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Abstract— In a wind farm, the interactions between tur-
bines caused by wakes can significantly reduce the power
output of the wind farm. Accurately modelling the inter-
actions is challenging due to the highly complex nature
of the wakes and this limits the performance of model-
based wind farm power optimization methods. There are
also data-driven approaches, which do not require a system
model. However, they generally require a large number
of measurement data and the convergence speed can be
slow. To address these limitations, this paper proposes a
model-guided learning method for wind farm to improve its
power output by leveraging the knowledge of the available
simplified power generation model and learning from the
real-time power generation data. The proposed method can
quickly increase the power output of the wind farm, guar-
antee implemented control actions to satisfy the control
constraints of all turbines, and have the ability to find
the optimal solution of the power optimization problem.
The presented method is then extended to deal with time-
varying wind conditions using a hierarchical framework.
Simulation results indicate that the proposed scheme can
efficiently improve the power output of the wind farm in dif-
ferent wind conditions compared with some benchmarks. It
shows a power efficiency gain of 2.4% over greedy policy
and 1.0% than model-based gradient method in given com-
plex wind conditions, which are substantial improvements
in the performance for the considered wind farm power
optimization problem.

Index Terms— Wind farm, wake interactions, power opti-
mization, model uncertainties, cooperative control.

I. INTRODUCTION

RENEWABLE energy plays a vital role in mitigating the
climate change, environmental pollution and increasing

electricity demands. Wind energy is one of the most en-
vironmental friendly and cost-competitive renewable energy
sources, and its utilization is fast-growing in an unprecedented
rapid pace [1]. In 2019, there was 60.4GW global new wind
power installation—an increase of 19% compared to that of
2018. The total capacity has risen up to 651GW with a growth
of 10% compared to 2018 [2]. Wind power has met 15% of
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the EU’s power demand on average and would meet more than
50% by 2050 as currently planned [3]. With this promising
trend, advanced wind farm control strategies are becoming
increasingly important to efficiently utilize the wind energy,
increase power extraction and develop more profitable wind
farms [4], [5].

In the wind farm, the wind turbines are often placed to-
gether to reduce installation, operation and maintenance costs
[6]. This leads to the problem that the wakes generated by
upstream wind turbines may not fully recover before arriving
at downstream wind turbines. Then the power output of the
downwind turbines is likely to be significantly degraded due
to reduced wind speeds inside the wakes [7], which results
in lower power output of the whole wind farm. In practice,
greedy policy is widely applied, where each turbine aims
to maximize its own power output. However, it neglects the
wake interactions among the turbines and thus often leads to
suboptimal wind farm power output [8]–[10]. Experimental
results indicate that using greedy policy total wind farm power
loss can surpass 30% under some worst case scenarios [11].
Therefore, an important research topic on wind farm is about
how to mitigate the effect of wake interactions among the
turbines to maximize the power output of wind farm through
cooperative control between turbines.

Various control strategies for wind farm have been proposed,
mainly including model-based methods, data-driven methods
and hybrid methods. Most model-based methods optimize the
power output of wind farm by utilizing the analytical power
generation models of the wind farm via dynamic programming
approach [12], steepest descent method [13], particle swarm
optimization algorithm [14], et al. These methods have fast
convergence speed due to the availability of analytical power
generation models. However, their merits on improving the
power output of wind farm can be limited as obtaining
accurate models to be used in optimization reflecting the
actual aerodynamics of the wakes can be difficult due to their
very complex nature. Additionally, the optimization methods
based on Computational Fluid Dynamics (CFD) models are
presented, e.g. conjugate gradient method [15] with large eddy
simulation [16]. However, the use of CFD simulations requires
significant computational cost that is usually not satisfied in
practice even if it improves the model accuracy [17].

Data-driven methods have also received great attentions,
which aim to maximize the power output of wind farm without
models and only use power generation data from wind farm.
These methods include safe experimentation dynamics (SED)
[8], gradient-based method [18], discrete adaptive filtering
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algorithms [19], game theoretic approaches [20], stochastic
projected simplex method [21], et al. Although the data-driven
methods do not use the power generation model of wind farm,
they usually achieve an optimum at the cost of a large number
of measurement data and thus the convergence speed is slow.

To address the above problems, some hybrid methods have
been recently proposed, solving the wind farm power opti-
mization problem using the inaccurate power generation mod-
els and real-time measurement data. These methods mainly
include two categories. The key point of one category is to
calibrate the inaccurate wind farm power generation models
using measurement data and then determine control action
based on the calibrated models. In [22]–[24], the parameters of
the inaccurate models are identified using measurement data to
improve model accuracy and wind farm power performance.
This often requires that the structures of the inaccurate models
are correct, which however cannot be satisfied easily due
to highly complex nature of the wakes. In [25], a modifier
adaptation approach is proposed, in which model mismatch
is identified by Gaussian process regression and measure-
ments. Although this can improve the inaccurate model and
the wind farm power generation performance, but it is not
trivial to analyze the convergence of the approach. The key
idea of another category is to utilize the inaccurate models
to assist the optimization processes of data-driven methods,
especially in initial optimization stage. In particular, a novel
knowledge-assisted reinforcement learning method is proposed
by combining the analytical model with reinforcement learning
framework to maximize the power output of wind farm [26].
Note that the convergence analysis of the above method is also
challenging.

The contributions of this paper are summarized as fol-
lows: (a) A novel model-guided learning (MGL) method is
developed for wind farm power optimization problem; (b)
The convergence properties of the proposed method are rigor-
ously analyzed; (c) The presented method is further extended
to handle time-varying wind conditions using a hierarchical
power optimization framework; (d) The effectiveness of the
proposed method is evaluated through realistic simulation
study using real wind data. The presented method belongs
to the second category of the above hybrid methods. It can
rapidly improve the power output of wind farm, benefiting
from the available albeit simplified analytical power generation
models—the models can reflect some key features of actual
wind farm and thus can generally provide a satisfactory search
direction for the developed method in the early optimization
stage. Meanwhile, the proposed method has the ability to find
the optimal solution of the power optimization problem by
learning from real-time power generation data and thus can
compensate for the effect of the model uncertainties on the
wind farm power performance. Precisely because of above
merits, the presented method can efficiently improve the power
output of wind farm.

