, this paper introduces the notion of danger

awareness in HRI. This notion can be used to decode whether

a human is aware of the existence of other agents and possible

dangers that exist in the environment, and to explicate whether

the human is willing to engage in enforcing the safety. By the

term danger we refer to a situation in which the likelihood of

a collision between the human and the robot is greater than a

threshold value if neither the robot nor the human change their

behavior. This notion plays an important role in humans daily

interaction. For instance, a driver pays more attention to a biker

in front of the car than the one behind the car, as the driver

thinks that the biker in front of the car is not aware of the car

approaching from behind. Another example is a driver who

slows down when driving in an area wherein kids are playing

a game, while he/she drives at the same speed when adults

are playing the same game, because he/she has learnt that

kids may jump on the street unawares. These two examples

show that humans act based on their (unconscious) reasoning

about each other’s danger awareness level in safety-demanding

interaction. Therefore, the notion of danger awareness should

be incorporated in any approaches which aim at enabling the

robots to reach the human-level intelligence, and in any safety

enforcing schemes.

This paper proposes a method to quantify the notion of

danger awareness. More precisely, it is shown that we can

model the effect of this notion on human’s decisions via a

binary variable, so-called danger awareness coefficient. This

paper also proposes a method in which the robot contin-

ually learns the value of this coefficient based upon real-

time observations. A planning scheme is also proposed to

provide a probabilistically safe plan for the robot. Note that

by a probabilistically safe plan we mean a plan where the

probability of collision between the human and the robot is

less than a certain value.

Despite the current trend in robotics literature (e.g., [1, 2,

3, 4]), we believe that it is implausible to learn the human’s

behavior by only passively observing his/her states and actions.

Indeed, the human’s trajectory may not encode sufficient

information about the human. Thus, any planner developed

based upon such learning might be tremendously inaccurate,

leading to a conservative solution. One possible way to address

this issue, and consequently to improve the efficiency of the
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robot, is to enable the robot to influence the environment

to enrich the observations. To cater this need, we assume

that the robot is equipped with a danger signaling system.

This system can create a communication channel between the

human and the robot, where the robot can convey a message

to the human and receives the human’s reply manifested in

his/her actions. More precisely, by means of the danger signal,

the robot can actively aptly perturb the environment so that

the bird’s-eye view of the human’s behavior observed by the

robot is rich enough to reason about the human’s opinion on

the cooperative safety enforcement. It is noteworthy that the

idea of perturb&observe is taken from human interaction as

well. A demonstration is a driver who sounds the horn to

alert a pedestrian to the danger, and then reasons about his/her

consideration by observing his/her actions.

Two key contributions of this paper are: 1) to introduce

and quantify the notion of danger awareness, to investigate

its effect in HRI safety, and to propose a real-time method to

learn its value, and 2) to propose a state-of-the-art planning

scheme to provide probabilistically safe plans by taking into

account the notion of danger awareness. The main features of

this work are: 1) it is general and can be applied to any HRI

in which the human can assess the danger and can cooperate

with the robot to enforce safety; 2) the robot communicates

with the human, which can improve learning performance and

efficiency; and 3) the proposed scheme is modular, meaning

that any other objective functions (possibly representing other

behavioral attributes of the human) can be incorporated into

the scheme without changing the structure.

The remainder of this paper is organized as follows. Section

II discusses selected related work. Section III formulates the

problem. Section IV discusses how to build a predictive human

model, how to learn from human’s actions, and how to predict

human’s state in the future. In Section V a scheme for a

safe and efficient planning is proposed. Section VI verifies the

proposed method through intensive simulation studies. Finally,

Section VII concludes the paper and discusses future work.

Notation: We denote the set of real numbers by R, the set

of positive real numbers by R>0, and the set of non-negative

real numbers by R≥0. We use N (µ, σ) to indicate the Gaussian

distribution with mean value µ and covariance Σ. We denote

proportionality by ∝, and the transpose of matrix A by A⊤.

II. RELATED WORK

In recent years, there have been several studies on predicting

the actions of humans in the context of HRI. In some work

(e.g., [5]), it is assumed that the robot has complete knowledge

about the environment. However, this assumption may not be

reasonable in real-world scenarios due to uncertainties in the

human’s behavior.

As a result, many researchers have focused on developing

a method to enable the robots to use the history of the

humans’ actions and states to predict future actions. In [6],

propagation networks have been utilized to detect partially

ordered sequential actions of the humans. In [7], the authors

introduced the concept of constrained probabilistic Petri nets

and showed how this concept can be used to predict the actions

of humans. In [8], Gaussian mixture distribution techniques

have been used to model the actions of humans and to

predict the timing. Markov models [9, 10, 11] have been

used in a variety of studies to predict the timing of the

actions of humans. In [12], an interaction primitive framework

for predicting the most likely future movements of a human

is developed. The anticipatory temporal conditional random

fields have been used in [13] to predict the future actions of

the human. Some ad hoc methods have also been proposed in

the literature, e.g., [14].

