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Abstract—We show that the minimum effort control of col-
loidal self-assembly can be naturally formulated in the order-
parameter space as a generalized Schrödinger bridge problem
– a class of fixed-horizon stochastic optimal control problems
that originated in the works of Erwin Schrödinger in the
early 1930s. In recent years, this class of problems has seen
a resurgence of research activities in the control and machine
learning communities. Different from the existing literature on
the theory and computation for such problems, the controlled
drift and diffusion coefficients for colloidal self-assembly are
typically nonaffine in control, and are difficult to obtain from
physics-based modeling. We deduce the conditions of optimality
for such generalized problems, and show that the resulting system
of equations is structurally very different from the existing results
in a way that standard computational approaches no longer
apply. Thus motivated, we propose a data-driven learning and
control framework, named ‘neural Schrödinger bridge’, to solve
such generalized Schrödinger bridge problems by innovating
on recent advances in neural networks. We illustrate the ef-
fectiveness of the proposed framework using a numerical case
study of colloidal self-assembly. We learn the controlled drift
and diffusion coefficients as two neural networks using molecular
dynamics simulation data, and then use these two to train a third
network with Sinkhorn losses designed for distributional endpoint
constraints, specific for this class of control problems.

Keywords: Schrödinger bridge, Sinkhorn loss, stochastic
optimal control, physics-informed neural networks, col-
loidal self-assembly.

I. INTRODUCTION

Motivated by feedback control of colloidal self-assembly
(SA), this work focuses on learning the solution of the
nonlinear stochastic optimal control problems over a given
fixed time horizon [0, T ] of the form

inf
u∈U

Eµu

[∫ T

0

1

2
∥u(t,x)∥22 dt

]
(1a)

subject to dx = f(t,x,u)dt+
√
2 g(t,x,u)dw, (1b)

x(t = 0) ∼ µ0 (given), x(t = T ) ∼ µT (given),
(1c)

where µ0, µT denote the prescribed probability measures over
the state space X ⊆ Rn at t = 0 and t = T , respectively.
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The constraint in (1b) is a controlled Itô stochastic differential
equation (SDE) with the state vector x ∈ X , the control vector
u ∈ Rm, and the standard Wiener process w ∈ Rp. For the
solution to the SDE (1b) to be for colloidal SA systems, the
state vector x represents suitable order parameters. The drift
coefficient f is a vector field given by mapping f : [0, T ] ×
X ×U 7→ Rn, and the diffusion coefficient g is a matrix field
given by mapping g : [0, T ]× X × U 7→ Rn×p. For the SDE
solutions to be well-posed, we will detail suitable smoothness
assumptions on f and g.

Associated with the diffusion coefficient g, is a diffusion
tensor G := gg⊤ ∈ Sn+, which being an outer product, is
a symmetric positive semidefinite matrix field G : [0, T ] ×
X × U 7→ Sn+. In (1a), we suppose that the set of admissible
controls U comprises of finite energy Markovian inputs within
a prescribed time horizon, i.e.,

U := {u : [0, T ]×X 7→ Rm | ⟨u,u⟩ <∞} , (2)

where ⟨·, ·⟩ denotes the standard Euclidean inner product. The
symbol Eµu [·] in (1a) denotes the mathematical expectation
w.r.t. the controlled state probability measure µu, that is,
Eµu [·] :=

∫
(·)dµu. The superscript u in µu indicates that the

joint measure depends on the choice of control u. Thus, the
objective in (1a) is to minimize the control effort in steering
the state statistics from µ0 to µT under a prespecified time
horizon and controlled stochastic dynamics constraints, over
all admissible control policies u(t,x) in U .

In feedback control of colloidal SA systems, the objective
generally is to design control policies that steer the system
from an initial disordered stochastic state to a desired terminal
ordered crystalline stochastic state [1], [2]. These stochastic
states are naturally encoded in terms of suitable order param-
eters. As such, formulation (1) is particularly appealing in this
context because it allows for directly shaping the multivariate
distribution of order parameters via optimal control synthesis.
The drift and diffusion coefficients f , g in equation (1b) allow
for the representation of the free energy landscape, which is
crucial for circumventing kinetic traps or local minima when
directing the system towards a desired end state, typically a
global minimum within the solution space.

However, in practice, the drift and diffusion coefficients
are difficult to model from first principles. This is because
accurately capturing the interplay between various forces
and interactions, such as van der Waals forces, electrostatic
interactions, and solvent-mediated interactions, is challenging.
As a result, empirical or semi-empirical approaches [3], as well
as coarse-grained or phenomenological models [4], are often
employed to approximate these coefficients based on either
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experimental data or molecular dynamics (MD) simulation
data.

Another modeling difficulty specific to colloidal SA is
that both f , g are typically nonlinear in state x, as well as
non-affine in control u. Furthermore, f and g both have
explicit time dependence in practice. To circumvent these
modeling issues, in this work, we propose a learning and
control framework where f and g are learnt from high-fidelity
MD simulation data as the outputs of neural network (NN)
representations NDrift and NDiffusion, respectively. With these
learnt representations for f and g, we propose a computational
framework–based on another neural network–to numerically
solve (1) for control synthesis.

A. Relation to the Schrödinger Bridge Problem (SBP)

We refer to (1) as a generalized Schrödinger Bridge Problem
(GSBP) since it is related to distributional two-point boundary
value problems originating in two papers of Erwin Schrödinger
in 1931-32 [5], [6]. The qualifier “generalized” points to the
presence of prior dynamics given by the controlled drift-
diffusion coefficient pair (f , g), which generalizes the setting
considered in Schrödinger’s original investigations [5], [6]. In
the special case f ≡ u, g ≡ In, formulation (1) reduces
to the classical SBP à la Schrödinger. From this perspective,
classical SBP is the problem of minimum effort distribution
steering with zero prior drift, i.e., the problem of controlling
Brownian motion with endpoint distribution constraints.

A different way to interpret classical SBP is to view it as
a stochastic dynamic version of the optimal mass transport
(OMT) problem. The dynamic OMT [7] is a special case of
(1) with f ≡ u, g ≡ 0. For details on these connections
from a stochastic control perspective, we refer the readers to
[8]. In recent years, SBPs and their generalizations have come
to prominence in both control [8]–[11] and machine learning
[12]–[15] communities. In particular, a data-driven maximum
likelihood sampling solution of the classical SBP (i.e., with
f ≡ u, g ≡ In) was proposed in [16] assuming availability
of the samples from the endpoint measures µ0, µT . Similar
line of ideas were pursued in [17], [18].

While solution methods for the GSBP (1) in general are
not available in the current literature, specialized algorithms
for particular forms of f , g have appeared. For instance, [9]
considered the case when the drift coefficient f is control
affine and the diffusion coefficient g is C ([0, T ]) matrix that
is independent of state and input, i.e.,

f (t,x,u) ≡ f̃ (t,x) +B(t)u, g (t,x,u) ≡ B(t) ∈ Rn×m.

