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Abstract— This paper presents a pose tracking controller
for a six degree-of-freedom over-constrained cable-driven robot
(CDPR). The proposed control method uses an adaptive
feedforward-based controller to establish a passive input-output
mapping for the CDPR that is used alongside a linear time-
invariant strictly positive real feedback controller to guarantee
robust closed-loop input-output stability and asymptotic pose
trajectory tracking via the passivity theorem. A novelty of
the proposed controller is its formulation for use with a
range of payload attitude parameterizations, including any
unconstrained attitude parameterization, the quaternion, or
the direction cosine matrix (DCM). The performance and
robustness of the proposed controller is demonstrated through
numerical simulations of a CDPR with rigid and flexible cables.
The results demonstrate the importance of carefully defining
the CDPR’s pose error, which is performed in multiplicative
fashion when using the quaternion and DCM, and in a specific
additive fashion when using unconstrained attitude parameters
(e.g., an Euler-angle sequence).

I. INTRODUCTION

Over-constrained cable-driven parallel robots (CDPRs) are

a class of parallel robots that make use of a redundant

set of tensile cable forces to actuate an end-effector or

payload. CDPRs typically feature large workspaces and

are capable of relatively high payload accelerations due to

their low inertia compared to traditional parallel and serial

robotic manipulators. Accurate and robust pose (position

and attitude/orientation) control of the CDPR’s payload or

end-effector is challenging, as over-constrained CDPRs are

redundantly actuated, which requires a force distribution al-

gorithm (see [1] for a summary of commonly used methods),

and they can have highly uncertain dynamics (e.g., payload

with uncertain inertia or flexible/sagging cables). Uncertainty

in the CDPR’s dynamics can be accounted for with adaptive

control techniques, which are often coupled to a specific form

of a feedback controller (e.g., a constant-gain proportional-

derivative controller) and a specific representation of the

payload’s attitude (e.g., an Euler-angle sequence) [2]–[6].

Passivity-based control is capable of providing guarantees

of robust closed-loop input-output stability for large ranges

of system uncertainty and has been widely implemented on

serial robotic manipulators for trajectory tracking [7], [8].

Passivity-based control has recently been extended to the

robust control of parallel robots [9]–[11], and in particular,
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CDPRs [12]–[17]. For example, a robust adaptive passivity-

based control method for single degree-of-freedom (DOF)

CDPRs capable of tracking desired payload trajectories in

the presence of model uncertainty and flexible cables was

presented in [15]. Early work on the passivity-based control

of CDPRs focused on suspended CDPRs with the same

number of cables as payload DOFs [12] or relied on having

twice as many cables as payload DOFs in the overconstrained

case [13]–[15]. The work of [11], [16], [17] demonstrated

that passivity-based task-space translational [11], [16] and

pose [17] control of CDPRs can be decoupled from the

choice of control allocation method, which greatly expanded

its applicability to realistic CDPR configurations that typi-

cally feature one or two more cables than payload DOFs.

Virtually all CDPR pose regulation and tracking con-

trollers in the literature make use of Euler angles to compute

the attitude portion of the control law (see examples in [2]–

[6], [12], [18]–[23]), with the exception of the direction co-

sine matrix (DCM)-based controller in [17] and the rotation

vector-based controller in [24]. In other words, the attitude

of the CDPR payload at a given instance in time is computed

in terms of an Euler-angle sequence and subtracted from a

set of desired Euler angles to form an error signal that is reg-

ulated to zero. Although these Euler-angle-based controllers

clearly work in practice, it is unnecessary to restrict CDPR

pose control to this one choice of attitude parameterization,

especially when the rotation matrix or DCM describing the

attitude of the CDPR payload is typically available though

the forward kinematics needed to operate the CDPR. In

addition, advances in nonlinear pose estimation has led to

methods that directly estimate the rotation matrix/DCM [25]

or quaternion [26] associated with a CDPR payload, making

these quantities readily available for control.

This paper presents an adaptive passivity-based CDPR

pose tracking controller that uses the passivity theorem to

guarantee closed-loop input-output stability and asymptotic

tracking of a desired payload pose trajectory, where various

attitude parameterizations of the payload attiitude can be

used. The proposed controller takes inspiration from mul-

tiple sources, including passivity-based adaptive controllers

designed for CDPRs [6], redundantly-actuated flexible ma-

nipulators [27], and spacecraft [28]. The novel contributions

of the proposed controller compared to other adaptive CDPR

controllers in the literature, including [2]–[6], is 1) its ability

to make use of any unconstrained attitude parameterization,

the quaternion, or the DCM when computing the pose track-

ing error and 2) its ease of use with any input-strictly passive
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(ISP) or strictly positive real (SPR) feedback controller.

The first contribution has the potential to lead to a more

homogeneous CDPR operation framework, where the same

attitude parameterization can be used both for kinematics and

motion control. At a minimum, the proposed control method

provides the CDPR operator with a choice as to which atti-

tude parameterization they desire to use for feedback, which,

to the best of the knowledge of the authors, is a limitation

in the CDPR literature, where Euler-angle sequences are

almost exclusively used for control (exceptions include a

DCM-based pose-regulation controller was used in [17] and

a rotation-vector-based controller was implemented in [24]).

