
852 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004

An Efficient Recursive Shortest Spanning Tree
Algorithm Using Linking Properties

Sai Ho Kwok, A. G. Constantinides, Fellow, IEEE, and Wan-Chi Siu, Senior Member, IEEE

Abstract—Speed is a great concern in the recursive shortest
spanning tree (RSST) algorithm as its applications are focused on
image segmentation and video coding, in which a large amount
of data is processed. Several efficient RSST algorithms have been
proposed in the literature, but the linking properties are not
properly addressed and used in these algorithms and they are
intended to produce a truncated RSST. This paper categorizes
the linking process into three classes based on link weights. These
linking processes are defined as the linking process for link weight
equal to zero (LPLW-Z), the linking process for link weight equal
to one (LPLW-O), and the linking process for link weight equal
to real number (LPLW-R). We study these linking properties
and apply them to an efficient RSST algorithm. The proposed
efficient RSST algorithm is novel, as it makes use of linking prop-
erties, and its resulting shortest spanning tree is truly identical to
that produced by the conventional algorithm. Our experimental
results show that the percentages of links for the three classes
are 17%, 27%, and 58%, respectively. This paper proposes a
prediction method for LPLW-O, as a result of which the vertex
weight of the next region can be determined by comparing sizes
of the merging regions. It is also demonstrated that the pro-
posed LPLW-O with prediction approach is applicable to the
multiple-stage merging. Our experimental results show that the
proposed algorithm has a substantial improvement over the con-
ventional RSST algorithm.

Index Terms—Edge detection, graph theory, image segmenta-
tion, linking property, recursive shortest spanning tree (RSST).

I. INTRODUCTION

MANY recursive shortest spanning tree (RSST) appli-
cations have been proposed in the past decades. Its

applications include image segmentation and edge detection for
two-dimensional (2-D) image data, and temporal segmentation,
temporal decimation, and object segmentation and tracking
for three-dimensional (3-D) video data. Efficiency is always
a major concern in applying RSST in these applications.
Constructing the shortest spanning tree in a recursive way
differentiates it from the well-known shortest spanning tree
(SST) problem, and, therefore, many existing fast and parallel
solutions for SST are not applicable.

Manuscript received April 2, 2002; revised March 3, 2003. This paper was
recommended by Associate Editor E. Izquierdo.

S. H. Kwok is with the Department of Information and Systems Management,
The Hong Kong University of Science and Technology, Kowloon, Hong Kong
(e-mail: jkwok@ust.hk).

A. G. Constantinides is with the Department of Electrical and Electronic
Engineering, Imperial College of Science, Technology, and Medicine, London
SW7 2BT, U.K. (e-mail: a.constantinides@ee.ic.ac.uk, a.constantinides@
ic.ac.uk).

W.-C. Siu is with the Department of Electronic and Information Engineering,
The Hong Kong Polytechnic University, Kowloon, Hong Kong (e-mail:
enwcsiu@polyu.edu.hk).

Digital Object Identifier 10.1109/TCSVT.2004.828334

Morris et al. [30], [31] applied graph theory to image pro-
cessing applications, including image analysis, image segmen-
tation, and edge detection problems, which resulted in a RSST
representation of image data. The RSST was proven to be highly
accurate to define regions. Due to its hierarchical representa-
tion, any number of region representations of an image can be
chosen as desired. Zeng further modified the RSST algorithm
so that the hierarchical representation can be formed in consid-
eration of perceptually significant regions [41] and the saliency
of region contours [40]. In addition, Kwok [19] proposed a hi-
erarchical structure for 3-D data using RSST.

The RSST was later extended to both segmented image
coding [8], [29], [42] and segmented video coding [2], [28].
Morris and Constantinides [27] also proposed a progres-
sive image coding scheme incorporating with it. For video
processing applications, Kwok et al. extended the RSST to
temporal segmentation application [26] and temporal decima-
tion application [24]. Alatan et al. [3] applied RSST to motion-
vector-based segmentation in interactive multimedia services.
Other video applications are object extraction [11] and object
segmentation and tracking , [35], [37]. Recently, the RSST
algorithm was also applied to 2-D affine motion modeling by
Tuncel and Onural [36] and video content representation using
its multiresolution implementation by [14] and [15]. Another
branch of RSST algorithm is due to the multiresolution RSST
(M-RSST) segmentation algorithm. The M-RSST has been
applied for a content-based face detection [5], an active con-
tour-based video object segmentation scheme for stereoscopic
video sequences [32], an efficient unsupervised content-based
segmentation in stereoscopic video sequences [13], and video
database [6]. Prior to Vlachos and Constantinides [38] proposal
of RSST for color images, in which color components of
red, green, and blue are translated to the cost function, RSST
algorithms and its applications were based on grayscale images.

Studies on efficient implementation of RSST were reported
by Kwok and Constantinides [20]–[22], [25]. In [21] and [23],
they proposed a tailored data partition strategy to assign jobs to
processing elements in their parallel algorithm, and proved their
parallel implementation is cost-optimal. In the fast RSST im-
plementation, they expedite the RSST algorithm from the com-
plexity of to in the worst case, which is the new
lower bound for algorithms of this type, where is the number
of vertices in the graph [20], [25]. The fast implementation is
achieved by removing the sorting algorithm from the conven-
tional algorithm. However, the outputs of these efficient RSST
algorithms [20], [21], [23], [25] are truncated versions of RSST,
which is different from the RSST generated by [30] and [31].
However, these algorithms did not address a potential approach
of using the linking property of RSST. The original RSST algo-

1051-8215/04$20.00 © 2004 IEEE

KWOK et al.: AN EFFICIENT RECURSIVE SHORTEST SPANNING TREE ALGORITHM USING LINKING PROPERTIES 853

rithm [30], [31] consists of two functional blocks, namely, ini-
tialization stage and linking process. The linking process is com-
putationally expensive. By understanding the linking properties
of RSST, we can streamline the linking process and construct
the RSST in a more efficient way. In this paper, we investigate
the linking properties and propose an efficient RSST algorithm
using the linking properties.

