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Abstract—In this paper, we propose a new approach to address
the control problem for negative imaginary (NI) systems by using
hybrid integrator-gain systems (HIGS). We investigate the single
HIGS of its original form and its two variations, including a
multi-HIGS and the serial cascade of two HIGS. A single HIGS
is shown to be a nonlinear negative imaginary system, and so
is the multi-HIGS and the cascade of two HIGS. We show
that these three types of HIGS can be used as controllers to
asymptotically stabilize linear NI systems. The results of this
paper are then illustrated in a real-world experiment where a 2-
DOF microelectromechanical system nanopositioner is stabilized
by a multi-HIGS.

Index Terms—hybrid integrator-gain system, negative imagi-
nary system, MEMS nanopositioner, nonlinear system, feedback
control.

I. INTRODUCTION

Negative imaginary (NI) systems theory was introduced

in [1], [2] to provide an alternative approach to the robust

control of flexible structures [3]–[6]. Flexible structures usu-

ally have highly resonant dynamics, for which the traditional

negative velocity feedback control may not be suitable. Also,

unmodelled uncertainties in such systems can lead to poor

performance or even instability if the controller is not designed

to be robust against them [2], [7]. As NI systems theory uses

positive position control, it is efficient towards the control

of flexible structures and has attracted attention since was

introduced in 2008 (see [8]–[14], etc). NI systems theory can

be regarded as a complement to the positive real (PR) system

theory. One limitation of PR systems theory is that it can only

deal with systems having relative degree of zero and one [15].

NI systems, which can be regarded as the cascade of a PR

system and an integrator, can have relative degree of zero,

one and two [16]. Typical mechanical examples of NI systems

arise in systems with colocated force actuators and position

sensors. Roughly speaking, a transfer function matrix G(s) is

said to be NI if it is stable and j(G(jω)−G(jω)∗) ≥ 0 for all

frequencies ω > 0. NI systems can be stabilized using strictly

negative imaginary (SNI) systems. Under some assumptions,
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the positive feedback interconnection of an NI system G(s)
and an SNI system R(s) is asymptotically stable if and only

if the DC loop gain of the interconnection is less than unity;

i.e., λmax(G(0)R(0)) < 1 (e.g., see [17]). NI systems theory

has been applied in a wide variety of systems, including

nanopositioning control [18]–[21], control of lightly damped

structures [8], [13], [22], cooperative control for networked

multi-agent systems [14], [23], [24], etc.

NI systems theory was extended to nonlinear systems in

2018 [25] considering that many NI systems are of a nonlinear

nature. A nonlinear system is said to be NI if it is dissipative

with respect to the inner product of its input and the time

derivative of its output. The papers [24]–[26] showed that a

nonlinear negative imaginary (NNI) system can be asymptoti-

cally stabilized by various classes of strict negative imaginary

systems applied in positive feedback when certain assumptions

are satisfied. This extension not only allows for nonlinear

plants but also brings flexibility in the choice of controllers.

Nonlinear controllers or even hybrid controllers can now be

considered in the control of NI plants in order to achieve

certain control objectives. One example of such a controller is

the hybrid integrator-gain system (HIGS), which can improve

control performance for single-input single-output (SISO) NI

systems [27].

Linear feedback control has inherent limitations which

have been discussed in [28], [29]. The Bode’s phase-gain

relationship shows a trade-off between system performance

and its robustness [30], [31]. That is, the desired large low-

frequency gain and small high-frequency gain can only be

achieved at the cost of a lower stability margin [32]. To be

specific, an integrator, which is commonly used to eliminate

the steady state error [33] introduces a 90◦ phase lag. The

time delay caused by such a phase lag will unavoidably lead to

an overshoot and even instability [34], [35]. Clegg introduced

a nonlinear integrator in [35], known as Clegg integrator, to

overcome these limitations. The output of the Clegg integrator

is reset to zero whenever its input crosses zero. With such a

resetting mechanism, the input and output of a Clegg integrator

always have the same sign. The describing function of a Clegg

integrator has a magnitude slope identical to a linear integrator

but a phase lag of only 38.1◦. In comparison to a linear

integrator, the reduction of 51.9◦ of phase lag will lead to a

significant reduction in time delay and, as a consequence, the

overshoot. The concept of output resetting was generalized to

a first-order filter with the transfer function 1/(s+ b) in [36].

This is known as the first-order reset element (FORE); see

[37], [38] for summaries of reset control systems. A concrete

example provided in [39] shows that a reset control system can
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meet control objectives that are unachievable for any linear

controller: under a FORE control, the plant tracks a unit step

reference with no overshoot even for a large rise time, i.e.,

when the bandwidth is low (see [28]).

A drawback of conventional reset control systems such as

Clegg integrators and FOREs is that they generate discontin-

uous control signals once the reset happens. Discontinuous

control signals can cause chattering which may excite high-

frequency dynamics and lead to poor performance or even

instability [40], [41]. To overcome this drawback of reset

control systems, the HIGS was introduced in [42]. Instead of

resetting the state to zero, the HIGS alternates between integra-

tor and gain modes resulting in a continuous (but non-smooth)

control signal. This prevents the excitation of high-frequency

harmonics induced by conventional reset control systems. The

input-output relation of the HIGS is also restricted to a sector

in which the HIGS operates as an integrator. The tendency to

violate the sector constraint in the integrator mode enforces

switching to the gain mode, ensuring that the input and output

of the HIGS would have identical signs [43]. The frequency

response of the describing function of a HIGS has the same

38.1◦ of phase lag as the reset control system [42]. Hence,

the HIGS has similar advantages as the reset control systems

described above in terms of overcoming the limitations of

linear controllers. The paper [44] illustrated the advantages

of HIGS using a concrete example where the overshoot is

completely eliminated by HIGS control, which is unachievable

by any linear controller.

The demand for high-precision, high-speed, and reliable

mechatronics systems has tremendously increased, and to

address this need, the HIGS element has been exploited

successfully in the semiconductor industry for motion track-

ing [42], [45], [46], vibration isolation and damping [43], [47],

[48]. In [42], a HIGS-based PI2D controller is designed and

applied to a wafer stage system of an industrial wafer scanner.

Owing to the enhanced phase behaviour of HIGS-based filters

compared to the linear counterparts, HIGS-based second-

order low-pass filter [45] and HIGS-based notch filter [49]

are proposed to achieve substantial low-frequency disturbance

rejection and increase the bandwidth of a wafer scanner.

A HIGS-based bandpass filter is also constructed in [43],

featuring a series connection of two HIGS elements applied

for vibration isolation. By replacing a standard integrator with

the HIGS element, [44] demonstrates a novel application of

the HIGS in reducing overshoot in linear time-invariant plants

having a real unstable pole. The HIGS is also studied in

multivariable configuration [47] applied to a multivariable

active vibration isolation system in the form of a HIGS-based

bandpass filter.