The second contribution related to the use of an ISP or SPR

controller has practical benefits, as the design of the feedback

controller can be decoupled from the closed-loop stability

analysis and practical control designs, such as a low-pass

control gain can be implemented.

The form of the proposed passivity-based adaptive con-

troller stems from [7], [29] and makes use of advances

in [27], [28], where attitude parameterizations were incor-

porated within passivity-based control. The novelty of the

proposed controller compared to the theory developed in [27]

for flexible manipulators, includes extending its use to the

quaternion or DCM, as well as its application and valida-

tion on a CDPR. The quaternion-based spacecraft attitude

controller in [28] is extended to CDPR pose tracking to

yield the proposed quaternion-based method. The work in

this paper is also an extension of the preliminary study

on passivity-based pose regulation of a CDPR in [17],

which assumed knowledge of the CDPR dynamics, did not

provide any mathematical guarantees of pose tracking error

convergence, and was limited to the use of the DCM to

represent the attitude of the CDPR’s payload. The control

method proposed in this paper removes these restrictions and

assumptions.

The remainder of this paper proceeds as follows. Important

preliminaries, including notation, theorems, and a description

of the CDPR kinematics and dynamics are presented in Sec-

tion II. Section III presents the proposed adaptive passivity-

based control formulation using unconstrained attitude pa-

rameterizations, the quaternion, and the DCM. Numerical

simulation results are included in Section IV, followed by

concluding remarks in Section V.

II. PRELIMINARIES

Notation and theorems used throughout the paper are

presented in this section, followed by an overview of the

CDPR kinematics and dynamics considered in this work.

A. Notation, Definitions and Theorems

For this paper, the identity matrix and a matrix of zeros

are respectively written as 1 and 0. Matrices are represented

in bold (e.g., A ∈ R
n×m). Positive definite matrices are

represented by A = AT > 0. The cross operator, (·)× :

R
3 → so(3), is defined as

v× =





0 −v3 v2
v3 0 −v1
−v2 v1 0



 ,

where vT =
[

v1 v2 v3
]

and so(3) = {S ∈ R
3×3|S+ST =

0}. The reverse or uncross operator, (·)v : R3×3 → R
3, is

defined as Av =
[

a1 a2 a3
]T

, where A = −AT = (Av)
×

.

The antisymmetric projection operator, P(·) : R
3×3 →

so(3), projects a matrix U ∈ R
3×3 to the set of antisymmetric

matrices, where P (U) = 1

2

(

U − UT
)

. For v ∈ R
3 and

U ∈ R
3×3, it follows that [30]

1

2
tr
(

v×U
)

= −vT
P (U)

v

. (1)

Another useful cross operator identity is given by [31]

v×A + ATv× = ((tr(A)1 − A)v)×, (2)

where v ∈ R
3 and A ∈ R

3×3. The signal y(t) satisfies y ∈
L2 if ‖y‖

2

2
=

∫∞

0
yT(t)y(t)dt <∞. The signal y(t) satisfies

y ∈ L2e if yT ∈ L2 for all T ∈ R≥0, where yT (t) = y(t)
for 0 ≤ t ≤ T and yT (t) = 0 for T < t.

The attitude of reference frame Fp relative to reference

frame Fa is described by the DCM Cpa, which is a member

of the special orthogonal group SO(3), where SO(3) =
{C ∈ R

3×3 | CTC = 1, det(C) = 1}. The DCM Cpa

is related to the rotation matrix, R that rotates frame Fa

to Fp by Cpa = RT. Parameterizations of the DCM are

represented in this paper as qpa ∈ R
n, examples of which

include an Euler-angle sequence (qpa ∈ R
3), the quaternion

(qpa ∈ R
4), or even the columns of the DCM (qpa ∈ R

9).

Poisson’s equation relates the angular velocity to the time

derivative of the DCM as Ċpa = −ωpa×

Cpa, where ωpa is

the angular velocity of Fp relative to Fa resolved in Fp.

The attitude parameterization rates are related to angular

velocity by ωpa = S(qpa)q̇pa, where S(qpa) is a mapping

matrix whose contents depends on the choice of attitude

parameterization [32], [33].

Definition 1 (Passivity [8]): The input-output mapping

u 7→ y associated with the operator G : L2e → L2e, where

y = G(u), is ISP if for all u ∈ L2e and T ∈ R≥0 there exist

δ ∈ R>0 and β ∈ R such that

∫ T

0

yT(t)u(t)dt ≥ δ ‖uT ‖
2

2
+ β. (3)

If (3) is satisfied with δ = 0, then u 7→ y is passive. The

scalar β is a constant related to initial conditions.