A close relative of RSST is SST or minimum spanning
tree (MST). Numerous efficient SST algorithms [7], [9], [12],
[16]–[18], [33], [34], [39] have been reported. Most of these
algorithms are based on a property of the minimum spanning
trees which is generally known as the minimum spanning
tree property [1]. Unfortunately, these approaches cannot be
adapted to RSST as RSST is constructed in a recursive manner
and there is no report addressing an efficient RSST algorithm
using the RSST properties. This motivates the present work.

The rest of the paper is organized as follows. Section II pro-
vides background information about graph theory, which defines
necessary terminologies used in RSST, and delineates the con-
ventional RSST algorithm for 2-D image data. In Section III, we
study and analyze the linking properties for various linking pro-
cesses. Proposals of efficient realization for these linking pro-
cesses are also given. Section IV outlines the efficient RSST al-
gorithm using the linking properties. Section V evaluates the per-
formance of the proposed RSST algorithm. Finally, Section VI
summarizes the contributions of our study.

II. RSST

A. Definition

Graph theory is the study of graphs and their applications. A
graph is made up of a set of vertices and
connected to each other by links , for , and where

and are the terminal vertices that the link connects. In a
weighted graph the vertices and links have weights associated
with them, namely, and , respectively (and are also
known as vertex weight and link weight, respectively). Each
vertex is not necessarily linked to every other, but if the vertices
are linked together then the graph is complete. A partial graph
has the same number of vertices but only a subset of the links of
the original graph.

A chain is a list of successive vertices in which each vertex is
connected to the next by a link in the graph. A cycle is a chain
whose end links meet at the same vertex. A tree is a connected
set of chains such that there are no cycles. A spanning tree is a
tree, which is also a partial graph. The shortest spanning tree of
a weighted graph is a spanning tree such that the sum of its link
weights, or some other monotonic function of its link weights,
is a minimum for any possible spanning tree. It is trivial if it
consists of a single vertex, and it is nontrivial, otherwise. A
forest is a set of trees, and a spanning forest is a forest that is
also a partial graph. A full explanation of these terms can also
be found in [10].

B. Conventional RSST Algorithm

The conventional RSST algorithm [30], [31] consists of
two functional blocks, namely, the initialization stage and
the linking process. The flowchart of the RSST algorithm is
depicted in Fig. 1. The RSST starts with a mapping of an image

Fig. 1. Flowchart of the conventional RSST algorithm.

onto a weighted graph at the initialization stage of IS-1. Each
region or vertex initially contains only one pixel. The pixel
intensity values of regions are used to evaluate vertex weights
and link weights of the graph. A vertex weight is defined as
the average intensity value of the corresponding region, while
a link weight is evaluated by a link weight function or a cost
function, which is basically a function of the vertex weights
and the sizes of the connected regions. All links are then sorted
in order according to their link weights, and stored in a heap at
IS-2. In entering to the linking process, a link with the least link
weight in the graph is chosen to be the next link of the SST.
The chosen link is saved and the two connecting or merging
regions are merged in LP-1. The vertex weight of the newly
merged region is updated, hence, all surrounding links need to
be recalculated in LP-2 and all loop-forming links, also known
as duplicated links, will be removed in LP-3. Subsequently, all
remaining links are sorted in LP-4. Thus, the number of regions
is progressively reduced from in an pixel by pixel
image, down to just one if desired. Those saved links form a
spanning tree representation of the image. By noting the order
in which the links are saved, a hierarchical representation of
the original image is created.

854 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004

Fig. 2. Merging two regions. (a) Before merging. (b) After merging.

III. LINKING PROPERTY

In constructing an RSST, the linking process is executed
times recursively, where is the total number of vertices in the
graph. The linking process is composed of processes of saving
the link with the least link weight, recalculating the new vertex
and link weights, removing the duplicated link, and sorting the
link. The decision for linking two vertices is solely based on link
weight, which is equal to the distance between two connected
vertices evaluated by a cost function.

An important procedure in the linking process is to merge
two regions and it is regarded as a merging process, as shown in
Fig. 2. Fig. 2(a) shows two regions, Region 1 and Region 2, with
three links. The link with link weight LW1 connects the two re-
gions, while the other two links connect to two other adjacent
regions. Each region or vertex in the graph is represented by a
vertex weight and the size of the region . As a region may
consist of more than one vertex, and are used to indi-
cate the numbers of already merged vertices in the Region 1 and
Region 2, respectively. Link weights LW1, LW2, and LW3 are
evaluated by the cost function . The absolute difference
function (ADF) was the cost function in the conventional RSST
algorithm [30], [31] and is also used in this paper.

The ADF cost function is defined as follows:

(1)

where is the vertex weight of an adjacent region (for example,
. Assume LW1 is the smallest

link weight in the graph. Then the two regions at both ends of
the link are merged and become one as shown in Fig. 2(b). Link
weights of the two connecting links, LW2 and LW3, are altered
due to the change of the vertex weight of the merged region, .
After the merging process, they become LW2 and LW3 . The
newly merged region is represented by and . is the new
vertex weight of the region determined by (2), while is the
sum of and as expressed in (3). The adjustment of link
weight leads to the rearrangement of links in the heap.