Extensive work in cognitive science has shown that human

behavior can be well modeled by objective-driven optimization

[15, 16, 17]. In this context, a goal-based planning method

is proposed in [18] to predict future pedestrian trajectories.

References [19] and [20] provide a Bayesian framework to

reason about the model confidence. The authors of [21] assume

that humans are rational and try to control their actions to

avoid collision. In [19], the authors assume that the humans

are irrational and it is the responsibility of the robot to maintain

a safe distance from the human at all times. In [19], the

robot models the human as more likely to choose actions

which minimize a goal objective function. We use a goal-

based method to model the human’s actions in this paper.

However, we do not set any presumption on the rationality

of the human. More precisely, we model the human’s actions

by means of a combination of two separate objective functions,

a goal objective function and a safety objective function,

where the robot learns this combination online. As will be

seen later, this formulation allows us to add the capability

of indirect communication between the robot and the human

to understand the human’s actual intention, and consequently

reduce conservatism (i.e., improve efficiency of the robot).

Once a predictive human model is developed, the robot can

use this model to generate a safe and efficient plan. Several

planning schemes have been proposed in the literature. In

[22], the authors introduced the adaptive preferences algorithm

that computes a flexible optimal policy for robot scheduling

and control in assembly manufacturing. In [23], a method has

been proposed to optimize the task assignment such that the

cycle time is shortened, and consequently the productivity is

increased. Probabilistic wait-sensitive task planning have been

proposed in [24, 25] to optimize the robot tasks with respect

to the posterior human action distributions, reducing the total

wait time of the human. In [26, 27], the authors proposed

a motion planning scheme based on the human’s trajectory

prediction to improve efficiency. Genetic algorithms have also

been utilized in planners, e.g., [28]. The notion of the virtual

plane is used in [29] for path planning and navigation in

dynamic environments. In [30], the authors have developed

a path planning framework to safely navigate robots, while

avoiding dynamic obstacles with uncertain motion patterns.

Finally, an optimal safe planner is proposed in [31], where

the impacts of carelessness and boredom of humans have been

taken into account. Our work builds upon the notion of danger

awareness to create a scheme that can provide a safe and



less-conservative plan, without degrading the efficiency of the

robot.

III. PROBLEM FORMULATION

Consider a human-robot interaction, in which the robot and

the human are moving to two different present goal locations.

In the following, we formulate the problem for a general

interaction, while the interaction between a self-driving car

and a pedestrian will be being used as a running example to

show the utility of the proposed method. The running example

is demonstrated in Fig. 1.

A. Robot Model

The robot can be modeled as

xR[t+ 1] = fR (xR[t], uR[t]) , (1)

where xR[t] ∈ R
nR and uR[t] ∈ R

mR are respectively the

state and control action of the robot at time t, with nR and

mR as the dimensions of the robot state-space and the robot

control action, respectively.

Let gR ∈ R
nR be the goal state of the robot. Suppose that

the robot control action should belong to UR at all times,

i.e., uR[t] ∈ UR, ∀t ≥ 0. We assume that the robot uses

a receding predictive control to reach the state gR, while

avoiding collisions with the human. In particular, considering

QR
g (xR[t], uR[t], gR) : R

nR × R
mR × R

nR → R as the

objective function corresponding to the goal state gR, and

[t, t+TR] with TR ∈ R≥0 as the prediction horizon, the robot

solves the following optimization problem at time t to compute

the optimal control actions over the interval [t, t+ TR]:

u∗
R[t : t+ TR], dR =























arg min
uR[k]

∑t+TR

k=t QR
g (·)

s.t. uR[k] ∈ UR, ∀k

The model given in (1)

PColl[k] ≤ Pth, ∀k

, (2)

where k ∈ {t, · · · , t + TR} and u∗
R[t : t + TR] =

[

u∗⊤

R [t] · · · u∗⊤

R [t+ TR]
]⊤

, but only implements the action

u∗
R[t], and then solves (2) again at the next time instance,

repeatedly. In (2), dR is the on/off status of the danger signal

(will be discussed in Section III-C), PColl[t] ∈ [0, 1] is the the

probability of collision between the human and robot at time

t (will be discussed later in Section IV-C), and Pth ∈ [0, 1] is

the threshold value.