The rest of this paper is organized as follows. In Section
II, the power generation model of wind farm and its power
optimization problem are formulated. In Section III, a model-
guided learning method is developed for wind farm power
optimization under fixed wind direction and its convergence

properties are analyzed. A hierarchical wind farm power
optimization scheme is then developed using the proposed
method to deal with time-varying wind direction in Section
IV. Section V presents numerical results using real wind farm
data to verify the performance of the proposed scheme. Finally,
Section VI gives the conclusion and possible directions for
future research.

II. WIND FARM POWER OPTIMIZATION PROBLEM

In this section, the power generation model of wind farm
is introduced and then the wind farm power optimization
problem is described.

A. Power Model
A wind farm consisting of n wind turbines is considered.

Let N = {1, 2, · · · , n} denote the set of all turbines. For
simplicity, the blade disk planes of all turbines are supposed
to be perpendicular to wind direction. The control action of
turbine i ∈ N is selected as its axial induction factor (AIF)
ui. The AIF denotes the wind velocity reduction over rotor
plane and can be adjusted by the blade pitch and generator
torque (standard inputs) of turbine. The feasible domain of the
ui is denoted by the set Ui = {ui |ui,min ≤ ui ≤ ui,max}.
The ui,min and ui,max denote the lower bound and upper
bound of the ui, respectively. The joint AIF of all turbines is
expressed by the tuple u = (u1, · · · , un), whose admissible
set is represented by U = U1×· · ·×Un and × is the Cartesian
product.

The aggregate wind velocity Vi({uj}j∈Ni
, V∞, θ) at an

arbitrary turbine i can be expressed as follows:

Vi({uj}j∈Ni
, V∞, θ) = V∞ (1− δVi({uj}j∈Ni

, θ)) , (1)

where Ni denotes the set of upstream turbines that are coupled
with turbine i by wakes, V∞ is free-stream wind speed, θ
represents wind direction, δVi({uj}j∈Ni

, θ) is the wind speed
deficit at turbine i quantifying the reduction of the wind speed
in the wakes. The power generated by turbine i can be modeled
as

Pi(ui; {uj}j∈Ni
, V∞, θ) = Kp,i(ui)Vi({uj}j∈Ni

, V∞, θ)
3
,
(2)

where Kp,i(ui) = (1/2)ρAiCp,i(ui), ρ is the air density, Ai is
the disk area generated by the blade of turbine i, and Cp,i(ui)
is the power coefficient defined as

Cp,i(ui) = 4ui(1− ui)
2
. (3)

The total power output of the wind farm is defined as the sum
of the power generated by all turbines:

P (u;V∞, θ) =
∑n

i=1
Pi(ui; {uj}j∈Ni

, V∞, θ). (4)

The goal of the wake interaction modelling is to identify
the wind speed deficit δVi({uj}j∈Ni

, θ) in (1). However,
accurately modelling it is extremely challenging due to the
highly complex characteristics of wakes, e.g. deflection and
dependence on environment parameters [9]. In this paper, the
Park model [27], a simplified yet very popular wake model, is
used to approximately describe the wake interactions among
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Fig. 1. Two-turbine wake interaction examples.

the turbines. According to the Park model, the wind speed
deficit can be described as follows:

δVi({uj}j∈Ni
, θ) = 2

√√√√√∑
j∈Ni

(
ujX2

ij

Aoverlap
ij (θ)

Ai

)2

, (5)

where
Xij =

Dj

Dj + 2κ (xi(θ)− xj(θ))
,

Dj is the diameter of the blade rotation disk of turbine j,
κ is the roughness coefficient that defines the slope of wake
expansion, xi(θ) and xj(θ) denote respectively the distances
of turbine i and j from a common vertex along wind direction
θ, Aoverlap

ij (θ) is the part area of the Ai that overlaps with the
wake created by turbine j and is related with the θ. To illustrate
this, consider the wake interaction examples given in Fig. 1,
where the direction that the arrow points to represents the wind
direction and between top and bottom dotted lines shows the
wake area of turbine j. From Fig. 1(a) to Fig. 1(b), it can be
observed that the turbine distance xi−xj and the Aoverlap

ij vary
with changes of the wind direction, which results in different
wake interaction patterns among the turbines.

As mentioned earlier, it is very challenging to obtain an
accurate description of the wind farm power generation model
P (u;V∞, θ) in (4), largely due to the difficulties in modeling
the wake interactions. Only an approximate nominal power
generation model P̄ (u;V∞, θ) can be obtained (using e.g. the
wake interaction model (5) based on the Park model). We
describe the relationship as follows:

P (u;V∞, θ) = P̄ (u;V∞, θ) + ∆P (u;V∞, θ), (6)

where ∆P (u;V∞, θ) represents the integration of the model
uncertainties or mismatches related to both inaccurate param-
eters and unmodeled characteristics. For the nominal model
P̄ (u;V∞, θ) based on the Park model, the roughness coeffi-
cient κ is one of the inaccurate parameters and wake deflection
is one of the unmodeled characteristics.

Remark 1: In this paper, the wind speed deficit
δVi({uj}j∈Ni

, θ) in (1) is approximated by (5) using the Park
model. The obtained results in this paper still hold for other
wake interaction models.

B. Problem Formulation

The wind farm power optimization problem can be formu-
lated as finding the optimal joint AIF to maximize the power

output of the wind farm, i.e.,

uopt = argmax
u∈U

P (u;V∞, θ). (7)

It is worth mentioning that traditionally, most model-
based methods are designed based on the nominal model
P̄ (u;V∞, θ), which may not guarantee a satisfactory power
generation performance due to the existence of model uncer-
tainties ∆P (u;V∞, θ). In addition, it is possible that the time-
varying wind direction θ leads to different wake interaction
patterns among the turbines and thus the optimal action of
the problem (7) depends on wind direction θ. Hence, an
efficient power optimization method needs to be capable of
compensating for the effect of model uncertainties as well as
dealing with varying wind conditions.