In this case, m = p and the stochastic process noise enters
through the input channels (e.g., modeling disturbance in forc-
ing and/or actuation uncertainties). The results in [9] showed
that if f̃ is gradient of a potential, or if (f̃ ,B(t)) is of mixed
conservative-dissipative form, then certain proximal recursions
can be designed to numerically solve the corresponding GSBP.
In [10], this result was extended for the case when additional
(deterministic) state constraints are present.

GSBPs with nonlinear drifts and full-state feedback lineariz-
able structures were considered in [19], [20]. GSBP instances

for both first- and second-order noisy nonuniform Kuramoto
oscillator models were solved in [21] using Feynman-Kac path
integral techniques. Closest to the GSBP (1) is the work in
[22], which considered control non-affine drift and diffusion
coefficients and showed that the conditions of optimality in-
volves additional coupled PDEs compared to the control-affine
case. However, the developments in [22] were still model
based. Data-driven solution of control non-affine GSBPs at
the level of generality (1), as pursued in this work, is novel
w.r.t. the existing literature.

B. Related Works on Control of Colloidal Self-Assembly

Feedback control has emerged as a promising approach to
enhance the reproducibility of colloidal SA systems towards
desired structures. Previous studies [23], [24] demonstrated
the effectiveness of proportional-integral control on simple
test systems. However, applying such basic control approaches
to complex colloidal SA systems with possible kinetically
arrested dynamics may not yield satisfactory results. Alter-
native approaches like model predictive control (MPC) or
dynamic programming have been suggested. For instance,
[3] presents an MPC approach based on energy landscapes
estimated from MD simulations. However, this method can be
computationally demanding for large-scale systems or systems
with complex interactions, especially considering that the
solution time for MPC might exceed the sampling time of
SA, particularly for fast dynamics. This challenge becomes
even more compounded as the size and complexity of the SA
model grows.

On the other hand, [4] utilizes a dynamic programming-
based approach, which results in a lookup table of optimal
actions for given states. Despite its theoretical elegance, dy-
namic programming suffers from the ‘curse of dimensionality’,
rendering it impractical for systems of higher complexity due
to the exponential growth in computational resources required.
For both these methods, the accuracy of the control relies
heavily on the quality of the underlying model. To this end,
model-free reinforcement learning can alleviate modeling chal-
lenges in optimal control of colloidal SA systems [25], [26].
Furthermore, recent advances in NNs have provided a promis-
ing alternative for modeling the hidden physics of stochastic
dynamic systems without making assumptions about the final
equations representing the physics of the system (e.g., [27]–
[30]). We employ the NNs, NDrift and NDiffusion, to represent
the energy and diffusion landscapes of a colloidal SA control
problem, critical to guiding the system to a desired final
state. Our focus shifts to governing the temporal progression
of the joint probability distribution encompassing the states
involved in colloidal SA. Building upon previous work [22],
we incorporate data-driven models based on physics-informed
neural networks and trained on high-fidelity MD simulation
data, which allows for a more realistic representation of the
colloidal SA process.

C. Contributions

This paper makes the following specific contributions.
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Data-driven learning
(Sec. III) 

Neural Schrödinger bridge
(Sec. IV)

MD simulation data 

Colloidal SA system

(Sec. II) (Sec. III)
Data-driven learning Neural Schrödinger bridge

Colloidal SA system

Molecular Dynamics simulation data

Fig. 1: An overview of the proposed learning and control framework for solving the generalized Schrödinger Bridge Problem (1) for colloidal
self-assembly. Here, ρ0 and ρT denote the probability density functions associated with the endpoint measures µ0 and µT , respectively.

• Building on our prior work [22], we propose that the con-
trolled colloidal SA can be naturally formulated as a dis-
tribution steering problem in a suitable order-parameter
space. This offers a newfound connection between the
controlled colloidal SA and a non-standard stochastic
optimal control problem with hard constraints on the
endpoint state statistics. The resulting stochastic optimal
control problem takes the form of a control non-affine
GSBP.

• To the best of the authors’ knowledge, this is the first
work to derive and numerically solve the conditions
of optimality for control-non-affine GSBP in multi-
dimensional state-space. As detailed in Sec. II, the re-
sulting system of equations is fundamentally different
from the control-affine SBPs in that the optimal control
is no longer an explicit functional of the (sub)gradient
of the associated value function solving a Hamilton-
Jacobi-Bellman (HJB) PDE. Instead, the m-dimensional
optimal control uopt here solves a system of m PDEs,
which are coupled nonlinearly with two more PDEs
and endpoint boundary conditions. As a result, existing
approaches from the literature such as the Hopf-Cole
transform [31], [32] followed by a contractive fixed
point recursion [9], [33], or Feynman-Kac path integral
techniques [21], cannot be used to numerically solve
our system of equations. Leveraging recent advances in
NNs, we propose a computational framework to learn the
solution for this system of m + 2 PDEs and boundary
conditions.

• Our proposed computational approach, dubbed ‘neural
Schrödinger bridge’, is ‘neural’ in two ways: (i) a pair of
NNs are trained to approximate the f and g in (1) using
MD simulation data, (ii) the GSBP optimality conditions,
derived as functions of these NN representations, are
further solved via a physics-informed neural network
(PINN) [34], [35]. However, standard PINNs with mean

squared error (MSE) losses are not appropriate to en-
force distributional endpoint constraints (1c). To address
this, we propose a PINN with Sinkhorn a.k.a. entropy-
regularized Wasserstein losses for these constraints, and
differentiate through these losses for training. The result-
ing architecture could be of independent interest.

We clarify here that, from a methodological viewpoint, the
proposed framework is different from two recent works [36]
and [37], which also bring together SBPs and NNs. In [36],
the main idea was to learn the uncontrolled f , g as NNs, i.e.,
to learn an unforced neural SDE using the population samples
via SBP. The unforced SDE was learnt via a stochastic version
of the principle of least action, i.e., by appealing to how SBP
can be seen as a stochastic version of dynamic OMT, as we
explained in Sec. I-A. The work in [37] proposed learning
a classical SBP between unpaired images. Different from
these works, our colloidal SA context requires learning the
controlled f , g as controlled neural SDEs before proceeding
for optimal control synthesis – the latter is an instance of
GSBP, which is then solved via a new variant of PINN that
we propose herein.

D. Organization

In Sec. II, we define the GSBP (1) in terms of NN represen-
tations of f and g. In Sec. III, we then discuss the solution of
the GSBP conditions of optimality using a novel PINN with
Sinkhorn losses. A detailed numerical case study of a colloidal
SA system in an isothermal-isobaric (NPT) ensemble is then
presented in Sec. IV. Sec. V concludes the paper.

II. NEURAL SCHRÖDINGER BRIDGE

Our overall approach is to learn (f , g) as fully con-
nected feed-forward NN representations, denoted by NDrift and
NDiffusion, respectively. Both these NNs are designed to be
functions of the current time t ∈ [0, T ], the system state x, and
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the control input u. These two networks are trained to predict
the future states of the system based on the tuple (t,x,u).
Training of these networks using MD simulations is detailed in
Sec. IV. Fig. 1 gives an overview of the proposed learning and
control framework. We next state the smoothness of the learnt
NN representations required for the control problem (i.e., the
GSBP) to be well-posed.