B. CDPR Kinematics and Dynamics

Consider an over-constrained CDPR with m rigid cables

actuated by winches and connected to a rigid-body payload,

where m > 6, as shown in Fig. 1. The CDPR’s equations of

motion in task space are given as [34]

M(ρ)ν̇ + D(ρ,ν)ν + g(ρ) = Π
T(ρ)τ , (4)

where ρT = [rT qpaT

] represents the payload’s pose, r ∈ R
3

is the position of the payload’s center of mass relative



Fig. 1. A 6 DOF CDPR with 8 flexible cables and a rigid-body payload.

to a point at the origin of an inertial frame Fa resolved

in Fa, and qpa ∈ R
n is an attitude parameterization of

the payload-fixed reference frame Fp relative to Fa. The

augmented payload velocity is given by νT = [ṙT ωpaT

],
where ωpa ∈ R

3 is the angular velocity of Fp relative to

Fa resolved in Fp. The torques applied by the winches are

denoted as τT =
[

τ1 · · · τm
]

. The remaining terms in (4)

are the mass matrix M(ρ) = MT(ρ) > 0, the nonlinear

term D(ρ,ν), which contains centrifugal and Coriolis forces,

and the gravitational term g(ρ). Furthermore, it is known

that Ṁ(ρ) − 2D(ρ,ν) is skew-symmetric [34]. The winch

torques are distributed through the wrench matrix Π(ρ) ∈
R

m×6, which is uniquely defined through inverse velocity

kinematics and is full rank when the payload remains within

its wrench-feasible workspace.

III. CONTROL FORMULATION AND PASSIVITY &

STABILITY ANALYSES

The pose tracking controller is presented in this section,

where the objective is to ensure r → rd and qpa → qda

as t → ∞, where rd and qda describe the desired position

and attitude trajectories of the CDPR payload, respectively.

As with previous preliminary work on the passivity-based

control of CDPRs [17], the controller is formulated in terms

of

f = Π
T(ρ)τ ,

where f ∈ R
6 is the control wrench to be applied to the

payload (i.e., its first three elements are a force resolved

in Fa and its last three elements are a torque resolved

in Fp). See [1] for a summary of a force distribution

methods that can be used to determine the torques τ that

generate the desired control wrench. Force distribution is not

a contribution of this work and the following analysis and

results are valid for any method, provided f = Π
T(ρ)τ .

The proposed control input is described by

f = fff + ffb, (5)

where fff is an adaptive feedforward-based input and ffb is

a feedback input. The remainder of this section outlines the

proposed adaptive feedforward-based and feedback control

inputs, formulations of the pose tracking errors for different

attitude parameterizations, along with proofs of passivity and

closed-loop trajectory tracking convergence.

A. Adaptive Feedforward-Based Control

The adaptive feedforward-based control input is derived

by first considering a desired feedforward-based input

fd =

[

mp1 0

0 Ip

]

ν̇r +

[

0 0

0 ωpa×

Ip

]

νr +

[

mpg13

0

]

(6)

where mp ∈ R and Ip = ITp ∈ R
3×3 represent the constant

mass and inertia of the payload, and 1T
3 =

[

0 0 1
]

.

Note that (6) is equivalent to (4), with the assumption that

the dynamics of the CDPR are dominated by those of its

rigid-body payload and the replacement of ν by νr, which

represents the virtual filtered rate trajectory defined as [27]

νr = νd − PΛp̃, (7)

where Λ = Λ
T > 0 is a control gain, and the terms

p̃ ∈ R
6 and νd ∈ R

6 are the pose tracking error and

desired augmented velocity, respectively, which are defined

in the following subsection for difference choices of attitude

parameterizations, along with the matrix P ∈ R
6×6. The

variable νr is related to the virtual reference trajectory

in [29], but is designed in a distinct manner to accom-

modate various attitude parameterizations, as outlined in

Section III-B. Although (6) includes the desired trajectory,

the presence of p̃ introduces feedback within fd, which is

why the term “feedforward-based control input” is used. The

feedforward-based input in (6) can be alternatively written

as

fd = Wa, (8)

where aT =
[

mp I11 I22 I33 I12 I13 I23
]

, Iij rep-

resent the six unique entries of Ip, and W = ∂fd
∂a

. The term

W is a function of νr, ν̇r, and ωpa, while a is equivalent

to the minimal parameter formulation developed in [29].

In practice, the entries of a are not known exactly, so

instead an estimate of a is employed, which is denoted as â.

The adaptive control input in (5) is defined as

fff = Wâ, (9)

where â evolves through the adaptive update law

˙̂a = −ΥWTν̃r, (10)

and Υ = Υ
T > 0 is a constant used to adjust the adaptation

rate [27]. Subtracting (6) from (4), assuming the dynamics

of the CDPR in (4) are dominated by those of its rigid-

body payload, and substituting the expressions for the control

inputs (5), and (9) yields the error dynamics

M(ρ) ˙̃νr + D(ρ,ν)ν̃r = f − fd = Wã + ffb, (11)



where ã = â − a and

ν̃r = ν − νr = ν − (νd − PΛp̃) = ν̃ + PΛp̃, (12)

ν̃ = ν − νd. Note that since a is constant, ˙̃a = ˙̂a.