To evaluate the performance of different power optimization
schemes, it is convenient in practice to use the power efficiency
of wind farm [7] [28] defined below:

η(u; θ) = (1/n)
∑n

i=1
ηi(ui; {uj}j∈Ni

, θ), (8)

where ηi(ui; {uj}j∈Ni
, θ)=Pi/P

∗
i defines the power effi-

ciency of turbine i, P ∗
i =(1/2)ρAiCp,maxV

3
∞ models the

power output of turbine i without wake interactions, Cp,max

denotes the maximum power coefficient calculated by (3) with
ui = 1/3 . From (1) and (2), we have

ηi(ui; {uj}j∈Ni
, θ)=

Cp,i(ui)
(
1− δVi({uj}j∈Ni

, θ)
)3

Cp,max
.

(9)
Without loss of generality, suppose all turbines are identical
and then P ∗

i =P ∗
j . Let P *=P ∗

j . The (8) can be rewritten as

η (u; θ) =
1

nP *

∑n

i=1
Pi. (10)

According to (4), (6) and (10), we further get

η(u; θ) = η̄(u; θ) + ∆η (u; θ) , (11)

where η̄(u; θ) = P̄ /(nP *) is the nominal model for wind
farm power efficiency and ∆η(u; θ) = ∆P/(nP *) denotes
the integration of model uncertainties.

The power efficiency optimization problem of the wind farm
can now be defined as

uopt = argmax
u∈U

η (u; θ) . (12)

Remark 2: It can be seen from (8) that the η(u; θ) is the
normalization of the wind farm power output and the base
value is the power output nP * of the wind farm without
wake interactions. Therefore, the maximization of the wind
farm power output can be guaranteed by maximizing η(u; θ).
In other words, the problem (7) and the problem (12) are
equivalent.

Remark 3: It can be easily derived from (2) and (3) that the
ui = 1/3 for turbine i ∈ N is the optimal control action to
maximize its power output and is thus called greedy policy.
However, as mentioned earlier, the greedy policy might not be
optimal for problem (7) to maximize the total power output
of wind farm due to the wake interactions between turbines.
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Algorithm 1: Model-guided Learning Method for Wind Farm
Power Optimization under Constant Wind Direction

Initialization:
u0b ∈ U , 0 < β0

1 ≤ 1, 0 ≤ β0
2 ≤ 1, 0 < ε1 < 1, δ > 0,

0 < ε2 < 1, η0b = η(u0b), 0 < µ1 < 1, µ2 > 0, 0 < µ3 < 1

For k = 0, 1, · · ·
Step 1: Action Update

uk+1 =
∏

U (u
k
b + βk

1∆ukg + βk
2∆uks )

∆ukg = ∇η̄(ukb )

∆uks =

{
∆uksl with probability ε1

∆uksg with probability 1− ε1
∆uksl = (ω̄i)1×n, where ω̄i ∈ [−δ, δ] is chosen uniformly
∆uksg = (ωi)1×n, where

ωi =

{
ω̂i with probability ε2
0 with with probability 1− ε2

ω̂i ∈ [ui,min − ukb,i, ui,max − ukb,i] is chosen uniformly
ukb,i is the ith component of the ukb

Step 2: Action Evaluation
Send action uk+1 to actual wind farm
Obtain power efficiency ηk+1

Step 3: Baseline Update

uk+1
b =

{
uk+1 If ηkb ≤ ηk+1

ukb else

ηk+1
b =

{
ηk+1 If ηkb ≤ ηk+1

ηkb else
Step 4: Parameter Update
βk+1
1 = µ1β

k
1

βk+1
2 = min{1, 1

1+e−(k−µ2)
+ µ3}

III. MODEL-GUIDED LEARNING FOR CONSTANT WIND
DIRECTION

In this section, a model-guided learning method is proposed
for the wind farm power efficiency optimization problem
with fixed wind direction. In Section IV, time-varying wind
direction will be considered.

A. Description and Interpretation of the Algorithm

It is assumed that the wind direction θ is constant. Then
the optimal solution of the problem (12) stays fixed and the
problem can be equivalently formulated as

uopt = argmax
u∈U

η(u), (13)

which is a nonlinear optimization problem that has inaccurate
system model η̄(u) and bound constraint u ∈ U .

Based on the projected gradient method [29], [30], the
action update formula of the problem (13) can be given as
follows:

uk+1 =
∏

U

(
uk + βk

1∇η(uk)
)
. (14)

where uk+1 is a new iteration point generated at iteration
k,
∏

U (•) denotes the Euclidean projection operator onto

the U , βk
1 is a parameter, and ∇η(uk) denotes the gradient

of the η(u) at uk. Note that it is extremely challenging to
obtain the accurate gradient information ∇η(uk) in (14) due
to the difficulties in accurately modeling the wake interactions
among the turbines. This results in that the action update
formula (14) can not be directly carried out. From (11), we
can obtain

∇η(uk) = ∇η̄(uk) +∇
(
∆η(uk)

)
. (15)

Intuitively, the ∇η(uk) can be approximated by using the
gradient ∇η̄(uk) of the nominal model η̄(u) at uk and thus
an alternative for (14) can be run. However, the (15) clearly
indicates that ∇η̄(uk) is different from real ∇η(uk) because
of the model uncertainties ∆η(u). This means that the use
of the ∇η̄(uk) is likely to generate a wrong search direction
at iteration point uk, especially when the uk is close to
the optimal action uopt, which hinders access to optimum
and thus limits the power generation performance of wind
farm. To address this problem, the key idea of SED [8] is
introduced, i.e., how to obtain optimal solution using real-time
measurement data. Then a model-guided learning method is
developed for the problem (13), as shown in Algorithm 1.