Running Example: The state of the self-driving car is

xR[t] =
[

pxR[t] pyR[t]
]⊤

∈ R
2, where pxR[t] and pyR[t]

are x and y positions of the self-driving car at time t,
respectively. The control action of the self-driving car is

uR[t] =
[

ux
R[t] uy

R[t]
]⊤

∈ R
2, where ux

R[t] and uy
R[t]

are the directional velocities along x and y axes at time t,
respectively. The dynamical model of the self-driving car is

then xR[t + 1] = xR[t] + uR[t]. The target position for the

self-driving car is gR =
[

gxR yyR
]⊤

∈ R
2. For the sake of

simplicity, we assume that the self-driving car can only move

along the y axis, i.e., pxR[t] = gxR, u
x
R[t] = 0, ∀t ≥ 0. Suppose

Fig. 1: Running example: the interaction between a self-

driving car and a pedestrian.

that UR =
{

[

0 0
]⊤

,
[

0 vR/2
]⊤

,
[

0 vR
]⊤

}

, where vR is the

basic velocity of the self-driving car. This means that the self-

driving car can move at either zero speed, or half speed, or full

speed. Finally, the goal objective function of the self-driving

car is QR
g (xR[t], uR[t], gR) = θ1 (p

y
R[t] + uy

R[t]− gyR)
2
+

θ2 (u
y
R[t])

2
, where θ1 ∈ R>0 and θ2 ∈ R≥0 are design

parameters. In this objective function, the first term is the

Euclidean distance between the target position and the self-

driving car at time t, and the second term is the distance

traveled by the self-driving car within one time step.

B. Human Model

The human can be modeled as

xH [t+ 1] = fH (xH [t], uH [t]) , (3)

where xH [t] ∈ R
nH and uH [t] ∈ R

mH are respectively the

human’s state and action at time t, with nH as the dimension

of the human state-space and mH as the dimension of the

human’s action.

Let gH ∈ R
nH be the human’s goal state. Suppose that

the human’s action should belong to UH at all times, i.e.,

uH [t] ∈ UH , ∀t ≥ 0.

As discussed in [15, 19, 32], human’s action can be well

modeled by objective-driven optimization. In the considered

HRI, we can model the human’s action as optimizing a

combination of a goal objective function and a safety objective

function. In mathematical terms, the human’s action at time t
is the solution of the following optimization problem:

u∗
H [t] =



















argmin
uH

QH
g (xH [t], uH , gH)

+ βQH
s (xH [t], uH , x̂R[t])

s.t. The model given in (3)

uH ∈ UH

, (4)

where QH
g (xH [t], uH [t], gH) : RnH ×R

mH ×R
nH → R is the

goal objective function corresponding to the goal state gH ,

and QH
s (xH [t], uH [t], x̂R[t]) : R

nH ×R
mH ×R

nR → R is the

safety objective function. In (4), x̂R[t] ∈ R
nR is an estimation



of the state of the robot at time t computed by the human.

Most importantly, β is a binary variable (i.e., β ∈ {0, 1}) that

we refer to as the danger awareness coefficient. A common

interpretation of β = 0 is a human who does not see the

robot, is careless, or presumes that it is the responsibility of

the robot to keep a safe distance. Whereas, β = 1 means

that the human is aware of the danger, is risk-averse, and acts

properly to reduce the risk.

Remark 1: The estimation x̂R[t] can be modeled as x̂R[t] =
xR[t]+ ǫ[t], with ǫ[t] ∈ R

nR as a zero-mean Gaussian random

variable with covariane Σ ∈ R
nR×nR

≥0 , i.e., ǫ[t] ∼ N (0,Σ).

Running Example: The pedestrian is an adult, whose state

is xH [t] =
[

pxH [t] pyH [t]
]⊤

∈ R
2, where pxH [t] and pyH [t] are

x and y positions of the pedestrian at time t, respectively.

The pedestrian’s action is uH [t] =
[

ux
H [t] uy

H [t]
]⊤

∈ R
2,

where ux
H [t] and uy

H [t] are the directional velocities along

x and y axes at time t, respectively. The pedestrian’s

model is then xH [t + 1] = xH [t] + uH [t]. The target

position for the pedestrian is gH =
[

gxH gyH
]⊤

∈ R
2.

For the sake of simplicity, we assume that the

pedestrian can only move along the x axis, i.e.,

pyH [t] = gyH , uy
H [t] = 0, ∀t ≥ 0. Suppose that UH =

{

[

−2vH 0
]⊤

,
[

−vH 0
]⊤

,
[

0 0
]⊤

,
[

vH 0
]⊤

,
[

2vH 0
]⊤

}

,

where vH is the pedestrian’s basic walking velocity.

