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Abstract

This paper presents a fast global motion estimation (GME) algorithm based on gra-

dient methods (GM), which can be used for real-time applications, such as in MPEG4

video compression. This approach improves the existing state-of-the-art GME algo-

rithms by introducing two major modifications: first, only a small subset (down-to

3%) of the original image pixels is used in the estimation process. Second, a warp-free

formulation of the basic GM is derived, further decreasing the computational complex-

ity. Experimental results show no loss of GME accuracy and compression efficiency

compared to the MPEG-4 verification model, while reducing the computation com-

plexity of the GME by a factor of 20.
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1 Introduction

MPEG-4 is a new video compression standard providing core technologies for efficient storage,

transmission and manipulation of video data in multimedia environments [11, 20]. Motion
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estimation algorithms calculate the motion between successive video frames and predict the

current frame from previously transmitted frames using the motion information [7]. Global

motion estimation (GME) algorithms estimate a single parametric motion model [9] for

the whole frame which can be used within MPEG-4 to produce either static or dynamic

sprites. Static sprites [17] are mosaics containing the visual information of the objects which

were visible over the sequence. While various mosaic generation algorithms were developed

[3, 4, 6, 14], their applicability to general purpose video compression applications is limited

by the significant delay incurred by frames accumulation and mosaic image coding (as intra

frames) [18]. Furthermore, the 8-parameters projective motion model used by the MPEG-4

coding standard is suitable for a restricted range of camera motions [4]. Thus, each static

sprite can be only used for a single short video segment. Therefore, this paper concentrates

on dynamic sprites while its results are also applicable to static sprites. The dynamic sprite

[21] coding scheme utilized by the MPEG-4 verification model, estimates the motion between

consecutive frames using a 6-parameters affine motion model. A sprite is generated every

time step by warping the previous frame according to the motion parameters and used as a

reference frame [19]. Further improvement is achieved by first estimating both the global and

local motions (using block matching) and then coding each macro-block using the motion

estimation mode which results in a lower prediction error [15, 16].

A comprehensive comparative survey by Barron et. al. [1] found the family of gradient-

based motion estimation methods (GM), originally proposed by Horn and Schunck [2], to

perform especially well. The purpose of the GM algorithm is to estimate the parameters

vector P associated with the parametric image registration problem [3]. A critical imple-

mentation issue concerning the GME, is its significant computational complexity, making

it useless for real-time encoding application, especially when implemented on low-power de-

vices such as PDAs and cellular phones. This paper offers two modifications to the GM

algorithm, reducing its computational complexity by 20 times. First, only a small, selective

sub-set of the image pixels named Dominant Pixels, is used by the GM algorithm. Second,

the warp-free formulation of the GM algorithm (WFGM) [13] allows for further complexity

reduction. These two algorithms are complexity-wise complementary: each of them reduces

the complexity of a different component within the original GM algorithm. Experimental re-

sults demonstrate the significant complexity reduction while maintaining the GME accuracy

and video compression efficiency.
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The regular GM based GME algorithm is presented in section 2, while the Selective

integration based GM (SIGM) and Warp-free GM (WFGM) are introduced in sections 3

and 4 respectively. The resulting algorithm, Fast GM, is presented in section 5, while

experimental results are given in section 6.

2 Gradient method based motion estimation

GM methodology [8, 10] estimates the motion parameters P by minimizing the intensity

discrepancies between input images I1 (x, y) and I2 (x, y)

P ∗ = argmin
P
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S the set of coordinates of pixels that are common to I1 and I2 in

I1’s coordinates.

P the estimated motion parameters vector.

The solution of Eq. (2.1) is based on a pixel-wise first order Taylor expansion of I1 in

terms of I2 as a function of the parameters vector P
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Eq. (2.2) can be considered the linearization step of a Gauss-Newton nonlinear minimization

[22] of Eq. (2.1). By gathering the pixel-wise equations similar to Eq. (2.2), an equation set

is formed and solved for P [3, 5].