In Step 1 of Algorithm 1, the action update is designed
by using base action uk

b , approximated gradient direction
∆uk

g based on nominal model, as well as data-driven random
search direction ∆uk

s . The ∆uk
s is local search direction

∆uk
sl with probability ε1 and global search direction ∆uk

sg

with probability 1 − ε1. The use of ∆uk
sl achieves the local

exploration around the uk
b and ∆uk

sg guarantees the exploration
for whole action space by exploiting uk

b . Additionally, the
Euclidean projection operator ΠU (•) is used to guarantee the
new action uk+1 satisfy the control constraints of all turbines.
In Step 2, the action uk+1 is evaluated by actual wind farm
to obtain corresponding power generation data.

From Step 3 of Algorithm 1, it can be noticed that the uk
b has

higher or equal power efficiency than the uk. Then in Step 1
of Algorithm 1, the uk

b is a better baseline for calculating uk+1

than the uk used in (14), whose application can accelerate the
convergence speed of the algorithm. Meanwhile, the use of the
uk
b can prevent Algorithm 1 from iterating continuously along

the wrong search direction as the uk
b is updated only when

new action uk+1 shows higher or equal power efficiency (See
Step 3). The ∆uk

g can quickly improve the power output of
wind farm as an efficient nominal model η̄(u) can commonly
provide a good search direction that has an acute angle with
the correct direction induced by accurate model when the uk

is far away from optimal action uopt.

In Step 4, parameter βk
1 is gradually decreased and βk

2 is
monotonically increasing with the increase of k. This means
that in the early optimization stage, the action update of Step 1
is performed based on uk

b mainly along the gradient direction
∆uk

g of nominal model. With the decrease of βk
1 and increase

of βk
2 , the action update will be performed based on uk

b mainly
along the random search direction ∆uk

s . And the ∆uk
s is

selected as global search direction ∆uk
sg (generated based on

the idea of SED) with probability 1− ε1. This can guarantee
optimum as k tends to ∞ as shown in following Theorem 1.
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Fig. 2. Interaction between MGL method and wind farm.

Remark 4: The optimum point of inaccurate model can be
directly chosen as initial point for data-driven methods, which
might be a bad choice when the accuracy of the model is
low. The proposed method can avoid this problem for wind
farm by initializing base action with greedy policy. Note
that the gradient estimated from measurements can provide
a good search direction but generally guarantee a Karush-
Kuhn-Tucker (KKT) point for the optimization problem with
structural model mismatch. Although random search cannot
contribute to a good search direction, it has ability to find
optimal solution by exploration. As the inaccurate model can
commonly ensure a good benchmark action, the random search
is used in Algorithm 1 to achieve optimum.

Remark 5: Note that the Algorithm 1 integrates the key
ideas of the projected gradient method [29], [30] and SED [8].
The projected gradient method is a model-based method and
SED is a data-driven learning algorithm. The inaccurate model
can commonly provide a good search direction for the action
update of the Algorithm 1 (especially in the early optimization
process), which can be taken as a guidance for the algorithm.
Therefore, the Algorithm 1 is termed model-guided learning
(MGL) method, where the learning features are reflected in
Step 1 and 3.

Remark 6: The proposed MGL method is an online learning
method. As shown in Fig. 2, the MGL method solves the
wind farm power optimization problem by interacting with
real wind farm. In each interaction, the MGL method updates
its baselines by using measured state data from real wind farm.
Meanwhile, it decides control action and sends the action to
the wind farm. The wind farm runs the receiving control action
and then feeds the corresponding state data back to the MGL
method to obtain next action. On the other hand, the greedy
policy remains constant for all the times (iterations).

Remark 7: Although the MGL method is proposed in
this paper for the wind farm power efficiency optimization
problem with fixed wind direction, it can solve a nonlinear
optimization problem that has inaccurate system model and
bound constraint.

B. Convergence Properties and Implementation of the
Algorithm

The convergence property of the Algorithm 1 is given in
the following theorem:

Theorem 1: Consider the application of the Algorithm 1 to
the problem (13). The optimal solution uopt can be found with
probability 1.

Proof: See the Appendix A. ■

The above theorem shows that even if only an approximate
model is available, the proposed algorithm can still achieve the
optimal wind farm power output, which implies that the model
uncertainties can be compensated by the proposed algorithm
and thus the robustness can be achieved. Note that this is
attractive in practice. Furthermore, the following corollary will
indicate that under some conditions, the power efficiency of
wind farm monotonically improves at the initial stage.

Corollary 1: Assume the ∇η(u) is Lipschitz continuous
with positive constant L > 0, i.e., for any u′, u′′ ∈ U ,

∥∇η(u′)−∇η(u′′)∥ ≤ L∥u′ − u′′∥. (16)

If there is a positive integer K > 0 such that k ≤ K,(
∇η(uk

b )−
L

2
Gk∇η̄(uk

b )

)T

Gk∇η̄(uk
b ) ≥ 0, (17)

then for any k ≤ K, the proposed Algorithm 1 has following
property that the power efficiency improves monotonically:

η(uk+1) ≥ η(uk), (18)

where Gk = diag(gk1 , · · · , gkn),

gki =


ui,min−uk

b,i

βk
1∆uk

g,i

, If ûk
i < ui,min,

1, If ui,min ≤ ûk
i ≤ ui,max,

ui,max−uk
b,i

βk
1∆uk

g,i

, If ui,max < ûk
i ,

(19)

∆uk
g,i is the ith component of the ∆uk

g , ûk
i = uk

b,i+βk
1∆uk

g,i,
i = 1, · · · , n.

Proof: See the Appendix B. ■
Remark 8: There are two assumptions in Corollary 1. One

requires that the gradient ∇η(u) of wind farm power efficiency
model η(u) is Lipschitz continuous for fixed wind direction,
i.e., (16). According to (8), the assumption (16) essentially
requires that the sum of the power generation models of
all turbines should be Lipschitz continuous for fixed wind
condition. Another assumption requires that the gradients of
η(u) and η̄(u) should satisfy (17) to monotonically improve
the power generation performance of wind farm in initial
finite iterations. Note that the above assumptions are technical
assumptions needed to prove the Corollary 1 and impose no
restrictions on how the turbines should be built or controlled.
Practically, the assumption (16) is trivially satisfied for any
physical systems (such as the turbines); The assumption (17)
can be checked during the running of Algorithm 1, the failure
of which will only affect the monotonic convergence property,
but the proposed algorithm will eventually converge as shown
in Theorem 1, which is of ultimate importance.