A. Smoothness of the Learnt f and g

We consider both NDrift and NDiffusion to have tangent hy-
perbolic, i.e., tanh(·) activation functions. Tangent hyperbolic
nonlinearities are known to be slope-restricted [38, Proposition
2]. As a result, the output of a fully connected feed-forward
NN with tanh activation remains component-wise slope-
restricted. Consequently, f , g being the respective outputs of
the networks NDrift,NDiffusion, are guaranteed [39, Theorem 2]
to be Lipschitz continuous.

Motivated by the Lipschitz continuity of the outputs of
NDrift,NDiffusion for an admissible Markovian policy u(t,x) ∈
U , we assume that the coefficients f and g satisfy
(A1) non-explosion and Lipschitz conditions: there exist
constants c1, c2 such that

∥f(t,x,u(t,x))∥2 + ∥g(t,x,u(t,x))∥2 ≤ c1 (1 + ∥x∥2) ,

and that

∥f(t,x,u(t,x))− f(t, x̃,u(t, x̃))∥2 ≤ c2∥x− x̃∥2

for all x, x̃ ∈ X , t ∈ [0, T ];
(A2) uniformly lower bounded diffusion: there exists con-
stant c3 such that the diffusion tensor G = gg⊤ satisfies

⟨x,G (t,x,u(t,x))x⟩ ≥ c3∥x∥22

for all t ∈ [0, T ].
The assumption (A1) guarantees [40, p. 66] existence-
uniqueness for the sample path of the SDE (1b). The as-
sumptions (A1), (A2) together guarantee [41, Ch. 1] that the
generator associated with (1b) yields absolutely continuous
probability measures µu for all t > 0 provided the prescribed
initial probability measure µ0 := µu(t = 0,x) is absolutely
continuous.

In this work, we assume that the given endpoint measures
µ0, µT are absolutely continuous, i.e., µ0 = ρ0(x)dx, µT =
ρT (x)dx where ρ0, ρT are the corresponding endpoint joint
state probability density functions (PDFs). If the solution for
(1) exists, then under the stated regularity assumptions on f
and g, the corresponding controlled measure µu(t,x) will
remain absolutely continuous with dµu(t,x) = ρu(t,x)dx
for admissible u ∈ U . We next discuss reformulating (1) in
terms of the controlled joint state PDF ρu.

B. PDF Steering Problem

To state the PDF steering problem, we set up some nota-
tions. We use the symbol nabla (∇) to denote the gradient
w.r.t. its subscript vector. So for x ∈ Rn, we have

gradient operator ∇x :=


∂
∂x1

...
∂
∂xn

 ,

divergence operator ∇x· :=
∂

∂x1
+ . . .+

∂

∂xn
,

Laplacian operator ∆x := ∇x · ∇x =
∂2

∂x21
+ . . .+

∂2

∂x2n
.

For matrices P ,Q with commensurate dimensions and re-
spective (i, j)th entries Pij , Qij , their Frobenius a.k.a. Hibert-
Schmidt inner product

⟨P ,Q⟩ := trace
(
P⊤Q

)
=
∑
i,j

PijQij . (3)

We use the symbol Hess to denote the Euclidean Hessian
operator defined for any real-valued twice differentiable func-
tion h : X ⊆ Rn 7→ R, as

Hess (h) :=


∂2h
∂x2

1

∂2f
∂x1∂x2

· · · ∂2h
∂x1∂xn

∂2h
∂x2∂x1

∂2h
∂x2

2
· · · ∂2h

∂x2∂xn

...
...

. . .
...

∂2h
∂xn∂x1

∂2h
∂xn∂x2

· · · ∂2h
∂x2

n

 ∀x ∈ X .
In general, the entries of Hess (h) depend on x, i.e., Hess
returns a symmetric matrix field. The (i, j)th entry of the
operator Hess is ∂2

∂xi∂xj
.

Following (3), we define the Frobenius a.k.a. Hilbert-
Schmidt inner product between the operator Hess and a
matrix field Q(x) where x ∈ X ⊆ Rn, as

⟨Hess,Q(x)⟩ :=
∑
i,j

∂2

∂xi∂xj
Qij(x). (4)

With the assumptions in Sec. II-A, the GSBP (1) can be
rewritten as a state PDF steering problem:

inf
(ρu,u)

∫ T

0

∫
X

1

2
∥u(t,x)∥22 ρu(t,x) dx dt (5a)

subject to
∂ρu

∂t
= −∇x · (ρuf) + ⟨Hess,Gρu⟩, (5b)

ρu(0,x) = ρ0, ρu(T,x) = ρT . (5c)

The constraint (5b) is the controlled Fokker-Planck-
Kolmogorov (FPK) PDE which governs the flow of the joint
state PDF ρu associated with the SDE (1b). For a derivation
of (5b) from (1b), see e.g., [42, Prop. 3.3].

For the term ⟨Hess,Gρu⟩ in (5b), note from (4) that

⟨Hess,Gρu⟩ =
∑
i,j

∂2

∂xi∂xj
(Gij(t,x,u(t,x))ρ

u(t,x)) .

The boundary conditions (5c) at t = 0 and t = T involve
the prescribed initial and terminal joint state PDFs ρ0 and ρT ,
respectively.
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We note that when f ≡ u, g (and hence G) ≡ In, then (5b)
reduces to the controlled heat PDE, and problem (5) reduces
to the classical SBP, as mentioned in Sec. I-A. Furthermore,
when f ≡ u, g ≡ 0, then (5b) reduces to the Liouville PDE
[43] for integrator dynamics ẋ = u, and problem (5) reduces
to the dynamic OMT, as mentioned in Sec. I-A.

Remark 1. To better understand the correspondence between
(1) and (5), notice that (5a) is simply a re-writing of (1a)
by “opening up” the expectation operator w.r.t. the controlled
state probability measure dµu(t,x) = ρu(t,x)dx. The con-
straint (5b) is the PDF dynamics induced by the sample
path dynamics (1b). Intuitively, the term 1

2∥u∥
2
2ρ

udx is a
generalized kinetic energy, and the state-time integral (5a)
encodes total control effort over the finite horizon [0, T ].
The FPK PDE (5b) is a continuity equation expressing the
conservation of probability mass under the drift coefficient f
and the diffusion coefficient g (thus the diffusion tensor G).

C. Existence and Uniqueness of Solution

Under the assumptions stated already in Sec. II-A, the
controlled PDF ρu exists for u ∈ U . For the existence-
uniqueness of solution for the variational problem (5), we
further assume that
(A3) the PDF ρu remains positive and continuous for all
t ∈ [0, T ].
Then, following [44, Thm. 3.2], [45], problem (5) is guaran-
teed to admit a unique solution; see also [46, Sec. 10].

We next deduce the first order optimality conditions for the
GSBP (5) in the form of a coupled system of m + 2 PDEs
with boundary conditions, where m is the number of control
inputs. With respect to the existing literature on the conditions
of optimality for GSBPs, this system of PDEs for non-affine
control is the most general, and is a new result.