Stability and performance analysis of closed-loop systems

featuring HIGS is challenging due to the nonlinear nature

of this hybrid system. Based on the stability analysis of

reset control systems in general [50], a frequency-domain

approach is proposed in [42] to graphically verify the stability

of a controlled system with the HIGS using the measured

frequency response data of the linear part and the Kalman-

Yakubovich-Popov (KYP) lemma. In this approach, the closed-

loop system is rearranged in Lur’e form by isolating the

nonlinearity from the linear counterpart, thus the input-to-

state stability (ISS) of the closed-loop system is guaranteed

based on the detectability of the HIGS element and the circle

criterion. This results in frequency-domain conditions, less

stringent than the strictly positive criterion [50]. Using a

modified version of the circle criterion, the stability of the

closed-loop system in multiple-input multiple-output (MIMO)

configuration is also investigated in [47].

Since the switching strategy in HIGS is not taken into

account in the proposed stability analysis of the controlled

systems featuring HIGS, the frequency-domain conditions

are a conservative estimate of the stability. This has been

addressed in [51] by proposing novel conditions that guarantee

the existence of the Lyapunov functions in subregions of the

state-space where the HIGS is active. The stability of nonlinear

closed-loop systems with the HIGS element is also explored

through a time-domain approach where an ISS condition is

proposed in terms of linear matrix inequalities (LMIs) that

guarantee the existence of a piecewise quadratic Lyapunov

function [52]. This approach is less conservative compared to

the frequency-domain approach [52].

In this paper, we investigate the application of HIGS on

the robust control of linear NI systems. We propose different

types of variations of the original HIGS which was introduced

in [42]. To be specific, we investigate a single HIGS, a multi-

HIGS, and the cascade of two HIGS elements. A conference

version of this paper [27] showed that a HIGS is an NNI

system and can be used to asymptotically stabilize a SISO NI

system. The present paper aims to explore different types of

HIGS-based NI controllers constructed by connecting multiple

single HIGS elements either in parallel or in series. The

parallel connected HIGS, called multi-HIGS, helps extend the

results in [27] to MIMO systems, which is the main contri-

bution of this paper. We provide a more intuitive description

of the multi-HIGS, which was originally introduced in [47].

It is shown that a multi-HIGS is also an NNI system. For

any MIMO NI plant with a minimal realization, there always

exists a multi-HIGS controller that asymptotically stabilizes

the NI plant. As for the serial cascade of multiple HIGS, we

only investigate the case of two serial cascaded HIGS because

NI systems can only have relative degree less than or equal

to two [16]. It is shown that the cascade of two HIGS is also

an NNI system and can be used as an alternative to the single

HIGS controller in stabilizing a SISO NI system.

The NI property of the HIGS elements and the theoretical

stability results motivate a methodology in the control of a

certain class of systems in practice. That is, using HIGS in

the control of flexible structures with colocated force actuators

and position sensors. This methodology is applied in this

paper to control one such system – a microelectromechanical

system (MEMS) nanopositioner. A real-world experiment was

implemented, where a 2-DOF MEMS nanopositioner was

controlled by a multi-HIGS controller.

The rest of the paper is organized as follows. Section II

provides some preliminaries on HIGS and NI systems. Section

III shows the NI property of a single SISO HIGS of its

original form as given in [42]. It is also shown in Section

III that a single HIGS can stabilize a SISO linear NI system.



Sections V and IV investigate two variations of HIGS; i.e., two

cascaded HIGS and multi-HIGS, respectively. System models

of these two variations of HIGS are given. We show their NNI

properties, which are then used in stabilizing linear NI plants.

In Section VI, the proposed results are applied to the control

of a MEMS nanopositioner. Section VII concludes the paper.

Notation: R denotes the set of real numbers. Rm×n denotes

the space of real matrices of dimension m × n. AT denotes

the transpose of a matrix A. A−T denotes the transpose

of the inverse of A; i.e., A−T = (A−1)T = (AT )−1.

λmax(A) denotes the largest eigenvalue of a matrix A with real

spectrum. For a symmetric matrix P , P > 0 (P ≥ 0) denotes

the fact that the matrix P is positive definite (positive semi-

definite) and P < 0 (P ≤ 0) denotes the fact that the matrix

P is negative definite (negative semi-definite). Let θi ∈ R
N

denote the standard unit vector; i.e., the i-th element of θi is

one and all other elements are zeros.

II. PRELIMINARIES

A. Hybrid Integrator-Gain Systems

A SISO hybrid integrator-gain system (HIGS) H is rep-

resented by the following differential algebraic equations

(DAEs) [42]:

H :





ẋh = ωhe, if (e, u, ė) ∈ F1

xh = khe, if (e, u, ė) ∈ F2

u = xh,

(1)

where xh, e, u ∈ R denote the state, input, and output of

the HIGS, respectively. Here, ė is the time derivative of the

input e, which is assumed to be continuous and piecewise

differentiable. Also, ωh ∈ [0,∞) and kh ∈ (0,∞) represents

the integrator frequency and gain value, respectively. These

tunable parameters allow for desired control performance. The

sets F1 and F2 ∈ R
3 determine the HIGS modes of operation;

i.e. the integrator and gain modes, respectively. The HIGS is

designed to operate under the sector constraint (e, u, ė) ∈ F
(see [42], [47]) where

F = {(e, u, ė) ∈ R
3| eu ≥

1

kh
u2}, (2)

and F1 and F2 are defined as

F1 := F \ F2;

F2 := {(e, u, ė) ∈ R
3|u = khe and ωhe

2 > kheė}.

HIGS (1) operates in the integrator mode unless the HIGS

output u is on the boundary of the sector F , and tends to

exit the sector; i.e. (e, u, ė) ∈ F2. In this case, the HIGS

is enforced to operate in the gain mode. At the time instants

when switching happens, the state xh still remains continuous,

as can be seen from (1).

B. Negative Imaginary Systems

Lemma 1: (NI Lemma) [11] Let (A,B,C,D) be a minimal

state-space realization of an p×p real-rational proper transfer

function matrix G(s) where A ∈ R
n×n, B ∈ R

n×p, C ∈
R

p×n, D ∈ R
p×p. Then R(s) is NI if and only if:

1. det(A) 6= 0, D = DT ;

2. There exists a matrix Y = Y T > 0, Y ∈ R
n×n such that

AY + Y AT ≤ 0, and B +AY CT = 0.

Considering a general nonlinear system

ẋ = f(x, u), (3a)

y = h(x), (3b)

where x ∈ R
n, u, y ∈ R

p are the state, input and output of

the system, respectively.

Definition 1: (NNI Systems) [25], [26] A system of the form

(3) is said to be an NNI system if there exists a positive definite

continuously differentiable storage function V : Rn → R such

that

V̇ (x(t)) ≤ u(t)T ẏ(t), ∀ t ≥ 0.

