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Safe Learning MPC With Limited Model
Knowledge and Data

Aaron Kandel and Scott J. Moura

Abstract— This article presents an end-to-end framework for
safe learning-based control (LbC) using nonlinear stochastic
MPC and distributionally robust optimization (DRO). This work
is motivated by several open challenges in LbC literature. Many
control-theoretic LbC methods require subject matter expertise
(SME), often manifested as preexisting data of safe trajectories
or structural model knowledge, to translate their own safety
guarantees. In this article, we focus on LbC where the controller
is applied directly to a system of which it has no or extremely
limited direct experience, toward safety during tabula-rasa or
“blank slate” model-based learning and control as a challenging
case for validation. This explores the boundary of the status quo
in control theory relating to requirements for SME. We show
under basic and limited assumptions on the underlying problem,
we can translate probabilistic guarantees on the feasibility of
nonlinear systems using results in stochastic MPC and DRO
literature whose relevance we formally extend in mathematical
analysis. We also present a coupled and intuitive formulation for
the persistence of excitation (PoE) and illustrate the connection
between PoE and the applicability of the proposed method. Our
case studies of vehicle obstacle avoidance and safe extremely
fast charging of lithium-ion batteries reveal powerful empirical
results supporting the underlying theory.

Index Terms— Adaptive control, data-driven control, energy
systems, learning, lithium-ion battery, model-predictive control,
robust optimization, vehicle autonomy.

I. INTRODUCTION

THIS article presents a novel application of Wasserstein
ambiguity sets to robustify model-based reinforcement

learning (MBRL) and learning-based control (LbC) in safety-
critical applications. Here, we define safety as the ability of
the control policy to satisfy constraints. Translating safety to
online reinforcement learning (RL) algorithms is a notoriously
difficult open challenge in relevant literature. This article is
motivated by unsolved shortcomings of many existing means
to address this challenge, particularly a strong and often
optimistic dependence on subject matter expertise (SME).
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Two overarching examples include: 1) assumed knowledge
of underlying dynamics and 2) preexisting data of safe
trajectories.

The LbC problem space borrows many concepts from
historical research on stochastic optimal control, a field which
dates back decades to the original linear–quadratic Gaussian
problem [1]. The key underlying concept relates to uncer-
tainty, and how we can accommodate limited or imperfect
knowledge of the underlying dynamics. The rise in popularity
of MPC has created a new application for these robust and
stochastic control principles. For instance, foundational work
by Kothare et al. addresses uncertainty in MPC optimization
with linear matrix inequalities by allowing the state transition
matrices to vary in time within a convex polytope [2].

Within the past few years, stochastic optimal control has
become connected to ongoing research in the burgeoning
field of LbC. Here, researchers seek guarantees of safety
and performance when learning-based controlling a dynamical
system simultaneously. For a review of current state-of-the-
art methods in LbC that utilize MPC, we direct the reader
to a thorough review by Hewing et al. [3]. This type of
problem presents a nuanced and complex challenge for a
host of reasons. Safety and feasibility pose significant barriers
to the proper implementation of such algorithms. Moreover,
balancing the exploration-exploitation tradeoff inherent to
simultaneous control and model identification has presented
researchers with a host of unique problems that form a primary
focus of research in active learning. Dean et al. [4], for
instance, explores the safety and persistence of excitation
(PoE) for a learned constrained linear–quadratic regulator.

MPC is a highly popular use case for LbC problems and
provides an intuitive bridge between longstanding adaptive
control theory and new developments and explorations. For
instance, recent work has investigated recursive feasibility for
adaptive MPC controllers based on recursive least-squares
[5] and set-membership parameter identification [6], although
similar articles frequently possess limitations including depen-
dence on linear dynamical models. Rosolia and Borrelli derive
recursive feasibility and performance guarantees for a learned
episodic MPC controller [7]. Koller et al. [8] also addressed
the safety of a learned MPC controller when imperfect model
knowledge and safe control exist.

We note that control Lyapunov function and control bar-
rier function [9], [10], [11]-based approaches have further
strengthened the connection between classical adaptive control
and more modern approaches akin to popular model-based
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RL problems. Recent work by Westenbrouk et al. [12] has
even explored coupling such nonlinear control methods with
a policy optimization scheme.

In the space of RL, safe LbC has become a burgeoning area
of study. For broad discussion and categorization of classical
methods, Garcia and Fernández [13] provided a comprehen-
sive review. More recently, some control-theoretic principles
have migrated toward the space of safe RL. For example,
Chow et al. [14] leverage Lyapunov stability principles to
obtain improved empirical results. Other methods focus on
safety as a challenge relevant to transfer learning, where
safe behavior can be extrapolated and expanded from simpler
tasks [15]. Methods in the space of RL provide idealistic
safety guarantees that translate into improved empirical safety
properties. However, any guarantees (probabilistic or robust)
or safety certificates in this space are elusive and remain an
open challenge.

Guarantees in RL literature are difficult to obtain since that
literature eschews SME, or direct intuition into a specific appli-
cation. Some RL research obtains guarantees by leveraging
strong SME in the form of known safe backup controllers
[16], [17]. Generally, when RL neglects considerations to
SME, it becomes applicable to a much wider body of relevant
decision and control problems [18] that lack permeability to
our intuition and expertise. Conversely, control literature is
ubiquitous in revealing how such expertise can be leveraged
to yield strong and specific performance and safety even
in adaptive and learning contexts. As previously discussed,
SME in controls LbC methods often takes the form of model
knowledge [5], [6], [9], [10], [11] and preexisting data of safe
trajectories [7], [19].

The problem with these SME assumptions is that they
can very easily become optimistic. Given the overarching
assumption of preexisting data of safe trajectories, we have
to ask “How trustworthy is our data?” This should always be
called into question, especially when safety is of the utmost
importance. Many LbC methods do consider noise-corrupted
data [19], but what if deeper, malicious pathology infiltrates
the data generation process? The process of generating the
data could be flawed in many ways, the relevance of each to
existing methods varies but is persistent. An example could
be sampling data locally where relevant dynamics can be
effectively linearized when the system experiences highly
nonlinear behavior outside of that region. Without exploiting
and trusting our SME, we cannot guarantee things like this will
not happen especially in safety-critical settings. By applying a
resultant controller to the underlying system, it can encounter
out-of-distribution (OOD) experience and adversarial attacks
that a majority of existing LbC methods simply cannot accom-
modate. These few LbC algorithms that do make consideration
to OOD experience do so using hyperparameters that are not
trivial to select and validate [19] and often assume the structure
of the underlying dynamics [20]. These same fundamental
quandaries also apply when assuming model knowledge.

In this article, we address these key open questions about
SME in control-theoretic LbC. Critically, we ask “What is
the least amount of SME we may need to obtain safe con-
trol results?” Such questions remain relatively unexplored

in control literature, despite their relevance. Our methods
for addressing these questions are actually quite simple and
rely on a combination of concepts in stochastic MPC and
distributionally robust optimization (DRO). We make this
technical augmentation along with several basic assumptions
about the problem formulation that allows us to translate
probabilistic safety guarantees in the absence of conventionally
strong dependence on SME.

A. Background on DRO and LbC

This article primarily leverages concepts from DRO to
obtain safety certificates. In recent practice, DRO has been
gaining traction as a set of methods that provide significant
value to the study and solution of the LbC problem. DRO is
a field of inquiry that seeks to guarantee robust solutions to
optimization programs when the distributions of relevant ran-
dom variables are estimated via sampling. This uncertainty can
involve the objective or the constraints of the optimization pro-
gram. Uncertainty in both cases can pose significant challenges
if unaccounted for, leading to suboptimal and potentially
unsafe performance [21]. Given that past work in the LbC
space frequently considers chance constraints [5], [19], [22],
incorporating a true DRO approach possesses the potential to
improve our capabilities of guaranteeing safety during learn-
ing. These methods have been recently explored to address
challenges of safety and performance imposed by uncertainty.
For instance, Van Parys et al. [23] addressed the distributional
uncertainty of a random exogenous disturbance process with
a moment-based framework. Paulson et al. [24] also applied
polynomial chaos expansions to characterize distributional
parametric uncertainty in a nonlinear model-predictive control
application.