P =
¡
HtH

¢−1
HtIt (2.3)

where

It = ((It)1 . . . (It)n)
T (2.4)
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and
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The partial derivatives according to the motion parameters are calculated using the

derivative chain rule
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are related to the parametric motion model used. For the affine motion

model we get

x
(2)
i = a · x(1)i + b · y(1)i + c

y
(2)
i = d · x(1)i + e · y(1)i + f

P = (a, b, c, d, e, f)

(2.7)

Due to the non-linear nature of Eq. (2.1), it is solved iteratively where Eq. (2.3). The

basic GM iteration, which is marked as “Single Iteration” and iterative refinment phase are

presented in Fig. 1.

In order to improve the convergence properties, a standard Gaussian pyramid [3] is con-

structed using scaling factors of 2 or 3 [6, 10]. Hence, the GM algorithm starts at the

coarsest resolution scale of the pyramid, then follows the subsequent levels in a coarse-to-

fine approach. At each resolution scale, Eq. (2.3) is iterated until a maximal number of

iterations is reached or the magnitude of the update of translation parameters reaches a pre-

determined threshold. Finally, when the procedure stops at the finest resolution scale, the

final motion parameters are obtained. In video compression applications the induced relative

motion is usually small, therefore, less than 10 iterations are needed for an accurate regis-

tration and convergence. In situations where larger motion is anticipated, a bootstrapping

procedure can be applied [9].
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Figure 1: Block diagram of the basic and iterative GM formulations. For n = 0, P 0 is given
as an initial guess and ∆P is the iterative update after each iteration.

3 Selective integration based GM (SIGM)

The evaluation of Eq. (2.3) at each GM iteration uses S , the complete set of pixels common

to I1 and I2. Hence, the resulting equation is highly overdetermined. At QCIF frame size

(176 × 144 pixels) there are 25,344 equations, as opposed to 6 or 8 unknown parameters
related to affine and perspective motion models, respectively. The Selective integration

based GM (SIGM) evaluates Eq. (2.3) using bS , a small subset (down to 3%) of S . Following
the GM scheme in section 2, the SIGM algorithm uses a multiresolution pyramid of the input

images, where the pixel set bS is chosen at the coarsest resolution scale, and tracked using a
5



Figure 2: An example of the locations of the subset of pixels used for the global motion
computation. The pixel set is superimposed on the first frame of the Stefan video sequence.

coarse-to-fine formulation. The pixel subset selection process is described in section 3.1 No

other modifications are made to the procedure in section 2. It is used in the initialization

and multiscale embedding of the SIGM, which is presented in section 3.2 and illustrated in

Fig. 3. The iterative formulation is described in section 3.3 and Fig. 4.

3.1 Pixel subset selection

The pixel subset bS is chosen by finding the pixels having the largest gradient magnitude. In
order to avoid numerical instabilities caused by the concentration of the subset bS in small
image regions. The image is divided into 100 sub-regions, where at each sub-region the top

10% are chosen. A similar approach was used for feature tracking by Dellaert et-al [12],

while Wei et-al [23] improved the GM robustness by using selective integration where the

selection criterion was based on temporal gradient sorting. This procedure was also used by

[9]. Figure 2 illustrates the proposed pixel selection process, which was applied to the first

frame of the Stefan sequence. The uniform distribution of the feature points is evident.

3.2 SIGM multiscale scheme

This section presents the multiscale SIGM registration scheme which uses the iterative re-

finment algorithm in section 3.3.
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1. Similarly to section 2, a resolution pyramid of the input images, I1 and I2, is con-

structed.

2. At the lowest resolution level Scale = 0, N pixels in I2, having the largest gradient

magnitude are added to the pixel set bS2 (Scale), following the procedure described in
section 3.1 and Fig. 2.

3. The pixel set bS2 (Scale) is used as an input to the iterative refinment algorithm in sec-
tion 3.3, where the initial estimate of the motion can be either set to zero or calculated

according to the motion of the previous frames.

4. The pixel set bS2 (Scale) and the result of step 2 are upscaled and used as an input to
the calculation of steps 2 at a higher resolution scale, until the original image size is

reached.