III. A SINGLE HIGS

In this section, we present that a single HIGS, represented

by (1), is NNI. Then, we show that a single HIGS can be

used as a controller for a SISO NI system by proving that the

positive feedback interconnection of an NI system and a HIGS

is asymptotically stable.

A. NNI Property of SISO HIGS

We first present a property of the HIGS (1) in Lemma 2,

which is implied by the sector constraint (2). This property

will be used later in the proofs of the main results.

Lemma 2: Consider a HIGS element with the system model

(1). This system satisfies

exh − khe
2 ≤ 0,

where the equality only holds when xh = khe.

Proof: See Appendix.

The NNI property of a SISO HIGS is shown in the following

theorem.

Theorem 1: Consider a SISO HIGS as in (1), then the HIGS

is an NNI system from input e to the output u with the positive

definite storage function formulated as

V (xh) =
1

2kh
x2

h

satisfying

V̇ (xh) ≤ eu̇. (4)

Proof: The storage function V (xh) is positive definite

since kh > 0. Here, we prove that (4) holds in both integrator

and gain modes. Taking the time derivative of V (xh), we have

that

V̇ (xh) =
1

kh
xhẋh.

Case 1. The HIGS operates in the integrator mode; i.e.,

(e, u, ė) ∈ F1. In this case, we have that ẋh = ωhe. Therefore,

V̇ is obtained as

V̇ (xh) =
1

kh
ωhexh

≤ ωhe
2 = eu̇. (5)



where the inequality follows from Lemma 2.

Case 2. The HIGS operates in the gain mode; i.e., (e, u, ė) ∈
F2. In this case, we have that u = xh = khe. Therefore,

V̇ (xh) =
1

kh
kheẋh = eu̇. (6)

According to (5) and (6), and Definition 1, the HIGS is an

NNI system.

B. Stability for the interconnection of a SISO NI system and

a HIGS

Consider the interconnection of a SISO linear NI plant G(s)
and a HIGS controller H as shown in Fig. 1. We analyze the

stability of the closed-loop system in the following. Note that

here and also in Sections IV, V and VI, HIGS controllers

are applied in positive feedback, according to the control

framework used in NI systems theory [1], [24].
PSfrag replacements

r = 0
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Fig. 1. Closed-loop interconnection of a linear NI system and a HIGS.

Consider a SISO NI system with the transfer function matrix

G(s) and the minimal realization:

ẋ = Ax+Bu, (7a)

y = Cx, (7b)

where x ∈ R
n, u, y ∈ R are the state, input and output of

the system, respectively. Here, A ∈ R
n×n, B ∈ R

n×1 and

C ∈ R
1×n.

Theorem 2: Consider the SISO minimal linear NI system

(7). There exists a HIGS element H of the form (1) such

that the closed-loop interconnection of the system (7) and the

HIGS H as shown in Fig. 1 is asymptotically stable.

Proof: This result is a special case of Theorem 4. See the

proof of Theorem 4. Also, the proof for this special case is

presented in [27].

IV. MULTI-HIGS

In this section, we provide a description of multi-HIGS and

show that a multi-HIGS is an NNI system. Also, we prove

that for any MIMO linear NI system, there exists a multi-

HIGS controller such that their closed-loop interconnection is

asymptotically stable.

A. Description of Multi-HIGS

Consider N HIGS of the form (1) with different integrator

frequencies ωh,1, · · · , ωh,N and gain values kh,1, · · · , kh,N
connected in parallel as shown in Fig. 2. The HIGS are

denoted by H1,H2, · · · ,HN while their inputs, outputs and

states are denoted by e1, e2, · · · , eN , u1, u2, · · · , uN and

xh,1, xh,2, · · · , xh,N , respectively. The entire system denoted

by Ĥ is called a multi-HIGS (see also [47]). The input, output

and state of the system Ĥ are

Eh =
[
e1 e2 · · · eN

]T
, (8)

Uh =
[
u1 u2 · · · uN

]T
, (9)

and

Xh =
[
xh,1 xh,2 · · · xh,N

]T
, (10)

respectively.

PSfrag replacements
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u1

u2

uN
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Fig. 2. A multi-HIGS Ĥ, which is constructed by connecting N HIGS of the
form (1) in parallel.

The system can also be described by the following equa-

tions:

Ĥ :





ei = θTi Eh,

ẋh,i = ωh,iei, if (ei, xh,i, ėi) ∈ F1,i

xh,i = kh,iei, if (ei, xh,i, ėi) ∈ F2,i

Xh =
[
xh,1, xh,2, · · · , xh,N

]T
,

Uh = Xh,
(11)

where θi ∈ R
N is a standard unit vector. And F1,i and F2,i

are given by:

F1,i := Fi \ F2,i;

F2,i := {(ei, xh,i, ėi) ∈ R
3|xh,i = kh,iei

and ωh,ie
2

i > kh,ieiėi},

where

Fi := {(ei, xh,i, ėi) ∈ R
3| eixh,i ≥

1

kh,i
x2

h,i}. (12)

B. NNI Property of multi-HIGS

Consider the system Ĥ in Fig. 2. It is shown in the following

that if for all i = 1, 2, · · · , N , the system Hi is NNI, then the

system Ĥ is also NNI.

Lemma 3: Consider N NNI systems connected in par-

allel with inputs u1, u2, · · · , uN , outputs y1, y2, · · · , yN
and states x1, x2, · · · , xN . They have storage functions

V1(x1), V2(x2), · · · , VN (xN ) that satisfy Definition 1; i.e.,

V̇i(xi) ≤ ui(t)
T ẏi(t), ∀t ≥ 0, ∀i = 1, 2, · · · , N . Then the



nonlinear system having input U =
[
uT
1

uT
2

· · · uT
N

]T
,

output U =
[
yT
1

yT
2

· · · yTN
]T

and state X =[
xT
1

xT
2

· · · xT
N

]T
is also NNI with the storage function

V̂ (X) = ΣN
i=1

Vi(xi). (13)

Proof: See Appendix.

Theorem 3: Consider the multi-HIGS Ĥ represented by (11),

which is also shown in Fig. 2. The system Ĥ with input

Eh, output Uh and state Xh, defined in (8), (9) and (10)

respectively, is an NNI system with the storage function

V̂h(Xh) = ΣN
i=1

Vi(xh,i) =
1

2
XT

h K
−1

h Xh,

where Kh = diag{kh,1, kh,2, · · · , kh,N}. Here, ei, ui, xh,i

and Vi(xh,i) are the input, output, state and storage function

of the i-th SISO HIGS Hi, respectively, i = 1, 2, · · · , N .

Proof: The proof follows directly from Lemma 3 and

the NNI property of SISO HIGS of the form (1), as given in

Theorem 1. Specifically, we have

˙̂
V h(Xh) = ΣN

i=1
V̇i(xh,i) ≤ ΣN

i=1
eiu̇i = ET

h U̇h, (14)

which satisfies Definition 1.