B. Feedback Variable Formulation with Various Parameter-

izations of Payload Attitude

One of the main contributions of this paper is extending

the control formulation of [27] to accommodate quaternion

and SO(3) attitude parameterizations. This extension relies

on the derivation of a suitable filtered error system output

for each parameterization that yields a passive input-output

mapping and fits within the control formulation of [27].

The filtered error output is of the form

s = ˙̃p +Λp̃, (13)

where Λ = Λ
T > 0 is a proportional-like control gain

that is also featured in the definition of νr in (7). In order

to demonstrate a passive input-output mapping, closed-loop

input-output stability, and convergence of the pose tracking

error in Section III-C, it is required that ν̃r = ν − νr = Ps,

where νr is a function of νd, P, and p̃. The remainder of

this subsection focuses on determining suitable choices of P,

p̃, and νd that ensures this property is satisfied for different

choices of attitude parameterizations.

1) Unconstrained Attitude Parameterizations: Uncon-

strained attitude parameterizations, such as Euler-angle se-

quences, the rotation vector, and modified Rodrigues pa-

rameters (MRPs), are made up of 3 parameters that are

free to evolve in time without any constraints, but suffer

from singularities at one or more attitudes. For example,

the 3-2-1 Euler-angle sequence described by the parameters

qpaT

=
[

φ θ ψ
]

has a kinematic singularity at θ = ±π/2,

which results in the kinematic mapping matrix

S(qpa) =





1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ



 , (14)

satisfying ωpa = S(qpa)q̇pa, to become singular [32].

Lemma 1: Consider an unconstrained attitude parameter-

ization qpa ∈ R
3. The definitions

P =

[

1 0

0 S(qpa)

]

, (15)

νd = P

[

ṙd
q̇da

]

, (16)

p̃ =

[

r̃

qpa − qda

]

, (17)

where r̃ = r − rd, ensure that ν̃r = Ps.

Proof: Substituting (17) into (13) and multiplying

by (15) results in

Ps = P

([

ṙ − ṙd
q̇pa − q̇da

]

+Λp̃

)

= P

[

ṙ

q̇pa

]

−P

[

ṙd
q̇da

]

+PΛp̃.

(18)

Multiplying out the first term in (18) and using the fact that

ωpa = S(qpa)q̇pa yields

P

[

ṙ

q̇pa

]

=

[

ṙ

S(qpa)q̇pa

]

=

[

ṙ

ωpa

]

= ν. (19)

Substituting (19) into (18) and using (12) and (17) gives

Ps = ν̃ + PΛp̃ = ν̃r.

As in [27], the definition of νd involves evaluating S(qpa)
with the payload attitude and not the desired attitude.

2) Quaternion: The quaternion qpaT

=
[

ǫT η
]

is com-

posed of the vector portion ǫ ∈ R
3 and scalar part η ∈ R,

which satisfy the constraint qpaT

qpa = ǫTǫ + η2 = 1. The

quaternion error is defined in [28], [32] as

δq =

[

δǫ
δη

]

=

[

η1 − ǫ× ǫ

−ǫT η

] [

−ǫd
ηd

]

, (20)

where qdaT

=
[

ǫTd ηd
]

is the desired quaternion. The

desired angular velocity is defined as a function of the rate

of the desired quaternion as ωda = 2
[

η1 − ǫ× −ǫ
]

q̇da.

Lemma 2: Consider the quaternion attitude parameteriza-

tion qpa ∈ R
4. The definitions

P =

[

1 0

0 2(δη1 + δǫ×)−1

]

, (21)

νd =

[

ṙd

ωda + 2(δη1 + δǫ×)−1ωda×

δǫ

]

, (22)

p̃ =

[

r̃

δǫ

]

, (23)

ensure that ν̃r = Ps, where δǫ and δη are defined in (20).

Proof: Substituting (23) into (13) and multiplying

by (21) results in

Ps = P

([

˙̃r
δǫ̇

]

+Λp̃

)

=

[

˙̃r
2(δη1 + δǫ×)−1δǫ̇

]

+ PΛp̃.

(24)

The term δǫ̇ can be expanded using the property [32]

δǫ̇ = −ωda×

δǫ+ 1

2
(δη1 + δǫ×)

(

ωpa − ωda
)

.

Substituting this into (24) and making use of (22) yields

Ps =

[

˙̃r

ωpa − ωda − 2(δη1 + δǫ×)−1ωda×

δǫ

]

+ PΛp̃

= ν̃ + PΛp̃ = ν̃r.

The inverse of the matrix (δη1+δǫ×) that is used to define

P exists provided δη 6= 0. This singularity is avoided as long

as Fp and Fd are within a ±π/2 rad rotation of each other,

which is to be expected for overconstrained CDPRs.

3) SO(3) (The Direction Cosine Matrix): The DCM can

be used directly with the antisymmetric projection operator

to form an attitude error and satisfy the desired property.