Within the toolbox provided by DRO, Wasserstein ambi-
guity sets are a foremost asset. The Wasserstein metric (or
“earth mover’s distance”) is a symmetric distance measure in
the space of probability distributions. Wasserstein ambiguity
sets account for distributional uncertainty in a random variable,
frequently one approximated in a data-driven application. They
accomplish this feat with out-of-sample performance guaran-
tees by replacing the data-driven distribution of the random
variable with the worst-case realization within a Wasser-
stein ball centered on the empirical distribution [25], [26].
Expressions exist that map the quality of the empirical distri-
bution with Wasserstein ball radii such that desired robustness
characteristics are achieved without significant sacrifices to
the performance of the solution [27]. Within the control
context, however, the Wasserstein distance metric has only
recently begun emerging as a valuable and widespread tool.
Yang [28] explored the application of Wasserstein ambiguity
sets for distributionally robust control subject to disturbance
processes. Similar methods have made their way to research
on model-based and model-free RL as well [20], [29], [30].
DRO has also been applied to Markov decision processes
(MDPs) in a general sense, with good results [31], [32],
[33], [34]. Scalability is still an open challenge in that space.
Overall, while Wasserstein ambiguity sets are seeing increased
application in control research, many of their true capabilities
have yet to be fully exploited.
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B. Statement of Contributions
This article seeks to address key shortcomings in these areas

of literature. Among those previously discussed, foremost is
the lack of general methods that possess robustness when
conducting tabula-rasa LbC, or those requiring significant
assumptions on the availability of prior data of safe control
trajectories.

We present a novel and simple model-based LbC scheme
based on MPC which provides strong probabilistic out-of-
sample guarantees on safety. We validate our method using
experiments that emulate tabula-rasa as closely as possi-
ble given our assumptions, but our algorithm is widely
applicable to adaptive control scenarios especially when
underlying dynamics may be poorly structured or difficult
to characterize. By developing Wasserstein ambiguity sets
relating to empirical distributions of modeling error, we can
conduct MPC with an imperfect learned snapshot model
while maintaining confidence in our ability to satisfy nom-
inal constraints. The Wasserstein ambiguity sets allow us
to optimize with respect to constraint boundaries that are
shifted into the safe region. As our empirical distributions
improve with more data, the offset variables tighten toward
the nominal boundary in a provably safe way. Our approach
yields probabilistic safety guarantees. Critically, in this arti-
cle, we present this LbC scheme along with: 1) an explicit
and fundamental PoE scheme and 2) highly limited SME
assumptions. While many LbC methods are amenable to PoE
schemes [4], the question of PoE is in some cases neglected
despite its relevance. We actually show our explicit PoE
scheme is fundamental to illustrating the applicability of our
method. Our contributions combine to allow us to translate
safety guarantees with highly limited model knowledge and
data.

The overarching objective of this article is not to present
the most high-performing LbC architecture, but rather to
explore what kind of performance we can obtain when
limiting our SME assumptions more so than existing work
in controls literature. Many control-theoretic methods pro-
vide stronger robust (i.e., safety w.p. 1) guarantees under
much more restrictive assumptions. In our case, we label
our method as “trustworthy” insofar as it relies on highly
limited SMEs. Given the elusiveness of safety guarantees
in RL literature, a probabilistic result within our context is
powerful.

We validate our approach with two case studies focusing
on safety-critical applications. In the first, we learn a policy
that safely charges a lithium-ion battery using a nonlin-
ear equivalent circuit model (ECM). Battery fast charging
presents a strong challenge for LbC methods, given that the
optimal policy is a boundary solution that rides constraints
until the terminal conditions are met. We also conducted
a case study on safe autonomous driving using a nonlin-
ear bicycle model of vehicle dynamics. We demonstrate
that our algorithm provides a provably safe method for the
vehicle to avoid obstacles while learning its dynamics from
scratch.

We provide an open-source GitHub repository [35] for our
case studies.

II. DISTRIBUTIONALLY ROBUST OPTIMIZATION

The core of our proposed algorithmic architecture relies
heavily on DRO techniques. In this section, we outline funda-
mental ideas which establish the foundation of our algorithm.

A. Chance-Constrained Programming
A chance constraint is a constraint within an optimization

program that is only satisfied with some probability. This
is typically a necessary concession when the constraint is
affected by a random variable R

P[h(xk, uk, R) ≤ 0] ≥ 1− η. (1)

Here, the constraint function h(xk, uk, R) outputs an
m-dimensional vector. In this case, the distribution P relates
to random variable R with support ξ . Here, 0 ≤ η < 1 is the
specified risk metric or our allowed probability to violate the
constraint. If η = 0, we say we have a robust optimization
program that must not yield any probability of constraint
violation. In practice, especially when approximating P from
sampling, we admit some small probability of constraint
violation leading to a value of η > 0. This is frequently nec-
essary because it allows our probabilistically robust solution
to balance conservatism with performance.

Upon utilizing an empirical approximation of P derived
from sampling (usually denoted P̂), we admit some distribu-
tional uncertainty that can arise from only having access to
a finite group of samples. The law of large numbers states
that for any number of samples ℓ → ∞, P̂ → P∗. The
discrepancy from this limited sampling creates distributional
uncertainty, which can affect the quality of the solution if our
approximation P̂ is inaccurate [21]. Throughout the remainder
of this section, we discuss the application of DRO techniques
to address this distributional uncertainty.

B. Wasserstein Ambiguity Sets
The Wasserstein metric is defined as follows.
Definition 1: Given two marginal probability distributions

P1 and P2 lying within the set of feasible distributions P(ξ),
the Wasserstein distance between them is defined by

W(P1, P2) = inf
5

{∫
ξ 2
∥R1 − R2∥a5(dR1, dR2)

}
(2)

where 5 is a joint distribution of the random variables R1 and
R2, and a denotes any norm in Rn .

The Wasserstein metric is colloquially referred to as the
“earth-movers distance.” This name is rooted in the inter-
pretation of the Wasserstein metric as the minimum cost
of redistributing mass from one distribution to another via
nonuniform perturbation [28]. To show why the Wasserstein
distance is a valuable tool we can leverage to robustify
a data-driven optimization program, we first reference the
chance constraint (1), which depends on an empirical dis-
tribution P̂. Rather than solving the optimization program
with respect to an imperfect snapshot of P∗ defined by P̂,
we can optimize over any probability distribution within some
ambiguity set centered around our estimate P̂. The Wasserstein
distance provides a formal method to define such an ambiguity
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set, namely we can optimize against the worst-case realization
of R sourced from a set of probability distributions within
the specified Wasserstein radius of our empirical estimate.
We define “worst-case” as the realization that yields the lowest
probability of satisfying the chance constraint. This formu-
lation can be described mathematically with the following
relation:

inf
P∈Bϵ

P[h(xk, uk, R) ≤ 0] ≥ 1− η (3)

where

Bϵ :=
{
P ∈ P(ξ) |W

(
P, P̂

)
≤ ϵ

}
(4)

is the ambiguity set defined for a Wasserstein ball radius ϵ.
Of note is the fact that (3) guarantees probabilistic feasibility
for any probability distribution within the ambiguity set when
reformulated correctly. No assumptions must be leveled on the
true distribution P∗ for these guarantees to translate under a
proper reformulation.

Reformulation is necessary because the exact constraint
shown in (3) poses an infinite-dimensional nonconvex prob-
lem. Ongoing research has pursued tractable reformulations of
this constraint which facilitate its real-time solution.

This article adopts a reformulation of (3) detailed in
[36]. This reformulation accommodates vector constraint func-
tions and requires that the function g(xk, uk, R) is linear
in R and entails a scalar convex optimization program to
derive. Our algorithm is designed to exploit the linear depen-
dence on R such that this assumption does not affect the
applicability of our approach. Importantly, the result is a
conservative convexity-preserving approximation of (3). For
an m-dimensional constraint function, the exact form of the
ambiguity set is V = conv({r (1), . . . , r (2m )

}), where the vector
r is sourced from the optimization component of the overall
procedure. The set of constraints we find to replace the
infinite-dimensional DRO chance constraint are

h(xk, uk)+ r ( j)
≤ 0 ∀ j = 1, . . . , 2m . (5)

For a complete and elegant discussion of this reformulation,
we highly recommend the reader reference work in [36],
specifically pages 5–7 of their article. This reformulation
requires some additional information, including a tractable
representation of an appropriate Wasserstein ball radius.