Note that the inaccurate system model η̄(u) has a complex
form so that it can be difficult to directly calculate its gradient
analytically in Algorithm 1. The central-difference formula in
[31] can be used to estimate the partial derivative of η̄(u) with
respect to the ith variable ui, namely

∂η̄(u)

∂ui
≈ η̄(u+ εei)− η̄(u− εei)

2ε
, (20)

where ε is a small positive scalar and ei is the ith unit
vector, whose elements are all 0 except for a 1 in the ith
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position, i = 1, · · · , n. According to [31], the estimation error
in (20) is o(ε2), which means that the small ε can guarantee
a good estimation accuracy. Furtherly, the gradient ∇η̄(u) is
approximated by ∇η̄(u) = (∂η̄(u)∂u1

, · · · , ∂η̄(u)
∂un

).
Note that the u ∈ U in (13) is a bound constraint. Then the

projection
∏

U (u) in Step 1 of Algorithm 1 can be calculated
componentwise as[∏

U
(u)
]
i
=

 ui,min, If ui < ui,min,
ui, If ui,min ≤ ui ≤ ui,max,

ui,max, If ui,max < ui,
(21)

which keeps uk+1 in its feasible domain U .

IV. HIERARCHICAL POWER OPTIMIZATION SCHEME FOR
TIME-VARYING WIND DIRECTION

In this section, a hierarchical power optimization scheme is
developed for wind farm to handle time-varying wind direction
using the proposed model-guided learning method.

A. Dividing the Wind Direction Interval into Subintervals

Firstly, the whole wind direction interval is divided into a
finite number of sub-intervals, during which the wind farm
power efficiency is insensitive to the changes of wind direc-
tion. Hence for each wind direction sub-interval, the coupling
strength among the turbines is similar under the different wind
directions belonging to the sub-interval and thus only one wake
interaction pattern is required to be considered in optimization.

To do this, the historical power generation data of actual
wind farm with greedy policy should be obtained, which can
be easily achieved due to the wide application of the policy in
practice. Then the power efficiency η(u; θ) of the wind farm
under all wind directions can be computed by (8). Note that the
wakes are the inherent characteristic of wind farm. Therefore,
the power efficiency of the wind farm with greedy policy
can reflect the coupling strength between turbines even if the
policy does not consider the wakes. According to the obtained
η(u; θ), the entire range of wind direction θ can be divided into
a certain number of m sub-intervals denoted by Θ1, · · · ,Θm.
The Θj = [θj,min, θj,max) denotes the jth sub-interval, where
θj,min and θj,max represent the lower bound and upper bound
of the sub-interval Θj respectively, j = 1, · · · ,m. For any
θ1, θ2 ∈ Θj , it is required that

|η(u; θ1)− η(u; θ2)| ≤ ς, (22)

where ς ∈ [0, 1) is a small positive constant. The selected ς
should ensure that the η(u; θ) has only minor changes for the
changes of θ in sub-interval Θj , j = 1, · · · ,m. Therefore, it
can be assumed that only one wake interaction pattern exists
for each divided wind direction sub-interval.

The power efficiency optimization sub-problem of wind
farm for sub-interval Θj is defined as

uopt,j = argmax
u∈U

ηj(u), (23)

where ηj(u) denotes the power efficiency function of wind
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Fig. 3. Hierarchical framework of wind farm power optimization scheme.

Algorithm 2: Model-guided Learning Policy for Wind Farm
Power Optimization under Time-varying Wind Direction

Initialization:
Measure initial wind direction θ0

For t = 0, 1, · · ·
Step 1: Action Update

If θt ∈ Θj , j ∈ M :
Decide action ut by MGLj

Step 2: Action Evaluation
Send action ut to actual wind farm
Obtain data V∞,t+1, θt+1, and Pt+1 from the wind farm

Step 3: Policy Update
If θt ∈ Θj and θt+1 ∈ Θj , j ∈ M :

Update the baselines and parameters of MGLj

farm under θ ∈ Θj , j = 1, · · · ,m. Define

αj(θ) =

{
1 If θ ∈ Θj ,
0 else. (24)

Then the power efficiency optimization problem (12) of wind
farm can be reformulated as

uopt = argmax
u∈U

∑m

j=1
αj(θ)η

j(u). (25)

The above (25) indicates that the problem (12) can be denoted
as the sum of m sub-problems defined in the wind direction
sub-intervals. Each sub-problem can be approximately consid-
ered as a wind farm power optimization problem with fixed
wind direction that is considered in Section III as its wake
interaction pattern is almost invariable in the corresponding
wind direction sub-interval.

B. Hierarchical Power Optimization Scheme

The m copies of Algorithm 1, denoted by MGLj , j =
1, · · · ,m, are introduced to handle time-varying wind direc-
tion. Let each copy only focus on one sub-problem defined in
(23). As shown in Fig. 3, MGLh is used to solve the wind
farm power efficiency optimization sub-problem defined in
wind direction sub-interval Θh. Then a hierarchical power
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Fig. 4. Work flowchart of wind farm power optimization scheme.

optimization scheme is proposed for the problem (25) as
shown in Algorithm 2. It is called MGL policy due to the
use of previously proposed model-guided learning method for
constant wind direction. In each iteration of Algorithm 2, the
action ut is firstly given by copy MGLj for new wind direction
θt if θt ∈ Θj , where j ∈ M and M = {1, 2, · · · ,m}. Note
that wind direction θt only belongs to one of the divided sub-
intervals and thus only one copy of Algorithm 1 would be run
in Step 1 for the θt. In Step 2, the action ut is sent to actual
wind farm and the corresponding state data (V∞,t+1, θt+1,
and Pt+1) is obtained from the wind farm. If the successive
wind directions θt and θt+1 belong to same wind direction
sub-interval, the wake interactions among the turbines do not
change in this sampling period. Then based on the sampled
data, the calculated wind farm power efficiency can reflect the
performance of the action ut for θt if wind speed also has no
change in the sampling period. This implies that the action ut

is efficiently evaluated, and thus the baselines and parameters
of the corresponding copy would be updated in Step 3.