Lemma 3: Consider an SO(3) description of attitude with

the DCM Cpa ∈ SO(3). The definitions

P =

[

1 0

0 −2 ((tr(Cpd)1 − Cpd))
−1

]

, (25)

νd =

[

ṙd
ωda

]

, (26)

p̃ =

[

r̃

P(Cpd)
V

]

, (27)

ensure that ν̃r = Ps, where Cpd = CpaCT

da and Cda

represents the desired payload attitude.

Proof: Substituting (27) into (13) and multiplying

by (27) gives

Ps = P

([

˙̃r
d

dt

(

P(Cpd)
V
)

]

+Λp̃

)

. (28)

Poisson’s equation, Ċpd = −ωpd×

Cpd, and the identities

in (1) and (2) are used to compute

d

dt

(

P(Cpd)
V
)

= − 1

2

(

ω̃×Cpd + CT

pdω̃
×
)V

= − 1

2

(

((tr(Cpd)1 − Cpd) ω̃)
×
)V

= − 1

2
(tr(Cpd)1 − Cpd) ω̃, (29)

where ω̃ = ωpd = ωpa − ωda. Substituting (29) into (28)

and using (26) yields

Ps =

[

˙̃r
ω̃

]

+ PΛp̃ = ν̃ + PΛp̃ = ν̃r.

The inverse of ((tr(Cpd)1 − Cpd)) in the definition of P

exists as long as tr(Cpd) 6= 1. Similar to the case of the

quaternion, this singularity is avoided as long as Fp and

Fd are within a ±π/2 rad rotation of each other, which is

large enough to account for the wrench-feasible workspaces

of most over-constrained CDPRs.

It is worth noting that the term W in the adaptive

feedforward-based control input of (9) relies on the com-

putation of ν̇r = ν̇d −
(

ṖΛp̃ + PΛ ˙̃p
)

, which requires an

expression for Ṗ. For the case of unconstrained attitude

parameterizations, such as a 3-2-1 Euler-angle sequence, this

involves simply taking the time derivative of S(qpa). For

the quaternion, this computation is more involved, where

Ṗ is solved for using the matrix product rule d

dt

(

A−1
)

=

−A−1ȦA−1 to obtain

Ṗ = diag{0,−2(δη1+ δǫ×)−1(δη̇1+ δǫ̇×)(δη1 + δǫ×)−1},

where δη̇ and δǫ̇ are found by differentiating (20) with

respect to time. A similar procedure is used to compute Ṗ

when using the SO(3) description of attitude, where

Ṗ = diag{0,−2Γ
(

tr(Ċpd)1 − Ċpd

)

Γ}

= diag{0,−2Γ
(

−tr(ω̃×Cpd)1 + ω̃×Cpd

)

Γ},

Γ = (tr(Cpd)1 − Cpd)
−1

, and Poisson’s equation is used to

simplify the expression for Ċpd.

P
−T

ffb f Pretension &
Force

Distribution
CDPR Calculate s

˙̂a = −ΥW
T
Ps

fff = Wâ

Controller

ρd, ρ̇d, ρ̈d
fff

f fb τ

ρ

ρ, ρ̇ s

Passive System

+

+

ISP

−1

Fig. 2. Block diagram of a CDPR with an adaptive feedforward-based
control input and pretension & force distribution satisfying f = Π

T(ρ)τ
which is proven to be passive in Theorem 1. The passive system is in
negative feedback with an ISP controller.

C. Passivity and Closed-Loop Stability Analyses

Theorem 1: Consider a CDPR with error dynamics de-

fined in (11) and the adaptive feedforward-based control

input of (5) with the adaptive update law in (10). Assuming

that the dynamics of the CDPR are dominated by its rigid-

body payload, the input-output mapping f̄fb 7→ s is passive,

where f̄fb = PTffb.

Proof: Define the non-negative function

V1 = 1

2
ν̃T

r Mν̃r +
1

2
ãT

Υ
−1ã.

Taking the derivative of V1, substituting in the adaptive

update law and (11) results in

V̇1 = ν̃T

r M ˙̃νr +
1

2
ν̃T

r Ṁν̃r + ãT
Υ

−1 ˙̃a

= ν̃T

r (Wã + ffb) +
1

2
ν̃T

r (Ṁ − 2D)ν̃r − ãTWTν̃r

= ν̃T

r ffb = (Ps)Tffb = sT f̄fb. (30)

Integrating (30) from t = 0 to t = T , where T ∈ R≥0 gives

∫ T

0

sT f̄fbdt = V1(T )− V1(0) ≥ −V1(0),

which proves the mapping f̄fb 7→ s is passive.

Corollary 1: The closed-loop system involving the CDPR

with error dynamics defined in (11) , the adaptive

feedforward-based control input of (5), and an ISP negative

feedback controller (or alternatively a linear time-invariant

(LTI) strictly positive real (SPR) negative feedback con-

troller) is input-output stable (i.e., s ∈ L2).