C. Stability of the interconnection of a MIMO linear NI system

and a multi-HIGS

PSfrag replacements
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Fig. 3. Closed-loop interconnection of a MIMO linear NI plant G(s) and a

multi-HIGS controller Ĥ.

Lemma 4: Consider the multi-HIGS of the form (11) shown

in Fig. 2. If
˙̂
V h(Xh) = ET

h U̇h, then Xh = KhEh.

Proof: See Appendix.

Consider a MIMO linear NI system with the transfer func-

tion matrix G(s) and the minimal realization

ẋ =Ax+Bu, (15a)

y =Cx, (15b)

where u, y ∈ R
N and x ∈ R

n are the input, output and state

of the system, respectively. Here A ∈ R
n×n, B ∈ R

n×N and

C ∈ R
N×n.

Theorem 4: Consider the MIMO minimal linear NI system

(15). There always exists a multi-HIGS Ĥ, given in (11)

and Fig. 2, such that the closed-loop interconnection of the

system (15) and the multi-HIGS Ĥ as shown in Fig. 3 is

asymptotically stable.

Proof: Since the system (15) is minimal and NI, then

according to Lemma 1, we have that detA 6= 0 and there

exists Y = Y T > 0, Y ∈ R
n×n such that

AY + Y AT ≤ 0, and B +AY CT = 0. (16)

Using Lyapunov’s direct method, let the storage function of

the closed-loop interconnection be

W (x,Xh) =
1

2
xTY −1x+

1

2
XT

h K
−1

h Xh −XT
h Cx

=
1

2

[
xT XT

h

] [Y −1 −CT

−C K−1

h

] [
x
Xh

]
.

Using Schur complement theorem, W (x,Xh) > 0 for all

(x,Xh) 6= (0, 0) if

K−1

h − CY CT > 0. (17)

Using (16), we have that CY CT = −CA−1B = G(0), where

G(s) = C(sI − A)−1B is the transfer function matrix of the

system (15) Then, (17) can be written as

K−1

h −G(0) > 0.

Since both Y −1 and K−1

h are positive definite, the condition

(17) is equivalent to

Y −1 − CTKhC > 0. (18)

Take the time derivative of W (x,Xh), we have

Ẇ (x,Xh)

=xTY −1ẋ+XhK
−1

h Ẋh − ẊT
h Cx−XT

h Cẋ

=
(
xTY −1 −XhC

)
ẋ+ ẊT

h

(
K−1

h Xh − Cx
)

=
(
xTY −1 − uC

)
ẋ+ ẊT

h

(
K−1

h Xh − Eh

)

=
(
xTY −1 + uBTA−TY −1

)
ẋ+ ẊT

h

(
K−1

h Xh − Eh

)

=
(
xTAT + uBT

)
(A−TY −1)ẋ + ẊT

h

(
K−1

h Xh − Eh

)

=
1

2
ẋT (A−TY −1 + Y −1A−1)ẋ+ ẊT

h

(
K−1

h Xh − Eh

)
,

where u = Xh and Eh = y = Cx are also used. We

have that ẊT
h

(
K−1

h Xh − Eh

)
=

˙̂
V h(Xh) − ET

h U̇h ≤ 0 and

equality holds only if Xh = KhEh according to Lemma 4.

We also have that 1

2
ẋT (A−TY −1 + Y −1A−1)ẋ ≤ 0 because

A−TY −1 + Y −1A−1 ≤ 0 according to (16). Therefore,

Ẇ (x,Xh) ≤ 0 and the equality Ẇ (x,Xh) = 0 holds only

if Xh = KhEh and ẋT (A−TY −1 + Y −1A−1)ẋ = 0. We

apply LaSalle’s invariance principle in the following to prove

that there exist kh,i and ωh,i (i = 1, 2, · · · , N) such that the

closed-loop system is asymptotically stable. We only consider

the case that x 6= 0. The function Ẇ (x,Xh) stays at zero

only if Xh ≡ KhEh and ẋT (A−TY −1 + Y −1A−1)ẋ ≡ 0.

The condition Xh ≡ KhEh implies that

u ≡ Khy ≡ KhCx, (19)

where the system settings u = Uh = Xh and Eh = y = Cx
as shown in Fig. 3 are also used. In the sequel, we have that

ẋ ≡ Ax+Bu ≡ Ax+BKhCx ≡ (A+BKhC)x. (20)

According to (16), we have that

A+BKhC = A−AY CTKhC = AY (Y −1 − CTKhC),

which is nonsingular due to (18) and the non-singularity of

the matrices A and Y . Therefore, according to (20), ẋ 6= 0



for any nonzero x. Also, ẋ cannot remain a constant vector

because

ẍ = (A+BKhC)ẋ 6= 0,

for any nonzero ẋ. The condition ẋT (A−TY −1 +
Y −1A−1)ẋ ≡ 0 implies that ẋ must stay in the null

space of A−TY −1 + Y −1A−1.

With the above information about ẋ known in the case that

Ẇ (x,Xh) ≡ 0, we now prove that Ẇ (x,Xh) cannot remain

zero forever. We first prove by contradiction that none of the

single HIGS can stay in integrator mode unless both of the

HIGS input and output remain zero. Suppose that there is

a HIGS Hi staying in the integrator mode F1,i. Then we

have that ẋh,i = ωh,iei = ωh,iyi according to (11), and

xh,i = kh,iyi according to (19). Here, yi denotes the i-th
output element in y. Therefore, we have that

ẋh,i = ωh,iyi = kh,iẏi (21)

over a nonzero time interval [ta, tb] where ta < tb. With

ωh,i > 0 chosen, for nonzero yi(ta), (21) implies that

yi(t) = yi(ta)exp(
ωh,i

kh,i
t) for t ∈ [ta, tb]. This means that the

closed-loop system is unstable, which contradicts its Lyapunov

stability proved above. For HIGS with an input ej = yj that

does not remain zero, it must stay in the gain mode F2,j .

Now we prove that we can force it to exit the gain mode

by choosing suitable HIGS parameters. Now we consider the

condition ωh,je
2

j > kh,jej ėj in F2,j . This condition cannot be

satisfied for all HIGS Hj in gain mode over time via satisfying

ej ėj < 0 because then V̇h,j ≤ ejẋh,j = kh,jej ėj < 0,

where Vh,j is the storage function of the HIGS Hj . Hence

yj = ej = 1

kh,j
xh,j will converge to zero. This implies that

eventually y = 0, which is not the case considered here.

Considering those ej that eventually satisfies ej ėj > 0, since

the trajectories of ėj and ej in gain mode is independent of

ωh,j , we can always choose sufficiently small ωh,j > 0 such

that ωh,je
2

j < kh,jej ėj , in order to violate the condition F2,j

for some Hj in gain mode. These Hj will then enter integrator

mode for at least some finite time. Thus, we can eventually

force all HIGS to switch into integrator mode and have their

inputs remaining zero, except for those staying in the gain

mode by satisfying F2,j via ėj ≡ 0. In this case, ẏ ≡ 0, which

implies that ẋ ≡ 0 according to observability. This contradicts

with the fact that ẋ cannot remain zero, which has been proved

above. We conclude that Ẇ (x,Xh) ≡ 0 will eventually be

violated, and W (x,Xh) will decrease monotonically until it

reaches zero.

