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VLSI Architecture Design of MPEG-4 Shape Coding
Hao-Chieh Chang, Yung-Chi Chang, Yi-Chu Wang, Wei-Ming Chao, and Liang-Gee Chen, Fellow, IEEE

Abstract—This paper presents an efficient VLSI architecture
design of MPEG-4 shape coding, which is the key technology for
supporting the content-based functionality of the MPEG-4 Video
standard. The real-time constraint of MPEG-4 shape coding
leads to a heavy computational bottleneck on today’s computer
architectures. To overcome this problem, design analysis and opti-
mization of MPEG-4 shape coding are addressed in this paper. By
utilizing the RISC-based model, computational behaviors of the
MPEG-4 shape coding tool are carefully examined and analyzed.
The characteristic of a large amount of bit-level data processing
and data transfer of MPEG-4 shape coding motivates us the
optimization of bit-level data operations. Applying the data-flow
optimization and data reuse techniques, bit-level computation-ef-
ficient architectures, such as data-dispatch-based binary-shaped
motion estimation, the delay-line model, and configurable con-
text-based arithmetic coding, are designed to accelerate bit-level
processing. These hardware blocks are integrated and scheduled
in a very efficient data flow to achieve real-time performance for
MPEG-4 CPL2 specification at 23.5-MHz clock rate. The system
architecture is implemented using Verilog HDL and synthesized
with a 0.35- m four-layer CMOS standard library.

Index Terms—Binary motion estimation, CAE, content-based
coding, MPEG-4, shape coding, VLSI.

I. INTRODUCTION

RECENT ongoing evolution of digital multimedia tech-
nology directs the multimedia communication service

to provide more flexible and powerful functions, such as con-
tent-based interactive, error robustness, and universal access.
MPEG-4 [1], [2] is undoubtedly the emerging standard for such
multimedia communication trend. One of the most compelling
features of MPEG-4 is the content-based functionality (see
Fig. 1). It provides the powerful capability that end-users can
directly access the video content (objects) rather than video
frames in video scenes. Since video objects’ shape information
is transmitted in addition to video texture, end-users can
directly operate the video content in object-oriented manner.
Thus, an efficient tool for the coding of shape information
is the key technology to make the object-based functionality
successful. For reference, Brady [3] presented a comprehensive
review on MPEG-4 shape coding.
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Fig. 1. Object-based visual communication.

The MPEG-4 shape-coding tool mainly comprises the
following coding algorithms: binary-shaped motion esti-
mation/motion compensation (BME/BMC), context-based
arithmetic coding (CAE) [4], [5], size conversion, mode
decision, and so on. These coding techniques can be applied
in various combinations to provide very efficient compression
performance. Besides, better rate-distortion tradeoff for various
transmission environments can also be supported by the flex-
ible MPEG-4 shape coding scheme, i.e., the size-conversion
mechanism. However, such a flexible and high-efficient coding
tool is based on the complex decision process and high-com-
putation tasks. According to previous studies [6]–[9], MPEG-4
shape coding features the high-computing and high-data-traffic
properties. For example, under the Core Profile Level 2 (CPL2,
maximally 23 760 MB/s) specification [1], [10], the analysis
of a shape-coding tool on a generic RISC machine reveals that
several groups of pictures (GOPs), both on arithmetic/control
execution and memory access, are required. Our analysis also
reveals similar results, and the BME/BMC, CAE, and size
conversion can take up to a 95% computation load.

Several previous works [8], [11], [12] presented a few results
on architecture design of MEPG-4 shape coding/decoding, but
few of them reported a comprehensive design-space exploration
and optimization. The contribution of this paper is the optimiza-
tions for the shape coding of MPEG-4 video coding derived at
both the algorithm (bit-data parallelism) and architecture (par-
allel data flow optimization, data reuse) levels. In the bit-data
parallelism (subword parallelism [13]) approach, several bits of
data can be simultaneously processed by the same operations.
To achieve this, the resulting bit-data addressing is handled by
the proposed smart data-flow organization. In addition, the data
reuse technique combined with data-flow optimization can re-
move the bottleneck of heavy data transfer.