Proof: Knowing that the input-output mapping τ̄ fb 7→ s

is passive and an ISP controller is implemented in a negative

feedback connection with this mapping (see Fig. 2), the

passivity theorem guarantees that s ∈ L2 [8, p. 358]. In the

case of an SPR feedback controller, Theorem 8.10 in [35,

p. 219] can be used to obtain the same result.

Corollary 1 guarantees closed-loop input-output stability

with the use of any ISP or SPR feedback controller. This

result does not rely on exact knowledge of the parameters

of the CDPR’s dynamics, and thus, robust closed-loop input-

output stability is guaranteed. However, it is worth noting that

robustness to pose estimation error is not guaranteed and falls

beyond the scope of this work. Although there are a number

of ISP controllers that can be used to ensure closed-loop

input-output stability, an SPR controller with transfer matrix

Gc(s) = Cc (s1 − Ac)
−1

Bc is considered in this paper. The



SPR property of Gc(s) ensures that there exist Pc = PT

c > 0
and Qc = QT

c > 0 such that [8, p. 93]

PcAc + AT

c Pc = −Qc,

PcBc = CT

c .

The feedback control input is then chosen as ffb = −P−Tyc,

which results in f̄fb = PTffb = −PT
(

P−Tyc

)

= −yc, where

yc(s) = Gc(s)s(s).
Theorem 2: The control law in (5) and (9), where ffb =

−P−Tyc and yc is the output of an SPR controller with input

s, ensures asymptotic convergence of the pose tracking and

rate tracking errors (i.e., p̃ → 0 and ν̃ → 0 as t → ∞),

when applied to the CDPR with dynamics given by (4).

Proof: From Corollary 1, it is known that s ∈ L2.

Rearranging (13) yields ˙̃p = −Λp̃ + s, which is an asymp-

totically stable LTI system whose input is in L2. This results

in p̃ ∈ L2 ∩ L∞, ˙̃p ∈ L2, and p̃ → 0 as t→ ∞ [8, p. 269].

To prove that ν̃ → 0 as t → ∞, define the non-negative

function

V2 = V1 + xT

c Pcxc,

where Pc = PT
c > 0. Making use of the SPR property of the

feedback controller, the time derivative of V2 is

V̇2 = −sTyc + xT

c

(

PcAc + AT

c Pc

)

xc + xT

c PcBcs

≤ −sTyc − xT

c Qcxc + xT

c CT

c s

≤ −sTyc − λmin(Qc)x
T

c xc + yT

c s

≤ −λmin(Qc)x
T

c xc ≤ 0. (31)

Integrating (31) from t = 0 to t = T results in V2(T ) ≤
V2(0), which proves that {ν̃r, ã, xc} ∈ L∞. Through the

relationship s = P−1ν̃r, where P−1 is bounded, it is known

that s ∈ L∞. This also results in ˙̃p ∈ L∞, since ˙̃p = −Λp̃+
s. Assuming that νd ∈ L∞ and P is bounded, p̃ ∈ L∞

ensures that νr ∈ L∞ through (7). Taking the time derivative

of (7) yields ν̇r = ν̇d−
(

ṖΛp̃ + PΛ ˙̃p
)

. Assuming that ν̇r ∈

L∞ and Ṗ is bounded, {p̃, ˙̃p} ∈ L∞ ensures ν̇r ∈ L∞. With

{νr, ν̇r, ã, xc} ∈ L∞, f − fd = Wã − Ccxc ∈ L∞. Through

the error dynamics of (11), {ν̃r, f − fd} ∈ L∞ results in
˙̃νr ∈ L∞. Knowing that s ∈ L2, the relationship ν̃r = Ps

leads to ν̃r ∈ L2. Barbalat’s lemma can be used to prove

ν̃r → 0 as t→ ∞, since ν̃r ∈ L2 and ˙̃νr ∈ L∞ [8, p. 657].

It then follows that ν̃ → 0 as t→ ∞, since ν̃ = ν̃r − PΛp̃

and both ν̃r → 0 and p̃ → 0 as t→ ∞.

Theorem 2 demonstrates that the proposed control law

ensures that r̃ → 0 and p̃ → 0 as t → ∞. This results

in the position of the CDPR’s payload satisfying r → rd as

t → ∞. The interpretation of p̃ → 0 as t → ∞ depends

on the chosen attitude parameterization: qpa → qda for

unconstrained attitude parameterizations, δǫ → 0 (equivalent

to qpa → ±qd) for the quaternion, and Cpa → Cda for

SO(3), all of which describe asymptotic convergence of the

attitude of the CDPR’s payload to the desired attitude. Note

that as in [7], [27], [29], there is no guarantee that â → a

as t → ∞, as â evolves in a manner that only guarantees

asymptotic tracking of the desired payload pose.

TABLE I

CDPR PARAMETERS USED IN THE NUMERICAL SIMULATION.