D. Conditions for Optimality

We start with the Lagrangian associated with the GSBP (5):

L(ρu,u,ψ) :=
∫ T

0

∫
X

{
1

2
∥u(t,x)∥22ρu(t,x) + ψ(t,x)×(

∂ρu

∂t
+∇x.(ρ

uf)− ⟨Hess,Gρu⟩
)}

dx dt

(6)
where ψ(t,x) is a C2([0, T ];X ) Lagrange multiplier. Let

P0T (X ) :=
{
ρ(t,x) ≥ 0 |

∫
X
ρdx = 1,

ρ(t = 0,x) = ρ0, ρ(t = T,x) = ρT
}
. (7)

Performing the unconstrained minimization of the Lagrangian
L over P0T (X ) × U , where U is given in (2), we get the
following result.

Theorem 1. (Optimal control and optimal state PDF)
Let the set of feasible Markovian controls be given by (2). Then

the pair (ρuopt(t,x),uopt(t,x)) that solves (5), must satisfy the
following system of m+ 2 coupled PDEs:

∂ψ

∂t
=

1

2
∥uopt∥22 − ⟨∇xψ,f⟩ − ⟨G,Hess(ψ)⟩, (8a)

∂ρuopt
∂t

= −∇x · (ρuoptf) + ⟨Hess,Gρuopt⟩, (8b)

uopt = ∇uopt (⟨∇xψ,f⟩+ ⟨G,Hess(ψ)⟩) , (8c)

with boundary conditions

ρuopt(0,x) = ρ0, ρuopt(T,x) = ρT , (9)

where ψ(t,x) is a C2([0, T ];X ) value function.

Proof. For X ⊆ Rn, let r0 ∈ R := R ∪ {−∞,+∞} (two
point compactification of the real line R) be defined as r0 :=
supx∈X ∥x∥2.

We write the Lagrangian (6) as the sum of three state-time
integrals:∫ T

0

∫
X

1

2
∥u∥22ρudx dt+

∫ T

0

∫
X
ψ
∂ρu

∂t
dx dt

+

∫ T

0

∫
X

(
∂ρu

∂t
+∇x · (ρuf)− ⟨G,Hess (ρu)⟩

)
ψdx dt. (10)

In above, for the second summand, we invoke the Fu-
bini–Tonelli theorem to switch the order of integration and
perform integration by parts w.r.t. t. This gives∫ T

0

∫
X
ψ
∂ρu

∂t
dx dt

=

∫
X

(∫ T

0

ψ
∂ρu

∂t
dt

)
dx

=

∫
X

(
[ψρu]

t=T
t=0 −

∫ T

0

∂ψ

∂t
ρudt

)
dx

=

∫
X
(ψ(T,x)ρT (x)− ψ(0,x)ρ0(x)) dx︸ ︷︷ ︸

constant over P0T (X ) × U

−
∫ T

0

∫
X

∂ψ

∂t
ρudxdt.

(11)

For the third summand in (10), we perform integration by
parts w.r.t. x, to obtain∫ T

0

∫
X

(
∂ρu

∂t
+∇x · (ρuf)− ⟨Hess,Gρu⟩

)
ψ dx dt

=

∫ T

0

(∫
X

(
∂ρu

∂t
+∇x · (ρuf)

)
ψ dx−⟨Hess,Gρu⟩ψdx

)
dt

=

∫ T

0

(
lim

∥x∥2→r0

[
ψ(t,x)

∫
∂ρu

∂t
dx

])
−
∫ T

0

∫
X
⟨∇xψ,f⟩ρudxdt

−
∫ T

0

∫
X
⟨Hess,Gρu⟩ψ dx dt

=−
∫ T

0

∫
X
⟨∇xψ,f⟩ρudxdt−

∫ T

0

∫
X
⟨Hess,Gρu⟩ψ dx dt (12)

where we assumed that the limits at ∥x∥2 → r0 are zero.
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Now consider the second summand in (12), and perform
two-fold integration by parts w.r.t. x as∫

X
⟨Hess,Gρu⟩ψ dx

=

∫
X

∑
i,j

∂2

∂xi∂xj
(Gijρ

u)ψ dx

=
∑
i,j

∫
X

∂2

∂xi∂xj
(Gijρ

u)ψ dx

=−
∑
i,j

∫
X

∂(Gijρ
u)

∂xj

∂ψ

∂xi
dx

=
∑
i,j

∫
X
(Gijρ

u)
∂2ψ

∂xj∂xi
dx

=

∫
X

∑
i,j

(Gijρ
u)

∂2ψ

∂xj∂xi
dx

=

∫
X
⟨G,Hess(ψ)⟩ρudx, (13)

which helps rewrite (12) as

−
∫ T

0

∫
X
⟨∇xψ,f⟩ρudxdt−

∫ T

0

∫
X
⟨G,Hess(ψ)⟩ρudx dt. (14)

Combining (11), (12), (14), and dropping the constant term,
the Lagrangian (10) simplifies to∫ T

0

∫
X

(
1

2
∥u∥22 −

∂ψ

∂t
− ⟨∇xψ,f⟩ − ⟨G,Hess(ψ)⟩

)
ρudx dt.

(15)

Minimizing (15) w.r.t. u for a fixed PDF ρu yields (8c).
We then substitute (8c) back in (15), and equate the resulting

expression to zero, to arrive at the dynamic programming
equation∫ T

0

∫
X

(
1

2
∥∇uopt

(⟨∇xψ,f⟩+ ⟨G,Hess(ψ)⟩) ∥22

− ∂ψ

∂t
− ⟨∇xψ,f⟩ − ⟨G,Hess(ψ)⟩) ρu(t,x)dx dt = 0.

(16)

Since (16) should be satisfied for arbitrary ρu, we get

∂ψ

∂t
=
1

2
∥∇u (⟨∇xψ,f⟩+ ⟨G,Hess(ψ)⟩) ∥22 − ⟨∇xψ,f⟩

− ⟨G,Hess(ψ)⟩

which is the HJB PDE (8a). The FPK PDE (8b) and the
boundary conditions (9) follow from the primal feasibility
conditions (5b) and (5c), respectively. ■

Remark 2. The conditions of optimality (8) relate the primal
variables (ρuopt(t,x),uopt(t,x)) with the dual variable (i.e.,
Lagrange multiplier) ψ(t,x). Specifically, the HJB PDE (8a)
and the controlled FPK PDE (8b) express the dual and the
primal feasibility, respectively. The optimal control policy
equation (8c) expresses the primal-dual relation.

Structurally, the system of coupled PDEs (8) for our control
non-affine GSBP is quite different from the corresponding sys-
tem for control-affine SBPs [11, eq. (5.7)-(5.8)], [9, eq. (20)-
(21)], [10, eq. (4)]. In the control-affine SBPs, the conditions of
optimality involve two coupled PDEs: one being the HJB PDE
and another being the controlled FPK PDE, as in (8a)-(8b).
Once this pair of PDEs are solved for two unknowns ρuopt, ψ
using techniques such as Hopf-Cole transform followed by
a contractive fixed point recursion [9], [33] or Feynman-Kac
path integrals [21], the optimal control uopt is obtained as a
scaled (sub)gradient of ψ. In other words, for control-affine
SBPs, uopt is an explicit functional of ψ.