This paper is organized as follows. The core algorithms of
MPEG-4 shape coding are briefly reviewed in Section II. In
Section III, comprehensive complexity analyses for these algo-
rithms are presented first. Based on these analyses, we describe
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Fig. 2. Coding flow of MPEG-4 shape-coding tool.

TABLE I
LISTS OFBAB TYPES[1]

the design-space exploration and optimization for real-time im-
plementation of MPEG-4 shape coding in Section IV. In Sec-
tion V, VLSI architecture design based on our design space ex-
ploration is presented. In addition, the architecture-level opti-
mization, including data-flow organization and data-reuse tech-
niques, are described. Finally, we summarize our conclusions in
Section VI.

II. OVERVIEW OF MPEG-4 SHAPE CODING

This section briefly reviews the MPEG-4 shape-coding tool.
The coding flow of MPEG-4 binary shape coding is shown
in Fig. 2. Basically, this coding flow employs the block-based
structure similar to the coding of texture data (YCbCr). The
basic coding unit, which has the block size of 1616 pixels,
is called binary alpha block (BAB). For each BAB, the mode
decision is performed first in order to determine the BAB type
and its corresponding coding flow. Each BAB can be classified
into one of the seven types, as listed in Table I. For the coding of
transparent (type 2) and opaque (3) BABs, only the BAB type
needs to be encoded. This means that only a few bits are required
to transmit transparency and opaque BABs. For the coding of
other BABs (also called boundary BABs), however, their con-
tents should be encoded via different coding flows according to
the video object plane (VOP) type and the rate-distortion deci-
sion.

Basically, except for the transparent and opaque BABs,
boundary BABs can be further classified into one of the
Coded(4, 5, 6) andNo_Update (0, 1) subtypes. TheCoded

TABLE II
RUNTIME SIMULATION RESULTS OF THEMPEG-4 SHAPE ENCODING

(RUNTIME UNIT: SECONDS)

TABLE III
RUNTIME SIMULATION RESULTS OF THEMPEG-4 SHAPE DECODING(RUNTIME

UNIT: SECONDS). SIZE CONVERSION OFDECODING ISEXECUTED ONLY WHEN

THE “CONV_RATIO” FIELD OF THE CODED BAB IS NOT EQUAL TO 1

type indicates that intra-CAE or inter-CAE is required for the
coding of intra-mode BABs or intermode BABs respectively,
while theNo_Updatetype only needs to transmit the motion
vector information for the inter-BABs. Intra-CAE is employed
to encode the boundary BABs of intra-VOP, while the boundary
BABs of inter-VOP can be MC encoded by using motion vector
predictors or calculating new motion vectors by BME. This
MC-encoded BAB is then encoded by utilizing inter-CAE,
or it can be skipped if the lossy coding mode is enabled. The
boundary BABs of inter-VOP can be coded by intra-CAE if
intra-CAE can provide a lower bit rate than inter-CAE for
coding such BAB.

In summary, MPEG-4 shape coding requires a complex
decision process and several high-computation tasks in order
to select the best coding type for each BAB. These tasks,
including mode decision, BME/BMC, size conversion, and
intra/inter-CAE, are applied in seven types of combinations
so as to produce several coding results (rate, distortion).
Then, choosing the coding type is based on the user-defined
rate-distortion constraints. Eventually, the coded bitstream of
the best coding type is transmitted in streaming format.

III. COMPUTATIONAL COMPLEXITY ANALYSIS

This section highlights the analysis of the computational
complexity of MPEG-4 shape-coding algorithm. The com-
putational complexity is measured by the following metrics:
dynamic run-time statistics and static arithmetic/memory/con-
trol operation counts. Two different approaches (simulative and
analytic methods) based on the RISC-like computation model
[14]–[16] are used.