(2)

(3)

Comparing the current least link weight with the adjusted link
weights, e.g., LW2 and LW3 , the next link to be joined to the
resulting RSST can be identified instantly, even without going

Fig. 3. Initial graph.

through the expensive sorting algorithm. Therefore, by studying
the linking property of how the merging process affects link
weights of adjacent links, we could predict and identify the next
link after merging.

Due to the importance of the linking process, we study and
analyze the properties of the linking process in this paper. Our
analysis starts with a classification of linking process based on
link weight value, which can be basically divided into three
groups: zero, one, and others (i.e., real numbers). With the use
of the classification, we introduce three terms to represent these
linking processes. They are: 1) linking process for link weight
equal to zero (LPLW-Z); 2) linking process for link weight equal
to one (LPLW-O); and 3) linking process for link weight equal
to real number (LPLW-R). Analyses of these linking processes
are given in the following sections. Our focus is to realize an ef-
ficient RSST algorithm using these linking processes and their
linking properties. Possible solutions include prediction tech-
niques for identifying next links in these three linking processes.

A. LPLW-Z

If two adjacent regions are of the same vertex weight, the link
connecting them is zero link weight. Thus, the linking process
to handle this type of link is classified as LPLW-Z. This is usual
and common for image data that contains a number of pixels
with identical vertex weight clustering together. An example of
5 5 vertices extracted from the testing image House is given
in Fig. 3.

A link with zero link weight is of the highest priority to be
used as zero is the smallest positive integer number. Since the
graph contains many links with zero link weights, these links
are saved to the representation of the resulting RSST if and only
if they are not duplicated links. Although RSST [30], [31] re-
lies on the linking order for the hierarchical representation of
the graph, the linking order in LPLW-Z has no impact on the
resulting RSST. It is because the conventional RSST algorithm
has no explicit rule to distinguish the importance of links with
identical link weights. This is a very important property for the

KWOK et al.: AN EFFICIENT RECURSIVE SHORTEST SPANNING TREE ALGORITHM USING LINKING PROPERTIES 855

Fig. 4. After LPLW-Z.

development of efficient RSST algorithm. This linking property
is also extended to LPLW-O.

The LPLW-Z is the simplest among the three linking pro-
cesses due to the following reasons.

• Associated vertex weights and link weights remain un-
changed after the linking process.

• Recalculation of associated vertex weights and link
weights are not required, but the size of the merged region
is required.

• The sorting algorithm is also not required.

Therefore, this is just a straightforward merging process with
duplicated links removal. It is desirable and recommended to
include this linking process in the initialization stage.

After applying the LPLW-Z to the example, the resulting
shortest spanning forest is depicted in Fig. 4. The LPLW-Z usu-
ally finishes with a shortest spanning forest, except the entire
RSST is completed at the end of the linking process. Our em-
pirical results show that 15.4% of the entire RSST is completed
after the LPLW-Z.

B. LPLW-O

The LPLW-O is important to the RSST since a significant
amount of linking of this type is found in typical image- and
video-processing applications. In our experiment, 26.8% of
links in the resulting RSST were contributed by the LPLW-O.
However, this linking process is not as simple as the LPLW-Z.
It requires an update on corresponding vertex and link weights,
duplicated link removal, and sorting link. We analyze the
merging process in LPLW-O, and apply the characteristic of the
merging process to develop a linking process for link weight
equal to one with prediction, also known as the LPLW-O with
prediction. The proposed technique could expedite the linking
process by: 1) providing guidelines for choosing the next region
and the next link without recalculating vertex weight and link
weight; (2) limiting the number of vertices to be affected in
the linking process; (3) minimizing the cost of sorting; and (4)
eliminating the process of duplicated link removal.

A crucial parameter in the merging process, , the vertex
weight of the merged region, determines the link weights of ad-
jacent links after merging. By knowing the impact of to the
link weight, an accurate prediction about the next link can be

made. Our analysis starts with the formula of . Referring to
Fig. 2, assume and, therefore, it is selected by the
LPLW-O. Since is the average value of the vertex weights

and as stated in (2), value has to be between and
.

Hence

if or

if

can be represented in terms of region parameters
, and used in (2) and (3).

Therefore

(4)

or

(5)

Generalizing (4) and (5), we produce

(6)

where for
for

(7)

Simplifying (6) by applying the fact that for
LPLW-O

(8)

Therefore, (8) represents a generalized equation for in terms
of the parameters of Region 1 and Region 2. We then explore
how these parameters are affected by .

Let

Driven Factor

where (9)

Applying (7), can also be expressed as follows:
or and

(10)

Let us partition the range of the value into three parts in our
analysis, , and . In
extending Fig. 2, Fig. 5 defines terms for the prediction tech-
nique in LPLW-O. Let Rmerged be the merged region, Rnext be
a region connecting to Rmerged, and LWnext be the link weight
between Rnext and Rmerged. The vertex weight and the size of
Rnext are represented as and , respectively. The LWnext is
evaluated by the cost function of ADF, defined in (1).

It is noted that after merging Region 1 and Region 2, the
vertex weight of Rnext, , stays unchanged but the corre-
sponding LWnext is updated due to the change of the connected
region, Region 1 or Region 2. For instance, the vertex weight is
changed from to in Region 1.

856 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004

Fig. 5. Term definitions for the LPLW-O with prediction.