3.3 SIGM iterative refinment

At each resolution scale the initial estimate of the registration is refined using the following

procedure:

1. At the first iteration in each resolution scale (n = 0), the matrix
¡
HtH

¢
is calculated

according to Eqs. (2.5) and (2.6) using the pixel set bS2.
2. The pixel set bS1, which is a warping of I1 towards the pixel set bS2, is calculated using
the inverse of the current estimate P−1n , n ≥ 0. For n = 0, P 0 is given as input.

3. If a pixel in bS2, does not have a corresponding pixel in I1, it is extracted from bS2 and
its contribution to the matrix

¡
HtH

¢
is subtracted.

4. The vector
¡
HtIt

¢
is calculated according to bS1 and bS2.

5. Equation (2.3) is solved for ∆P using
¡
HtH

¢
and

¡
HtIt

¢
calculated above.

6. ∆P , the outcome of step 2 is used to update the solution

P n+1 = ∆P + P n n ≥ 0.
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Gaussian resolution Pyramid
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I2(0) {I1,I2}Scale

Iterative SIGM

P0

Scale = Scale +1

P0

Scale > Scalemax
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Figure 3: SIGM multiscale image registration flow chart. The scheme utilizes the iterative
registration presented in Fig. 4.

8



Build HTH using I1,I2, 2
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calc HTIt
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P
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n > Niterations
or
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refine 2 and HTH
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solve (HTH) P=HTIt

HTH HTIt
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Figure 4: SIGM iterative image registration flow chart.

7. Step 2 is repeated until one of the following stopping criteria is met:

(a) At most Nmax iterations were performed

or

(b) The process is stopped if the translation parameters within the updated term ∆P

reach a predetermined threshold which corresponds to the required registration

accuracy. A threshold of 0.1 pixel was used as a practical limit to the motion

estimation accuracy [13].
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3.4 Complexity analysis

Next we provide an estimation of the GM algorithm’s complexity and a comparison to the

SIGM. Let CGM (Scale) be the total complexity of a regular GM at a certain resolution scale

Scale, then

CGM (Scale) = K
GM
|S2|NIterations (3.1)

where

K
GM

the number of operations per pixel.

|S2| the number of pixels in the set S2.

NIterations the number of iterations per resolution scale.

Hence, the total complexity of the iterative multi scale process becomes

CGM =

Nscales−1X
m=0

CGM (m)

=

Nscales−1X
m=0

¡
ScaleStep2

¢m · CGM (0)

= NIterations ·KGM
· |S2 (0)| · (ScaleStep)

2Nscales − 1
(ScaleStep)2 − 1 (3.2)

where

CGM (0) the GM complexity at the coarsest resolution scale.

ScaleStep the resolution scale step (the image’s downscaling factor in each dimension).

ScaleStep2 the ratio of the number of pixels between successive resolution scales.

|S2 (0)| the number of pixel used for the GM estimation at the lowest resolution scale.

Therefore, the SIGM significantly reduces the GM complexity:

1. The matrix
¡
HtH

¢
SIGM

is calculated using a small subset of pixels bS2, which is much
smaller than the pixel set S2 used by the GM in section 2. The complexity reduction

is
C(HtH)

SIGM

C(HtH)
GM

=

¯̄̄ bS2 ¯̄̄
|S2| . (3.3)
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2. I2 remains static throughout the iterative solution process (I1 is being warped). Hence,

there is no need to recalculate the matrix
¡
HtH

¢
SIGM

in each iteration. It has to be

calculated just once at the first iteration of each resolution scale.

In the SIGM case the matrix
¡
HtH

¢
has to be estimated just once, while

¡
HtIt

¢
has to

be evaluated at each iteration

CSIGM (Scale) = K
(HtH)
GM

¯̄̄ bS2 ¯̄̄ ³1 +∆ bS2´+K
(HtIt)
GM

¯̄̄ bS2 ¯̄̄NIterations,∀rs (3.4)

where

K
(HtH)
GM the complexity of estimating

¡
HtH

¢
using a single pixel.

K
(HtIt)
GM the complexity of estimating

¡
HtIt

¢
using a single pixel.