Finally, several expressions exist for the Wasserstein ball
radius ϵ which are probabilistically guaranteed to contain the
true distribution with allowed probability β. We adopt the
following formulation of ϵ from [27]:

ϵ(ℓ) = C

√
2
ℓ

log
(

1
1− β

)
(6)

where ℓ is the number of data points, β is the probability the
Wasserstein ball contains the true distribution, and C relates to
the diameter of the support of the distribution and is obtained
by solving the following scalar optimization program:

C ≈ 2 inf
α>0

{
1

2α

(
1+ ln

(
1
ℓ

N∑
k=1

eα∥Rk−µ̂∥
2
1

))} 1
2

(7)

where the right side bounds the value of C , Rk is a sample of
the random variable that comprises our empirical distribution,
and µ̄ is the sample mean of the distribution.

III. EQUIVALENT CHANCE-CONSTRAINT
REFORMULATION

This article builds upon the equivalent reformulation of (3)
from [36]. This reformulation leverages findings from recent
work by [25]. The statement of the specific reformulation
in [36] indicates a requirement that the constraint function
g(x, R) is linear in x and R, respectively.

Notably, we identify a simple extension of the reformulation
in [36] that allows its application to our nonlinear MPC for-
mulation via relaxing the requirement the constraint function
be linear in the decision variable x .

A. Restatement of the Reformulation From [36]
The reformulation from [36] is stated to require the con-

straint function g(x, R) to be linear in x and R, respectively.
In the next subsection, we extend the reformulation to include
some broader cases of constraint functions

g(x, R) = gx (x)+ gR(R) (8)

where functions gx and gR can be nonlinear in their respective
arguments. In this section, we restate the work from [36] as a
reference for our extension included in Section III-B.

Data samples {R(1), R(2), . . . , R(ℓ)
} corresponding to ran-

dom variable R ∈ Rm are drawn from the true distribution
P∗. These finite samples comprise our empirical distribution
P̂. The finiteness of our empirical distribution indicates that it
will not perfectly match the behavior of the true distribution
P∗. This is especially true in cases with limited samples,
which are relevant to the challenging case studies this article
explores.

Normalizing the data lends simplicity to the derivation

ϑ (i)
= 6−

1
2
(
R(i)
− µ

)
(9)

where 6 is the sample variance of the data and µ is the sample
mean. This standardization transforms the data samples such
that its new mean is 0, and its new variance is Im×m . The
support of this normalized distribution is

2 =
{
ϑ ∈ Rm

| − σmax1m ≤ ϑ ≤ σmax1m
}

(10)

since we have centered the normalized variable ϑ . Note that 1m
is a column vector of ones. Let Q∗ and Q̂ represent the true and
empirical distributions of the normalized data ϑ . We construct
the ambiguity set Q̂ using the “Wasserstein ball” given by
(4), allowing us to transform the distributionally robust chance
constraint (DRCC) in (3) to

sup
Q∈Q̂

Q[ϑ /∈ V] ≤ η (11)

which says the worst-case probability that normalized random
variable ϑ is outside set V is less than η, where the supremum
is taken over all distributions Q in ambiguity set Q̂. We wish
to obtain the least conservative (i.e., tightest) set V ⊆ Rm
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to define the desired Wasserstein uncertainty set A = {a ∈
Rm
| a = 6(1/2)v + µ, v ∈ V} such that

g(xk, uk, R) ≤ 0 ∀R ∈ A. (12)

We restrict the overall shape of the set V to be a hypercube,
which enables computational tractability

V(σ ) =
{
ϑ ∈ Rm

| − σ1m < ϑ < σ1m
}
. (13)

Now, to compute this ambiguity set without introducing unnec-
essary conservatism, we need to find the minimum value of
the hypercube side length σ ∈ R. The following optimization
program details this problem:

min
0≤σ≤σ̂ max

σ (14)

s.t.: sup
Q∈Q̂

Q
[
ϑ̃ /∈ V(σ )

]
≤ η. (15)

Here, we select σ̂ max using a priori information about the
specific problem context.

The derivation in [36] provides a worst-case probability
formulation, summarized by the following lemma.

Lemma 1: [36, Lemma 2]

sup
Q∈Q̂

Q
[
ϑ̃ /∈ V(σ )

]
= inf

λ≥0

λϵ(ℓ)+
1
ℓ

ℓ∑
j=1

(
1− λ

(
σ −

∥∥ϑ ( j)
∥∥
∞

)+)+ (16)

where (x)+ = max(x, 0).
We defer to [36] for the proof of this finding. Their result

entails that (16) can be reformulated as

min
0≤λ,0≤σ≤σ̂ max

σ s.t.: h(σ, λ) ≤ η ≤ σmax (17)

where

h(σ, λ) = λϵ(ℓ)+
1
ℓ

ℓ∑
j=1

(
1− λ

(
σ −

∥∥ϑ ( j)
∥∥
∞

)+)+
. (18)

The result of this optimization program is the value of σ ,
which is used to reformulate the chance constraints via convex
approximation. For a convex approximation of the constraint
function in (3), the hypercube V(σ ) becomes the convex hull
of its vertices. If, for example, m = 1 (i.e., the random variable
is 1-D), then V(σ ) = (−σ, σ )—an open interval. The offset
r ( j) is calculated from

r (1)
= 6

1
2 1mσ + µ (19)

r (2)
= 6

1
2 1m(−σ)+ µ. (20)

In the 2-D case, this yields the ambiguity set A =

conv({±σ,±σ }), where conv({· · · }) represents the convex hull
of points {· · · }. For an m-dimensional constraint function, the
exact form of the ambiguity set is V = conv({r (1), . . . , r (2m )

}).
In each case, the ambiguity set is a hypercube, and the change
of signs is the method by which we enumerate across that
hypercube’s vertices with the following constraints:

g(x)+ r ( j)
≤ 0 ∀ j = 1, . . . , 2m . (21)

Algorithm 1 details the method used to compute the offset σ .

Algorithm 1 Computation of σ

B. Extending the Reformulation

Esfahani and Kuhn [25] utilized the findings in presenting
their convex reformulation. Critically, we identify that the
fundamental theory presented by [25] allows applying the
identical reformulation to cases where the constraint function
takes the form

g(x, R) = gx (x)+ gR(R) (22)

where gx and gR may be nonlinear functions. Critically, there
must not be any interdependence between x and R.

This article presents a modified lemma for the applicability
of the previously stated reformulation first presented by [36].

Lemma 2: If the function g satisfies

g(x, R) = gx (x)+ gR(R) (23)

then constraints of the following form

inf
P∈Bϵ

P
[
g(x, R) ≤ 0

]
≥ 1− η (24)

can be reformulated into the convex approximation

gx (x)+ r ( j)
≤ 0 ∀ j = 1, . . . , 2m (25)

using the relations in (16) and (17), where r = 6(1/2)1mσ+µ.
Proof: We start by defining auxiliary variables in the

constraint function. Consider that, without loss of generality,
nonlinear functions of R can themselves be considered the
random variable in question

R̃ = gR(R) (26)

where R̃ is the new model of the stochasticity. This gives

g(x, R) = gx (x)+ R̃. (27)

Now, we create a dummy auxiliary decision variable x̃ in the
same manner

g̃
(
x̃, R̃

)
= x̃ + R̃ (28)

forming a function g̃ which is trivially linear in x̃ and R̃, where

x̃ = gx (x). (29)

This equality constraint (29) now shows up in the overall
optimization program. However, the DRCC reformulation only

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

poses conditions on the constraint function in question [namely
g̃(x̃, R̃)]. We have transformed the DRCC into

inf
P∈Bϵ

P
[
g̃
(
x̃, R̃

)
≤ 0

]
≥ 1− η (30)

which is now linear in x̃ and R̃. Following procedure from
[25], we suppress dependence on x (or x̃) for simplicity,
leading to ℓ(R̃) = g̃(x̃, R̃) [25], [36]:

inf
P∈Bϵ

P
[
ℓ
(
R̃
)
≤ 0

]
≥ 1− η. (31)

The remainder of the proof is identical to the Appendix in
[36], leading to the convex approximation

gx (x)+ r ( j)
≤ 0 ∀ j = 1, . . . , 2m . (32)

Beyond exploiting the linear presence of x̃ in the constraint
function, suppressing dependence on decision variables is
possible and helpful for the following reasons. The overall
process of solving an optimization program with a DRCC
is characterized by a two-stage stochastic optimization prob-
lem. Here, (31) is the first stage problem that we solve
using the equivalent reformulation. Esfahani and Kuhn [25]
showed in Section V-C of their article that, without loss of
generality, the solution in the second stage (i.e., the overall
optimization program) is unaffected by suppressing depen-
dence of ℓ on decision variables in the first stage. In addition,
the decision-independent loss function ℓ(R̃) can trivially be
expressed as a pointwise maximum of elementary measurable
functions, as required by Section IV.