A. Dynamic Run-Time Analysis

Basically, dynamic run-time analysis is performed on the
basis of realistic program execution. In this approach, software
implementation of the MPEG-4 shape-coding algorithm is
required to perform the analysis. Momusys C implementa-
tion [17] of MPEG-4 video coding is a very good reference
implementation. In order to achieve a clearer result, this
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Fig. 3. Kernel part (pseudo program) of the BME algorithm.

implementation is refined as follows. First, the core imple-
mentation of shape-coding algorithm is rewritten. The major
modifications include the data structure simplification and
code replacement of some redundant parts. After that, the GNU
profiling tool (i.e., gprof) is adopted to collect the run-time
statistics of this implementation.

In this simulation, four sequences (children, bream, weather
and news) of 100 CIF-format VOPs are tested. Tables II and III
list the runtime simulation results of shape encoding and de-
coding, respectively. The results reveal the heavy demand of
computation power for this nonoptimized implementation of
shape encoding. The performance is much less than one VOP
per second, which is very far from real-time encoding speed. In
order to achieve the real-time encoding performance (30 fps),
BME computation, which takes nearly 90% of total computa-
tion load, should be speeded up about 100 times, and other tasks
should also be speeded up ten times.

A similar approach based on time-dependent instruction-level
analysis model is reported in [7]. This report indicates that the
coding of a P-VOP alpha plane requires a significant high-com-
putational power and data transfer when the shape’s object has
great changes. That means that BME is applied for the coding
of many boundary BABs of current P-VOP. Their analysis re-
sults also reveal that “load/store” operations play the major role
in overall computation of MPEG-4 shape-coding algorithm. In
other words, the optimization strategy should reduce the number
of data transfer operations effectively.

B. Static Analysis

Static analysis explores the platform-independent algorithm
complexity by means of the number of data processing, memory
access and addressing calculation operations. We first analyze
the BME algorithm as an example to illustrate the static anal-
ysis. Fig. 3 shows the kernel code of BME computation. To cal-
culate SAD, pixels of current BAB C(k, l) and pixel P(I, j, k, l)
in the search area are compared, as shown in line 6. This com-
putation contains theP&C comparison(exclusive-OR) and the
SAD calculation(summation), as well as theP&C data load and
addressingoperations. By using this method, the complexity of
the pseudo program is analyzed (see Table IV).

TABLE IV
COMPUTATIONAL COMPLEXITY ANALYSIS BASED ON STATIC ANALYTICAL

METHOD OF THEBME KERNEL ALGORITHM LISTED IN FIG. 4

TABLE V
STATIC COMPUTATIONAL COMPLEXITY ANALYSIS FOR THE MPEG-4

SHAPE CODING

Assume that totally 23 760 BABs/s are coded and 30%
BABs are boundary BAB. Table V summarizes the computa-
tional complexity analysis for the MPEG-4 shape coding by
employing the static analysis mentioned above. To achieve the
real-time performance, BME computation should be greatly
optimized. Both data processing and data transfer operations
should be reduced to about 0.5%–1% of original operations.
Section IV describes the design space exploration for the
optimization of MPEG-4 shape-coding implementation to
achieve such a design goal.

IV. DESIGN-SPACEEXPLORATION AND OPTIMIZATION

A. BME

Reviewing the analysis results presented in Table II and
Table V, if the BME computation can be greatly speeded up
above 100 times, the real-time performance of MPEG-4 shape
coding becomes easy to achieve. TheSAD Calculation, P&C
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(a) (b)

Fig. 4. Bit-data concatenation leads to the bit parallelism for the word-level
processors. (a)n cycles required for thesen-pixel data. (b)l cycles required for
thesen-pixel data.

Fig. 5. Bit-addressing operations (SAP) are required to obtain the desired one
row of data for some search candidate BAB in the bit-parallel optimized BME
computation.

Comparisonand P&C Data Transfercomputations are the
targets for design optimization. Since the shape information
is represented in binary format (i.e., each pixel is represented
in 1 bit), several pixels (bits) can be concatenated into a word
and simultaneously processed by word-level operations to
achieve parallel processing. Fig. 4 demonstrates the bit-data
parallelism.