∆ bS2 the change in the size of the set bS2 .
The total SIGM complexity becomes

CSIGM =

Nscales−1X
m=0

CSIGM (m) . (3.5)

Following Eq. (3.4), CSIGM is not a function of the resolution scale Scale, therefore we

have

CSIGM =

Nscales−1X
m=0

CSIGM (0) (3.6)

= CGM (0) ·Nscales.

For a typical global motion estimation in a video sequence (320× 240), using three dyadic
resolution scales (Nscales = 2, ScaleStep = 2) and 10 iterations (NIterations = 10) we get

• |S2 (0)| = 320× 240/4 = 19, 200,
¯̄̄ bS2 (0)¯̄̄ = |S2 (0)| · 10% = 1, 920

• ∆ bS2 =10%
• K

(HtIt)
GM = (No.motion parameters)+

¡
4 multiplications were needed to interpolate It

¢
• K

(HtH)
GM = no. multiplications which were needed to evaluate K

(HtH)
GM , taking into

account that
¡
HtH

¢
is symmetric.
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Translation Affine Projectiveµ
K
(HtH)
GM ,K

(HtIt)
GM ,K

GM

¶
(3, 7, 10) (21, 10, 31) (46, 12, 58)

GM 9.6 · 106 30 · 106 56 · 106
SIGM 14 · 104 23 · 104 33 · 104
Complexity gain: CGM

CSIGM
≈ 70 ≈ 130 ≈ 170

Table 1: Performance comparison between the SIGM and GM showing a significant compu-
tational complexity reduction achieved by the SIGM.

The complexity analysis shown in Table 1 demonstrates a significant complexity reduction

achieved by the SIGM especially for the advanced motion models, such as the affine and the

projective. It should be noted that for the affine motion model we have

K
(HtIt)
GM ·NIterations À K

(HtH)
GM (3.7)

hence, the affine motion estimation complexity is dominated by the complexity of evaluating

HtIt, which can be reduced using the Warp-free GM algorithm described in the section 4.

4 Warp-free motion estimation

In order to reduce the complexity of the GM algorithms, we reformulate Eq. (2.2) such that

no warping is needed for the evaluation of I1(x
(1)
i , y

(1)
i ) while maintaining the same accuracy

[13]. We start by rewriting the regular GM formulation for the 1D case in section 4.1. Then,

the 1D warp-free reformulation for translational motion is presented in section 4.1, while its

extension to 2D and general motion models is shown in section 4.3.

4.1 1D Gradient Methods formulation

We consider the registration of two one-dimensional discrete signals I1 (x) and I2 (x) sharing

some common interval. Using a 1D formulation of section 2 we get

I1
³
x
(1)
i

´
= I2

³
x
(2)
i

´
(4.1)

where x(1)i and x
(2)
i are the coordinates of the ith sample common to I1 and I2.
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Assuming relative translational 1D motion we have

x
(1)
i = x

(2)
i +∆x. (4.2)

Similar to section 2, Eq. (4.1) is solved by expanding I2 in a first order Taylor expansion

and solving for ∆x

I1(x
(1)
i ) = I2(x

(2)
i ) +

∂I2(x
(2)
i )

∂x
∆x (4.3)

where I1(x
(1)
i ) is evaluated at non-integral grid points using interpolation.

By gathering the pixel-wise equations

I1
³
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i

´
− I2

³
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´
| {z }

=bIt
=

∂I2(x
(2)
i )

∂x
∆x. (4.4)

an equation set is formulated

HP = It (4.5)

and solved in the least-square sense similar to Eq. (2.3).

4.2 1D Warp-Free Gradient Methods formulation

Next we reformulate Eq. (4.3) to account for non-integral coordinate values. Let x(1)i be the

initial estimate of the ith common pixel, at a certain GM iteration. Then

x
(1)
i ,

j
x
(1)
i

k
+ εx, x

(1)
i , εx > 0. (4.6)

Thus, instead of evaluating I1 at x = x
(1)
i we evaluate it at x = bx

bx(1)i ,


j
x
(1)
i

k
|εx| 6 0.5

j
x
(1)
i

k
+ 1 |εx| > 0.5

(4.7)

I1(bx(1)i ) = I2(x
(2)
i ) +

∂I2(x
(2)
i )