In practice, the dummy decision variable x̃ will not come
into play during any stage of the solution. After solving the
first-stage problem, we can reverse the substitution in the
remaining optimization to avoid an equality constraint with
poor computational tractability.

Remark 1: The linear separability of x and R poses a DRO
program that can be thought of as solving

min
z∈R
− z (33a)

s.t.: inf
P∈Bϵ

P[z−R ≤ 0] ≥ 1− η (33b)

for offset z from the second-stage nominal constraint
boundary.

We have shown a simple extension of the DRO refor-
mulation from [36] that allows us to apply the method to
nonlinear optimization programs. In Section IV of this article,
we describe our nonlinear MPC formulation and the context
within which the guarantee from the DRCC is translated
to LbC.

IV. DISTRIBUTIONALLY ROBUST MODEL-BASED LBC

Fig. 1 shows a block diagram of our proposed control
architecture, detailed within this section.

A. Model Predictive Control Formulation

We apply Wasserstein ambiguity sets to robustify a learning
model predictive controller, based on the following optimiza-
tion program formulation. Given true plant dynamics

xt+1 = f (xt , ut , Wt ) (34)

yt = g(xt , ut , Vt ) (35)

where t is the current timestep, Wt is the state noise, Vt is
the output measurement noise, xt is the state variable, and
yt is the output variable. We assume access to full state
and output measurements, subject to the measurement noises
Wt and Vt . The capital letters represent random variables.
Before considering modifications for distributional robustness
to uncertainty (which also accommodate exogenous inputs),
we seek to solve the following predictive control problem:

min
ut :t+N−1

t+N∑
k=t

Jk
(
x̂k, ŷk, uk

)
(36a)

s.t.: (36b)

x̂k+1 = f̂
(
x̂k, uk, θf

)
(36c)

ŷk = ĝ
(
x̂k, uk, θg

)
(36d)

ŷk ≤ 0 (36e)

x̂ t = xt (36f)

where xt is the known (measured) initial state at the current
timestep t . The “hat” symbol indicates a predicted variable,
and the learned models themselves are given by

x̂ t+1 = f̂
(
xt , ut , θf

)
(37)

ŷt+1 = ĝ
(
xt , ut , θg

)
. (38)

At a high level, these can be thought of as two separate
models. However, when learning a black-box representa-
tion of the system, that single model can be trained to
predict both sets of values x̂ t+1 and ŷt . The parameters
θf and θg are learned from historical data through model
identification.

B. Model Identification

The models are used to predict state transition dynamics
and constraint function outputs. We assume that the true model
parameters θ∗f and θ∗g are inaccessible to the controller. Several
methods can be selected to learn the parameters online and can
depend on what type of learning model architecture is selected.
In this article, we utilize nonlinear least-squares with neural
network models for both the state transition dynamics and
constraint functions

f̂
(
xt , ut , θf

)
← xt+1 (39)

ĝ
(
xt , ut , θg

)
← yt (40)

where xk+1 and yk are assumed to be measurable from the
real system at the current timestep. When conducting MPC,
the initial xk is obtained by assuming full state observabil-
ity throughout the LbC problem. From this point forward,
we denote θg;t as the parameterization of the learned model
of g at timestep t in the overall learning process.

C. Modeling Error Characterization

We characterize modeling error through comprehensive
modeling residuals across varying prediction depths.

For example, consider a scalar system x ∈ R, y ∈ R within
three steps of model predictive control N = 2 with quadratic,
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Fig. 1. Diagram of safe Wasserstein-constrained MPC. In the most restrictive case, after initializing the controller, it immediately begins interacting with its
environment. At every timestep, it observes an MDP state transition tuple, calculates model residuals, uses the residuals to calculate the DRO offset r ( j)(k),
and then solves a new MPC program at the next state. This application case serves as a purposefully extreme challenge to the robustness and behavior of
our algorithm at what would otherwise be unreasonable levels of uncertainty and risk. Later in our article, we demonstrate that even under such extreme
conditions, we manage to safely learn control policies for a host of nonlinear stochastic control problems. We do note, however, that our algorithm is much
more widely applicable when prior data and SME is available.

time-invariant objective function (state penalty q = 1, effort
penalty r = 1, and terminal state penalty p = 1)

min
ut ,ut+1,ut+2

x2
t + x̂2

t+1 + u2
t + u2

t+1 + x̂2
t+2 (41a)

s.t.: (41b)

x̂ t = xt (41c)

x̂ t+1 = f̂
(
xt , ut , θf

)
(41d)

x̂ t+2 = f̂
(
x̂ t+1, ut+1, θf

)
(41e)

x̂ t+3 = f̂
(
x̂ t+2, ut+2, θf

)
(41f)

ŷt = ĝ
(
xt , ut , θg

)
(41g)

ŷt+1 = ĝ
(
x̂ t+1, ut+1, θg

)
(41h)

ŷt+2 = ĝ
(
x̂ t+2, ut+2, θg

)
(41i)

ŷt ≤ 0 (41j)

ŷt+1 ≤ 0 (41k)

ŷt+2 ≤ 0. (41l)

Suppose we find a sequence u∗t , u∗t+1, u∗t+2 from solving
three sequential model predictive control problems with the
true plant in the loop. Since we are using learned models to
solve these predictive control problems, these inputs are likely
not actually optimal for the system, and with added PoE, they
include exploratory aspects. In each case, we apply the first
control input to the system to obtain x∗t+1, x∗t+2, x∗t+2. We can
quantify the prediction error of the learned constraint function
in the following manner:

R(t)
1 = g

(
xt , u∗t

)
− ĝ

(
xt , u∗t , θg

)
(42a)

R(t+1)
1 = g

(
x∗t+1, u∗t+1

)
− ĝ

(
x̂ t+1, u∗t+1, θg

)
(42b)

R(t+2)
1 = g

(
x∗t+2, u∗t+2

)
− ĝ

(
x̂ t+2, u∗t+2, θg

)
. (42c)

These are one-step residuals, as denoted by the subscript R1,
since x̂ t+1 = f (xt , u∗t ) and x̂ t+2 = f (x∗t+1, u∗t+1). In these

equations, the function g represents our observations from
the real system (simple data), and the function ĝ represents
the predictions of our learned constraint model. We take the
absolute value since these residuals will be introduced as
variables that add conservatism relative to the existing con-
straint boundary. Since we conduct predictive control, we also
want to quantify modeling errors after 2, 3, or more steps
of prediction into the future using learned models, as errors
can accumulate and become worse with successive prediction
steps. This happens in the following way:

R(t)
1 =

∣∣g(xt , u∗t
)
− ĝ

(
xt , u∗t , θg

)∣∣ (43a)

R(t)
2 =

∣∣g(x∗t+1, u∗t+1

)
− ĝ

(
f̂
(
xt , u∗t , θf

)
, u∗t+1, θg

)∣∣ (43b)

R(t)
3 =

∣∣g(x∗t+2, u∗t+2

)
(43c)

− ĝ
(

f̂
(

f̂
(
xt , u∗t , θf

)
, u∗t+1, θf

)
, u∗t+2, θg

)∣∣. (43d)

As is shown here, modeling error accumulates from the learned
representation of both the constraint function ĝ and the learned
dynamics function f̂ .

Remark 2: We choose to take the absolute value of resid-
uals. This decision is not necessary but makes intuitive sense
given the application. Since we intend to modify the nominal
constraint boundary, signals of modeling errors that show
underestimation could lead to an offset that potentially moves
the constraint into the unsafe region. We seek to avoid this and
only create offsets that reduce the size of the feasible region.