The size of the pixel-concatenation can be of any extent
(only limited by general-purpose processors (GPPs) maximal
word-length data path). The wider data path (e.g., 64-bit SIMD)
can be adopted for providing more parallelism. The maximum
data-level parallelism forP&C Comparisonoperation can be
achieved if sufficient P and C data can be supplied. However,
this requires data addressing to produce the required P and
C data. These bit addressing operations, which include bit
shifting and bit packing [in short, shift and pack (SAP)]
for bit-data concatenation, result in very much computation
overhead. Fig. 5 illustrates the bit-data addressing operations to
be performed in the bit-parallel optimized BME algorithm. As
indicated in Table VI, bit-addressing operations become a new
computation bottleneck for the bit-parallel-optimized BME
algorithm, though the data processing and memory-access
operations are greatly reduced. To overcome this problem, the
parallel architecture with a data dispatch technique based on
optimized data-flow is proposed. Bit-addressing operations
can be efficiently reduced by this hardwired architecture. The
architecture will be presented in Section V.

B. CAE and Size Conversion

From the analysis results shown in Table II, it can be seen
that CAE and size conversion do not take a large proportion of
the overall computation power for the MPEG-4 shape coding.

TABLE VI
COMPUTATION ANALYSIS RESULTS OF TWO

BME IMPLEMENTATIONS (UNIT: MOPS)

Fig. 6. Block diagram of the DLM.

As the bit-concatenation (parallelism) technique is adopted for
the optimization of the BME algorithm, the proportion of com-
putation power for CAE and size conversion greatly increases.
Apparently, the bit-parallelism technique cannot effectively
speed up the performance of CAE and size conversion, the
major reason being that the computation nature of these two
tasks is bit-serial processing. In such processing types, the
input data (pixels/bits) have to be processed sample by sample,
and thus, bit-data parallelism cannot provide speedup for CAE
and size conversion.

Another common nature of these two algorithms is the
window-based processing, which is very common for image
processing algorithms, such as 2-D filtering and morpholog-
ical operations. Context generation for both CAE and size
conversion (upsampling) requires such operations. In these
operations, an active sample (pixel) usually needs to refer
several neighboring pixels in the standard-defined template.
For pixel-by-pixel processing in raster scan order, most of the
reference pixels of two adjacent processings are duplicate. This
leads to memory access redundancy if all reference pixels for
the next active pixel are reloaded every time. Fortunately, with
a few delay elements (shift registers) connected in a proper
data-flow arrangement, data in these shift registers can be
effectively reused, and thus the redundant data accesses can
be removed. Fig. 6 shows the general form of the delay-line
model (DLM) [19], [20]. Each active pixel of BAB is loaded
into DLM, and flows through the shift registers array in DLM.
Registers in context box are arranged such that various contexts
can be achieved. By employing this model, the required context
can be achieved at every cycle.

For block-based processing, the neighboring pixels to be ref-
erenced may locate outside the current (active) BAB. The refer-
ence region outside the current BAB is called the border region
(see Fig. 7). The border region contains pixels from the previ-
ously processed blocks and the unknown region, in which pixels
are not yet to be processed. If pixels in the unknown region
are referred, the rightmost boundary pixels (for right border) or
the bottommost boundary pixels (for bottom border) of current
BAB are used for reference. For handling these boundary cases,
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Fig. 7. Illustration of window-based processing at the BAB boundary. The border region indicates that the pixels are outside the active BAB. Different operations
are required when the template window contains pixels in the border region.

some auxiliary registers are inserted into context box, as shown
in Fig. 6.

At the beginning of processing of each active BAB, pixels in
the top border region are pre-loaded into delay lines. Next, all
pixels of active BAB are read into the DLM via the CP, one
by one. Pixels in the left border region are referred only for
left boundary pixels of active BAB. Hence, they are stored in
registers “L” and flow through special path. Registers “R” are
added to store top-right border pixels. Similarly, only pixels in
the top-right part of active BAB will refer to top-right border
pixels. Therefore, after pixels in registers “R” flow into the delay
line, this path to the delay line is closed, and another path from
the lower delay line is selected instead.