In contrast, the system (8) for our non-affine GSBP com-
prises of m+2 coupled PDEs in three unknowns: ρopt,uopt, ψ,
where m is the number of control inputs. This is because (8c)
itself gives m PDEs coupled in ψ and uopt, while the equation
pair (8a)-(8b) are coupled in ρuopt,uopt, ψ. Existing techniques
such as Hopf-Cole transform or Feynman-Kac path integrals
no longer apply for this situation, and new ideas are needed
to numerically solve the coupled system (8)-(9).

Table I summarizes how known results in the literature can
be recovered as special cases of (8).

III. SOLVING THE CONDITIONS FOR OPTIMALITY
USING PINN WITH SINKHORN LOSSES

In this Section, we propose a new variant of the PINN
[34], [35] designed for numerically solving (8)-(9). To do so,
we first introduce the 2-Wasserstein distance followed by its
entropic regularization.

Definition 1. (2-Wasserstein distance) The squared 2-
Wasserstein distance W between a pair of probability mea-
sures µ1, µ2 supported respectively on X ,Y ⊆ Rn, is

W 2 (µ1, µ2) := inf
µ∈M(µ1,µ2)

∫
X×Y

∥x− y∥22 dµ(x,y) (17)

where M (µ1, µ2) is the set of joint probability measures or
couplings over the product space X × Y having x marginal
µ1, and y marginal µ2. Hereafter, we refer to (17) as the
squared Wasserstein distance, dropping the prefix 2.

For metric properties of W , see e.g., [47, Ch. 7]. Whenever
µ1 and µ2 are absolutely continuous, their respective PDFs
ρ1, ρ2 exist, i.e., dµ1(x) = ρ1(x)dx and dµ2(y) = ρ2(y)dy),
and we use the equivalent notation W 2 (ρ1, ρ2). Notice that
(17) corresponds to a linear program (LP) and is in fact, the
Kantorovich formulation [48] of OMT.

Definition 2. (Sinkhorn loss) The Sinkhorn loss between a
pair of probability measures µ1, µ2 supported respectively on
X ,Y ⊆ Rn, with fixed ε > 0, is the entropy-regularized
squared Wasserstein distance, i.e.,

W 2
ε (µ1, µ2) := inf

µ∈M(µ1,µ2)

∫
X×Y

{
∥x− y∥22 + ε logµ

}
dµ(x,y), (18)

where M (µ1, µ2) is the set of joint probability measures or
couplings over the product space X × Y having x marginal
µ1, and y marginal µ2.
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Special case Drift f Diffusion g Form of (8a) Form of (8b) Form of (8c)

OMT [7] u 0n×p
∂ψ

∂t
+

1

2
∥∇xψ∥22 = 0

∂ρuopt

∂t
= −∇x ·

(
ρuopt∇xψ

)
uopt = ∇xψ

SBP [5], [6] u In×n
∂ψ

∂t
+

1

2
∥∇xψ∥22 +∆xψ = 0

∂ρuopt

∂t
= −∇x ·

(
ρuopt∇xψ

)
+∆xψ uopt = ∇xψ

Control-affine f̃(t,x) B(t) ∈ Rn×m ∂ψ

∂t
+

1

2
∥B(t)⊤∇xψ∥22 + ⟨∇xψ, f̃⟩

∂ρuopt

∂t
= −∇x ·

(
ρuopt

(
f̃ +B(t)B(t)⊤∇xψ

))
uopt = B(t)⊤∇xψ

GSBP [9] +B(t)u +⟨B(t)B(t)⊤,Hess(ψ)⟩ = 0 +
〈
B(t)B(t)⊤,Hess

(
ρuopt

)〉
TABLE I: Special cases of the GSBP (1) (equivalently (5)) and corresponding reductions of the optimality conditions (8).

It is known [49] that W 2
ε → W 2 in the limit ε ↓ 0. Even

though the Sinkhorn loss (18) does not define a metric over
M, its computation offers several advantages over that of (17).
For instance, the entropic regularization makes the objective
in (18) strictly convex, and its discrete implementation was
proposed [50] as a fast numerical approximant of the OMT
(17). As we explain next, (18) is also better suited for auto-
matic differentiation w.r.t. neural network parameters for PINN
training, which is what we need for our boundary conditions
(1c) (or equivalently (9)).

A. Learning with Sinkhorn Losses
To better understand the advantage of learning with

Sinkhorn losses, consider the squared Euclidean distance
matrix C ∈ Rd×d, and for a given pair of d-dimensional
probability vectors µ1,µ2, let Π(µ1,µ2) denote the set of
all coupling matrices, i.e.,

Π(µ1,µ2) :=

{
M ∈Rd×d |M ≥ 0 (element-wise),

M1 = µ1,M
⊤1 = µ2

}
. (19)

The dimension d here represents the number of samples
involved, i.e., the dimensionality of the standard simplex in
which µ1,µ2 belong to. Then the discrete version of (18)
becomes

W 2
ε (µ1,µ2) = min

M∈Π(µ1,µ2)
⟨C + ε logM ,M⟩ (20)

where ε > 0 is a fixed regularization parameter. The convex
problem (20) can be solved using the Sinkhorn recursions [51],
[52] a.k.a. iterative proportional fitting procedure (IPFP) [53].
These recursions are motivated by the observation that the
minimizer of (20) must be a diagonal scaling of the known
matrix Γ := exp

(−C
2ε

)
∈ Rd×d>0 where the exponential is

element-wise, i.e.,

M = diag(v1) Γ diag(v2) (21)

for to-be-determined v1,v2 ∈ Rd.
Starting with some initial guess, the Sinkhorn recursions

alternate between updating v1 and v2 until convergence:

vk+1
1 ← µ1 ⊘

(
Γvk2

)
, (22a)

vk+1
2 ← µ2 ⊘

(
Γ⊤vk+1

1

)
, (22b)

for recursion index k = 0, 1, . . .; the symbol ⊘ denotes the
element-wise (Hadamard) division. The updates (22a)-(22b)
can be seen as alternating Kullback-Leibler projections [54],
[55] with guaranteed linear convergence.

When ε = 0 in (20), we get an LP corresponding to the
discrete version of (17). This LP has d2 unknowns with d2+2d
constraints, and solving the same as standard network flow
problem has Õ

(
d2
√
2d
)

complexity [56] which is impractical
for large d. Furthermore, using (17) as the endpoint loss for
training a PINN to learn the solution of (8)-(9), requires us to
compute

AutoDiffθW
2
(
µi, µ

epoch index
i (θ)

)
∀ i ∈ {0, T} (23)

for each epoch of the training, where AutoDiffθ refers
to the standard reverse mode automatic differentiation w.r.t.
PINN training parameter θ. Evaluating (23) then amounts
to differentiating through a very large scale LP which is
computationally challenging even for moderately large d.