Remark 1: The multi-HIGS model (11) allows the integrator

frequencies ωh,i to be zero. However, we need to choose

strictly positive integrator frequencies in some cases. For

example, a lossless NI plant G(s) cannot be stabilized by a

pure gain feedback. Hence, we need ωh,i > 0 at least for some

i, or even for all i, to ensure the HIGS controllers will work

properly. Similar remarks also apply to the results in Theorems

2 and 6.

V. THE CASCADE OF TWO HIGS

In this section, the cascade of two HIGS elements is

considered as a controller for SISO linear NI systems. we

prove that the closed-loop system featuring the cascaded HIGS

is asymptotically stable.

A. System Description

We first provide a description for the cascaded HIGS. As

shown in Fig. 4, it is a simple open-loop interconnection of

two HIGS where the output of one HIGS is used as the output

of the other HIGS.

PSfrag replacements
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Fig. 4. A cascade of the HIGS H1 and the HIGS H2. The output x1 of H1

is fed into H2 as its input e2.

The system model of the two HIGS system H1 and H2 are

as follows:

H1 :





ẋ1 = ω1e1, if(e1, y1, ė1) ∈ F1

x1 = k1e1, if(e1, y1, ė1) ∈ F2

y1 = x1,

(22)

where x1, e1, y1 ∈ R are the state, input and output of the

system, respectively. Here, ω1 ∈ [0,∞) and k1 ∈ (0,∞) are

system parameters. And we have that

F =

{
(e1, y1, ė1) ∈ R

3|e1y1 ≥
1

k1
y2
1

}
, (23)

F1 = F\F2,

F2 =
{
(e1, y1, ė1) ∈ F|y1 = k1e1 and ω1e

2

1
> k1ė1e1

}
.

(24)

H2 :





ẋ2 = ω2e2, if(e2, y2, ė2) ∈ F̃1

x2 = k2e2, if(e2, y2, ė2) ∈ F̃2

y2 = x2,

(25)

where x2, e2, y2 ∈ R are the state, input and output of the

system, respectively. Here, ω2 ∈ [0,∞) and k2 ∈ (0,∞) are

system parameters. And we have that

F̃ =

{
(e2, y2, ė2) ∈ R

3|e2y2 ≥
1

k2
y2
2

}
, (26)

F̃1 = F̃\F̃2,

F̃2 =
{
(e2, y2, ė2) ∈ F̃|y2 = k2e2 and ω2e

2

2
> k2ė2e2

}
.

(27)

The interconnection can be described by the equation

e2 = y1.



B. NNI Property of the Cascade of Two HIGS

The following lemma is required in the presentation of the

main results.

Lemma 5: Consider the HIGS of the form (1). Suppose

exh = 1

kh
x2

h over a time interval [ta, tb], where ta < tb, then

xh = khe for all t ∈ [ta, tb].
Proof: See Appendix.

Note that Lemma 5 is nontrivial since the equation exh =
1

kh
x2

h has two solutions xh = 0 and xh = khe.

Theorem 5: Consider two HIGS H1 and H2 having the

system models (22) and (25), respectively. Suppose k2ω1 ≤
k1ω2, then the cascade of H1 and H2 as shown in Fig. 4 is

an NNI system with the Lyapunov storage function

V (x1, x2) = ax2

1 +
k2 − 2ak1
2k1k22

x2

2, (28)

satisfying

V̇ (x1, x2) ≤ e1ẋ2. (29)

Here, 0 < a < k2

2k1

is a parameter. Moreover, if V̇ (x1, x2) =
e1ẋ2 over a time interval [ta, tb], where ta < tb, then for all

t ∈ [ta, tb] we have that x1 = k1e1 and x2 = k2e2 = k2k1e1.

Proof: Since 0 < a < k2

2k1

, we have that V (x1, x2) in (28)

is positive definite. Because both H1 and H2 have two modes,

i.e., integrator mode and gain mode, the cascaded system has

four modes. We prove in the following that (29) holds in these

four modes. Note that e2 = x1 will be used in the following.

Case 1. H1 in F1 and H2 in F̃1. According to (23) and

(26), we have that

e1x1 ≥
1

k1
x2

1
, (30)

x1x2 ≥
1

k2
x2

2
=⇒ x1x2 ≤ k2x

2

1
, (31)

where the deduction in (31) uses Lemma 2. Since k2ω1 ≤
k1ω2 and 0 < a < k2

2k1

, we have that 2aω1 − ω2 < 0 and

k2 − 2ak1 > 0. Taking the time derivative of V (x1, x2), we

get

V̇ (x1, x2)− e1ẋ2

=2ax1ẋ1 +
k2 − 2ak1

k1k22
x2ẋ2 − e1ẋ2

=2ax1ω1e1 +
k2 − 2ak1

k1k22
x2ω2x1 − ω2e1x1

=(2aω1 − ω2)e1x1 +
k2 − 2ak1

k1k22
ω2x1x2

≤(2aω1 − ω2)
1

k1
x2

1 +
k2 − 2ak1

k1k22
ω2k2x

2

1

=
1

k1
x2

1

(
2aω1 − ω2 +

k2 − 2ak1
k2

ω2

)

=
2a

k1
x2

1

(
ω1 −

k1
k2

ω2

)

≤0, (32)

where the first inequality uses (30), (31) and also the fact that

2aω1 − ω2 < 0. This implies in (32), V̇ (x1, x2) − e1ẋ2 =
0 is possible only if equalities in (30) and (31) hold. If the

equalities hold over the time interval [ta, tb], then according

to Lemmas 2 and 5, we have that x1 = k1e1 and x2 = k2e2
in [ta, tb]. That is x2 = k1k2e1.

Case 2. H1 in F2 and H2 in F̃2. Take the time derivative

of V (x1, x2):

V̇ (x1, x2)− e1ẋ2

=2ax1ẋ1 +
k2 − 2ak1

k1k22
x2ẋ2 − e1ẋ2

=2ak2
1
e1ė1 +

k2 − 2ak1
k1k22

k2
1
k2
2
e1ė1 − k1k2e1ė1

=e1ė1

(
2ak21 +

k2 − 2ak1
k1k22

k21k
2

2 − k1k2

)

=0.

In Case 2, x1 = k1e1 and x2 = k2e2 automatically holds.

Case 3. H1 in F1 and H2 in F̃2. According to (23), we

have that

e1x1 ≥
1

k1
x2

1
=⇒ e1x1 ≤ k1e

2

1
, (33)

where the deduction uses Lemma 2. And according to (27),

we have that

ω2e
2

2
> k2ė2e2.