Owing to the bit-serial processing and the window-based pro-
cessing nature, it is concluded that the DLM-based dedicated
hardware architecture is a very suitable candidate for CAE and
size conversion (upsampling) algorithm. In fact, by employing
the proposed DLM, CAE and size-conversion hardware mod-
ules can be designed as cost-effective building blocks. Their ar-
chitectures are presented below.

V. ARCHITECTUREDESIGN

A. BME Architecture Design

By means of dedicated hardware architecture, the com-
putation of BME algorithm can be efficiently parallelized
and pipelined. The BME architecture mainly comprises one
processing element (PE) array composed of parallel PEs and
the specified address generation unit (AGU), such that the
P&C data processingand P&C data transferoperations can
be efficiently accomplished. Based on the data locality and
parallel processing property of the BME algorithm, the systolic
PE array architecture [21], [22] is adopted as the candidate ar-
chitecture. In addition, considering the adoption of the bit-data
parallelism technique, the one-dimensional (1-D) array should
be the best candidate for the optimization of BME computation.

Fig. 8 shows the block diagram of the BME architecture. The
PE array contains 16 PEs, and each calculates the SAD of one
candidate BAB. The compare and select (CAS) module com-
pares the SADs produced by all PEs, and then selects the candi-
date BAB of minimal SAD. The search range (SR) buffer stores
partial SR data that can be reused by PE array so as to reduce
data transfer from the off-chip frame memory. The SAP module
is required to produce the desired data since the motion vector

Fig. 8. Block diagram of the proposed BME architecture.

(a)

(b)

Fig. 9. (a) Architecture of SAD-PE. (b) Adder tree structure.

prediction units (MVPs) are not usually equal to 16, which leads
to the SR not aligning the boundary of packed BAB rows. The
AGU module generates address for accessing the SR buffer and
control signal for SAP. The word length of the VOP memory
and SR buffer is 16-bit to match the row-based processing of
BME computation. Proper data flow is derived to fully main-
tain utilization of processing elements in the systolic array and
to reduce memory access.

1) PE Architecture and Data Flow Design:The SAD-PE,
as shown in Fig. 9, is designed to calculate the SAD of the
current BAB and one candidate BAB from reference VOP. At
every cycle, one row of current BAB data and one row of can-
didate BAB from reference VOP are compared in parallel by a
16-bit bit-wise exclusive-OR (XOR) circuit. The resulting 16-bit
data, which represent the difference values between the pixels
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Fig. 10. Pixel distribution of two adjacent search candidate BABs in SR buffer
(SRAM): (a) horizontally adjacent case and (b) vertical adjacent case.

TABLE VII
PERFORMANCESUMMARY OF DIFFERENTAPPROACHES

of these two rows, are summed up by an adder tree circuit [see
Fig. 9(b)] so as to get the partial SAD of one row. In the same
cycle, the partial SAD of the current row is then accumulated
with previous partial SAD by the accumulator. After 16 cycles,
the SAD of one candidate BAB can be obtained.

Since the reference data of two adjacent candidate BABs
(adjacent positions) have large redundancy (15*16/16*16), this
property is applied to achieve the maximal data reuse such that
the number of memory access can be greatly reduced. Besides,
the data flow design and bit-packing direction have great impact
on the utilization of data reuse. Considering two different data
flows as shown in Fig. 10, utilization of reused data and the size
of the SR buffer, as well as the number of memory accesses,
would differ greatly. In the case of row-based (horizontal) bit
packing with horizontal processing flow [see Fig. 10(a)], one
row data (16 pixels) of 16 horizontally adjacent candidate
BABs required by each one of 16 PEs come from the same row
(32 bits, two storage entries) in the SR buffer. This means there
is no extra memory access to get the new nonredundant row of
data for the next adjacent candidate position. However, in the
case of vertical processing flow [Fig. 10(b)], memory access for
one extra row of data is required to get the nonredundant row
data for processing the next adjacent candidate position. On
the contrary, if the pixel packing is column based, then vertical
candidate BAB processing flow will be the best solution for
data-flow optimization. In summary, the pixel packing makes
the candidate BAB’s data flow with the “identical” direction of
bit packing to achieve the maximum data reuse ratio.