This means that the pedestrian can stop, walk, or run in

either directions. The pedestrian’s goal objective function

is QH
g (xH [t], uH [t], gH) = θ3 (p

x
H [t] + ux

H [t]− gxH)
2

+

θ4 (u
x
H [t]− vH)

2
, where θ3, θ4 ∈ R>0 are design parameters.

In this objective function, the first term is the Euclidean

distance between the target position and the pedestrian at

time t, and the second term ensures that the pedestrian

walks toward the target position. Finally, the safety objective

function is QH
s (xH [t], uH , x̂R[t]) = θ5e

−θ6·dist[t], where

θ5, θ6 ∈ R>0 are design parameters, and dist[t] ∈ R≥0 is the

distance between self-driving car and the pedestrian estimated

by the pedestrian at time t. This safety objective function

is indeed a penalty function on the distance between the

pedestrian and the self-driving car, such that larger distance

produces lower penalty value. This formulation is plausible,

as humans continue walking toward the target position when

there is large distance.

C. Danger Signaling System

Despite majority of work in the literature, we assume that

the humans can be influenced by the actions of the robots.

Indeed, we believe that assuming that humans irrationally

operate in human-robot environments and intentionally ignore

the robots not only is unrealistic, but also severely harms the

efficiency of the robots.

To address this issue, we assume that the robot is

equipped with a proper pre-collision method which uses

signals/indicators to alert the danger to the human (e.g., visual

indicators [33] and auditory signals [34]). As discussed in

Section I, the main goal of employing the danger signaling

is to improve the robot’s ability to estimate the state of the

Fig. 2: The general structure of the proposed planning scheme.

human danger awareness, and to maintain the efficiency of

the robot in reaching the goal state without being influenced

by the human’s possible unsafe actions. We denote the on/off

status of the danger signal by the binary variable dR, where

dR = 0 if the signal is off and dR = 1 if it is on. The robot

switches the signal on when the constraint PColl[k] ≤ Pth in

(2) is active for any k ∈ {t, · · · , t+ TR} (i.e., this constraint

effects the obtained results).

Remark 2: From a technical viewpoint, the danger signal-

ing can actively perturb the environment so to improve the

efficiency and safety of the interaction by: 1) acquainting an

unaware human or a human who underestimates the danger

(i.e., changing the value of β from 0 to 1), and 2) helping the

human to reduce the estimation error ǫ[t] (e.g., the error may

be large due to bright sun glare in the human’s eyes).

Running Example: The self-driving car uses the high

beams to notify the possible collision between the car and

the pedestrian.

D. Problem Statement

At this stage we define the following problem.

Problem 1: Consider a HRI, in which the robot and the

human are moving to two different goal locations. Suppose

that the robot model is as in (1), and the robot uses the receding

predictive control given in (2) to determine the next action.

Suppose that the human’s model is as in (3), and the human

decides the next action via optimization problem (4). Suppose

that the robot uses the danger signaling system to alert the

danger to the human. Provide a method to ensure that both

agents reach their goal states, while the safety of the human

and the robot is guaranteed.

In order to solve Problem 1, assuming that the robot can ob-

serve human’s location and action, we will develop a scheme

to provide probabilistically safe robot actions to guide the

robot to the goal state, without any collision with the human.

The structure of the proposed scheme is depicted in Fig. 2. The

gist of this scheme is the development of a predictive model

of the human’s motion, whose values are computed through

posterior calculations based upon observations performed by

the robot. The proposed scheme will be discussed in detail in

the following sections.

IV. PREDICTIVE HUMAN MODEL

According to (2), the robot determines its actions by taking

into account the future states of the human. This mean that

the robot must employ a predictive human model to predict



human’s states in the future. The accuracy of these predictions

and the method used to plan around them determine the safety

of the interaction.

According to (4), the human decides next action according

to the objective functions QH
g (·) and QH

s (·), and the danger

awareness coefficient β. We assume that the robot knows

the objective functions QH
g (·) and QH

s (·). This assumption is

reasonable, as the robot can learn these functions from prior

human’s motions or these functions can be explicitly provided

by the system designers. However, any presumption on the

value of the coefficient β will often be wrong in practice;

humans may have different opinions of safety, or they may be

less attentive than normal when facing robots presuming that

it is the responsibility of the robot to maintain a safe distance.

Thus, the robot must be able to timely reason over the value

of β to produce a reliable distribution of human’s states in the

future.

In what follow, first, we will propose a probabilistic Boltz-

mann model to predict the human’s action. Then, an update

method will be proposed to update the belief on the value of

the danger awareness coefficient. Finally, it will be discussed

how the robot can predict the probability of a collision in the

future.