We take the time derivative of V (x1, x2):

V̇ (x1, x2)− e1ẋ2

=2ax1ẋ1 +
k2 − 2ak1

k1k22
x2ẋ2 − e1ẋ2

=2ax1ω1e1 +
k2 − 2ak1

k1k22
k2x1k2ω1e1 − e1k2ω1e1

=
ω1k2
k1

x1e1 − ω1k2e
2

1

≤
ω1k2
k1

k1e
2

1
− ω1k2e

2

1

=0, (34)

where the inequality also uses (33). Therefore, in (34),

V̇ (x1, x2) − e1ẋ2 = 0 over a time interval [ta, tb] only if

x1 = k1e1 in [ta, tb], according to Lemma 2. Also, as H2 is

in F̃2 mode, x2 = k2e2 automatically holds. This implies that

x2 = k1k2e1.

Case 4. H1 in F2 and H2 in F̃1. According to (24) and

(26) we have that

ω1e
2

1
>k1ė1e1,

x1x2 ≥
1

k2
x2

2 =⇒ x1x2 ≤ k2x
2

1 =⇒ e1x2 ≤ k1k2e
2

1.

Take the time derivative of V (x1, x2):

V̇ (x1, x2)− e1ẋ2

=2ax1ẋ1 +
k2 − 2ak1

k1k22
x2ẋ2 − e1ẋ2

=2ak2
1
e1ė1 +

k2 − 2ak1
k1k22

x2ω2k1e1 − e1ω2k1e1

<2ak1ω1e
2

1 +
k2 − 2ak1

k1k22
ω2k1k1k2e

2

1 − ω2k1e
2

1

=2ak1e
2

1(ω1 − ω2

k1
k2

)

≤0.



In Case 4, V̇ (x1, x2) < e1ẋ2 and hence the case V̇ (x1, x2) =
e1ẋ2 does not exist. We conclude that in all four cases, we

have that V̇ (x1, x2) ≤ e1ẋ2. And if V̇ (x1, x2) = e1ẋ2 over

a time interval [ta, tb], where ta < tb, then x1 = k1e1 and

x2 = k2e2 = k1k2e1 for all t ∈ [ta, tb].

C. Stability for the interconnection of an NI system and two

cascaded HIGS
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Fig. 5. Closed-loop interconnection of a linear NI system and the cascade of
two HIGS.

Theorem 6: Consider the SISO minimal linear NI system

(7). There exist two HIGS elements H1 and H2, given in

(22) and (25), respectively, such that the interconnection of

the system (7) and the cascade of H1 and H2 as shown in

Fig. 5 is asymptotically stable.

Proof: Since the system (7) is minimal and NI, then

according to Lemma 1, we have that detA 6= 0 and there

exists Y = Y T > 0, Y ∈ R
n×n such that

AY + Y AT ≤ 0, and B +AY CT = 0. (35)

Using Lyapunov’s direct method, let the storage function of

the closed-loop interconnection be

W (x, x1, x2) =
1

2
xTY −1x+ V (x1, x2)− Cxx2

=
1

2
xTY −1x+ ax2

1
+

k2 − 2ak1
2k1k22

x2

2
− Cxx2

=ax2

1
+

1

2

[
xT x2

]
[
Y −1 −CT

−C k2−2ak1

k1k
2

2

] [
x
x2

]
,

(36)

where V (x1, x2), as given in (28), is the storage function of

the cascade of H1 and H2. Here, a ∈ R is a constant parameter

that satisfies

0 < a <
k2
2k1

. (37)

Using Schur complement theorem, W (x, x1, x2) > 0 for all

(x, x1, x2) 6= (0, 0, 0) if

k2 − 2ak1
k1k22

− CY CT > 0. (38)

Using (35), we have that CY CT = −CA−1B = G(0), where

G(s) = C(sI −A)−1B is the transfer function matrix of the

system (7). Then, (38) becomes

k2 − 2ak1
k1k22

> G(0). (39)

There exist an a in the region (37) such that (39) holds if

k2
k1k22

> G(0).

This implies that

k1k2G(0) < 1.

According to Schur complement theorem, the positive defi-

niteness of W (x, x1, x2) in (36) also implies

Y −1 −
k1k

2

2

k2 − 2ak1
CTC > 0,

which is equivalent to the condition (38). Considering (37),

we have that

Y −1 − k1k2C
TC > Y −1 −

k1k
2

2

k2 − 2ak1
CTC > 0. (40)

Take the time derivative of W (x, x1, x2), we have

Ẇ (x, x1, x2)

=xTY −1ẋ+ V̇ (x1, x2)− Cẋx2 − Cxẋ2

=
(
xTY −1 − x2C

)
ẋ+ V̇ (x1, x2)− e1ẋ2

=
(
xTY −1 − uC

)
ẋ+

(
V̇ (x1, x2)− e1ẋ2

)

=
(
xTY −1 + uBTA−TY −1

)
ẋ+

(
V̇ (x1, x2)− e1ẋ2

)

=
(
xTAT + uBT

)
(A−TY −1)ẋ+

(
V̇ (x1, x2)− e1ẋ2

)

=
1

2
ẋT (A−TY −1 + Y −1A−1)ẋ+

(
V̇ (x1, x2)− e1ẋ2

)
,

(41)

where u = x2 and e1 = y = Cx are also used. According

to Theorem 5, we have that for k1, k2, ω1, ω2 satisfying

k2ω1 ≤ k1ω2, the inequality V̇ (x1, x2) − e1ẋ2 ≤ 0 al-

ways holds. Also, ẋT (A−TY −1 + Y −1A−1)ẋ ≤ 0 because

A−TY −1 + Y −1A−1 ≤ 0, according to (35). Therefore,

Ẇ (x, x1, x2) ≤ 0. Using LaSalle’s invariance principle,

Ẇ (x, x1, x2) remains zero if both ẋT (A−TY −1+Y −1A−1)ẋ
and V̇ (x1, x2) − e1ẋ2 remain zero. According to Theorem

5, V̇ (x1, x2) − e1ẋ2 remains zero only if x1 ≡ k1e1 and

x2 ≡ k2e2 ≡ k1k2e1. That is

u ≡ k1k2Cx. (42)

We only consider the case that x 6= 0 in the following. This

is because x = 0 implies that x2 = u = 0 according to

(42). Also, x = 0 implies e1 = y = 0, which then implies

x1 = 0 according to (23). Here, the system settings of the

interconnection in Fig. 5 are also used.

In this case, the state equation (7a) of the system G(s)
becomes

ẋ ≡ Ax+Bu ≡ Ax+Bk1k2Cx = (A+ k1k2BC)x.

According to (35),

A+k1k2BC = A−k1k2AY CTC = AY (Y −1−k1k2C
TC),

which is nonsingular due to (40) and the positive definiteness

of the matrices A and Y . This implies ẋ 6= 0 for all x 6= 0.