Table VII lists the number of memory access and the execu-
tion cycles required by the 16-PE BME architecture with two
different data flows: “identical” and “cross” to pixel-packing
direction under the 7128 BABs/s processing rate (assuming
30% of 23 760 BABs need performing BME). The number of
memory accesses for the “identical” case has a 50% reduction
as compared to the “cross” case. Note that the execution cycles
of both cases are the same. This means both cases can have

(a)

(b)

Fig. 11. (a) Architecture of DDBME. (b) Processing flow of DDMME.
Candidate BABs located in (I)(II) (horizontal offset:�16 to�1) are calculated
first, and then Candidate BABs located in (II)(III) (horizontal offset: 0–15) are
calculated.

Fig. 12. Natarajan’s BME architecture [24].

the same PE utilization, though they have different memory
bandwidth requirement.

Another important factor that affects the number of memory
access is the number of PEs in the PE array. In most cases, two
16-bit words need to be read from the SR buffer such that one
16-bit row of candidate BABs can be obtained (as in Fig. 5). It is
inefficient that only one word from two read-out words is used.
Thus, the architecture design has to remove this inefficiency by
suitably arranging the data-processing mechanism. This relies
on the fact that these two words of data provide just 16 rows of
data, which are dispatched to 16 PEs for 16 horizontally adjacent
candidate BABs, without unused bit data.

2) Data-Dispatch Technique:Based on the derived data
flow, the data dispatch technique is employed to efficiently
reduce the bit addressing. Fig. 11 shows the BME architecture
[ data-dispatch based BME (DDBME)] with the data dispatch
technique. The number of PE equals the BAB block size (16)
in order to achieve the maximum data usage ratio. In this
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Fig. 13. (a) Context for intra-CAE. (b) DLM configured for intra-CAE.

Fig. 14. Procedure of size conversion to determine the CR.

TABLE VIII
ARCHITECTURAL ANALYSIS AND COMPARISON FORDDBME AND

NATARAJAN’S ARCHITECTURE. SEARCH RANGE IS [�16, 15]

architecture, 32 bits data (denoted as SR[31 : 0], corresponding
to two adjacent rows in SR) are read from SR buffer. Sixteen
16-bit data extracted from SR[31 : 0] in one-bit right-shifting
order are dispatched in turn to one of the 16 PEs respectively.
In brief, bits SR[31 : 16] are dispatched to PE0, SR[30 : 15] are
dispatched to PE1, and so on. The 16 LSBs, i.e., SR[15 : 0], are

dispatched to PE15. At the next cycle, next rows of SR data
are read out from SR buffer and dispatched to PE arrays in the
same way. By using this approach, every bit read out from the
SR buffer can be fully utilized, and no extra SAP operations
are required. All PEs will calculate the SAD of horizontally
adjacency candidate BABs at every 16 cycles. The CAS
module has 16 registers to store the 16 SADs. A comparator
compares the 16 SADs one by one to find the best-matched
BAB. The processing flow is shown in Fig. 11(b). Candidate
BABs located at , indicated as
region (I) and (II), are processed first, and candidate BABs at

, indicated as region (II) and
(III), are then proposed.

3) Architectural Analysis:Some BME architectures [23],
[24] have been proposed for traditional texture motion esti-
mation. In those architectures, the optimization for bit-level
processing is performed only at PE level, but the data flow is not
entirely optimized. Fig. 12 illustrates Natarajan’s architecture
[24] that is modified for BME based on Yang’s 1-D systolic
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Fig. 15. (a) Context for upsampling of MPEG-4 shape coding. (b) Upsampling PE. (c) DLM configured for upsampling.