∂x
c∆x (4.8)
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where c∆x , ∆x+bεx (4.9)

and bεx is the coordinate shift
bεx , bx(1)i − x

(1)
i . (4.10)

Substituting Eq. (4.9) into Eq. (4.8) we get

I1(bx(1)i ) = I2(x
(2)
i ) +

∂I2(x
(2)
i )

∂x
·bεx

= I2(x
(2)
i ) +

∂I2(x
(2)
i )

∂x
·∆x+

∂I2(x
(2)
i )

∂x
·bεx (4.11)

I1(bx(1)i )− I2(x
( 2)
i )− ∂I2(x

(2)
i )

∂x
·bεx| {z }

=bIt
=

∂I2(x
(2)
i )

∂x
·∆x (4.12)

By comparing between Eqs. (4.3) and (4.12) we note that the left-hand-side of Eq. (4.3) uses

2 floating-point multiplications to interpolate the value of I1(x
(1)
i ) at non-integral coordinates,

while the warp-free formulation in Eq. (4.12) uses a single floating-point multiplication.

4.3 Generalization to 2D signals and general motion models

Equation (2.2) is reformulated to estimate the input image at integral coordinates

I1(bx,by) = I2(x
(2)
i ,y

(2)
i ) +

X
Pi∈P

Pi /∈∆x,∆y

∂I2(x
(2)
i ,y

(2)
i )

∂Pi
Pi +

∂I2(x
(2)
i ,y

(2)
i )

∂ (∆x)
c∆x+

∂I2(x
(2)
i ,y

(2)
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∂ (∆y)
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(4.13)
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where the shifted coordinates (bx, by), are defined similarly to Eq. (4.9)
bx ,


j
x
(1)
i

k
|εx| 6 0.5

j
x
(1)
i

k
+ 1 |εx| > 0.5

by ,

j
y
(1)
i

k
|εy| 6 0.5

j
y
(1)
i

k
+ 1 |εy| > 0.5

(4.14)

and
³c∆x, c∆y

´
is defined similarly to Eq. (4.9)

c∆x , ∆x+bx− jx(1)i

k
c∆y , ∆y+by − jy(1)i

k
.

(4.15)

Substituting Eqs. (4.14) and (4.15) into Eq. (4.13) we get
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(2)
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4.4 Algorithm Flow

1. The matrix
¡
HtH

¢
WFGM

is identical to
¡
HtH

¢
GM

calculated by the regular GM algo-

rithm using I2 according to Eq. (2.6):

¡
HtH

¢I2
k,j
=
X
i

∂I2
³
x
(2)
i , y

(2)
i

´
∂P k

∂I2
³
x
(2)
i , y

(2)
i

´
∂Pj

. (4.18)

2. Iti is calculated according to Eq. (2.5) and it is shifted according to Eq. (4.17):

bIti = Iti −
Ã
∂I2(x

(2)
i ,y

(2)
i )

∂ (∆x)

³bx− jx(1)i

k´
+

∂I2(x
(2)
i ,y

(2)
i )

∂ (∆y)

³by − jy(1)i

k´!
. (4.19)

3. We solve the Eq. (4.19) for P

¡
HtH

¢
P = HtbIt. (4.20)

4. The warp-free GM returns P as its result.

4.5 Complexity analysis

Following Eq. (4.17) and Table 2, we established that the warp-free GM reduced the complex-

ity related to the evaluations the vector
¡
HtIt

¢
in Eq. (2.3). 2 floating point multiplications

per entry are needed rather than 4. This improvement is insignificant when the regular

GM is used, since its complexity is dominated by K
(HtH)
GM . However, when the WFGM is

implemented together with the SIGM a significant additional improvement is achieved.

5 Fast GM algorithm

In order to reduce the complexity of the GM algorithm, the formulations presented in Sections

3 and 4 were integrated into the Fast GM algorithm:

1. A multiscale pyramid is built following section 2.
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CHtIt

CHtIt

NParam = 6, NIterations = 10

|S2| = 176× 144, |
cS2|
|S2| = 10%

GM |S2|NIterations (NParam + 4) 2.5·106
WFGM |S2|NIterations (NParam + 2) 2.0·106
CWFGM

CGM

NParam+2
NParam+4

0.8

Table 2: Performance comparison of affine motion. The regular GM was taken as the
reference CPU complexity. The complexity related to the calculation of HtIt is reduced by
20%.