Parameter Value

Payload mass (kg) mp = 6.75
Payload inertia (g·m2) Ip = diag{15.8, 5.2, 14.7}

Cable density (g/m) ρ = 4.6
Cable elasticity (N/m2) E = 127 × 109

Cable Radius (mm) rc = 1
Winch radius (m) ri = 0.0254, i = 1, . . . , 8

Winch inertia (g·m2) Ji = 0.025, i = 1, . . . , 8

TABLE II

CABLE ATTACHMENT POINTS IN THE NUMERICAL SIMULATION.

Cable Winch Position Rel. to Payload Attachment Rel. to
Origin in Fa (cm) Payload CoM in Fp (cm)

1
[

71 38 93
] [

3 7.5 −3.75
]

2
[

−71 38 93
] [

−3 7.5 −3.75
]

3
[

−71 −38 93
] [

−3 −7.5 −3.75
]

4
[

71 −38 93
] [

3 −7.5 −3.75
]

5
[

−71 −38 0
] [

−1.5 −7.5 3.75
]

6
[

71 38 0
] [

1.5 7.5 3.75
]

7
[

−71 38 0
] [

−1.5 7.5 3.75
]

8
[

71 −38 0
] [

1.5 −7.5 3.75
]

IV. CDPR NUMERICAL EXAMPLE

Consider a 6 DOF CDPR with m = 8 cables and a rigid-

body payload, as shown in Fig. 1, with numerical provided

in Table I. The locations of the 8 stationary winches and the

attachment points of the cables on the rigid-body payload

are given in Table II. A crossed-cable configuration similar

to the IPAnema 2 setup described in [1, p. 319] is used, which

results in a relatively large wrench-feasible translational and

rotational workspace while avoiding cable collisions.

The numerical simulation is fashioned from the

Lagrangian-based dynamic model developed in [15]

for flexible cables whose mass and stiffness properties

vary with the length of the cable, and is extended to

accommodate a 6 DOF, 8-cable CDPR. A first set of

simulations is performed with cables modeled as rigid

straight lines, where the elastic coordinates of the model

from [15] are constrained to be zero (i.e., no elastic

deformation can occur). The second set of simulations

models elastic deformation of the cables in the axial and

two transverse directions with the Rayleigh-Ritz method

in [15]. Both numerical models include cable mass and

allow the cables to transmit forces only when under tension.

An aramid cable with properties listed in Table I is used. In

the case with flexible cables, the pose of the payload used by

the controller is computed through forward kinematics [33]

using only the rigid rotation of the winches in order to

simulate a realistic implementation scenario and demonstrate

robustness to imperfect knowledge of the payload pose. All

pose tracking errors in the result plots are of the actual

payload pose, computed using the deformed cables.

The desired payload position trajectory is rTd =
0.1[cos (0.6πt) sin (0.6πt) cos (0.6πt) + 4.65] m and

the desired payload attitude trajectory is qdaT

=
20[cos (0.4πt− π/2) cos (0.4πt− π/4) cos (0.4πt)] deg,



described in terms of a 3-2-1 Euler-angle sequence. Note

that while an Euler-angle sequence is used here to define

the desired attitude trajectory, any attitude parameteriztion

can be used for this purpose and converted to the attitude

parameterization chosen for the controller.

Numerical simulations are performed with the proposed

adaptive control law using various payload attitude parame-

terizations, including a 3-2-1 Euler angle sequence, SO(3)
(the DCM), the quaternion, the rotation vector, and MRPs.

As a comparison, two simplifications of the proposed con-

troller with a 3-2-1 Euler angle sequence are also tested

in simulation, where small Euler angles are assumed (i.e.,

ωpa ≈ q̇pa) in either the feedback controller and the adaptive

feedforward-based controller (denoted as Simplified Euler)

or only the feedback controller (denoted as Simplified FB

Euler). These simplifications are similar to the linear control

design and analysis performed in [23].

The negative feedback controller is implemented as ffb =
−P−Tyc, where yc is the output of an SPR controller with

feedthrough and input s. A variety of methods can be used

to design an SPR controller (e.g., see [36]) and in this work

a simple first-order low-pass filter

yc(s) = Kddiag
{ ωc

s+ ωc

, · · · ,
ωc

s+ ωc

}

s(s),

where Kd = KT

d > 0 is the derivative gain, ωc = 2π rad/s is

the chosen cut-off frequency. The inertia entries of â are all

initially set to zero, while the payload mass is assumed to be

approximately known and therefore m̂p is initialized within

20 % of the true payload mass. The control parameters used

for the rigid cable simulation are Λ = 10 ·1, Υ = 5 ·1, Kd =
diag{Kd,v,Kd,ω}, Kd,v = 125 · 1, and Kd,ω = 16 2

3
· 1. For

the quaternion-based controller, Kd is doubled to ensure the

control gain is the same for small angles across all attitude

parameterizations and a fair performance comparison can be

made (i.e., δǫ ≈ 1

2
qpa, where qpa is an unconstrained attitude

parameterization). The control gains when simulating the

CDPR with flexible cables are reduced to increase robustness

to the unmodeled dynamics. Specifically, the terms Kd and

Λ are reduced by a factor of 5 and 2, respectively. This is

a common strategy used when controlling the motion of a

CDPR with flexible cables [13].