The model identification process utilizes the one-step resid-
uals to minimize the mean-square prediction error (mse) of the
prediction of the state transition compared to past observations.
The multistep residuals are utilized by the DRO framework to
adjust conservatism deeper into the future based on cumulative
modeling error.

By representing modeling error this way, we lump all
relevant sources of modeling error into an additive term.
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As previously discussed, the absolute value is taken as a
precautionary measure. Omitting that transformation provides
the following simple expression:

g
(
x∗t+2, u∗t+2

)
= ĝ

(
f̂
(

f̂
(
xt , u∗t , θg

)
, u∗t+1, θg

)
, u∗t+2, θg

)
+ R(t)

3 .

(44)

By treating the residuals as random variables drawn from a true
distribution P, the constraints will by definition be additive in
the random variable/modeling error.

D. Safety and Robustness Using Wasserstein Ambiguity Sets

Now that we have outlined the distributionally robust
chance-constrained approach using the Wasserstein ambiguity
set, we can describe how it fits within our robust control
framework.

The residuals defined in Section IV-C entail a representation
of the modeling error. This is only true because the constraint
functions are evaluated using predicted states from the learned
dynamical model, whose true representation is unknown.
By considering process error/residuals as an additive noise
term, we can maximize the utility of the DRO reformulation
in [36] which requires this linear structure in the constraint

g
(
xk, uk, θg;t

)
+ R1 ≤ 0. (45)

As previously discussed and shown in (44), by design, this
linear structure will always occur. These residuals are random
variables characterized by empirical distributions based on our
observations. Now, we have bolded the variable R1 to indicate
it is a random variable, whereas the previous value R(t)

1 was
a realization of this random variable at time t .

To accommodate distributional uncertainty in our estimate
of P̂, we transform the constraint (45) for each of 1→ N +
1 step residuals into a joint DRCC via Wasserstein ambiguity
set as follows:

inf
P∈Bϵ

P


ĝ
(
x̂k, uk, θg;t

)
+ R1 ≤ 0

ĝ
(
x̂k+1, uk+1, θg;t

)
+ R2 ≤ 0

...

ĝ
(
x̂k+N , uk+N , θg;t

)
+ RN+1 ≤ 0

 ≥ 1− η. (46)

The reformulation we adopt from [36] presents a simple
method to accommodate the constraint without inverting the
CDF. If we operate under the assumption that the residuals for
i = 1, . . . , N steps are uncorrelated, then we can decompose
this joint chance constraint into a set of individual chance con-
straints. This decomposition could be useful if the optimization
algorithm we select to solve the MPC problem scales unfa-
vorably with the dimension of the constraints. Algorithm 1
provides an overview of the real-time implementation of our
approach. As previously stated, the process for computing r
entails a simple scalar convex optimization program.

Remark 3: The reformulation from [36] adds cardinality of
constraints that scale with order 2m . However, our formulation
of modeling error as an additive residual allows the number of
constraints to remain constant. We detail this property in the
Appendix of this article. The simple answer is that, by taking
the absolute values of the residuals, the random variable that
represents modeling error is strictly nonnegative. This means

Algorithm 2 Wasserstein Robust Learned MPC

that a negative realization is impossible to encounter and need
not be accommodated. By keeping the cardinality of con-
straints constant, the computational scalability of our approach
is preserved for higher-dimensional control problems.

At each time step, we compute model residuals with our
most recent estimate θg;t using predicted state transitions from
our entire cumulative experience, compile a unique empirical
distribution P̂ corresponding to each individual chance con-
straint, and compute the value of r in (5) to reformulate the
DRCCs. We can begin the overall process with a small control
horizon N and gradually increase N as we accumulate more
and more data from experience. The residuals we compute are
for horizon lengths of 1 to N -steps, meaning the elements of
R correspond to each of i = 1, . . . , N step residuals. Then,
we assemble a joint chance constraint where the elements of
the column vector of the random variable are the 1→ N step
residuals. In [36], the authors pursued a DRO reformulation
that utilizes a polytopic representation of the uncertainty set.
Our formulation preserves scalability by isolating dependence
on the random variable in the constraint. Our appendix shows
the logic that allows the cardinality of constraints to remain
constant.

Finally, when we conduct MPC, we replace the nominal
constraints with their distributionally robust counterparts

min
u∈U

t+N∑
k=t

Jk
(
x̂k, uk

)
(47a)

s.t.: x̂k+1 = f̂
(
x̂k, uk, θg;t

)
(47b)

ĝ
(
x̂k, uk, θg;t

)
ĝ
(
xk+1, uk+1, θg;t

)
...

ĝ
(
x̂k+N , uk+N , θg;t

)
+ r ( j)

≤ 0 (47c)

x̂0 = xt . (47d)

Algorithm 2 describes the implementation of our MPC archi-
tecture coupled with the Wasserstein DRO scheme.

The MPC program specified in (48a)–(48i) details the
slight modifications made to (47a)–(47d) accommodating the
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coupled PoE component to our LbC framework. We discuss
this in more detail in Section IV-F.

One important note concerns a specific scenario of model
adaptation where the true underlying system slowly changes.
Our application of receding horizon control necessitates the
use of a snapshot model in the prediction phase. This requires
we assume the rate of change of the dynamics of the true plant
is relatively small. In such conditions, however, the historical
residuals we collect through measurements will slowly lose
relevance. This issue can be easily reconciled with the use
of either a moving window of residuals or with a proper
forgetting scheme. In this article, we propose a simple method
to accommodate such cases. Since the focus of this article is on
tabula-rasa LbC, we relegate the discussion of this additional
framework to this article’s appendix.

E. Horizon Increment Rule

MPC with a well-defined dynamical structure can leverage
judicious selection of the prediction horizon as a component
to proving recursive feasibility. When considering a general
class of systems as is the case with MBRL, the prediction
horizon becomes a hyperparameter that manages the tradeoff
between prediction depth and computational expense. In this
article, we elect to define a simple horizon increment rule
for our experiments. Typically, in LbC, the prediction horizon
is a hyperparameter whose selection can be done empirically
with more nuanced methods [37], [38]. In our case studies,
which we design to emulate tabula-rasa LbC as closely as is
consistent with the assumptions of our algorithm, we utilize
this horizon increment rule as a heuristic to simply allow the
problem to be rapidly solved. By solving severely restrictive
case studies, we validate the performance of our method
under the most challenging context for which it is technically
designed. For real-world applications, the horizon can often be
selected using a combination of available SME (which should
not be ignored if it is available), and automatic tuning methods
like those of [37] and [38]. The increment rule is not meant
as a serious method for real-world embedded control systems
that often possess highly limited computational resources.

F. PoE and Problem Assumptions

This section defines the set of least restrictive assump-
tions we identify toward achieving safe LbC. In this article,
we consider systems with nonhybrid dynamics for simplicity.
Our method leverages proved safety properties from [36],
which apply to static optimization programs. We identify that
these methods can apply to LbC problems under a series of
assumptions made in this section. These assumptions almost
entirely relate directly to situations when the dynamical, DRO,
and PoE components, which are normally not considerations
for static optimization programs, could create opportunities
for empty feasible sets. This section defines a PoE scheme
directly amenable to translating guarantees from [36] to our
formulation. Notably, our assumptions are significantly less
restrictive than those of existing LbC methods. The majority
of these assumptions relate to clear necessary conditions which
we detail here.

Assumption 1: A feasible state and control trajectory exists
for each prediction horizon N in the optimal control problem.
This is the most fundamental requirement to apply safe
control.

Assumption 2: We assume we know a safe control input
that we can apply at the first timestep.

Starting with limited model knowledge, if we do not know
a temporarily safe control input we can apply at the first
timestep, we obviously cannot translate any meaningful safety
certificates. This contrasts with other work which requires
knowledge of safe control trajectories throughout the time
horizon or a known safe backup policy.

Assumption 3: Starting with an optimal control problem of
the form (36a)–(36f), suppose we have a constraint function
g(xk, uk, θg;t ):§ × U × θ → S. The sublevel set GrDRO =

{(x, u) ∈ §,U :g(x, u) + rDRO ≤ 0} defines the adjusted
feasible region, where feasibility is satisfied at the current
timestep. This set must not be empty ∀rDRO ∈ R, where the
set R = {rDRO ∈ R:0 ≤ rDRO ≤ rDRO;max} describes the set of
all potential values of the DRO offset.