TABLE I
THE CHANGE OF LWnext. (NOTE: SINCE THE PROCESS OF DUPLICATED LINK

REMOVAL IS NO LONGER REQUIRED IN THE LPLW-O WITH PREDICTION,
THE CASE OF HAVING DUPLICATED LINK CAN BE IGNORED)

TABLE II
RELATIONSHIPS OF DF, V , AND LWnext

Table I shows that the change of LWnext is dependent
upon the vertex weight of Rmerged. To estimate the change
of LWnext, we analyze the relationships among , , and
LWnext.

Table II tabulates the resulting vertex weights of evaluated
using (10) for various ranges of . We apply results of
to three possible cases of vertex weight of Rnext, , namely,

, and . The results in Table II
show that when two regions are merged in LPLW-O, LWnext
will be decreased and less than 1, if and only if the vertex weight
of Rnext, , is equal to either or . Thus, these regions
are possible next regions. Vertex weights other than and
must produce LWnext greater than one. As a result, LPLW-O
cannot process these links since this is beyond the scope of the
LPLW-O.

When the merging process is completed, the next link will be
the one with the least link weight. If there are links with link
weight less than one generated during the last linking process,
the one among them with the least link weight will be the next
link. Otherwise, any links with link weight equal to one is used.
When all links with link weight equal to one stored in the heap
are consumed, the LPLW-O is completed.

Thus, a technique that can estimate adjacent link weights and
identify the one with the least link weight is a prediction method
for LPLW-O. Results in Table II state that the potential next link
has to be of the vertex weight either or . Therefore, the
prediction technique is first to verify the vertex weight of Rnext
and then estimate in order to predict the next link.

Table II givesa roughestimation of .When is in between
0 and 0.5, tends to be close to the smaller value of and .
Thus, the next region would be the region with vertex weight of

. For the case where is greater than 0.5 and less
than 1, the next region will be the one with the vertex weight of

. However, there is no difference from choosing a
Rnext with vertex weight or , when is equal to 0.5.

Since the value plays an important role in determining the
vertex weight of the next region, we state the necessary condi-
tions for various ranges of in terms of and . This can be
regarded as a prediction method for the next region. This predic-
tion method is not computationally intensive, as many parame-
ters are precomputed and, therefore, it solely requires compar-
ison operation.

For the case of , using (9)

We obtain

(11)

Referring to (7) and assuming

(12)

If (12) holds, the following also holds:

(13)

Another pair of equations is obtained for the case of ,
as follows:

(14)

(15)

For the case of , substitute (12) and (13) to (11).
Therefore, (11) becomes

(16)

(17)

(18)

It is noted that (16) also holds when . Equation (16)
is a general inequality for the case of regardless
of the values of and . Equation (16) states the condition
for , where must be smaller
than . Referring to (10)

, the vertex weight of the next region has to be
when is less than 0.5. Applying the above condition, the
sizes of the regions, and , which are expressed in (18),
can be used as a prediction criterion in practice to select the next

KWOK et al.: AN EFFICIENT RECURSIVE SHORTEST SPANNING TREE ALGORITHM USING LINKING PROPERTIES 857

TABLE III
LOOKUP TABLE FOR Rnext IN LPLW-O

Fig. 6. Multiple-stage merging in LPLW-O with prediction.

region. Therefore, the link connecting the chosen next region
and the merging region is the next link.

Following the above analysis for , we analyze
the other two cases of . Results are presented in Table III. It is
used as a reference lookup table for the next region. In Table III,
we summarize general cases for various values in terms of
parameters of the merging regions. For instance, in the case of

, if is greater than , we know that the
must be in the range of 0.5–1 as shown in Table III. tends to

, which is . We must go for the Rnext with the
vertex weight of because its LWnext is less than one and will
be the smallest after the merging process. If there is more than
one possible next region available, randomly pick one as they
are of equal priority to be the next region.

With the prediction method given in Table III, the next region
and the next link can be identified using precomputed parame-
ters. However, a multiple-stage merging that merges multiple
regions in a linking process and results in a resulting tree is usual
in applications. Therefore, the merging process in LPLW-O with
prediction is required to perform recursively in this situation.
The following is an example to demonstrate how to apply
the LPLW-O with prediction to the multiple-stage merging.
Fig. 6 shows a graphical representation of the multiple-stage
merging using LPLW-O with prediction. At stage 1, regions

and are merged, as the link connecting them is of the
link weight equal to one. Assume is smaller than . Let

and be the numbers of vertices being merged with

vertex weights equal to and , respectively. It is noted that
and are initialized after the first stage

of merging, and these two parameters are recursively updated
at the end of each merging process. Based on the foundation we
developed and presented in Table III, these parameters are used
to determine the vertex weight of the next region, which has to
be either or . After verifying the condition of the merged
region in terms of and , the range of the value
is determined. Using , the vertex weight of the Rnext can
be found using Table III. Fig. 6 only includes two cases of
values, and . When the case of

occurs, the vertex weight of Rnext can be either or
regardless of and , and, therefore, the prediction

method is simpler. At stage 2, either or is increased
dependent on the vertex weight of . If the vertex weight of
is , then update to . Otherwise,
update to . The condition of the newly
merged region is verified by comparing the updated and

. Then choose the vertex weight of Rnext for the next round
of merging. At stage 3, the same prediction method is executed
and again either or is accumulated. This process can
go on until no more connecting regions with vertex weight
or are found.

Throughout the multiple-stage merging, recalculation of
vertex weight and link weight, together with the process of
sorting link weight, is not required. The final vertex weight of
the merged region and link weights for adjacent links are evalu-

858 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004

(a) (b)

Fig. 7. Linking processes for real link weight and integer link weight. (a) LPLW-R (Real link weight). (b) LPLW-O (Integer link weight).

ated when the multiple-stage merging is complete. The process
of saving the resulting tree is invoked at the end but it is to save a
tree instead of a link. Therefore, the overall performance of the
algorithm is enhanced and better optimization can be achieved.
The greatest achievement of the LPLW-O with prediction is
that the cost of the sorting algorithm is reduced significantly.
Another advantage of the LPLW-O with prediction is that it
does not involve any approximation, therefore, the resulting
tree is truly identical to [30] and [31].