array [25]. It adopts the vertical candidate BAB processing
flow, in which the proposed data-dispatch technique cannot
be applied. Thus, two extra SAP modules are required for
retrieving desired data from the SR buffer. This type of pro-
cessing flow also leads to inefficiency of data usage. Only half
of the data read out from SR buffer are eventually processed by
the PE array. This means that Natarajan’s architecture requires
more data transfer from the SR buffer than the DDBME does to
obtain one motion vector. Natarajan’s architecture also requires
a larger SR buffer (47 32 bits) to keep the data flow smooth,
while the DDBME requires a smaller SR buffer of size 1632
bits. As for the data flow of current BAB, DDBME broadcasts
the same row of current BAB to 16 PEs concurrently while
Natarajan’s architecture use different rows of current BAB to
16 PEs. Thus, Natarajan’s architecture requires 16 pipeline
registers connected in circular way to achieve correct data
flow of current BAB. Since DDBME only requires one row
of data from current BAB every cycle, we can store current
BAB in a 16 16 (bits) SRAM to replace the usage of pipeline
register. Table VIII lists the architectural comparisons between
DDBME and Natarajan’s architecture. It reveals that, although
we can implement BME with modified existing-texture ME
architecture, without optimized data flow, the redundant bit
is necessary and the extra hardware cost has to pay for bit
retrieval.

B. Reconfigurable CAE

CAE architecture mainly comprises the context-generation
unit and the binary arithmetic coder. Since many efficient de-
signs of arithmetic coding [26], [27] have been proposed, we
adapted the Q-Coder [26] architecture for the CAE implementa-
tion. As mentioned before, the efficient context generation unit

Fig. 16. Processing time of the optimized hardware units and the scheduling
of these tasks.

can be implemented by integrating the DLM. Besides, CAE
with different block sizes of 16 16, 8 8 or 4 4 should
be supported according to the user-specified conversion ratio.
Since the required delay line length has to equal the block width,
we can adjust the virtual length of the DLM by multiplexers.
As shown in Fig. 13, the total number of shift registers in one
delay line is 16. Depending on the block size of current encoding
block, the data in DL3 may flow through one of the three paths
into DL2 via MUX1 (for 4 4 block), MUX2 (8 8) or MUX3
(16 16). Similar data-flow selection can also be made for the
flow from the DL2 to DL1. When the block size is 4 4, the
value of register 2 will not be updated. Hence, a special path
from the current pixel input to MUX7 is selected. Registers out-
side the virtual length of delay line can be gated to save power.
Registers in region II and III are gated for processing 44
block. Registers in region III are gated for processing 88
block.
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Fig. 17. Performance comparison of the software implementations and the proposed architecture.

C. Size Conversion

Size conversion mode is activated when rate control and rate
reduction for some low bit-rate environments is demanded.
The size conversion is carried out for every BAB except “All
Transparent,” “ All Opaque,” and “No Update.” As illustrated
in Fig. 14, the size conversion procedure can determine the
conversion ratio (CR) for the coding of BABs. For example, if
the CR equals 1/4, the downsampled BAB of 44 block size
can be encoded by the CAE. In summary, the size conversion
architecture can be realized by the integration of three major
units: the upsampling unit, downsampling unit, and accepted
quality (ACQ) detection unit. Since the implementation of the
downsampling unit and the ACQ detection unit is relatively
simple, we only address the design of upsampling unit in the
following.

Upsampling will produce extra samples by interpolating the
original samples. Fig. 15(a) illustrates the template used for up-
sampling operations of MPEG-4 shape coding. Pixels labeled
1, 2, 3, and 4 will be the interpolated pixels. Pixels A–L are the
original samples that will be referred to produce pixels 1, 2, 3,
and 4. The values of four interpolated samples are determined
by the following:

1) if (4*A 2*(B C D) (E F G H I J K L)
Th[Cf] then “1” else “0”;

2) if (4*B 2*(A C D) (E F G H I J K L)
Th[Cf] then “1” else “0”;

3) if (4*C 2*(B A D) (E F G H I J K L)
Th[Cf] then “1” else “0”;

4) if (4*D 2*(B C A) (E F G H I J K L)
Th[Cf] then “1” else “0”;

where Cf is a pre-defined permutation of E–L.
The upsampling PE, as shown in Fig. 15(b), is designed to

calculate the value of the interpolated pixels. Two shift registers
(SR4, SR8) can generate the corresponding permutation of A–L
used to interpolate four new samples. Due to the window-like
slicing operations, the upsampling can be easily mapped into
the proposed delay-line model. Fig. 15 shows the architecture
of upsampling after mapping the context [Fig. 15(a)] into the
delay-line model. Fig. 15(c) is the configured delay line. After
four samples are produced by upsampling PE, all pixels in the
delay line flow forward.