A. Human Action Prediction

As mentioned above, we assume that the robot knows the

objective functions QH
g (·) and QH

s (·). Under this assumption,

the robot can predict the human’s action as a probability

distribution over actions conditioned on the human’s state.

Running Example: The formulation of the goal objective

function QH
g (·) is quite straightforward, as the pedestrian

wants to walk from one sidewalk to the other sidewalk of the

street. For what concerns the safety objective function QH
s (·),

it is possible to learn it for pedestrians1 based upon behavioral

patterns [35, 36, 37, 38]. Note that since β multiplies QH
s (·)

in (4), either β = 0 (i.e., unaware humans) or QH
s (·) = 0

(e.g., children who do not recognize the danger) has the same

results in human actions.

The robot uses the following mixture distribution to model

the human’s behavior:

P (uH |xH , xR;β) =(1 − ωH) · Pd(uH |xH , xR;β)

+ ωH · Pr(uH), (5)

where Pd(uH |xH , xR;β) models the human’s deliberate be-

havior, Pr(uH) models the human’s random behavior, and

ωH ∈ [0, 1] is the mixture weight. Note that (5) should be

computed for every uH ∈ UH and every β ∈ {0, 1}.

The function Pd(uH |xH , xR;β) describes the probability

distribution of the human’s action if the human chooses the

action according to the the goal and safety objective functions.

Assuming that the robot can observe the human’s state, one

1We understand that there might be some differences between people.
However, this paper does not aim to deal with the differences.

possible way to model the human’s deliberate behavior is to

use the Boltzmann distribution, as follows:

Pd(uH |xH , xR;β) ∝ e−γ(QH
g (xH ,uH ,gH )+βQH

s (xH ,uH ,xR)),
(6)

where γ ≫ 1. Note that (6) should be computed for every

uH ∈ UH and every β ∈ {0, 1}.

Remark 3: Selecting a large γ ensures that model (6)

treats the human as more likely to choose the action that

minimizes the cost function given in (4). More precisely,

Pd(u
∗
H [t]|xH [t], xR[t];β) ≈ 1, where u∗

H [t] is as in (4), and

Pd(uH [t]|xH [t], xR[t];β) ≈ 0, where uH [t] 6= u∗
H [t].

Remark 4: The robot uses the actual state xR[t] in (6) to pre-

dict the human’s actions, while the human uses the estimation

x̂R[t] in (4) to decide the next action. Thus, if the estimation

error ǫ[t] is large, we may have Pd(u
∗
H [t]|xH [t], xR[t];β) 6≈ 1,

where u∗
H [t] is as in (4).

In reality, the human may choose a random action by

completely ignoring the objective functions for any reason.

The robot makes use of a uniform distribution to model the

human’s random behavior, as follows

Pr(uH) =
1

|UH |
, ∀uH ∈ UH , (7)

where |UH | is the cardinality of the set UH . Note that this

uniform distribution can be given a more practical interpreta-

tion related to the accuracy of the estimation x̂R[t] and/or the

reliability of the detectors used by the robot to observe the

human’s state and action.

Running Example: The uniform distribution Pr(uH)
models cases in which the pedestrian stops on the road or

walks in the opposite direction of the target position gH for

any reason other than safety.

B. Real-Time Update of the Belief About the Coefficient β

The danger awareness coefficient β can be seen as a

hidden state. Given a priori belief about the danger awareness

coefficient (i.e., P0(β), ∀β), the robot can use the observations

to update the belief about the danger awareness coefficient by

applying the Bayes’ rule. In mathematical terms, by observing

the human’s state and action at time t, the robot can update the

belief about the danger awareness coefficient via the following

Bayesian update:

Pt+1(β) =
P (uH [t]|xH [t], xR[t];β)Pt(β)

∑

β̄ P (uH [t]|xH [t], xR[t]; β̄)Pt(β̄)
, ∀β, (8)

where P (uH [t]|xH [t];β) is as in (5). Note that since the set

of β values and the set of human’s possible actions UH are

small, update rule (8) can be implemented in real-time. It is

noteworthy that Pt(β = 1) is the robot’s belief at time t about

the likelihood that the human is aware of the danger.

C. Computation of the Probability of Collision

Suppose that the human’s state-space is divided into Nc

discrete grid cells. Thus, by observing xH [t], the probability



of the human’s state in the time interval [t+1, t+TR] can be

predicted via the following recursive update rule:

P (xH [k + 1]) ∝
∑

xH [k],uH [k]

∑

β

P (xH [k + 1]|xH [k], uH [k])

· P (uH [k]|xH [k], xR[k];β) · Pt(β), (9)

for k = t, · · · , t + TR − 1, where P (uH [k]|xH [k], xR[k];β)
can be computed via (5), Pt(β) can be computed via (8), and

P (xH [k + 1]|xH [k], uH [k]) is equal to 1 if xH [k+1], xH [k],
and uH [k] satisfy (3), and is equal to zero otherwise.