In contrast, using (18) as the endpoint loss for training a
PINN to learn the solution of (8)-(9), requires us to compute

AutoDiffθW
2
ε

(
µi, µ

epoch index
i (θ)

)
∀ i ∈ {0, T} (24)

for a fixed ε > 0. Because the Sinkhorn recursions (22) involve
a series of differentiable linear operations, it is amenable
to Pytorch auto-differentiation to support backpropagation.
Thus using W 2

ε instead of W 2 as the endpoint distributional
losses incur lesser computational overhead allowing us to
train PINNs for nontrivial GSBPs. This advantage of Sinkhorn
losses over Wasserstein losses, has also been pointed out in
a different context in [57]. Rigorous consistency results have
appeared in [58] showing that the derivatives of the iterates
from Sinkhorn recursion computed through automatic differen-
tiation, indeed converge to the derivatives of the corresponding
Sinkhorn loss.

B. Proposed PINN Architecture

Our proposed architecture for the PINN is shown in Fig.
2. For the GSBP considered here, the state-time ξ := (x, t)
comprises the features that are inputs to the network, and the
network output η := (ψ, ρuopt,uopt) comprises of the value
function, optimally controlled PDF, and optimal policy.
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…

…

Loss

Fig. 2: The architecture of the physics-informed neural network with the system state x, and the time t as the input features ξ := (x, t).
The network output η comprises of the value function, optimally controlled PDF, and optimal control policy, i.e., η := (ψ, ρuopt,uopt). The
networks NDrift and NDiffusion are fully trained from MD simulation.

The proposed PINN is a fully connected feed-forward NN
with multiple hidden layers, and we parameterize its output
using the network parameter θ ∈ RD, i.e.,

η(ξ) ≈ NSchrödinger Bridge(ξ;θ), (25)

where NSchrödinger Bridge(·;θ) denotes the NN approximant pa-
rameterized by θ. Here D denotes the dimension of the
parameter space, i.e., the total number of to-be-trained weight,
bias and scaling parameters for the NN. For all neurons, we
use the tanh activation functions.

As mentioned in Sec. II, the explicit expressions for f and
g, the drift and diffusion coefficients, are not available from
first-principle physics. We learn these coefficients from MD
simulation data (see Sec. IV-A, IV-B). As shown in Fig. 2, the
networks NDrift and NDiffusion, represent the learnt drift f and
the learnt diffusion g, respectively, which are used to evaluate
the loss function LNSchrödinger Bridge for the PINN.

The PINN loss function LNSchrödinger Bridge consists of the sum
of the losses associated with the m + 2 equations in (8),
and the losses associated with the boundary conditions (9).
Specifically, let Lψ be the MSE loss for the HJB PDE (8a).
Likewise, let Lρuopt

be the MSE loss for the FPK PDE (8b), and
because the control policy has m components (u1, . . . , um),
let Lujopt

|j=1,...,m be the corresponding MSE loss term for
each control policy component in (8c).

However, the MSE losses are insufficient to capture the
distributional mismatch for endpoint boundary conditions (9).
Per Sec. III-A, we use the Sinkhorn losses as the boundary
condition losses Lρ0 and LρT , and differentiate through the
corresponding Sinkhorn recursions.

Thus,

LNSchrödinger Bridge := Lρ0 + LρT + Lψ + Lρuopt +
m∑
j=1

Lujopt
,

(26)

where each summand loss term in (26) is evaluated on a set
of N collocation points {ξi}Ni=1 in the domain of the feature
space Ω := X × [0, T ], i.e., {ξi}Ni=1 ⊂ Ω. For instance, the
equation error losses are of the form

Lψ :=
1

N

N∑
i=1

(
∂ψ

∂t

∣∣∣∣
ξi

− 1

2
∥uopt∥22

∣∣∣∣
ξi

+⟨∇ψ,f⟩|ξi

+⟨G,Hess(ψ)⟩|ξi

)2
,

Lρuopt :=
1

N

N∑
i=1

(
∂ρuopt
∂t

∣∣∣∣
ξi

+ ∇.(ρuoptf)
∣∣
ξi

−⟨Hess,Gρuopt⟩
∣∣
ξi

)2
,

Lujopt
|j=1,...,m :=

1

N

N∑
i=1

(
ujopt

∣∣
ξi
− ∂

∂ujopt
(⟨∇xψ,f⟩

+⟨G,Hess(ψ)⟩)|ξi

)2
,

where ujopt denotes the jth component of the optimal control
uopt.

We implemented the Sinkhorn recursions with the log-sum-
exp (LSE) technique [59, Section 3] to maintain numerical
stability at the expense of minor memory overhead. We
employed mini-batching for sampling our PINN output, and
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used the same sample indices to sample from our prescribed
ρ0, ρT . The squared Euclidean distance matrix C mentioned
in Sec. III-A was constructed from the output batch points.

We used the PINN software library [35] with a Pytorch
backend to perform numerical experiments using the above
loss functions. The PINN library [35] was not written for
Schrödinger bridge-type problems, so we needed to modify
it to suit our needs. One modification was to program PINN
to compute loss between outputs and distributions directly and
integrate the Sinkhorn iteration algorithm into the library. We
also modified it to perform the mini-batching we needed. In
summary, for training the PINN, the overall loss (26) was
minimized over θ ∈ RD by solving

θ∗ = argmin
θ∈RD

LNSchrödinger Bridge({ξi}Ni=1;θ). (27)

The next section details the simulation setup and reports the
numerical results.

IV. NUMERICAL CASE STUDY OF CONTROLLED
ISOTROPIC COLLOIDAL SA IN AN NPT ENSEMBLE

We now present a numerical case study of a colloidal
SA system where the drift coefficient f and the diffusion
coefficient g are not analytically available, instead they are
learnt as NN representations NDrift and NDiffusion, from MD
simulation data. Such learnt representations are nonlinear in
the state x and non-affine in control u. We then solve the
GSBP (1) using the PINN architecture proposed in Sec. III
to design a minimum effort controller steering the distribution
in the order-parameter space to synthesize the body-centered
cubic (BCC) crystal structure over the given time horizon.
Fig. 3 shows an initial disordered structure and a final BCC
structure.

A. System Description

We consider the in-silico representation of isotropic col-
loidal particles with identical Lennard-Jones interaction po-
tentials within an NPT (isothermal-isobaric) ensemble. The
Lennard-Jones potential is used to model particle interactions
in the system and is defined as

U(r) := 4ϵ

((σ
r

)12
−
(σ
r

)6)
, (28)

where r denotes the particle radius, and ϵ denotes the depth
of the potential energy well and thus quantifies the strength
of attractive forces between particles. The symbol σ denotes
the distance at which the potential energy is nullified, thereby
demarcating the intermolecular potential’s shift from attraction
to repulsion depending on particle size [60, p. 234].

An ensemble of 2048 particles is initialized at a given
temperature and pressure. While the positions of these particles
may be considered as the most natural states of a colloidal
SA system, they result in an unmanageably high-dimensional
state space. To circumvent this difficulty, we seek a lower-
dimensional representation. To this end, the Steinhardt bond
order parameters ⟨C10⟩ and ⟨C12⟩ are used in this work,
which are directly defined in terms of the particle positions. To

(a) (b)

Fig. 3: (a) An initial disordered crystalline structure. (b) A final BCC
structure with minor defects. These images were generated using
OVITO [61].

calculate these parameters [62] from the MD simulation data,
we proceed through a series of steps, as discussed below.