D. System Performance and Implementation Results

The optimized BME, CAE, and size conversion units are inte-
grated with the mode decision, MVP units, and variable-length
coding (VLC) units to achieve the complete function of the
MPEG-4 shape coding. In order to achieve the maximum system
performance, tasks of these hardware units are properly sched-
uled. The worst-case scenario is the processing of the boundary
BAB of P-VOP or B-VOP using inter-CAE coding mode. To
complete one BAB processing in this worst-case scenario,
the system architecture without task-pipelining configuration
requires 3034 clock cycles: 16 clock cycles for mode decision,
34 clock cycles for identifying MVPs, 1072 clock cycles for
BME, 768 cycles for size conversion, 1144 clock cycles for
intra-CAE and inter-CAE, and 8 clock cycles for VLC. With
BME computation and size conversion, intra-CAE can be
processed in parallel; the processing flow can be scheduled as
shown in Fig. 16. Based on this scheduling, the BAB of the
worst-case scenario can be processed in 1962 clock cycles.
For other types of BABs, their processing time is much shorter
than the worst-case scenario (e.g., nonboundary BABs only
require 16 clock cycles). Hence, the processing time of these
types of BABs can be hidden within the inter-block pipeline
for the worst-case scenario. In the real case simulation, the
“bream” sequence of 100 CIF-format VOPs is tested. After the
VOP formation processing, totally 19 207 BABs are encoded.
Among them, 13 688 BABs belong to type 1 (as indicated in
Fig. 18), 219 BABs belong to type 2, 980 BABs are type 3, 4261
BABs are type 4, and type 5 has 59 BABs. The processing time
requires 9.54M cycles. This means the real-time shape coding
(30 VOPs/s) of the “bream” sequence is easily achieved by the
proposed pipelined architecture running at 3.2 MHz. The system
performance comparison between software implementation and
the proposed architecture is shown in Fig. 17.

The system architecture is implemented using Verilog HDL,
and synthesized with 0.35m four-layer metal CMOS standard
library using Synopsys. The system architecture needs an area
equivalent to about 30 k gates (on-chip memories excluded).
For local data storage, three 16 16 and one 16 32 bits
on-chip SRAMs are also required. The system architecture
can easily achieve the real-time performance for CPL2 (7128
BABs of non-T/O/N types per second) at 23.5 MHz. The peak
performance of this architecture when running at 40 MHz can
support main profile level 3 (MPL3) specification.
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VI. CONCLUSION

In this paper, a computation-efficient architecture of MPEG-4
shape coding is described. Due to the severe real-time con-
straint, the software implementation of MPEG-4 shape coding
at Core Profile Level 2 or higher specification cannot meet the
necessary requirements. Although the bit-level parallelism can
be applied to increase the performance of software implementa-
tion, our analysis results reveal that the bit-data addressing will
become the new computation bottleneck of BME computation.
In other processings, such as CAE, size conversion cannot
gain much from this bit-parallelism technique because of
the bit-serial processing nature. Besides, the window-based
processing nature leads to much redundancy of data transfer
for software implementation. Accordingly, we propose sev-
eral hardwired building blocks, such as DDBME, CAE, and
DLM to speedup the performance of computation-extensive
algorithms. In addition, they are integrated and scheduled in
a proper data flow such that task pipelining can be smoothly
proceeded to achieve the maximum system performance. The
system architecture is implemented by synthesizable Verilog
HDL, and synthesized with 0.35-m four-layer metal CMOS
standard library. It can achieve the real-time performance for
CPL2 specification at 23.5 MHz.
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