Note that (9) should be computed for every grid cell in

the human’s state-space. In other words, for each k, the

likelihood of the human’s state being in all Nc cells should be

computed. Also, note that we use Pt(β) in (9) to predict the

human’s state, meaning that the danger awareness coefficient

is assumed to be constant within the prediction horizon. Due to

the receding nature of the planner given in (2), this assumption

does not hamper the performance of the planner.

Once the probability distribution of the human’s state over

the time interval [t + 1, t + TR] is generated, the robot

should computed the probability of collision PColl[k], k =
t+1, · · · , t+TR. Note that PColl[t] = 0 in (2), as there is no

collision at the current time (i.e., time t).

Let π(xH [k]), k = t + 1, · · · , t + TR be a neighborhood

around the predicted human’s state xH [k]. This neighborhood

should be determined according to the predefined safe distanc-

ing measures, the effect of possible modeling and tracking

errors on the predictions, and the effect of gridding the

human’s state-space (i.e., quantization error).

By construction, the probability of a collision event at time

k (for k ∈ {t+ 1, · · · , t+ TR}) can be computed [19] as the

probability that xR[k] is inside the neighborhood π(xH [k]),
without any collisions prior to k. This probability is presented

in (10). Note that (10) should be computed recursively.

Remark 5: Since the effect of gridding the human’s state-

space is reflected in the function π(·), safety analyses of this

paper are valid even with a small Nc (i.e., large cells).

Remark 6: According to (10), the probability of collision

for k ∈ {t+ 1, t+ TR} can be upper bounded as

PColl[k] ≤ P (xR[k] ∈ π(xH [k])) , (11)

which means that collision probabilities over time are indepen-

dent. This upper bound may lead to a conservative solution.

However, it can significantly reduce the computational com-

plexity of optimization problem (2).

The following proposition elucidates how (10) (or (11)) can

be computed according to (9).

Proposition 1: Suppose that xR[k], k ∈ {t+1, · · · , t+TR}
is the robot trajectory within the prediction horizon. Then,

P (xR[k] ∈ π(α)) where α is a cell in the human’s state-space

is equal to the probability that the human’s state at time k is

α, i.e., P (xH [k] = α), which can be computed through (9).

Running Example: We define π(xH [k]) as a circle cen-

tered on xH [k] with radius ρ. Thus, xR[k] ∈ π(xH [k]) iff

(pxH [k]− pxR[k])
2 + (pyH [k]− pyR[k])

2 ≤ ρ2.

Remark 7: Setting Pth = 0 provides a deterministically safe

trajectory. Such trajectories are usually very conservative, as

they take into account the worst-case scenario. The obtained

trajectory for Pth ∈ (0, 1] is probabilistically safe, which, in

general, does not guarantee recursive feasibility. This is an

issue in many planning schemes which are developed based

upon a probabilistic human model, e.g., [3, 19, 20, 30, 39].

Indeed, since the robot actions are limited and due to the

imperfect human model, the recursive feasibility is unsurpris-

ingly very difficult to satisfy without rendering the solution

conservative.

V. THE PROPOSED PLANNING SCHEME

The general structure of the proposed planning scheme is

shown in Fig. 2. In this scheme, first, the robot observes the

human’s state xH [t] and its own state xR[t]. Based on these

observations, the robot generates two probability distributions:

1) a distribution over the human’s next action, and 2) a

distribution over the human’s states in a future time interval.

The former probability distribution will be used to update the

belief on the human’s risk-aversion level. The latter probability

distribution will be used to compute probability of collision in

a future time interval. The robot then solves an optimization

problem to determine the next action and the on/off status of

the danger signal. Finally, Once the human takes an action,

the robot observes the action and updates the belief about the

danger awareness coefficient. The proposed scheme can be

summarized as Algorithm 1.