C. LPLW-R

The LPLW-R is devoted to link weight in real number. It
is applied after the linking processes for integer link weight,
LPLW-Z and LPLW-O. The approach in LPLW-R is completely
different from LPLW-Z and LPLW-O. It is far more important
than LPLW-Z and LPLW-O, as our experimental results show
that it occupies 57.8% of the entire RSST. Unfortunately, the
linking process for these links is unlikely to be expedited due to
its complex linking interrelationship.

A comparison of LPLW-R and LPLW-O is given in Fig. 7.
The LPLW-O is chosen as representative of the linking process
for integer link weight in our analysis, because the LPLW-Z is
trivial. Fig. 7(a) shows an example of the linking process for real
link weight, LPLW-R, while Fig. 7(b) shows an example of the
linking process for integer link weight, LPLW-O. Each example
contains a region with its initial vertex weight represented
by a vertical line. As LPLW-R is executed after LPLW-Z and
LPLW-O, there must be no region with vertex weight between

and . Those regions must have been completely
consumed by LPLW-Z and LPLW-O. Unlike LPLW-O in which
vertex weights of possible next regions situate at positions

, etc., as depicted in Fig. 7(b),

vertex weights in LPLW-R could be any real numbers outside
that vacant area. This is the major difference between the two
types of linking processes.

In addition, the value is bounded between and ,
and possible next regions must be with vertex weight either
or in LPLW-O. However, in the case of LPLW-R, the vertex
weight can be any real numbers from to
and vertex weights of possible next regions are bounded within
the range of and if after merging. As
the range of and is continuous, the prediction
method is required to examine vertex weights of all Rnext and,
therefore, it is no longer applicable to this type of linking process.
Thus, the linking process of the conventional RSST algorithm is
used when accuracy is a concern of the application. Kwok et al.
[20], [21], [23], [25] suggested the use of truncated link weight
throughout the linking process, so that the LPLW-R can be sim-
plified. However, this introduces errors into the resulting RSST.
As the objective of this paper is to produce an RSST the same as
that generated by the conventional algorithm, the truncated ver-
sion or the error-prone RSST is not acceptable.

IV. LINKING PROPERTIES FOR RSST

Applying the linking processes and linking properties pre-
sented in Section IV, we propose an efficient RSST algorithm
using linking properties. Fig. 8 depicts the flowchart of the pro-
posed algorithm. The proposed algorithm is modified from the
conventional RSST with the inclusion of LPLW-Z, LPLW-O,
and LPLW-R. It consists of two stages: initialization stage and
linking process. A number of additional modules are introduced
to implement the three linking processes. Functions of these ad-
ditional modules are given in Table IV.

KWOK et al.: AN EFFICIENT RECURSIVE SHORTEST SPANNING TREE ALGORITHM USING LINKING PROPERTIES 859

Fig. 8. Flowchart of the efficient RSST algorithm using linking properties.

TABLE IV
ADDITIONAL MODULES IN THE EFFICIENT RSST ALGORITHM

860 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004

Fig. 9. Running times of the RSST and the efficient RSST algorithms with various image sizes of the House image.

Fig. 10. Running time of RSST and efficient RSST algorithms with various image size of the Lena image.

The LPLW-Z is embedded in the initialization stage. The two
functional modules involved are IS-R1 and IS-R2. The imple-
mentation of the module IS-R1 is similar to its counterpart in

the conventional algorithm, IS-1, but IS-R1 is also required to
manage links with link weight equal to zero. The output of this
stage is a nontrivial shortest spanning forest.

KWOK et al.: AN EFFICIENT RECURSIVE SHORTEST SPANNING TREE ALGORITHM USING LINKING PROPERTIES 861

Fig. 11. Segmented images and edge maps of House using the RSST and the efficient RSST.

Fig. 12. Segmented images and edge maps of Lena using the RSST and the efficient RSST.

The linking process of the proposed RSST algorithm is
divided into two parts, the LPLW-O with prediction and the
LPLW-R. It is because link weights of the remaining links are
greater than or equal to one. The LPLW-O with prediction
outperforms the conventional LPLW-O since expensive pro-
cesses (vertex weight, link weight evaluation, and the sorting
algorithm) are no longer required for each merging process.
Besides, it is no longer a link-based process, but it uses the
tree as a basic joining element instead. These greatly improve
the efficiency and performance of the RSST algorithm. Other
modules, such as LP-L1, LP-L2, LP-L3, and LP-L4 are similar
to their corresponding modules in the conventional algorithm.
They are used for updating the resulting tree and preparing for
the next round of the linking process, after the multiple-stage
merging process.

V. EXPERIMENTAL RESULTS

Two testing images, namely, Lena and House, with various
image sizes were used to examine the performance of the
proposed algorithm and the conventional RSST algorithm by
Morris et al.. The experiments were conducted on a SUN Ultra
1200 machine (with a 200 MHz Ultra SPARC-I processor and

1G RAM). Our running-time experimental results show that
the proposed RSST algorithm outperforms the conventional
RSST algorithm, as shown in Figs. 9 and 10.

The segmented images and edge maps of both the House and
Lena images are shown in Figs. 11 and 12, respectively. Al-
though the proposed algorithm and the RSST algorithm basi-
cally follow the same rules in building the RSST representation,
their segmented images and edge maps are different as the RSST
representation is not deterministic.