Since our method relies on creating an offset from the
nominal constraint boundary, any potential value of the offset
must lie in the image of the constraint function.

This assumption can be thought of as a generalization of
a common LbC assumption that relates to “bounded model-
ing error,” an example of which is given by Assumption 2
in [39]. In our case, using general function approximation,
our method to quantify model error is empirically based
on residuals. If the residuals of the learned model are too
large, indicating our learned model is inaccurate, the resulting
computed rDRO (which is a conservative approximation of
the residual, based on its distribution) will enforce a large
offset from the nominal boundary. This assumption says that
if the learned model is sufficiently inaccurate, the offset
will be so large that the adjusted feasible region is empty,
which is incompatible with the setup of [36]. The value
rDRO;max represents any maximum residual value we can
potentially infer from the problem and can be defaulted to
as an empirical approach if this case is reached in a real
problem, although safety properties may not be reliable in such
cases. Our experiments show such scenarios can be unlikely
to occur, although the possibility of their occurrence should be
considered.

The next assumption relates to a slightly stronger condition
regarding PoE. The agent must be capable of exploring during
LbC. To ensure the guarantees from [36] translate under those
diverse circumstances, the same statements of 3.1–3.3 must be
satisfied with respect to an additional exploration process N
that ensures PoE.

For clarity, we define the following modified MPC program
that considers an additive exploration signal from N :

min
u,un∈U

t+N∑
k=t

Jk
(
x̂k, uk

)
(48a)

s.t.: x̂k+1 = f̂
(
x̂k, uk, θg;t

)
(48b)

x̂n
k+1 = f̂

(
x̂n

k , un
k , θg;t

)
(48c)

ĝ
(
x̂k, uk, θg;t

)
+ rDRO ≤ 0 (48d)
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ĝ
(
x̂n

k , un
k , θg;t

)
+ rDRO ≤ 0 (48e)

un
= u + Ni :i+N (48f)

Ni :i+N ∼ N (48g)

x̂0 = xt (48h)

x̂n
0 = xt (48i)

where N is the distribution of a random exploration process
that can be added to the nominal control input, and the
superscript xn and un denote trajectories perturbed by the
exploration signal. The solution un(t)⋆ is then applied to
the plant at time step t .

Remark 4: Equations (48a)–(48i) guarantee feasibility from
k = t to k = t + N for a system with parameters θg;t

with a specified risk metric/probabilistic guarantee. This is
formulated to guarantee feasibility over the control horizon.
To assess recursive feasibility, one could utilize the methods
from [19] and [20] that require more significant restrictions in
the form of model knowledge, mathematical structure on the
feedback policy, and prior existing safe data.

The additive noise perturbation for exploration takes inspi-
ration from common methods with actor-critic or policy
gradient learning, where noise via an Ornstein–Uhlenbeck
process is added to the control input [40]. Relative to those
existing methods, we make the following modifications for
implementation:

Remark 5: We must constrain both nominal and perturbed
trajectories to ensure safety even with exploration. If we only
add the perturbation after solving the MPC program, safety is
not guaranteed.

Remark 6: A scalarized tradeoff between Jk(x̂k, uk) and
Jk(x̂n

k , un
k ) can be formulated to balance exploration and

exploitation during planning.
Now, we define the next assumption relevant to translating

safety to LbC systems under strong limitations on SME.
Assumption 4: Given the noise process N defined to satisfy

PoE for the model identification problem, the constraints
g(xk, uk, θg;t ) and g(xn

k , un
k , θg;t ) of the snapshot model must

be satisfied for every realization from N throughout the overall
finite-time optimal control problem.

Given these conditions, we state the following remark
detailing the properties of our method.

Remark 7: Based on the provided safety guarantee afforded
by the adopted DRO framework from [36], (47a)–(47d) admits
a feasible solution that satisfies the nominal constraints w.p.
1− η as long as the feasible set is not empty, which follows
from Assumptions 3.1–3.4.

We also state two remarks that help with the implementation
of our approach.

Remark 8: These assumptions must also hold for the pre-
diction horizons chosen at each instant in time.

Remark 9: If the DRO offset is so large, it creates an
empty feasible set, and an artificial value rDRO;max can be
defaulted to facilitate implementation, although safety guar-
antees in such situations may be difficult to translate. If a
random search is used to solve the MPC program in such
cases, the evaluated trajectory that creates the least predicted
constraint violation given the unmodified DRO offset can be
selected.

V. CASE STUDY IN SAFE ONLINE LITHIUM-ION
BATTERY FAST CHARGING

In this section, we validate our approach using a nonlin-
ear lithium-ion battery fast charging problem. This problem
closely emulates the performance-safety tradeoffs of common
safe RL validation studies including ant-circle [41]. Specif-
ically, the objective is to charge the battery cell as fast as
possible, but the charging is limited by nonlinear voltage
dynamics which must stay below critical thresholds. Violation
of the voltage constraint can lead to rapid aging and potentially
catastrophic failure. However, higher input currents (which
increase voltage) also directly charge the battery more rapidly.
Thus, the optimal solution is a boundary solution where the
terminal voltage rides the constraint boundary. This presents
a problem with significant challenges and tradeoffs relating
to safety and performance. Exploring how such algorithms
accommodate these challenges can reveal insights into their
overall efficacy and shortcomings.

A. ECM of a Lithium-Ion Battery

Lithium-ion batteries can be modeled with varying degrees
of complexity. Some of the more detailed dynamical models
are based on electrochemistry. For example, the Doyle–
Fuller–Newman (DFN) electrochemical battery model is a
high-fidelity first-principles derived physics-based model of
the dynamics within a lithium-ion battery [42]. Varying
model-order reduction can be applied, yielding versions
including the single particle model and the ECM. For sim-
plicity, this article’s case study utilizes an ECM. The relevant
state variables in this model are the state of charge SOC
and capacitor voltages VRC in each of the two RC pairs. The
relevant constraint is on the terminal voltage V . This constraint
prevents the battery from overheating or aging rapidly during
charging and discharging. The state evolution laws are given
by

SOCk+1 = SOCk +
1
Q

Ik ·1t (49)

VRC1;k+1 = VRC1;k −
1t

R1C1
VRC1;k +

1t
C1

Ik (50)

VRC2;k+1 = VRC2;k −
1t

R2C2
VRC2;k +

1t
C2

Ik (51)

Vk = Vocv(SOCk)+ VRC1;k + VRC2;k + Ik R0 (52)

where I (t) is the current input (which is the control variable
for this problem), and VOCV is the open-circuit voltage func-
tion, which is conventionally measured through experiments.
The full experimental OCV curve is used to represent the true
plant in the loop and is obtained from a lithium-iron phosphate
(LFP) battery cell [43]. In this article, we learn the dynamics
of the states and output using a simple feed-forward neural
network.

B. Model-Predictive Control Formulation

We utilize the following formulation of fast charging:

min
Ik∈U

t+N∑
k=t

(
SOCk − SOCtarget

)2 (53)
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TABLE I
SAFETY, COMPUTATIONAL, AND PERFORMANCE COMPARISON FOR DRO-MPC AND MPC WITH BATTERY FAST CHARGING.

ACTIVATION OF THE DRO OFFSET BEGINS AT minResidNum = 2

TABLE II
RELEVANT PARAMETERS FOR BATTERY CASE STUDY

s.t.: (49)− (52), SOC(0) = SOC0 (54)
Vk ≤ 3.6 V, 0 A ≤ Ik ≤ 40 A. (55)

The relevant parameters of the true model and DRO-MPC
program are referenced in Table II.

Remark 10: In our case, we assume the controller does not
have access to the form of the underlying dynamics given by
(49) and (52). Instead, we apply our end-to-end LbC method to
learn the dynamics “from scratch” as is consistent with tabula-
rasa learning methods. We utilize neural network black-box
models to accomplish this. The rules used to update the neural
network parameters affect the convergence of the data-driven
model to accurate behavior, which also effects empirical safety.
We keep the neural network training consistent between our
DRO algorithm and its nonrobust baseline. The exact training
procedure can be referenced in [35]. Updating the model more
slowly at first tends to encourage more consistent behavior.