2. Utilizing the SIGM algorithm (section 3), a set of points bS2, is selected in the image
I2 at the coarsest resolution scale.

3. Starting with the coarsest resolution scale Eq. (2.3) is solved iteratively according to

the WFGM in section 4.4.

4. The iterative and multiscale refinment were conducted according to the SIGM, where

the motion estimation results and pixel set bS2, were propagated through the resolution
pyramid in a coarse-to-fine manner.

Thus, the evaluation of HtH is optimized by the SIGM while the evaluation of HtIt is

optimized by the WFGM. The complexity estimation presented in Table 3, shows the overall

improvement, provided by the Fast GM, to be of O (100). The complexity was estimated

for the test case introduced in Table 1. Most of the improvement is achieved by the SIGM,

while the WFGM accomplishes an additional improvement of 10-15%.

Affine Projective
GM 30 · 106 56 · 106
SIGM 23 · 104 33 · 104
Fast GM 20 · 104 29 · 104
CFast GM
CGM

0.7% 0.5%
CFast GM
CSIGM

87% 88%

Table 3: Performance comparison between the SIGM and GM: approximated number of
multiplications needed for the scenario introduced in Table 1.
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6 Experimental Results

Affine motion is utilized by theMPEG-4 video compression standard as its main GMEmotion

model. In order to explore the Fast GM coding and its associated complexity performances,

the proposed scheme was integrated into the MPEG-4 Verification Model software [11] and

compared to the GME algorithm implemented in it, while no other modifications were made.

Simulations have been carried out using the sequences shown in Fig. 5: Mobile, Stefan

and Coastguard at CIF size (352 × 240). Both the Fast GM and regular GM used the 3-

step initialization method described in [9]. Two resolution scales were constructed using a

three-tap filter
h
1
3

1
3

1
3

i
and the spatial derivatives were approximated using the maskh

1
2
0 −1

2

i
. The iterative termination threshold at each resolution scale was a translation

update of 10−1 or at most 10 iterations. The pixel subset
¯̄̄ bS2 ¯̄̄ used by the fast GM, was

10% of the pixels in the lowest resolution scale, which amounts to 2.5% of the pixels at the

original resolution scale. The test sequences were encoded in interframe mode (IPPPPP...)

and two fixed quantizer sizes Q = 10 and Q = 31. Q = 31 corresponds to measuring

the Global motion compensation (GMC) error directly, while Q = 10 relates to a typical

compression scenario. The coding efficiency results of the MPEG-4 using the Fast GM

were compared to those of the regular GM and the non-GMC compression mode. The

results shown in Fig. 6 and Table 4 establish that the Fast GM achieves the same coding

efficiency as the regular GM while exhibiting 20 times less computational complexity. In

both quantizer settings, the difference in the compressed frame size was no more than 2-

3%. Figure 7.a frames 175-190 and 230—270, present a situation where the use of GME

substantially improves the compression ratio as the encoded frame sizes of the GME modes

(red and blue graphs) are considerably smaller then those of the non-GME mode (green

graph). In these sub-sequences, significant global motion occurs within the Stefan sequence

as the player rushes to the net. Thus, the GME is able to smooth the bitrate needed

to encode the whole sequence at a fixed quantizer (quality). In the Coastguard sequence

(Fig. 6.b) the improvement caused by the GME is less significant, as the global motion in

this sequence is a slow uniform translational motion. This type of motions are efficiently

compressed by the non-GME mode, since the MPEG-4 standard utilizes differential coding

of motion vectors [11, 20]. In particular, Fig. 7.b presents a sub-sequence of the Coastguard,

where there is no significant global motion, yet the Fast GM achieves similar results to the
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regular GM using 20 fold less computational complexity. Similar results can be observed in

Fig. 6.c (Mobile sequence) where a dominant, very slow translational background motion

exists. For the Stefan and Coastguard sequence the average compression ratio was improved,

while the compression of Mobile sequence resulted in a decrease of the compression ratio.