The condition ẋT (A−TY −1 + Y −1A−1)ẋ ≡ 0 implies that ẋ
must stay in the null space of A−TY −1 + Y −1A−1. We now



prove that Ẇ (x, x1, x2) cannot remain zero forever. First, we

prove by contradiction that neither H1 nor H2 can stay in

the integrator mode. Suppose H1 is in the integrator mode

F1, then ẋ1 = ω1e1 = ω1y according to (22). Also, since

x1 = k1e1 = k1y, we have that

ẋ1 = ω1y = k1ẏ. (43)

Since the system G(s) is observable and x does not remain

zero, then y does not remain zero. Choose ω1 > 0, (43) implies

that for a nonzero time interval [ta, tb] where ta < tb, we have

y(t) = y(ta)exp(
ω1

k1
t).

This contradicts the fact that the closed-loop interconnection

is Lyapunov stable, as is shown by (41). Similarly, if H2 is

in the integrator mode, then we have ẋ2 = ω2e2 = ω2k1y
and x2 = k1k2e1 = k1k2y. Following a similar analysis,

this also leads to a contradiction. Then we conclude that both

of the HIGS H1 and H2 are in the gain mode. We prove

that we can force them to eventually exit the gain mode. In

this case, the condition ω1e
2

1
> k1e1ė1 is satisfied according

to (27). This condition cannot always be satisfied over time

via satisfying e1ė1 < 0 because then the NI inequality

V̇1(x1) ≤ e1ẋ1 = k1e1ė1 < 0 implies that x1 converges to

zero and so does y since x1 = k1y. This is not the case

considered here. Therefore, e1 and ė1 will eventually satisfy

e1ė1 > 0 at some time. Since the trajectory of ė1 and e1
is independent of ω1, we can choose sufficiently small ω1

such that ω1e
2

1
< k1e1ė1, in order to violate the condition F2.

Then H1 will enter the integrator mode for at least some finite

time. Following a similar analysis, we can choose suitable ω2

to force H2 to eventually enter the integrator mode. As is

proved above, the function Ẇ (x, x1, x2) cannot remain zero

in the integrator mode. Therefore, W (x, x1, x2) will decrease

monotonically until it reaches zero.

VI. ILLUSTRATIVE EXAMPLE: A MEMS

NANOPOSITIONER

The NI properties of the HIGS elements shown in Theorems

1, 3, 5 and the stability results shown in Theorems 2, 4, 6

motivate the methodology of using HIGS in positive feedback

to control flexible structures with colocated force actuators and

position sensors. One example of such flexible structures is the

MEMS nanopositioner. In this section, we apply the methodol-

ogy experimentally on a 2-DOF MEMS nanopositioner, which

is a two-input two-output (TITO) linear NI system. Under the

control of a TITO multi-HIGS controller in positive feedback,

the MEMS nanopositioner can track a reference signal quickly

and accurately.

A. 2-DOF MEMS Nanopositioner

A 2-DOF MEMS nanopositioner is a flexible structure with

colocated force actuators and position sensors, which can be

regarded as an NI system [53]. The nanopositioner features

a stage at the center with dimensions of 1.8mm × 1.8mm.

Four electrostatic comb-drives move the stage bidirectionally

in X and Y directions. On-chip piezoresistive sensors measure

Fig. 6. Experimental setup with the MEMS nanopositioner mounted on
a custom-designed PCB. The close-up view shows the SEM image of the
MEMS nanopositioner reported in [53].

lateral displacements of the stage. The close-up view in Fig. 6

depicts the scanning electron microscope (SEM) image of the

MEMS nanopositioner. To alleviate the quadratic nonlinearity

between the induced electrostatic force and the stage displace-

ment, this device uses a bilateral actuation mechanism. A

maximum linear displacement range of 13µm can be achieved

in each axis. The nanopositioner was previously designed and

characterized in [53] and employed as the scanner stage of a

video-rate atomic force microscope [54].

B. Frequency Response

The TITO Frequency response function of the MEMS

nanopositioner is obtained from actuator input to sensor output

using an ONOSSOKI FFT Analyzer (CF-9400) with single

channel excitation. For this purpose, a wideband chirp signal

is applied to the actuators through a high-voltage amplifier

with a gain of 20, and the frequency response of the 2-

DOF nanopositioner is recorded up to 25 kHz. Fig. 7 shows

the measured open-loop frequency response of the device.

The fundamental resonance frequencies of the X and Y axis

are 3665Hz and 3680Hz, respectively. We observe that the

frequency responses of both axes of the MEMS nanopositioner

are almost identical, with negligible cross-couplings at low

frequencies. Typically, a flexure-guided nanopositioner with

compatible collocated actuator-sensor pairs has NI property.

Although the MEMS nanopositioner is NI in theory, it can be

seen from Fig. 7 that some high-frequency dynamics slightly

violate the constraints of NI property. This is unavoidable due

to the fabrication tolerances and signal conditioning in the

read-out circuits, which cause the discrepancy from its ideal

model. However, As discussed in [55], the 2-DOF MEMS

nanopositioner can be considered an NI system for frequencies



Fig. 7. Frequency response of the MEMS nanopositioner in open loop and closed loop with the HIGS element in TITO configuration.

up to 3976 Hz. We show in the following that the stability

results in Theorem 4 remain effective even in the presence

of these spillover dynamics. The transfer function of the

nanopositioner in TITO format can be described by

G(s) =

[
Gxx(s) Gxy(s)
Gyx(s) Gyy(s)

]

where Gij(s) denotes the transfer function from input j to the

sensor output i. A minimal state-space realization of the trans-

fer function matrix is obtained using the frequency response

data (FRD) model from the frequency response measurement

and MATLAB system identification toolbox. Accordingly, the

state-space model of the nanopositioner in lateral axes can be

written as

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t), (44)

where

A =




6989.99 22987.75 4565.46 −1067.36
−25554.29 −7675.92 −1058.081 −4147.69
1399.21 505.53 −7758.92 24470.97
569.57 −1001.98 −24272.18 7329.32


 ,

B =




157.81 24.58
−197.95 12.53
33.58 −89.97
−18.69 −86.94


 ,

C =

[
−98.83 −79.75 −17.51 −21.31
17.07 −27.97 −155.24 161.47

]
.

As described in [18], the NI property of G(s) can be assessed

using the Hamiltonian method since CB + BTCT > 0. Ac-

cording to Theorem 1 in [18], the square transfer function G(s)
is NI if and only if the Hamiltonian matrix, N0 described by

(45), has no pure imaginary eigenvalues with odd multiplicity.

N0 =

[
A+BQ−1

0
CA BQ−1

0
BT

−ATCTQ−1

0
CA −AT −ATCTQ−1

0
BT

]
, (45)

where

Q0 = −(CB +BTCT ).