The control wrench, f, is distributed to the winch torques,

τ , using the improved closed-form solution from [1] as

τ = τ pt + UT(θ)
(

f −Π
T(ρ)τ pt

)

, (32)

where τ pt = diag{r1, . . . , r8}tpt is a pretension torque, ri
is the radius of the ith winch, tpt ∈ R

8 contains the desired

pretension in the 8 cables, and U(θ) is a pseudo-inverse of

Π(ρ). A pretension value of 59 N is used for each cable, with

the goal of ensuring that the cable tensions are greater than

7.9 N and less than 3937 N. If at a particular instance in time,

a cable tension exceeds the allowed range, the algorithm sets

the cable tension to the limiting value and recomputes (32)

with the row associated with that particular cable removed.

Simulation results are presented in Figs. 3 through 8,

including detailed results for the case of flexible cables and
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Fig. 3. Payload pose trajectory versus time with the SO(3)-based controller
simulated with flexible cables: actual pose (solid) and desired pose (dashed).
The payload attitude is expressed in terms of a 3-2-1 Euler-angle sequence
only for visualization purposes.

0 5 10 15 20

Time (s)

0

0.5

1

1.5

2

2.5

3

T
or

qu
e 

(N
m

)

Fig. 4. Winch torques versus time for the simulation with the SO(3)-based
controller and flexible cables.
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parameter (denoted m̂) and inertial parameters (denoted Îij).

the SO(3)-based controller in Figs. 3, 4, and 5. Specif-

ically, Fig. 3 features the desired payload pose and the

closed-loop response of the payload pose, where rT(0) =
[

0 0 0.465
]

m and the initial payload attitude is associ-

ated with a 3-2-1 Euler angle sequence with all angles equal

to −15 deg. The CDPR’s winch torques as a function of

time are included in Fig. 4 to demonstrate that positive cable
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Fig. 6. (a) Attitude tracking error versus time and (b) RMS attitude tracking
error with controllers based on different attitude parameterizations for the
case of flexible cables. The error is the angle portion of an axis-angle
parameterizaion of the attitude tracking error.

tensions are maintained. Fig. 5 includes the estimated system

parameters â as a function of time.

The complete set of simulated controllers is compared

by computing the axis-angle parameters associated with the

attitude tracking error. The resulting error angle is plotted

versus time in Fig. 6(a). To further quantify the differences in

attitude tracking errors, the root mean square (RMS) value of

the error angle is shown in Fig. 6(b) for the seven controllers

and is separated into the RMS error of the transient response

during the first 2 seconds of the simulation and the steady-

state response after the first 2 seconds of the simulation.

The comparisons in Fig. 6 demonstrate that the Simplified

Euler and Simplified FB Euler controllers lead to the least

consistent tracking errors, particularly in their steady-state

responses. This is also evident in Fig. 6(b), where the RMS

attitude tracking errors are largest for these controllers after

the first 2 seconds. For a visual comparison, the pose tracking

errors versus time are included for the Simplified Euler,

Euler, and SO(3)-based controllers with rigid cables in

Fig. 7 and flexible cables in Fig. 8. Quick convergence of

the tracking error is seen with rigid cables in Fig. 7 and

reasonably small tracking error is present with the flexible

cables in Fig. 8, which demonstrates the robustness of the

proposed controller. The Simplified Euler controller features

larger oscillations in tracking errors compared to both the

Euler-angle and SO(3)-based controllers.

V. CONCLUSION

This paper presented an adaptive passivity-based CDPR

pose tracking controller for various attitude parameteriza-

tions. The benefit of performing CDPR pose tracking with

carefully defined attitude errors was demonstrated, where a

linearized Euler-angle parameterization was shown to yield

inferior tracking results. Closed-loop asymptotic convergence

of the pose tracking error was proven and shown to be robust

to parameter uncertainty through nonlinear stability analysis

and also in simulation with a CDPR that featured unmodeled

and uncertain flexible cable dynamics.

Future work will focus on experimental implementation of

the proposed control law on multiple trajectories and explicit

consideration of flexible cables in the controller formulation

and stability analysis.
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Fig. 7. Payload pose tracking errors in the rigid-cable simulations with (a) the simplified Euler-angle-based controller, (b) the correctly-implemented
Euler-angle-based controller, and (c) the SO(3)-based controller. For visualization purposes, the attitude errors are plotted using a 3-2-1 Euler-angle

sequence (denoted θ̃1, θ̃2, and θ̃3). The position errors in the three axes of Fa are denoted as r̃x, r̃y , and r̃z .
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Fig. 8. Payload pose tracking errors in the flexible-cable simulations with (a) the simplified Euler-angle-based controller, (b) the correctly-implemented
Euler-angle-based controller, and (c) the SO(3)-based controller. For visualization purposes, the attitude errors are plotted using a 3-2-1 Euler-angle
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