In these case studies, we apply perturbation to the inputs
that further excite the system, toward ensuring PoE. These
perturbations are drawn as uniform vectors whose elements
lie between −2.5 ≤ x p ≤ 2.5 Amps. These perturbations are
applied to both the distributionally robust controller, as well
as the nonrobust baseline controller. In both cases, we seek
to ensure mutual constraint satisfaction for the trajectories
predicted using both the nominal and perturbed inputs.

We only allow a maximum total of 500 s for the battery to
be charged. The timestep 1t = 1 s, η = 0.025, β = 0.99,
and Ntarg = 8 steps. Our neural network dynamical model
has one hidden layer with three neurons and a sigmoid acti-
vation function, with a linear output layer. To solve the MPC
problem, we apply a (1+λ) evolutionary strategy (ES) based
on a normally distributed mutation vector. In our appendix,
we describe how this strategy works, why we selected it,
and other reasonable alternatives. The solver works with a
single iteration and 250 000 mutants. The initial point of the
ES is taken as the optimal point from the previous timestep.
Addressing Assumption 2, we assume that at the first timestep,
control inputs of Ik ≤ 25 A are known to be temporarily safe.
Since we constrain voltage which is a scalar, the constraint
function dimension m = 1.

Our baseline is a learning MPC controller with no DRO
framework. We adopt the same problem formulation as if we
were going to add the constant rDRO to the constraints, but we
omit the DRO constant in the end to evaluate the impact it
has on the robustness of the final control law.

C. Results

In total, we conducted ten experiments with identical
designs but different initial random seeds. We run our
algorithm and a nonrobust baseline for these ten runs on the
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Fig. 2. Comparison of nonlinear MPC controller with and without DRO for lithium-ion battery fast charging. Run 1 is shown here.

Fig. 3. Comparison of nonlinear MPC controller with and without DRO for lithium-ion battery fast charging. Run 4 is shown here.

Fig. 4. Time evolution of DRO offset from run 4.

same battery fast charging problem detailed in the previous
subsections. Table I shows the performance, computation, and
safety statistics for each of these runs. For a closer look,
we go to Fig. 2 that shows one run of both the DRO algorithm
and its nonrobust counterpart. In the case of Fig. 2 (run 1),
the DRO-based does not violate the constraint at any point.
In Fig. 3, we see the highest incidence of constraint violation
for the DRO controller (from run 4). Fig. 4 shows the time
evolution of the DRO offset from run 4.

Conversely, the nonrobust versions both experience a com-
bination of initial, significant voltage spikes, as well as minor
violations that persist throughout the experiments. In total,
if we focus on Fig. 3 (run 4), the nonrobust version violated

constraints in 13.6 % of timesteps (68 timesteps out of
500 total). The charging time was 6.85 min, which was
16.29% faster than the DRO version, whose charging time was
8.1833 min. This makes intuitive sense, as the added DRO
framework introduces additional conservatism which affects
the performance of the overall control policy.

Overall, across all ten runs, our DRO version violates
constraints in 0.26% of total timesteps, which is well within
the chosen value of η = 0.025 = 2.5% over just a sin-
gle optimization iteration. The nonrobust version, however,
violates constraints in 9.76% of total timesteps on average.
Similarly, there is a stark difference in the maximum voltages
seen by the robust and nonrobust versions, with the DRO
framework reducing the mean peak voltage by 122.9 mV. The
DRO calculations increase the overall computation time by
an average of 43.7 ms per timestep and allow the algorithm,
in this case, to run in real-time. No optimizations were made to
the MATLAB code to expedite the runtime of either algorithm,
and the only difference in code between the two algorithms
is the auxiliary and separate DRO framework. Finally, across
the ten total runs, the overall charging time with the DRO
framework averages 7.8150 min, approximately 14.1% longer
than that of the non-DRO version. Given the safety-critical
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nature of this control problem, the safety guarantees of our
algorithm are likely well worth the marginal degradation to
the charging performance resulting from added conservatism.

VI. CASE STUDY IN SAFE AUTONOMOUS DRIVING AND
OBSTACLE AVOIDANCE

This section details the implementation of our algorithm for
learning safe obstacle avoidance from scratch. This learning
occurs within the same design as our battery case study,
namely, we begin with zero model knowledge and only a
single known safe control input. We fit a data-driven model to
the dynamics and conduct receding-horizon control.

This study is designed with specific decisions in mind to
more effectively reveal the efficacy of our algorithm. Some of
these decisions make our study somewhat unrealistic insofar
as they expose the agent to greater danger than necessary.
Sections VI-A and VI-B provide discussion of these decisions
in more detail.

A. Dynamical Simulator

In this case study, we utilize a bicycle model for the vehicle
dynamics. This environment is encoded in the following
equations discretized via forward Euler approximation:

x1;t+1 = x1;t +1t
(
x4;t cos

(
x3;t
))

(56)

x2;t+1 = x2;t +1t
(
x4;t sin

(
x3;t
))

(57)

x3;t+1 = x3;t +1t

(
x4;t

tan
(
u2;t

)
L

)
(58)

x4;t+1 = x4;t +1t
(
u1;t

)
(59)

where t is the current timestep, x1 and x2 are the x–y position
of the vehicle, x3 is the vehicle heading angle, x4 is the vehicle
velocity, u1 is the acceleration input [in (m/s2)], and u2 is the
steering angle input in radians. These equations represent the
true plant, which is unknown to our learning-based controller.

B. Model Predictive Control Formulation

We utilize the following formulation of simple autonomous
driving with obstacle avoidance:

min
uk∈U
− (x1(t + N )+ x2(t + N )) (60)

s.t.: (56)− (59), x(0) = x(t) (61)
Z(xk) ≤ Zcutoff, umin ≤ uk ≤ umax. (62)

Here, Z(xk) is the obstacle function which represents a basic
vision system. We limit Z to be smaller than a specified value
(corresponding to the definition of the edge of the obstacle).
Residuals in the DRO algorithm are with respect to this barrier
using predicted values of the dynamical state, as opposed to
the value of the obstacle function obtained with the true state.
We create the environment defined by Z(xk) by generating
and summing random Gaussians in two dimensions. Then,
we define the obstacle boundaries by setting a threshold within
the static map, below which becomes the safe region and
above which the obstacles inhabit. This map is used with
interpolation during the final experiment. If the constraint is
violated, the agent will take actions that minimize the violation

TABLE III
RELEVANT PARAMETERS FOR OBSTACLE AVOIDANCE CASE STUDY

until feasibility is restored. We set umin = [−1,−0.75] and
umax = −umin. The experiment ends once the vehicle leaves
the 100 × 100 m space.

With the learned neural network dynamics models, the MPC
formulation in (60)–(62) becomes

min
uk∈U
−
(
x̂1(t + N )+ x̂2(t + N )

)
(63)

s.t.: x̂k+1 = f N N (xk, uk, θ) (64)

x̂(0) = x(t) (65)

Z
(
x̂k
)
≤ Zcutoff − rDRO (66)

umin ≤ uk ≤ umax. (67)

Table III includes relevant parameters of our case study design.
In this case study, we simply use one-step residuals by relying
on a basic assumption that the modeling error is uncorrelated
to the depth of prediction. Based on our experiments, this
assumption is reasonable.

We make a deliberate choice for this objective function for
a host of reasons. While it necessarily encodes our intended
behavior, it also is simple and at odds with the objective of
avoiding obstacles. By allowing our simple objective function
to drive the vehicle directly toward the obstacles, our control
algorithm must be capable of managing the vehicle while
simultaneously maintaining safety throughout the experiment.
Thus, this case study is designed to specifically focus on the
added safety contributions from the DRO framework.

For our learned model, we initialize a feed-forward neural
network based on a single hidden layer with ten neurons. The
hidden layer uses sigmoid activation functions, and the output
layer uses linear activation. At the first timestep, we assume
control inputs of a zero vector are known to be safe. To solve
the MPC problem, we use the same (1 + λ) ES used in our
battery case study. In this case, we modify the optimization
algorithm such that we utilize 750 000 mutants. We also
increase the maximum prediction horizon to Nmax = 12 to
improve the consistency of our results.