The eigenvalues of the Hamiltonian matrix in (45) for the

state-space matrices of the system (44) are obtained as



±1.068× 108

±38.45
−0.0043± 41.33i

4.68× 10−3

±9.56× 104i



,

which reveals no pure imaginary eigenvalues, thus the transfer

function matrix G(s) with the state space realization of the

form (44) is NI. It should be noted that the NI property of the

nanopositioner can be also investigated using the measured

frequency response through the eigenvalues of the matrix

j[G(jω) − G∗(jω)] [18]. The NI property of the identified

system model obtained from the measured frequency response

data implies that the NI property is satisfied over the frequency

range of interest. Considering this, we aim to verify whether a

HIGS controller can stabilize a TITO MEMS nanopositioner

although its dynamics violate the NI property at high frequen-

cies.



C. Controller Design

According to stability results presented in Section IV, a sta-

bilizing TITO multi-HIGS is required to satisfy the following

conditions

K−1

h −G(0) > 0.

Accordingly, Kh is determined by solving a feasibility prob-

lem formulated in MATLAB using the YALMIP toolbox [56]

and solved with the MOSEK [57]. Since ωh plays no role in

stability analysis, it is tuned to achieve a desired performance

level. Therefore, we have

Kh =

[
0.5617 0

0 0.6003

]
,

ωh =

[
1.1516× 104 0

0 1.1560× 104

]
(rad/s).

PSfrag replacements r
H

y
G(s)

Fig. 8. Closed-loop interconnection of a TITO multi-HIGS H and the TITO
MEMS nanopositioner G(s).

The closed-loop interconnection of the TITO multi-HIGS

and the TITO MEMS nanopositioner is shown in Fig. 8, where

r is the reference signal. The closed-loop frequency response

of the MEMS nanopositioner in positive feedback with the

TITO multi-HIGS is shown in Fig. 7. The frequency response

is obtained using the frequency response data model of the

nanopositioner and the describing function of the multi-HIGS.

D. Experiments

To assess the controller performance and the stability of the

MEMS nanopositioner in a closed-loop interconnection with

the multi-HIGS element in TITO configuration, we implement

the multi-HIGS controller in real time and perform closed-loop

experiments in the time domain. Fig. 6 shows the experimental

setup, including the MEMS nanopositioner mounted on a

custom-designed PCB with actuation and sensing signal paths,

a dSPACE rapid prototyping system, and high-gain voltage

amplifiers.

The multi-HIGS element and the feedback loop were digi-

tally implemented in a dSPACE rapid prototyping system with

a sampling rate of 80 kHz. The X and Y axis sensor outputs

were recorded in open loop and closed loop while a sequence

of pulses with a frequency of 10Hz and amplitude of 0.1V

was applied to the device as an external disturbance. Fig. 9

shows the nanopositioner sensor outputs in the X and Y axes,

respectively. We observe that the closed-loop system with the

multi-HIGS is asymptotically stable. This means that a MEMS

nanopositioner can be stabilized by a multi-HIGS controller.

This experimental result is consistent with our expectations.

The reason that the out-of-bandwidth non-NI dynamics do not

destabilize the closed-loop system is that at high frequencies,

deviations from NI are too insignificant to cause instabilities.

This property was observed and explained for the same plant in

[55]. Furthermore, from Fig. 7, we observe that the magnitude

of the frequency response of the MEMS nanopositioner is

bounded below a certain level when the frequency is greater

than 3976 Hz. Hence, the stability is achieved via the small-

gain theorem; see [20], [58] for the stability of systems with

“mixed” NI and small-gain properties. It can be seen in Fig. 9

that in comparison with the open-loop performance, applying

the multi-HIGS in positive feedback improves the performance

of the MEMS nanopositioner. From the close-up views, it

is clear that fast settling time and reduced overshoot are

achieved in both axes. To further improve the overshoot, ωh

can be further reduced, which in turn limits the closed-loop

bandwidth.

VII. CONCLUSION AND FUTURE WORK

In this paper, it is shown that a single HIGS, a multi-HIGS,

and the cascade of two HIGS are all NNI systems. Using

NNI systems theory, these HIGS can be applied as controllers

to stabilize linear NI systems. For a linear NI system with a

minimal realization, there always exists a HIGS controller such

that their positive feedback interconnection is asymptotically

stable. We illustrate by a real-world experiment that HIGS can

improve the control performance of a MEMS nanopositioner.

To this end, we point out that the results presented in

this paper can be extended in a number of directions. One

possible future work is to investigate the closed-loop stability

when there are external disturbances acting on the system. In

this case, instead of asymptotic stability, we would need to

determine the input-to-state stability of the system. Another

direction is in the construction of a cascaded multi-HIGS,

which has a similar parallel structure as the multi-HIGS

introduced in Section IV, but with each input-output channel

being a cascaded HIGS as introduced in Section V. If such a

system can be used to stabilize an NI plant, then it is expected

to have advantages different to that of a multi-HIGS.
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APPENDIX

Proof of Lemma 2:

Consider the following inequality

(√
1

kh
xh −

√
khe

)2

≥ 0,

where equality only holds when xh = khe. Therefore,

1

kh
x2

h − 2exh + khe
2 ≥ 0.

Considering the condition in F as given in (2), this implies

that

exh − khe
2 ≤

1

kh
x2

h − exh ≤ 0,



(a) (b)

Fig. 9. Time-domain response of the MEMS nanopositioner in X and Y axes in open loop and in positive feedback interconnection with the multi-HIGS
element in TITO configuration in experiments.

where equality only holds when xh = khe. �

Proof of Lemma 3:

The storage function V̂ (X) defined in (13) satisfies

˙̂
V (X) = ΣN

i=1
V̇i(xi) ≤ ΣN

i=1
uT
i ẏi = UT Ẏ .

Therefore, the system with input U and output Y also satisfies

Definition 1. �

Proof of Lemma 4:

Considering (14), we have
˙̂
V h(Xh) = ET

h U̇h only if

V̇i(xh,i) = eiu̇i = eiẋh,i for all i = 1, 2, · · · , N . For

a HIGS of the form (1), V̇i(xh,i) = eiẋh,i implies
1

kh,i
xh,iẋh,i = eiẋh,i. This holds if ẋh,i = 0 or xh,i = kh,iei.

Consider the condition that ẋh,i = 0, in F1,i mode, ẋh,i = 0
implies ei = 0. According to (12), ei = 0 implies that

xh,i = 0. In this case, xh,i = kh,iei = 0. In F2,i mode,

xh,i = kh,iei. Hence, xh,i = kh,iei always holds in the case

that V̇i(xh,i) = eiu̇i = eiẋh,i. Therefore,
˙̂
V h(Xh) = ET

h U̇h

implies that Xh = KhEh. �

Proof of Lemma 5:

We have that exh ≡ 1

kh
x2

h implies xh ≡ 0 or xh ≡ khe.

We only consider the case xh ≡ 0 in the F1 mode, because

xh = khe always holds in the F2 mode. In the F1 mode,

uh ≡ xh ≡ 0 implies that ẋh ≡ 0. This implies that e ≡ 0.

Therefore, xh ≡ xh ≡ khe ≡ 0. �
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