The work flowchart of the proposed MGL policy is shown
in Fig. 4. The policy can make good use of the learned
knowledge. As shown in Fig. 4, the MGLh is run to obtain
the uopt,h in θt ∈ Θh; The MGLh is terminated and MGLl

would be started with the switch of wind direction θt from
sub-interval Θh to Θl; The MGLh would be reactivated
and continue seeking uopt,h based on the previous learned
knowledge while the sub-interval Θh is visited again. This
would be beneficial to enhance the convergence speed of
algorithms and thus quickly improve the power generation
performance of wind farm in time-varying wind conditions.

Remark 9: The Step 2 of Algorithm 2 implies that the
proposed MGL policy is also an online learning method and
solves the wind farm power optimization problem under time-
varying wind direction by interacting with actual wind farm.
At each iteration of Algorithm 2, the sub-interval that wind
direction θt belongs to is found first and then the correspond-
ing copy of Algorithm 1 is carried out. This accounts for the
hierarchical idea.

Remark 10: To handle varying wind direction, a Bayesian
Ascent algorithm is employed for each wind direction in [28].
However, this method may show low optimization efficiency
for stochastically time-varying wind direction in a large inter-
val. In this paper, based on the power efficiency data of wind
farm with greedy policy under different wind directions, the
whole wind direction interval is divided into a finite number
of sub-intervals, and then for each sub-interval, one proposed
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Fig. 5. Layout of 25-turbine wind farm.

algorithm is employed, which can improve the exploitation
rate of wind farm power generation data and thus is beneficial
to quickly improve the power generation performance of the
wind farm.

Remark 11: The measurement uncertainty of wind direction
is not considered in this paper but it might make the control
action jump from one sub-problem to another. In this case,
the running control actions can still guarantee a better power
performance for wind farm as the optimal control actions
for turbines have no large change when the changes of
wind direction are small. Additionally, this problem can be
mitigated by using some methods. For example, multiple wind
directions are measured simultaneously in each iteration and
their average value is selected as the input of the proposed
policy.

Remark 12: In this paper, the changes of wind speed are
not specifically considered. It can be easily found that the
wind farm power efficiency is independent of wind speed from
(8) and (9). Therefore, it is not required that the wind speed
stays the same for the continuously multiple iterations of the
algorithm when the wind farm power efficiency is used to
evaluate the action performance. The sampled data is feasible
for wind farm power optimization as long as wind direction
lies in one sub-interval and wind speed has no change in given
sampling period.

V. SIMULATION RESULTS

In this section, two simulation examples are given to illus-
trate the performance of the MGL policy. The first example
is performed in simple wind conditions. The second example
uses more realistic and complex wind conditions from a real
wind farm.

The wind farm with 25 turbines shown in Fig. 5 is con-
sidered, where the spacing between adjacent turbine pair is
560m. All turbines are identical and their diameters are 126m.
The roughness coefficient κ is 0.025. The air density ρ is
1.225kg/m3. The upstream wind speed V∞ is set as 8m/s.
A common feasible domain Ui = {ui|0.1 ≤ ui ≤ 0.33} is
selected for the control action ui of turbine i ∈ N , which is
sufficient to verify the performance of different control policies
[19]. The P̄ (u;V∞, θ) based on Park model is assumed as
approximate nominal wind farm power generation model with
key features. The FLORIS model developed in [32] is used
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Fig. 6. Simple wind conditions.

to simulate the accurate wind farm power generation model
P (u;V∞, θ), which includes the wake interactions among the
turbines and is widely used in many references to evaluate
the effectiveness of different wind farm power optimization
schemes. The FLORIS model is a combination of Park model,
Jiménez model for wake deflection and further modifications
to better model the wake velocity profile. Note that the wind
direction is a parameter of the FLORIS model, and thus the
wind farm with different wind directions can be simulated by
inputting different wind directions to the model.

The parameters of Algorithm 1 are set as β0
1 = 1, β0

2 = 0,
ε1 = 0.95, δ = 0.006, ε2 = 0.05, µ1 = 0.9, µ2 = 15,
µ3 = 1e − 5, respectively. The base action u0

b is initialized
by greedy policy u = (0.33, · · · , 0.33). To demonstrate
the advantages of the proposed MGL policy, the following
optimization methods are selected: (a) Greedy policy, which is
usually used as a benchmark to assess the power performance
of wind farm under different control policies; (b) Offline policy
(i.e., model-based gradient method), which is obtained by
using nominal model P̄ (u;V∞, θ) via gradient ascent method
and thus belongs to traditional model-based methods; (c)
Stochastic projected simplex (SPS) policy, which is proposed
to solve the wind farm power optimization problem in a
data-driven manner [21] and shows better power generation
performance than the SED benchmark [8], and thus is used
here for comparison; (d) Optimal policy, which is derived by
using simulated accurate model P (u;V∞, θ) based on gradient
ascent method, and is unknown for a real wind farm since the
accurate model P (u;V∞, θ) cannot be easily obtained.

A. Simple Wind Conditions Example
As shown in Fig. 6, this example assumes that the wind

direction changes slowly in an angle set of {0◦, 45◦}. The
MGL policy is made up of the 2 copies of Algorithm 1 for
the angle set. For comparison purpose, the wind farm power
optimizations are performed based on our proposed MGL
policy and the above selected policies. Fig. 7 shows the power
efficiency trajectories of the wind farm under different control
policies. Fig. 8 gives the control action trajectories of turbine
11, 12, 13, and 14 in the wind farm.
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Fig. 7. Trajectories of power efficiency in simple wind conditions.
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Fig. 8. Trajectories of control actions in simple wind conditions.