C. Results

We conduct ten individual runs with both our algorithm
and a nonrobust version. Figs. 5 and 6 show runs 1 and 3,
respectively. Table IV shows safety statistics. With the DRO
controller, only one of the ten total runs violates constraints
at all and only during a single timestep. The overall violation
with the DRO controller is 0.0623% of timesteps. Moreover,
the magnitude of the violation with the DRO controller is
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TABLE IV
SAFETY COMPARISON FOR DRO-MPC AND MPC WITH VEHICLE OBSTACLE AVOIDANCE. THE MAX VIOLATION IS IN TERMS OF THE EUCLIDEAN

DISTANCE. THE NUMBERS IN PARENTHESES ARE THE TOTAL NUMBER OF TIMESTEPS WHERE CONSTRAINTS ARE VIOLATED, WITH THE
DENOMINATOR BEING THE NUMBER OF TIMESTEPS BEFORE THE VEHICLE LEAVES THE 100 × 100 SIZED ENVIRONMENT

Fig. 5. Comparison of nonlinear MPC controller with and without DRO for
vehicle obstacle avoidance. In this run, the DRO controller does not violate
the constraints at all. This figure shows run 1, with the bottom plots revealing
closeups of the areas with the highest constraint violation.

Fig. 6. Comparison of nonlinear MPC controller with and without DRO for
vehicle obstacle avoidance. This figure shows run 3, with the bottom plots
revealing closeups of the areas with the highest constraint violation.

equivalent to the vehicle skimming the edge of the boundary
by less than 0.0386 m. Conversely, the nonrobust controller
shows significant constraint violation in nearly all ten runs.
The constraint violation of the nonrobust controller averages
0.8041 m of violation, which represents a complete collision

Fig. 7. Heading angle trajectory for run 1 (same as that shown in Fig. 6).
The total range of heading angles is nearly π , showing exploration of highly
nonlinear portions of the state space. The feasible range of steering angle
input also covers a range of nonlinear behavior in the dynamics.

with the obstacle (given our vehicle length L = 0.5). In one
run, the nonrobust controller drives the vehicle nearly 3 m into
the boundary before correcting and exiting the unsafe region.
To verify the model is operating in nonlinear state space, Fig. 7
shows the range of the variable x3 in run 1.

VII. DISCUSSION

Perhaps, the most important available insight is that for an
application, the least amount of SME needed for synthesizing
safe data-driven control is tied to the minimum amount of
SME that yields a DRO offset that admits a feasible solution.

We have not only explored the behavior of our algorithm
at the boundary of available knowledge and data but have
validated its theoretical safety under a challenging arena of
its applicability. Importantly, our approach is widely relevant
in many LbC contexts (and for uncertainty quantification
beyond control). For real-world applications, we are unlikely
to conduct this restrictive type of tabula-rasa LbC. However,
the same safety guarantees we have rigorously validated in
these case studies are similarly applicable when more data and
knowledge are available (e.g., conventional adaptive control,
but with the modeling capacity of nonlinear machine-learning
models). Since our approach functions as an end-to-end LbC
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method, it is also amenable to more unconventional applica-
tions including control synthesis from images or multimodal
inputs [18]. We relegate exploration of this topic to future
work.

VIII. CONCLUSION

This article presents an end-to-end distributionally robust
model-based control algorithm. It addresses the problem of
safety during LbC with strong limitations on our available
knowledge and SME. We adopt a stochastic MPC formu-
lation where we augment constraints with random variables
corresponding to empirical distributions of modeling resid-
uals. By applying Wasserstein ambiguity sets to optimize
over the worst-case modeling error, we translate an out-of-
sample safety guarantee subject to new data and experience.
We validate this finding through simulation experiments. Our
method applies to nonlinear MPC, but when applied to convex
MPC programs it preserves convexity.

APPENDIX

A. Cardinality of Constraints Remains Constant

In the following lemma, we show that the number of
constraints in the reformulation of the DRO problem in (46)
need only be m (where m is the dimension of the constraint
function output). When g(·) is nonseparable, as described in
[36], then the number of constraints in the reformulation scales
superlinearly as 2m .

Lemma 3: If the modeling error residuals are defined as

R(t)
1 =

∣∣g(xt , u∗t
)
− ĝ

(
xt , u∗t , θg

)∣∣ (68a)

R(t+1)
1 =

∣∣g(x∗t+1, u∗t+1

)
− ĝ

(
x̂ t+1, u∗t+1, θg

)∣∣ (68b)

R(t+b)
1 =

∣∣g(x∗t+b, u∗t+b

)
− ĝ

(
x̂ t+b, u∗t+b, θg

)∣∣ (68c)

and appear in the constraint function g(·) as (46), then the
number of constraints in the reformulated problem remains
identically m without jeopardizing the probabilistic guarantee.

Proof: Consider the following stochastic constraint con-
verted to a DRCC:

x + R ≤ 0 (69a)
inf

P∈Bϵ

P[x + R ≤ 0] ≥ 1− η (69b)

representing a constraint with uncertainty. Without loss of
generality, we consider an MPC program with horizon N = 1.

The method of [36] enumerates across the vertices of a
hypercube by modulating the sign of the DRO variable σ .
However, when the random variable is a separable offset from
a constant constraint boundary, we only need to consider
perturbations that add conservatism. In the 1-D case, we can
see from looking at the set of constraints

x ≤ −r and x ≤ r (70)

that only the first constraint x ≤ −r will ever be active.
Therefore, x ≤ −r adequately defines the feasible region.

Likewise, if we consider the case where R ∈ R2 with
additive R, we obtain the following set of constraints:[

x̃1
x̃2

]
+

[
r1
r2

]
≤ 0 (71)

[
x̃1
x̃2

]
+

[
−r1
r2

]
≤ 0 (72)[

x̃1
x̃2

]
+

[
r1
−r2

]
≤ 0 (73)[

x̃1
x̃2

]
+

[
−r1
−r2

]
≤ 0 (74)

we see trivially that the feasible region defined by (71) and
(74) is identical to that defined solely by (74). This pattern
continues for any m ∈ N of R ∈ Rm .

B. Evolutionary Strategies and Random Search

In our article, we utilize a (1+λ) ES to approximately solve
the numerical MPC optimization program. This is a subset of
what is generally referred to as a ((µ/ρ) + λ) ES, whose
precise definition can be referenced in [44]. A ((µ/ρ) + λ)

ES is a very simple form of a genetic algorithm, whereby
at each generation/iteration of optimization, we have some
number of “parents” who are mutated, and the parents are
replaced by the highest performing mutated offspring. Random
search is a highly effective method for solving optimization
problems in RL literature [45]. Random search is also highly
amenable to constrained optimization (without equality con-
straints), as infeasible mutants can be pruned from selection.
If no feasible mutants are found, the mutant that least violates
the constraint boundary can be selected to avoid additional
computation.

C. Slow Model Adaptation

To accommodate potential cases where the true plant
dynamics change slowly over time, we can adopt the following
approach which preserves the safety guarantees of the Wasser-
stein DRO framework. We have system dynamics x ∈ Rn

with no finite escape time. Furthermore, g(x, u, θ∗) ≤ 0 is
our constraint function. Suppose it holds that the function
g behaves in the following manner (similarly, although not
identically, to a Lipschitz continuous function):

max
x∈§,u∈U ,δθ

|g(x, u, θ + δθ)− g(x, u, θ)| ≤ C (75)

where δθ = θ∗t+1 − θ∗t is any possible deviation in the model
parameters throughout a single timestep. The value δθ is
bounded. Consider we are at time t of the experiment. Let
us represent the one-step residual at time j = t − k, where
k ∈ {1, 2, . . . , t} is an integer, as

R(t)
1 = g

(
xt , ut , θ

∗

t

)
− ĝ(xt , ut , θt ) (76)

where θ∗t is the parameterization of the true plant at time t ,
and θt is the learned model at time t . If we add a value to the
residual R(t)

1 of C · k · sgn(R(t)
1 )

R̃(t)
1 = R(t)

1 + C · k · sgn
(

R(t)
1

)
(77)

we accommodate for worst-case model adaptation in our
algorithm. This scheme, coupled with a judiciously designed
moving window of residuals, can accommodate model adap-
tation in the true underlying plant.
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