The proposed efficient RSST algorithm outperforms the con-
ventional RSST algorithm because our approach takes redun-
dant links into consideration in LPLW-Z and applies prediction
in LPLW-O. Any redundant links can always be found in im-
ages; for example, there are redundant zero links wherever a
region exists. Table V gives percentages of various linking pro-
cesses in building RSST representations for House and Lena
with a resolution of 150 150 pixels when the proposed al-
gorithm is in use.

The experimental results show that about 40% of links (in
both LPLW-Z and LPLW-O) were accelerated by using the pro-
posed efficient RSST algorithm, while the rest of the links (in
LPLW-R) rely on the conventional RSST algorithm for both
testing images.

862 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 6, JUNE 2004

TABLE V
PERCENTAGES OF LINK ACHIEVED BY LPLW-Z, LPLW-O, AND LPLW-R LINKING PROCESSES

VI. CONCLUSION

In this paper, we presented an efficient RSST algorithm
using linking properties. This paper categorizes the linking
process into three classes based on the link weight value. The
three linking processes are LPLW-Z, LPLW-O, and LPLW-R.
In LPLW-Z, which handles links with the link weight equal to
zero, it is noted that this linking process is trivial and can be in-
cluded in the initialization stage. In our experiment, 15.4% and
16.8% of the resulting RSST are completed after the LPLW-Z
is applied to the testing images of House and Lena, respectively.
For the LPLW-O, we explore the linking properties of this
linking process and propose a LPLW-O with prediction to
expedite the LPLW-O. The proposed linking process includes a
prediction method, which is basically a reference lookup table
for the next region. The lookup table transforms the merging
process to a process that solely relies on comparison operation,
comparing sizes of the merging regions . The prediction
method successfully eliminates the sorting algorithm and the
process of evaluating link weight and vertex weight from
the merging process. As the multiple-stage merging is more
practical and desirable, we demonstrate the applicability of the
LPLW-O with prediction in this paper. Using the same testing
images, it is noted that 26.8% and 26.6% of the resulting RSST
are contributed by the LPLW-O with prediction. It is evident
that LPLW-R cannot be expedited due to its complex linking
interrelationship. Therefore, it is the most expensive linking
process among the three. Unfortunately, this occupies about
57% of links to the overall RSST for both testing images.
Further studies on the enhancement and optimization can be
achieved in LPLW-Z and LPLW-O, but not in LPLW-R.

Future works include the exploration of potential applications
of linking properties to RSST applications. For example, in the
application of the multiscale implementation of RSST [14], the
LPLW-Z and the LPLW-O with prediction can be applied to the
highest resolution of the testing image, and the partial RSST
may be applied to lower resolutions of images. It is expected
that the results could be useful to the development of progressive
coding and video coding.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algo-
rithms. Reading, MA: Addison-Wesley, 1983.

[2] A. A. Alatan, “A technical report on very low bit-rate region segmenta-
tion based videophone systems,” Imperial College, London, U.K., Tech-
nical Report, Sept. 1992.

[3] A. A. Alatan, L. Onural, M. Wollborn, R. Mech, E. Tuncel, and T.
Sikora, “Image sequence analysis for emerging interactive multimedia
services—The European COST 211 framework,” IEEE Trans. Circuits
Syst. Video Technol., vol. 8, pp. 802–813, Nov. 1998.

[4] A. A. Alatan, E. Tuncel, and L. Onural, “A rule-based method for ob-
ject segmentation in video sequences,” in Proc. IEEE. Int. Conf. Image
Processing, vol. 2, Oct. 1997, pp. 522–525.

[5] Y. Avrithis, N. Tsapatsoulis, and S. Kollias, “Color-based retrieval of
facial images,” presented at the 10th Eur. Signal Processing Conf. Signal
Processing Theories and Applications, Tampere, Finland, 2000.

[6] Y. S. Avrithis, A. D. Doulamis, N. D. Doulamis, and S. D. Kollias,
“A stochastic framework for optimal key frame extraction from MPEG
video databases,” Comput. Vis. Image Understanding, vol. 75, pp. 3–24,
July 1999.

[7] C. Berge and A. Ghouila-Houri, Programming, Games, and Transporta-
tion Networks. New York: Wiley, 1965.

[8] M. J. Biggar, O. J. Morris, and A. G. Constantinides, “Segmented-image
coding: Performance comparison with the discrete cosine transform,” in
Proc. IEE (Part F), vol. 135, Apr. 1988, pp. 121–132.

[9] D. Cheriton and R. E. Tarjan, “Finding minimum spanning trees,” SIAM
J. Computing, vol. 5, no. 4, pp. 724–742, 1976.

[10] N. Christofides, Graph Theory: An Algorithmic Approach. New York:
Academic, 1975.

[11] S. Cooray, N. O’Connor, S. Marlow, N. Murphy, and T. Curran, “Hier-
archical semi-automatic video object segmentation for multimedia ap-
plications,” in Proc. SPIE, vol. 4519, 2001, pp. 10–19.

[12] E.W. Dijkstra, “A note on two problems in connection with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[13] A. Doulamis, N. Doulamis, K. Ntalianis, and S. Kollias, “Efficient unsu-
pervised content-based segmentation in stereoscopic video sequences,”
Int. J. Artificial Intell. Tools (Architectures, Languages, Algorithms), vol.
9, no. 2, pp. 277–303, 2000.

[14] A. D. Doulamis, N. Doulamis, and S. Kollas, “Non-sequential video con-
tent representation using temporal variation of feature vectors,” IEEE
Trans. Consumer Electron., vol. 46, pp. 758–768, Aug. 2000.