PColl[k] =P
(

xR[k] ∈ π(xH [k]), xR[k − 1] 6∈ π(xH [k − 1]), · · · , xR[t+ 1] 6∈ π(xH [t+ 1])
)

=P
(

xR[k] ∈ π(xH [k])|xR[k − 1] 6∈ π(xH [k − 1]), · · · , xR[t+ 1] 6∈ π(xH [t+ 1])
)

× P
(

xR[k − 1] 6∈ π(xH [k − 1])|xR[k − 2] 6∈ π(xH [k − 2]), · · · , xR[t+ 1] 6∈ π(xH [t+ 1])
)

× · · · × P
(

xR[t+ 1] 6∈ π(xH [t+ 1])
)

=P
(

xR[k] ∈ π(xH [k])|xR[k − 1] 6∈ π(xH [k − 1]), · · · , xR[t+ 1] 6∈ π(xH [t+ 1])
)

×

(

1− P
(

xR[k − 1] ∈ π(xH [k − 1])|xR[k − 2] 6∈ π(xH [k − 2]), · · · , xR[t+ 1] 6∈ π(xH [t+ 1])
)

)

× · · · ×

(

1− P
(

xR[t+ 1] ∈ π(xH [t+ 1])
)

)

. (10)
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Fig. 3: A screenshot of the generated simulator shown in the accompanied video (see https://youtu.be/ 9UjDvZYT2U). Left

figure: the interaction between a self-driving car and a pedestrian in the street; the pedestrian moves from right to left, and

the car moves from south to north. Middle-left figures: the top figure shows the time profile of the robot’s belief about the

likelihood that the human is aware of the danger, i.e., Pt(β = 1), and the bottom figure shows the probability of collision over

the prediction horizon. Middle-right figure: probability distribution of the human’s position in the street over the prediction

horizon, computed at each time instant (here at time t = 17); note that the pedestrian moves from right to left. Right figures:

the top and bottom figures indicate the pedestrian and car actions at the current time instant, respectively.

Algorithm 1 Planning Scheme

1: Observe the human’s state xH [t] and the state of the robot

xR[t].
2: Compute the mixture distribution P (uH |xH [t], xR[t];β)

for every uH ∈ UH and β via (5).

3: Compute the probability distribution of human’s states

P (xH [k]) for k ∈ {t+ 1, t+ TR} via (9).

4: Compute the probability of collision PColl[k] for k ∈ {t+
1, t+ TR} via (10) (or (11)).

5: Determine the action of the robot u∗
R[t] and the on/off

status of the danger signal dR via (2).

6: Observe the human’s action uH [t].
7: Update the belief about the danger awareness coefficient

via (8), i.e., compute Pt+1(β) for all β.

VI. SIMULATION STUDY

In order to demonstrate the effectiveness of the proposed

scheme, we simulate the considered running example, i.e., the

interaction between a self-driving car and a pedestrian shown

in Fig. 1. We assume that gR = [0 80]⊤, gH = [5 10]⊤,

vR = 2, vH = 0.5, ωH = 0.1, Pth = 0.1, TR = 5, γ = 1000,

θ1 = 1, θ2 = 0.5, θ3 = 2.5, θ4 = 8 × 10−3, θ5 = 300,

θ6 = 6 × 10−3, Σ = 1, and P0(β = 0) = P0(β = 1) =
1/2. The simulations are carried out using MATLAB/Simulink

package, on Intel(R) Core(TM)i7-7500U CPU 2.70 GHz with

16.00 GB of RAM. We use the YALMIP toolbox [40] to solve

the optimization problems.

In order to have a visual demonstration of the considered

interaction between a pedestrian and a self-driving car, a

simulator has been generated. Fig. 3 presents an overview of

the generated simulator. A video of operation of the simulator

is available at the URL: https://youtu.be/ 9UjDvZYT2U.

A. Impact of the Danger Signaling System

As discussed in Remark 2, the danger signaling system can

improve the efficiency and safety by acquainting the unaware

pedestrian. This aspect is shown in Fig. 4. As seen in this

figure, when the pedestrian is unconcerned (i.e., β = 0 and/or

QH
s (·) = 0), the pedestrian keeps walking toward the target

position gH . Thus, the self-driving car comes to a full stop to

keep the probability of collision lower than the threshold value.

Whereas, when the robot alerts the danger to a concerned

but unaware pedestrian, he/she runs backward to the right

sidewalk. Thus the self-driving car continues toward the goal

position gR without stopping.

B. Impact of the Estimation Error ǫ[t]

As discussed in Section III-B, the pedestrian makes use of

an estimation of the position of the self-driving car. However,

as discussed in Section IV-A, the self-driving car predicts the

pedestrian’s action based on its actual position. This means

that in the presence of a large estimation error, even if the

pedestrian is completely aware of the danger (i.e., β = 1),

the pedestrian may take an action which increases the risk.

Thus, the self-driving car cannot learn accurately the danger

awareness coefficient, and may have unnecessary stops. As

discussed in Remark 2, the danger signaling system can impact

the interaction by decreasing the estimation error. This impact

has been studied in Fig. 5. As seen in this figure, even

though the pedestrian is concerned, due to the estimation error

the pedestrian takes a safe action late2. Note that when the

estimation error is small (i.e., ǫ[t] = 5), the pedestrian runs

backward toward the sidewalk on the right, as the pedestrian

realizes the danger when he/she is in the right half of the street.