We first extract the positional information for each particle
from the MD simulation data (see Sec. IV-B). Next, we
identify the neighbors for each particle based on the Voronoi
method [63]. Using this information, we calculate the spherical
harmonics, Ylm, indexed by two quantum numbers, viz. the
azimuthal or orbital quantum number, denoted by l, and the
magnetic quantum number, denoted by m.

The azimuthal quantum number defines the shape of the
orbital, and for our context l ∈ [1, 12]. The magnetic quantum
number represents the orientation of the orbital in space, and
for our context m ∈ [−l, l], see e.g., [64, p. 545]. Accordingly,
the spherical harmonics are defined as

Ylm(θ, ϕ) :=

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimϕ, (29)

where θ and ϕ represent the polar and azimuthal angles,
respectively. In (29), the Pml denote the associated Legendre
polynomials [65, p. 331–339], which is a class of functions
that arise in the solution to Laplace’s equation in spherical
coordinates.

Let ν(i) denote the number of neighbors of particle i, and
let rij signify the positional vector between particle i and its
neighbor j. Subsequently, the lth bond order parameter Cl(i),
for each particle i, is computed as [62]

Cl(i) =

 4π

2l + 1

l∑
m=−l

∣∣∣∣∣∣ 1

ν(i)

ν(i)∑
j=1

Ylm (rij)

∣∣∣∣∣∣
2


1
2

, (30)

where the index i ∈ [0, ν] and ν represents the total number
of particles in the ensemble (ν = 2048 in our case study).
Furthermore, index j ∈ [0, ν(i)]. In (30), normalizing by the
number of neighbors ensures that the final system order pa-
rameter is size-independent and thus, scalable across different
systems. That is, the normalization ensures that Cl(i) ∈ [0, 1].

Next, the individual bond order parameters Cl(i) are av-
eraged over all particles in the ensemble to calculate the
averaged lth Steinhardt bond order parameter

⟨Cl⟩ =
1

ν

ν∑
i=1

Cl(i), (31)
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Fig. 4: Validation losses for nine different neural network models
NDrift and NDiffusion, for the drift and diffusion terms in the SDE (1b),
with legend numbers corresponding to model numbers in Table II.

which can be used to describe the state of a colloidal SA sys-
tem.* Therefore, the physics-based order parameters serve as
a reduced-dimensionality conduit that enhances the efficiency
and effectiveness of our subsequent analyses by circumventing
the need to work with high-dimensional particle position data.†

In this work, we specifically choose the order parameters
⟨C10⟩ and ⟨C12⟩ for their efficacy in distinguishing between
the body-centered cubic (BCC) and the face-centered cubic
(FCC) structures. The values of ⟨C10⟩ and ⟨C12⟩ for defect-
free assembled BCC and FCC structures do not overlap, which
enables differentiation between the two structure types.

In summary, the controlled dynamics of our colloidal SA
system is described by the SDE (1b), where the state and
inputs are defined as

x := (⟨C10⟩, ⟨C12⟩) ∈ X ≡ [0, 1]2,

u := (temperature, pressure) ∈ U .

We denote the components of the optimal control policy uopt

as uopt1 , uopt2 respectively.

B. Learning f and g

To learn the NN representations NDrift and NDiffusion, which
model the drift and diffusion coefficients f and g in the
SDE (1b), we performed MD simulations for the above-
described system using the Python package HOOMD-blue
[67] with final time T = 200 s. The simulation data consisted
of 200 state trajectories, i.e., the trajectories of the order
parameters ⟨C10⟩, ⟨C12⟩ for t ∈ [0, T ], that represent the time
evolution of position of the ν = 2048 particles of the col-
loidal SA system, mentioned earlier in Sec. IV-A. Each state
trajectory was generated under different linear temperature and

*In actual self-assembly systems, image analysis techniques can be used to
locate and track particle ce nters, as well as compute local and global order
parameters in real-time (e.g., see [23]).

†In this work, the Steinhart bond order parameters were calculated using
the Python package Freud [66].

pressure ramp rates (i.e., u), which were sampled using a
Latin Hypercube design and scaled to [−0.005, 0.005], the
input range for the simulation. To generate the training and
test data for learning the NN models, the state trajectories
were sampled 500 times.

Building on our earlier work [28], NDrift and NDiffusion were
trained on the MD data with a controlled neural SDE. The NNs
are designed to be functions of the current time t ∈ [0, T ],
the system state x, and the control input u. The networks
are passed to (1b) to predict the state evolution. The MSE
loss is computed for each time step, and the learning process
aims to minimize the total MSE loss between the networks’
predicted states and the actual observed states from the MD
simulation trajectories. For model optimization, we used the
Adam optimizer [68] which adjusts the learning rate on a
per-parameter basis. The learning rate was initially set to a
predefined constant, as per Table II, and was subsequently
adjusted using an exponential learning rate scheduler with a
decay rate of 0.999. This scheduler reduces the learning rate
multiplicatively after each epoch. The data was partitioned into
a 70/20/10 distribution for the training, testing, and validation
subsets, respectively. The implementation of these networks
was done with the torchsde [69] Python package.

To determine the best architecture for the NNs NDrift and
NDiffusion, we used hyperparameter (depth and width, batch
size, learning rate) turning as detailed in Table II; a total
of nine models were trained and evaluated. All of the NN
architectures follow a sequential design of fully connected
layers, with 5 input units and an output layer of 2 units. The
architectures vary in the number of hidden layers and their
nodes, all using tanh activation functions. Architecture 1 em-
ploys one hidden layer with 200 nodes; architecture 2 utilizes
a hidden layer of 1000 nodes; and architecture 3 deploys six
hidden layers with 200 nodes each. The batch size, defining
the number of samples to be processed before updating the
model, is tuned for learning. Lastly, we adjust the learning
rate, a factor determining how much the model’s parameters
should be adjusted with respect to the calculated error, for
balanced and steady learning without risking instability or
slow convergence. The MSE was used as the loss function
for all models.

Fig. 4 shows the validation MSE loss for all models, which
are evaluated by using the NDrift and NDiffusion in (1b) to
predict the state x, and then comparing the predicted states
with those obtained from MD simulations. These validation
results demonstrate that all models converge, indicating that
the training time was sufficient. As seen in Table II and
Fig. 4, model 7 exhibited the best performance evidenced by
its minimal validation loss. Consequently, we used model 7
for representing the colloidal SA dynamics in the form of
(1b). Its corresponding NDrift and NDiffusion are used for the
optimal control synthesis for the GSBP. On an NVIDIA GTX
1080, each model undergoes training that, on average, takes 10
seconds per training step. To complete 100 epochs, this process
requires approximately 1.2 hours per model. The approximate
inference time for the model is 0.0123 seconds.

10



Fig. 5: The PINN residuals in solving the conditions of optimality (8)-(9) for the simulation in Sec. IV-C.