[15] N. D. Doulamis, A. D. Doulamis, Y. S. Avrithis, K. S. Ntalianis, and S.
D. Kollias, “Efficient summarization of stereoscopic video sequences,”
IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 501–517, June
2000.

[16] S. E. Goodman and S. T. Hedetniemi, Introduction to the Design and
Analysis of Algorithms. New York: McGraw-Hill, 2002.

[17] Z. Hai, S. Narendra, and W. Nicholls, “Efficient minimum spanning tree
construction without Delaunay triangulation,” Inform. Processing Lett.,
vol. 81, no. 5, pp. 271–276, 2002.

[18] A. Kershenbaum and R. V. Slyke, “Computing minimum spanning
trees efficiently,” in Proc. 25th ACM Nat. Conf., Boston, MA, 1972,
pp. 518–527.

[19] S. H. Kwok, “Hierarchical structure of time window for video processing
and coding,” presented at the Proc. 3rd World Multiconf. Systemics, Cy-
bernetics and Informatics and 5th Int. Conf. Information Systems Anal-
ysis and Synthesis, Brisbane, Australia, 1999, pp. 392–397.

[20] S. H. Kwok and A. G. Constantinides, “A fast recursive shortest
spanning tree for image segmentation and edge detection,” IEEE Trans.
Image Processing, vol. 6, pp. 328–332, Feb. 1997.

[21] , “An optimal parallel algorithm of recursive shortest spanning tree
for image segmentation and edge detection,” in Proc. IEEE Singapore
Int. Conf. Signal Processing, Circuits and Systems, 1995, pp. 215–220.

[22] , “A parallel recursive shortest spanning tree algorithm for image
segmentation in distributed computing environment,” J. Parallel Distrib.
Comput., vol. 56, no. 3, pp. 181–207, Mar. 1999.

[23] , “A parallel recursive shortest spanning tree in distributed
computing environment for image segmentation,” J. Parallel Distrib.
Comput., vol. 56, no. 3, pp. 181–207, Mar. 1999.

[24] S. H. Kwok, W. C. Siu, and A. G. Constantinides, “Adaptive temporal
decimation algorithm with dynamic time window,” IEEE Trans. Circuits
Syst. Video Technol., vol. 8, pp. 104–111, Feb. 1998.

[25] , “A fast recursive shortest spanning tree for image segmentation,”
in Proc. Int. Conf. Neural Networks and Signal Processing, Nanjing,
China, 1995, pp. 1386–1389.

[26] , “A scaleable and adaptive temporal segmentation algorithm for
video coding,” Graphical Models and Image Processing, vol. 59, no. 3,
pp. 128–138, 1997.

[27] O. J. Morris and A. G. Constantinides, “Progressive image coding from a
spanning tree image representation,” presented at the Onzieme Colloq.,
Nice, France, 1987.

KWOK et al.: AN EFFICIENT RECURSIVE SHORTEST SPANNING TREE ALGORITHM USING LINKING PROPERTIES 863

[28] , “Segmented video coding,” in Proc. IEEE. Int. Conf. Acoustics,
Speech, and Signal Processing, 1988, pp. 1108–1111.

[29] , “Thin link coding techniques,” presented at the Int. Conf. Digital
Signal Processing, Florence, Italy, 1987.

[30] O. J. Morris, J. M. Lee, and A. G. Constantinides, “Graph theory for
image analysis: An approach based on the shortest spanning tree,” in
Proc. Inst. Electr. Eng. (Part F), vol. 133, 1986, pp. 146–152.

[31] , “A unified method for segmentation and edge detection using
graph theory,” in Proc. Int. Conf. Acoustics, Speech, and Signal Pro-
cessingc, 1986, pp. 2051–2055.

[32] K. S. Ntalianis, N. D. Doulamis, A. D. Doulamis, and S. D. Kollias, “An
active contour-based video object segmentation scheme for stereoscopic
video sequences,” in Proc. 10th Mediterranean Electrotechnical Conf.
Information Technology and Electrotechnology for the Mediterranean
Countries, May 2000, pp. 554–557.

[33] S. Pettie and V. Ramachandran, “An optimal minimum spanning tree
algorithm,” in J. ACM, vol. 49, Jan. 2002, pp. 16–34.

[34] F. Suraweera, “A fast algorithm for the minimum spanning tree,” Com-
puters in Industry, vol. 13, no. 2, pp. 181–185, Nov. 1989.

[35] D. Tancharoen, S. Jitapunkul, S. Triamlumlerd, P. Kittipanya-Ngam, and
S. Chompun, “Object segmentation based on multiple features for low
bit rate video coding,” in Proc. 5th Int. Conf. Signal Processing and the
16th World Computer Congress, 2000, pp. 975–978.

[36] E. Tuncel and L. Onural, “Utilization of the recursive shortest spanning
tree algorithm for video-object segmentation by 2-D affine motion mod-
eling,” IEEE Trans. Circuits Syst. Video Tech., vol. 10, pp. 776–781,
Aug. 2000.

[37] , “Video object segmentation by extended recursive-shortest-span-
ning-tree method,” in Proc. IEEE-EURASIP Workshop Nonlinear Signal
and Image, 1999, pp. 23–27.

[38] T. Vlachos and A. G. Constantinides, “A graph-theoretic approach
to color image segmentation and contour classification,” presented at
the Int. Conf. Image Processing and its Applications, Maastricht, The
Netherlands, 1992.