TABLE I
THE PERCENTAGE OF POWER EFFICIENCY IMPROVEMENT OF WIND

FARM UNDER MGL POLICY COMPARED WITH BENCHMARK POLICIES

Wind direction Greedy policy Offline policy SPS policy

θ = 0◦ 28.7% 3.0% 1.1%

θ = 45◦ 9.2% 1.7% 0.7%

From Fig. 7, it can be seen that the power efficiency of wind
farm with our MGL policy at θ=0◦ and θ=45◦ approaches the
optimal values while other policies could not. This illustrates
that the MGL policy can compensate the effect of model uncer-
tainties on wind farm power generation performance compared
with the method only based on analytical power generation
model, i.e., offline policy. Furthermore, Fig. 7 shows that
the MGL policy has much faster convergence speed than the
purely data-driven SPS policy that is one of best performing
policies among existing designs, mainly because the available
model provides a relatively reliable search direction for the
copies of Algorithm 1 in the early optimization stage and thus
accelerates the convergence speeds of the copies. Additionally,
it can be observed that the proposed MGL policy can adapt to
time-varying wind conditions and monotonically improves the
power efficiency of wind farm during the initial stage, which
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Fig. 9. Complex wind conditions.
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Fig. 10. Trajectories of average power efficiency in complex wind
conditions.

verifies the expectation from the Corollary 1. In a quantitative
manner, Table I shows that the proposed policy efficiently
improves the power efficiency of wind farm compared with
other all policies. It can be concluded that the proposed policy
can efficiently improve the power output of wind farm in
simple wind conditions. It is also worth mentioning that in the
considered application, this level of improvement represents a
substantial performance improvement.

In each iteration, the average computation time taken by
the proposed policy is about 0.12s with a PC of Intel Core i7-
8700 CPU @ 3.20GHz, 32.GB RAM, and NVIDIA GeForce
RTX 2070, and thus it can be negligible. Fig. 8 shows that the
proposed policy can guarantee the feasibility of the resulting
control actions for all turbines, where it can be clearly seen
that the control actions of some turbines make great changes
to achieve the optimum compared with the greedy policy that
is widely applied in practice.

B. Complex Wind Conditions Example

In this simulation, more complex wind conditions are con-
sidered. The 10-minute wind direction statistics of Anholt
offshore wind farm can be accessed in [33]. As the number of
the wind direction statistics is small and sample interval (10

minutes) is big, the two copies of each wind direction of the
statistics are interpolated behind the wind direction. Then the
3.3-minute wind data shown in Fig. 9 is generated and used in
this example to verify the performance of the policies under
real/complex wind conditions. The greedy policy is applied
to the simulated accurate model and then the corresponding
power generation data is obtained for θ ∈ [0◦, 360◦). The
data is taken as the historical data from actual wind farm.
Then the power efficiency of the wind farm can be computed
by (8). The constant ς is selected as 0.02. Based on (22),
the entire wind direction interval is divided into the 203 sub-
intervals. This means that there are 203 sub-problems and thus
the 203 copies of the Algorithm 1 would be run in MGL
policy to solve the wind farm power optimization problem
under time-varying wind direction. Each copy is allowed to run
300 iterations, after which its base action will be implemented
when the corresponding wind direction sub-interval is visited.
Fig. 10 shows the average power efficiency of the wind farm
in complex wind conditions.

It can be observed that the proposed MGL policy shows
more superior performance than greedy policy, offline policy,
and SPS policy. At iteration k ∈ (250000, 300000], the average
power efficiency of the wind farm under MGL policy reaches
the 99.9% of optimum, whose average improvement rates
are respectively about 2.5%, 1.2%, and 0.8% compared with
above three policies, representing significant power produc-
tion improvement. Therefore, the proposed MGL policy can
efficiently improve the power generation performance of the
wind farm in complex wind conditions.

VI. CONCLUSION

In this paper, a model-guided learning method is developed
for wind farm to mitigate the effect of wake interactions
among the turbines and maximize the power output of the
wind farm. It is extremely challenging to accurately model the
interactions due to the highly complex nature of the wakes
and thus only an approximate wind farm power generation
model can be obtained in practice. The proposed method can
effectively compensate for the uncertainties of the model due
to the efficient exploitation for real-time power generation
data and also shows the fast convergence speed by using the
knowledge of the available model. A hierarchical wind farm
power optimization scheme is then proposed to handle time-
varying wind conditions using the proposed model-guided
learning method.

Simulation results are presented to demonstrate the effec-
tiveness of the proposed scheme in different wind conditions.
The results in simple wind conditions example show that
the proposed scheme can quickly improve the power output
of wind farm, compensate the effect of model uncertainties
on wind farm power generation performance and adapt to
time-varying wind conditions. The complex wind conditions
example further verifies the performance of the proposed
scheme in more realistic environment conditions, where the
real wind direction data are used.

There are a number of topics to further investigate. In this
paper, the control framework is centralized and may not be
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appropriate for very large-scale wind farm power optimization
due to scalability and reliability issues. Based on available
analytical model and real-time power generation data, the
distributed power optimization of large-scale wind farm is a
key area of our future research. Modifier adaptation schemes
can also solve the optimization problem with structural plant-
model mismatch by introducing correction terms for the cost
and constraint functions [34]. Then wind farm power opti-
mization using modifier adaptation will be another key area of
our future research. For the slowly changing wind conditions
considered in this paper, the aerodynamics of wind turbines
and the transients in the changes of wind conditions are
ignored. Incorporating turbine aerodynamics and the transients
in the changes of wind conditions into the design will be a
focus of our future research. A completely novel concept, i.e.,
dynamic individual pitch control (DIPC), is proposed in [35]
and the simulations show that it can be effective at increasing
wake recovery and improving the power production of wind
farm. Therefore, the optimal control settings for the DIPC will
be also a point of attention for our future research.