Model
number

Learning
rate

Batch size
(of epoch)

Model
architecture

Validation
loss

Training
loss

1 10−3 1/4 1 0.390 0.057
2 10−2 1/4 1 0.460 0.024
3 10−4 1/4 1 1.260 0.120
4 10−3 1 1 3.890 0.200
5 10−3 1/4 1 0.200 0.016
6 10−3 1/4 2 9.290 0.072
7 10−3 1/4 3 0.030 0.003
8 10−4 1/4 3 0.031 0.007
9 10−3 1 3 0.110 0.015

TABLE II: Comparison of different model architectures and
hyperparameters for learning the NN representationsNDrift and
NDiffusion for the drift f and diffusion g, respectively. The
different architectures vary in the number of hidden layers and
their nodes, all using tanh activation function. Architecture
1 employs one hidden layer with 200 nodes, architecture 2
utilizes a hidden layer of 1000 nodes, and architecture 3
deploys six hidden layers with 200 nodes each.

C. Controller Synthesis

With the f , g learnt as per Sec. IV-B for the colloidal SA
system described in Sec. IV-A, we considered the GSBP (5)
over fixed time horizon [0, T ], where the final time T = 200
s, the initial state x(t = 0) ∼ ρ0 = N (m0,Σ0), and the
terminal state x(t = T ) ∼ ρT = N (mT ,ΣT ). Here, the
notation N (m,Σ) stands for a joint Gaussian distribution
with mean vector m and covariance matrix Σ. We used

m0 = (0.2, 0.2)⊤, mT = (0.4, 0.375)⊤, Σ0 = ΣT = 0.1I2.
(32)

In particular, the statistics of the initial state x(t = 0) ∼
N (m0,Σ0) is chosen to coincide with that used in the MD
simulation in Sec. IV-B. The mean mT for the target terminal
state x(t = T ) ∼ N (mT ,ΣT ) was chosen to represent the
BCC crystal structure. Hence, the control objective for the
GSBP represents the problem of designing a minimum effort
Markovian controller that provably steers the stochastic order
parameters in a way to synthesize BCC crystal structure over
the prescribed time horizon.

We used the PINN NSchrödinger Bridge proposed in Sec. III-B
for numerically solving the GSBP conditions of optimality (8)-

(9). For our PINN implementation, the domain for state-time
collocation is Ω = [0, 1]2 × [0, 200]. Our network consisted
of 4 hidden layers, each containing 70 neurons, all with tanh
activation functions. We trained the PINN for 100, 000 epochs
using the Adam optimizer [68] with a learning rate of 10−3.
All our training were performed on a computing platform
with NVIDIA Quadro p1000, 640 Cuda cores, and 64 GB
RAM. For the collocation, we used N = 3000 pseudorandom
samples, drawn using Sobol distribution, between the endpoint
boundary conditions at t = 0 and t = 200. We also uniformly
randomly sampled 3, 000 samples every 20, 000 epochs to
satisfy compute constraints. For computing the Sinkhorn losses
at the endpoint boundary conditions, we used an entropic
regularization parameter of ε = 0.1 as in (20). For the
computing platform mentioned above, training the proposed
PINN on average takes 2 seconds per epoch, so to complete
100, 000 epochs, it takes approximately 55.5 hours.

Fig. 5 shows the PINN residuals in (26), and Fig. 6 shows
the corresponding GSBP solutions obtained from the trained
PINN. In particular, Fig. 6a shows the evolution of the opti-
mally controlled transient joint PDFs ρuopt(t,x) interpolating
the fixed ρ0, ρT mentioned above. Notice that, even though
the initial and terminal stochastic states are both chosen to
have Gaussian statistics, the transient joints in Fig. 6a are non-
Gaussian. This is expected since the learnt f , g, as well as
the optimal controller uopt (see Fig. 6b-6c), are nonlinear in
state. A comparison of Fig. 6b and Fig. 6c with Fig. 6d also
shows that the optimal controls are high (resp. low) in regions
where the value function ψ changes rapidly, i.e., when the
(sub)gradient of ψ is large (resp. small).

To further illustrate the GSBP results, we performed a
closed loop sample path simulation for 150 initial state sam-
ples x(t = 0) ∼ ρ0 (with the same ρ0 mentioned before)
using the learnt optimal control policy uopt (t, ⟨C10⟩, ⟨C12⟩)
that provably steers the given ρ0 from t = 0 to the given
ρT (BCC crystal) at t = T = 200 s. The corresponding
closed-loop state sample paths shown in Fig. 7 demonstrate
that the optimal policy indeed steers the controlled stochastic
state from around (0.2, 0.2) to around (0.4, 0.375) with high
probability, as specified per problem data (32).

For the closed-loop simulations, we constructed a k-d tree
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(a) Contour plots of the optimally controlled state PDFs ρuopt(t,x) over the state space [0, 1]2.

(b) Contour plots of the optimal control component u1opt(t,x) over the state space [0, 1]2.

(c) Contour plots of the optimal control component u2opt(t,x) over the state space [0, 1]2.

(d) Contour plots of the value function ψ (t,x) over the state space [0, 1]2.

Fig. 6: Results for the GSBP simulation detailed in Sec. IV-C over time t ∈ [0, 200]. The color denotes the value of the plotted variable;
see colorbar (dark red = high, light yellow = low).

[70] (with leaf size = 2) for fast querying of the PINN-trained
optimal control policy uopt (t, ⟨C10⟩, ⟨C12⟩). This construc-
tion takes 1.785 seconds. During the numerical integration
of the SDE, querying the optimal control policy takes 0.227
milliseconds. Without the k-d tree construction, this querying
is 1000x slower (approximately 0.22 seconds). With k-d tree-
based querying, to simulate a closed-loop sample path as in
Fig. 7 using the Euler-Maruyama scheme with 500 equispaced
time steps in [0, T ], taking approximately 177 seconds. These
experiments suggest that the proposed control approach is
practically viable for colloidal SA.

V. CONCLUSIONS

The work presented here proposes ‘neural Schrödinger
bridge’ – a novel neural network-based learning and control
framework for solving the generalized Schrödinger bridge
problem (GSBP), which is a fixed time horizon stochastic

optimal control problem with constraints on endpoint distri-
butions and controlled SDEs. Our work is motivated by the
problem of minimum effort controlled colloidal self-assembly
(SA), where the controlled dynamics is usually not available
from first principle physics and instead learnt from the MD
simulation data.

Our contributions go beyond connecting the colloidal SA
problem with the GSBP. Since the drift and diffusions obtained
from data-driven learning of the controlled neural SDEs are
nonlinear in state, non-affine in control, and have explicit
time-dependence, the standard computational techniques for
solving GSBPs available in the literature no longer apply in
this setting. In fact, we show that the conditions of optimality
for such GSBPs are very different from those studied in the
literature in that here we are led to solve a system of m + 2
coupled PDEs with two boundary conditions, where m is the
number of control inputs. This system of PDEs we derive is
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(a) Optimally controlled ⟨C10⟩ state trajectories. (b) Optimally controlled ⟨C12⟩ state trajectories.

Fig. 7: The 150 random sample paths resulting from closed-loop simulations using the learnt optimal policy uopt (t, ⟨C10⟩, ⟨C12⟩).

new, and is of independent interest in the theory of Schrödinger
bridge and related stochastic optimal control problems. To
numerically solve this non-standard system, we propose a
custom variant of PINN, and demonstrate its effectiveness on
a data-driven colloidal SA case study. Our results should be
of broad interest to control and machine learning researchers
using diffusion models for learning and control.
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