[39] A. C. Yao, “An O(jEj log log jVj) algorithm for finding minimum
spanning trees,” Inform. Processing Lett., vol. 4, no. 1, pp. 21–23, 1975.

[40] Z. Yongqin and A. G. Constantinides, “Perceptual saliency weighted
segmentation algorithm,” in 7th Int. Conf. Image Processing and Its Ap-
plications, 1999, pp. 562–566.

[41] Y. Zeng, “Perceptual segmentation algorithm and its application
to image coding,” in Proc. Int. Conf. Image Processing, 1999, pp.
820–824.

[42] , “Region coding and detail compensation,” in Proc. Int. Conf.
Signal Processing, New York, NY, 1996, pp. 1227–1230.

Sai Ho Kwok received the B.Eng. degree (with
honors) in electronic and communications engi-
neering from the University of North London,
London, U.K. He received the Diploma of Imperial
College (DIC) from the Imperial College of Sci-
ence, Technology and Medicine, London, and the
Ph.D. degree in digital image processing from the
University of London.

He is currently an Assistant Professor at the De-
partment of Information and Systems Management,
Hong Kong University of Science and Technology

(HKUST), Hong Kong. He was a Visiting Scholar and a Research Assistant
in the Department of Electronic and Information Engineering at the Hong Kong
Polytechnic University. His research has been published in Communications of
the ACM (CACM), International Journal of Electronic Commerce (IJEC), De-
cision Support Systems (DSS), Electronic Markets (EM), IEEE Transactions on
Circuits and Systems for Video Technology, IEEE TRANSACTIONS ON IMAGE

PROCESSING, Graphical Models and Image Processing, Journal of Parallel and
Distributed Computing, Optical Engineering, International Journal of Informa-
tion Technology and Decision Making (IJITDM), Journal of Applied Systems
Studies (JASS), and ACM SIGecom Exchanges. He is a Senior Editor of the
Journal of Information Technology Theory and Application (JITTA) and is on
the Editorial Board of the Journal of Database Management (JDM). He has
served as a member of several technical program committees and organizing
committees. His research interests include image segmentation, video coding,
watermarking, peer-to-peer technology, digital rights management, knowledge
management, and electronic commerce applications.

A. G. Constantinides (S’68–M’78–SM’78–F’98) is
the Professor of Signal Processing and the Head of
the Signal Processing and Digital Systems Section
of the Department of Electrical and Electronic
Engineering at Imperial College, London, U.K.
He has been actively involved with research in
various aspects of digital filter design, digital signal
processing, and communications for more than 30
years. Professor Constantinides’ research spans a
wide range of Digital Signal Processing, from the
theoretical, as well as the practical, points of view.

His recent work has been directed toward the demanding signal processing
problems arising from the various areas of telecommunication. This work
is supported by research grants and contracts from various government and
industrial organisations. He has published several books and papers in learned
journals in the area of Digital Signal Processing and its applications.

Professor Constantinides has served as the First President of the European As-
sociation for Signal Processing (EURASIP). He has been on, and is currently
serving as, a member of many technical program committees of the IEEE, the
IEE and other international conferences. He has organized the first international
series of meetings on Digital Signal Processing, initially in London, in 1967,
and in Florence since 1972. In 1985, he was awarded the Honour of Cheva-
lier, Palmes Academiques, by the French government, and in 1996, the pro-
motion to Officier, Palmes Academiques. He holds honorary doctorates from
European and Far Eastern Universities, several Visiting Professorships, Dis-
tinguished Lectureships, Fellowships and other honors around the world. He
served as a Member of the Board of Governors of the IEEE Signal Processing
Society, a member of several Technical Committees of the IEEE and the Institu-
tion of Electrical Engineers (IEE), U.K., and is on the Editorial Boards of many
professional journals. He is a Fellow of IEE and an honorary member of Eta
Kappa Nu.

Wan-Chi Siu (S’77–M’77–SM’90) received the
Ph.D. degree from the Imperial College of Science,
Technology and Medicine, London, U.K., in 1984.

He was with the Chinese University of Hong
Kong from 1975 to 1980. He joined the Hong Kong
Polytechnic University, Hong Kong, as a Lecturer
in 1980 and has been Chair Professor since 1992.
He was also Associate Dean of the Engineering
Faculty from 1992 to 1994, Head of the Department
of Electronic and Information Engineering from
1994 to 2000, and Dean of the Engineering Faculty

from 2000 and 2002. Since September 1998, he has been Director of Centre
for Multimedia Signal Processing. He has published over 100 research papers
in international journals, including IEEE transactions and IEE proceedings.
He is an Editor of the recent book, Multimedia Information Retrieval and
Management (Berlin, Germany: Springer-Verlag, 2003). He has held the
position of General Chair or Technical Program Chair of many international
conferences. He is a member of the editorial board of the Journal of VLSI
Signal Processing Systems for Signal, Image, Video Technology, the EURASIP
Journal on Applied Signal Processing, and other journals. From 1991 to
1995, he was a member of the Physical Sciences and Engineering Panel of
the Research Grants Council (RGC), Hong Kong Government, and in 1994,
he chaired the first Engineering and Information Technology Panel to assess
the research quality of 19 cost centers (departments) from all universities
in Hong Kong. His research interests include digital signal processing, fast
computational algorithms, transforms, wavelets, image and video coding, and
computational aspects of pattern recognition and neural networks.

Prof. Siu was a Guest Editor and Associate Editor of the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS—PART II: ANALOG AND DIGITAL SIGNAL

PROCESSING from 1995 to 1997. He was a Technical Program Chair of the
IEEE International Symposium on Circuits and Systems (ISCAS’97), and is
the General Chair of the 2003 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP’2003).