2We assume that the pedestrian compensates the estimation error as ǫ[t] =
ǫ0 · e−η.dR.(t−td), where ǫ0 is the initial error, η > 0 is a scalar, and td is
the time that dR switches from 0 to 1.

https://youtu.be/_9UjDvZYT2U
https://youtu.be/_9UjDvZYT2U


Fig. 4: Time profile of the robot’s belief about the likelihood

that the pedestrian is aware of the danger. Top figure: the

pedestrian is concerned, i.e., is aware of the danger and en-

gages in the safety enforcement. Middle figure: the pedestrian

is unconcerned, i.e., either is unaware of the danger or does

not care. Bottom figure: the danger signaling system acquaints

the concerned but unaware pedestrian.

While, when the estimation error is large (i.e., ǫ[t] = 10), the

pedestrian runs forward toward the sidewalk on the left, as the

pedestrian realizes the danger when he/she is in the left half

of the street.

C. Impact of the Mixture Weight ωH

As discussed in Section IV-A, the mixture weight ωH de-

fines the relationship between the mixture components. More

precisely, ωH = 0 means that the human is being driven only

by the goal and safety objective functions, and ωH = 1 means

that the human chooses the actions randomly by completely

ignoring the objectives functions. This mixture weight affects

the prediction of the pedestrian’s position in the street over

the prediction horizon. In particular, for a large ωH , as the

pedestrian appears random, the probability distribution over

the pedestrian’s position in the future will be wide. While, a

small ωH leads to a tight distribution. This impact is shown

in Fig. 6 for four different values of ωH . As seen in this

figure, by increasing ωH , the probability distribution over the

pedestrian’s position in the street becomes wider, meaning

that the prediction of the pedestrian’s position becomes more

uncertain.

VII. CONCLUSION AND FUTURE WORK

This paper introduced the notion of danger awareness in

HRI, and accordingly the co-called danger awareness coef-

Fig. 5: Time profile of the robot’s belief about the likelihood

that the pedestrian is aware of the danger in the presence

of a concerned pedestrian. Top figure: the estimation error is

zero; the pedestrian realizes the danger in time. Middle figure:

the pedestrian realizes the danger late, and runs toward the

sidewalk on the right. Bottom figure: the pedestrian realizes

the danger very late, and runs toward the sidewalk on the left.
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Fig. 6: The impact of the mixture weight ωH in the probability

distribution over the human’s position in the street over the

prediction horizon, computed at time t. Note that the pedes-

trian moves from right to left.

ficient. This coefficient quantifies the human’s intention to

participate in and/or human’s opinion of cooperative safety

enforcement. The notion of danger awareness contributes to

the state-of-the-art by revoking the presumption that humans

do not intend to cooperate with robots to enforce safety, which

usually leads to a conservative solution. In particular, this



notion not only addresses Law#1 and #2 of the Isaac Asimov’s

“Three Laws of Robotics” (i.e., safety-related laws), but also

tackles Law#3 (i.e., efficiency-related law). It is noteworthy

that fully transferring safety responsibility to the robot while

the human is eager to contribute goes against the efficiency of

the robot.

This paper proposed an online Bayesian method to learn

the value of the danger awareness coefficient. It was shown

how this learning scheme helps the robot to build a predictive

human model to predict the human’s future actions. Since the

learning scheme is based on real-time observations, this paper

deployed an danger signaling system to actively perturb the

environment and enrich the observations, and consequently

improve the learning performance. It should be remarked that

the danger signaling system also improves the efficiency of

the robot by acquainting an unaware human and driving the

human to assist the robot in enforcing the safety.

Finally, a predictive planning scheme was proposed to

obtain a plan for the robot. It was shown that by leveraging

the danger awareness coefficient and the danger signaling

system, the planning scheme obtains a probabilistically safe,

but yet efficient, plan. The proposed scheme was verified

through intensive simulation studies on an interaction between

a self-driving car and a pedestrian, and the impact of different

parameters were assessed.

Based upon our results in this paper, we believe that the

notion of danger awareness has potential for playing a core

role in enabling autonomous systems to have an efficient

and safe interaction with humans. In particular, we envision

exploiting this notion to prevent misuse of safety regulations

by humans. By understanding the hidden intention of humans,

this paper revealed that it is possible to enforce safety without

hindering the robots. In future work, we will investigate how

the notion of danger awareness can be leveraged to improve

fairness in HRI despite conflicting objectives, i.e., ensuring

safety of all agents without letting them deceive each other.
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