APPENDIX I
PROOF OF THEOREM 1

In Step 4 of Algorithm 1, we notice that

βk+1
1 = (µ1)β

k
1 = (µ1)

2βk−1
1 = · · · = (µ1)

k+1β0
1 . (26)

As 0 < µ1 < 1, 0 < β0
1 ≤ 1, the sequence {βk

1} is strictly
monotonically decreasing with the increasing of k. Meanwhile,
the βk+1

1 > 0 holds for any k. Clearly, the sequence {βk
1} is

convergent by using monotone bounded theorem and the limit
of {βk

1} is 0. Therefore, there is a positive integer K1 such
that at k > K1, the term βk

1∆uk
g in Step 1 of Algorithm 1 can

be ignored as ∥∆uk
g∥ is bounded. Then

uk+1 = uk
b + βk

2∆uk
sg (27)

if ∆uk
s is selected as ∆uk

sg at k > K1 with probability 1−ε1.
Let

K2 = max{K1, µ2 − log
µ3

1− µ3
}. (28)

From Step 4 of Algorithm 1, βk+1
2 = 1 at k > K2. This means

that once ∆uk
s is chosen as ∆uk

sg at k > K2 with probability
1−ε1, the whole action space U would be explored randomly
by uk+1.

Assume uopt = (u∗
1, · · · , u∗

n) is the optimal solution and
uopt ∈ U . Let

∆uk
ob = (u∗

1 − uk
b,1, · · · , u∗

n − uk
b,n). (29)

The event that the ∆uk
sg is selected as ∆uk

ob at k > K2 and
thus uk+1 constitutes the optimal solution uopt in (27) occurs
with at least probability

(1− ε1)(
ε2
|U1|

) · · · ( ε2
|Un|

), (30)

where |Ui| denotes the cardinality of the action set Ui of
turbine i. Therefore, the optimal solution uopt will eventually
be found with probability 1 for any 0 < ε1 < 1 and
0 < ε2 < 1.

APPENDIX II
PROOF OF COROLLARY 1

Define ∆uk
b = uk+1 − uk

b . For any k ≤ K, we have

η(uk+1) = η(uk
b ) +

∫ 1

0

∇η(uk
b + τ∆uk

b )
T∆uk

bdτ

= η(uk
b ) +∇η(uk

b )
T
∆uk

b

+

∫ 1

0

(
∇η(uk

b + τ∆uk
b )−∇η(uk

b )
)T

∆uk
bdτ.

(31)

Then ∣∣∣η(uk+1)− η(uk
b )−∇η(uk

b )
T
∆uk

b

∣∣∣
≤
∫ 1

0

∣∣∣(∇η(uk
b + τ∆uk

b )−∇η(uk
b )
)T

∆uk
b

∣∣∣ dτ
≤
∫ 1

0

∥∇η(uk
b + τ∆uk

b )−∇η(uk
b )∥∥∆uk

b∥dτ,

(32)

where the triangle inequality is used. By (32) and (16), we get∣∣∣η(uk+1)− η(uk
b )−∇η(uk

b )
T
∆uk

b

∣∣∣
≤
∫ 1

0

L∥uk
b + τ∆uk

b − uk
b∥∥∆uk

b∥dτ

=

∫ 1

0

Lτ∥∆uk
b∥

2
dτ

=
L

2
∥∆uk

b∥
2
.

(33)

Hence,

η(uk+1) ≥ η(uk
b ) +∇η(uk

b )
T
∆uk

b − L

2
∥∆uk

b∥2. (34)

The βk
2 = o(βk

1 ) holds for any k ≤ K if µ2 and µ3 are
appropriately selected. Then for any k ≤ K, the term βk

2∆uk
s

can be ignored as ∥∆uk
s∥ is bounded. Thus, in Step 1 of

Algorithm 1,

uk+1 =
∏

U
(uk

b + βk
1∆uk

g) (35)

for any k ≤ K by selecting appropriate µ2 and µ3. From (35),
(21) and (19), we get

uk+1 = uk
b + βk

1G
k∆uk

g . (36)

Based on (34) and (36), we obtain

η(uk+1) ≥ η(uk
b ) +∇η(uk

b )
T
(uk

b + βk
1G

k∆uk
g − uk

b )

− L

2
∥uk

b + βk
1G

k∆uk
g − uk

b∥
2

= η(uk
b ) + βk

1∇η(uk
b )

T
Gk∇η̄(uk

b )

− L

2
(βk

1 )
2 (

Gk∇η̄(uk
b )
)T

Gk∇η̄(uk
b ).

(37)
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As 0 < βk
1 ≤ 1, we get by (37)

η(uk+1) ≥ η(uk
b ) + βk

1∇η(uk
b )

T
Gk∇η̄(uk

b )

− L

2
βk
1

(
Gk∇η̄(uk

b )
)T

Gk∇η̄(uk
b )

= η(uk
b ) + βk

1Hk

≥ η(uk
b ),

(38)

where Hk =
(
∇η(uk

b )− L
2G

k∇η̄(uk
b )
)T

Gk∇η̄(uk
b ) and the

(17) is used. Then for any 1 ≤ k ≤ K + 1,

η(uk) ≥ η(uk−1
b ). (39)

According to Step 3 of Algorithm 1, η(uk
b ) = η(uk). Therefore

using (38), we obtain

η(uk+1) ≥ η(uk). (40)

Namely, the (18) holds.

ACKNOWLEDGMENT

The authors would like to thank Yueqing Zhang (the School
of Electronics and Computer Science, University of Southamp-
ton) for her valuable advice to the paper, Ørsted for their
real wind data, the editor and anonymous reviewers for their
insightful comments and suggestions.

REFERENCES

[1] S. Vásquez, M. Kinnaert and R. Pintelon, “Active fault diagnosis on a
hydraulic pitch system based on frequency-domain identification,” IEEE
Trans. Control. Syst. Technol., vol. 27, no. 2, pp. 663–678, Mar. 2019.

[2] Global Wind Energy Council, “Global wind report 2019,” Accessed on:
Jan 20, 2021, [Online]. Available: https://gwec.net/global-wind-report-
2019/.

[3] Wind Europe, “Wind can be the cornerstone of Europe’s en-
ergy system,” Accessed on: Jan 15, 2021, [Online]. Available:
https://windeurope.org/about-wind/wind-energy-today/.

[4] H. Liao et al., “Active power dispatch optimization for offshore wind
farms considering fatigue distribution,” Renew. Energy, vol. 151, pp.
1173–1185, Nov. 2020.

[5] M. Vali, V. Petrovic, L. Y. Pao, and M. Kühn, “Model predictive active
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