This occurs since the GME mode is switched on\off on a macro-block basis within the
MPEG-4 verification model, based on their reconstruction error. In this procedure the actual

coding overhead of the GME parameters is not taken into account. Therefore, this problem

can be easily overcome by using either a two-pass encoding process or a GME switching

algorithm taking into account the coding overhead. Table 5 presents the experimental timing

results of the proposed algorithm recorded. The execution time of the GME module were

measured directly using the built-in Microsoft Visual C++ profiler [25]. Overall compression

performance was measured by a stop-watch over a 300 frames period for each sequence. Our

implementation uses standard C++ without any assembly-level optimizations and in order

to avoid the performance bias caused by disk and memory caching [24], each test was run

10 times and the results were averaged. The results show that the proposed GME module

achieves the expected computational complexity gains presented in Table 4. The overall

performance was only improved by a factor of approximately 4, since other components

within the compression algorithm became complexity-wise dominant. Several sizes of
¯̄̄ bS2 ¯̄̄

were tested, for |cS2||S2| = 20% the compression results were identical to the results presented

above, while for smaller pixel set sizes
µ |cS2|
|S2| = 5%, 2%

¶
a decrease of the compression ratio

was noticed. A Pentium PC P800MHz was used for the timing experiments.

We conclude that in sequences where a significant global motion is present, the Fast

GM exhibits compression results similar to the regular GM, while using significantly less

(upto 33 fold) less computational complexity. In Sub-sequences where using GME does not

result in compression ratio improvement, the Fast GMmay produce lower compression ratios

compared to the regular GM upto 10%.

7 Conclusions and Future Work

In this paper we proposed a new motion estimation algorithm based on gradient meth-

ods, which significantly reduces the complexity of state-of-the-art Global motion estimation

(GME) algorithms, while achieving similar accuracy. This property makes it especially suit-
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Mobile Coastguard Stefan

Figure 5: Video sequences used for the registration accuracy tests. (a)Mobile, (b)Coastguard,
(c) Stefan.
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Figure 6: MPEG4 Compression results using the Fast GM, regular GM and non-GMC
compression modes for (a) Stefan, (b) Coastguard and (b) Mobile sequences. The sequences
were encoded using Q = 31, thus the compression results are directly related to the GMC
efficiency. The Fast GM provides compression results very similar to the regular GM, while
utilizing 20 times less computational complexity.
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Mean frame size[KByte]
Q=31 Q=10

Stefan Coastguard Mobile Stefan Coastguard Mobile
GM 7.3732 4.6155 10.13 37.35 21.84 66.22
Fast GM 7.4322 4.9330 10.3 37.42 22.12 66.15
No GM 8.6437 5.7127 11.3 42.18 21.73 65.76
Complexity gain 20 19.81 33 20 19.81 33

Table 4: Average sizes of the compressed video frames. The Fast GM achieves the same
coding efficiency as the regular GM. The bottom line shows the expected computational
complexity gain achieved by using the Fast GM instead of the regular GM.

Stefan 352× 240 Stefan 176× 144 Coastguard 352× 288 Mobile 352× 288
time [ms] fps time [ms] fps time [ms] fps time [ms] fps

GM 617 1.5 194 4.41 612.14 1.36 1046 1.20
Fast GM 31.82 6.67 11.7 13 32 5.45 32 5.35
Gain 19.4 4.44 16.6 2.94 19.1 4.0 32.66 4.45

Table 5: Global motion estimation (GME) timing data: the “time” column indicates the
average time spend in the global estimation function per frame. The second column presents
the number of frame per second archived using each GME mode.

able for low-power GME applications such as video compression. The theoretical complexity

analysis is back up by experimental results, which were obtained using the MPEG-4 Ver-

ification Model. The algorithm can also be used to accelerate image mosaics production

and virtual reality applications [3]. In order to avoid compression ratio reductions due to se-

quences with no inherent global motion, we intend to develop a better algorithm for choosing

when to use the GME mode.
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