
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 6, JUNE 2005 753

A Real-Time Pattern Selection Algorithm for Very
Low Bit-Rate Video Coding Using Relevance and

Similarity Metrics
Manoranjan Paul, Member, IEEE, Manzur Murshed, Member, IEEE, and Laurence S. Dooley, Senior Member, IEEE

Abstract—Very low bit-rate video coding using regularly shaped
patterns to represent moving regions in macroblocks has good po-
tential for improved coding efficiency. This paper presents a real-
time pattern selection (RTPS) algorithm, which uses a pattern rele-
vance and similarity metric to achieve faster pattern selection from
a large codebook. For each applicable macroblock, the relevance
metric is applied to create a customized pattern codebook (CPC)
from which the best pattern is selected using the similarity metric.
The CPC size is adapted to facilitate real-time selection. Results
prove the quantitative and perceptual performance of RTPS is su-
perior to both the Fixed-8 algorithm [16] and H.263.

Index Terms—Motion compensation, pattern matching, telecon-
ferencing, video coding.

I. INTRODUCTION

REDUCING the transmission bit rate while concomitantly
retaining image quality continues to be a major challenge

for efficient very low bit-rate video compression standards,
such as H.26X [6]–[8]. These standards are still unable to en-
code moving objects within a 16 16 pixel macroblock (MB)
during motion estimation, resulting in all 256 residual error
values being transmitted for motion compensation regardless
of whether there are moving objects or not. One solution is
to subdivide the MB and then apply motion estimation and
compensation to each subblock. With sufficient numbers of
subblocks, the shape of a moving object can be more accu-
rately represented, but this carries a correspondingly higher
processing and bit coding overhead [1].

An alternative approach was proposed by Fukuhara et al.
[1] who used four MB-partitioning patterns each comprising
128-pixels. Motion estimation and compensation were carried
out on all eight possible 128-pixel partitions of an MB and the
pattern with the lowest prediction error selected. While this gave
better performance compared to H.263, not only was the com-
putational complexity of the motion-based processing too high
for real-time applications, but also by having only four patterns
meant it was insufficient to represent moving objects [16]. By
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Fig. 1. PC of 32 regular shaped, 64-pixel patterns, defined in 16� 16 blocks,
where the white region represents 1 (motion) and the black region represents 0
(no motion).

treating identically each MB, irrespective of its motion con-
tent, also resulted in a higher bit rate being incurred for those
MBs which contained only static background or had moving
object(s), but with little static background. In such cases, the
motion vectors for both partitions were almost the same and so
only one could be represented.

The MPEG-4 [5] video standard first introduced the concept
of content-based coding, by dividing video frames into sepa-
rate segments comprising a background and one or more moving
objects. To address the limitations of Fukuhara’s approach [1],
Wong et al. [16] exploited the idea of partitioning the MBs via
a simplified segmentation process that again avoided handling
the exact shape of the moving objects, so that popular MB-based
motion estimation techniques could be applied. This algorithm
focused on the moving regions of the MBs, through the use of
a set of regular 64-pixel pattern templates, from a codebook of
patterns – in Fig. 1. If in using some similarity measure,
the MR of an MB is well covered by a particular pattern, then
the MB can be coded by considering only the 64 pixels of that
pattern with the remaining 192 pixels being skipped as static
background. Successful pattern matching can therefore, theo-
retically has a maximum compression ratio of 4:1 for any MB.
The actual achievable compression ratio will be lower due to the
computing overheads for handling an additional MB type, the
pattern identification numbering and pattern matching errors.

Wong et al. [16] classified each MB into one of three dis-
tinct categories: 1) static MB (SMB): MBs that contain little or
no motion; 2) active MB (AMB): MBs that contain moving ob-
ject(s) with little static background; and 3) active-Region MB
(RMB): MBs that contain both static background and part(s)
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of moving object(s) covered by one of the pattern in the code-
book. The first two MB types are available in the H.263 standard
and are treated exactly the same way. For the RMB class, mo-
tion estimation and compensation are performed only for those
moving regions covered by a selected pattern from the code-
book. Overall this provides better prediction and compression
efficiency as well as reducing the encoding time compared to
H.263 from between 8% and 53% for smooth motion sequences
[16].

It was also observed in [16] that the coding efficiency with
eight patterns is superior to using only the first four patterns.
Throughout this paper, any pattern selection algorithm using the
same set of patterns for a video sequence is termed as Fixed-
algorithm. The eight-pattern algorithm [16] is, therefore, re-
ferred to as the Fixed-8 algorithm. Paul et al. [10] and [11]
observed a similar trend, but with diminishing returns, when
the pattern codebook (PC) size was further extended to 24 and
32 patterns, respectively. The full 32-PC is shown in Fig. 1
where each 64-pixel pattern is regular—bounded by straight
lines, clustered—the pixels are connected, and boundary-ad-
joined. The experimental results presented in this paper will
prove that if all 32 codebook patterns are considered for sim-
ilarity matching for an RMB, on average only 55% are repre-
sented by the first eight patterns used in [16].

To counter the diminishing improvement in coding efficiency
due to the increased number of bits required to identify each
of the 32-patterns, Paul et al. [10] developed a variable pat-
tern selection (VPS) algorithm to select the best-matched pat-
tern set from the codebook using a greedy approach, where

. Unlike [16], the VPS algorithm has the flex-
ibility of using a different set of patterns depending on the
moving region variations in the video sequence. The drawback
of VPS was that 32- iterations were required, so an extended
VPS (EVPS) algorithm was proposed [11], which reduced the
computational time while maintaining similar prediction and
compression efficiency compared to the VPS algorithm.

The variable pattern selection process required two coding
passes for a video sequence. In the first (preprocessing) pass,
the best-matched pattern set was obtained while in the second
(coding) pass, each RMB was matched against one of the pattern
from this set using a similarity measure. The computational ex-
pense involved in preprocessing however precluded a practical
real-time realization of this algorithm. It is important to empha-
size that the best-matched pattern set is not necessarily the
same as the optimal patterns that minimize the mean similarity
metric for all RMBs. The question of optimality in selecting the
subset of patterns from a codebook has recently been addressed
by Paul et al. [14].

The coding efficiency of these various pattern matching al-
gorithms is largely dependent on the number of RMBs. Wong
et al. [16] classified an MB as a candidate RMB (CRMB) if
any of the four 8 8 quadrants have no moving pixels present.
This quadrant-based classification may in certain instances re-
duce the number of RMBs by misclassifying a possible CRMB
as an AMB because only one or two moving pixels exist in an-
other quadrant. Conversely, the classification may also increase
the computational complexity by misclassifying an AMB as a
CRMB where all but one quadrant has many moving pixels.

A CRMB is ultimately classified as an RMB depending on a
similarity measure with the patterns in the codebook. To over-
come these limitations, Paul et al. [12] presented a new para-
metric MB classification definition, where
the total number of moving pixels in a MB, without considering
the quadrants, was compared against to classify an MB as a
CRMB. This technique proved on average, to capture 40% more
RMBs than the classification used in the Fixed-8 algorithm, for
standard video sequences with .

Measuring the similarity between a CRMB and all the pat-
terns in the codebook on a piecewise-pixel basis can be very
computationally expensive, especially when the codebook size
is large, which is always desirable for better coding efficiency.
However, it can easily be observed that not all patterns are rel-
evant for consideration when using the similarity measure. For
example, consider a CRMB whose moving region is best cov-
ered by pattern . For this candidate, all patterns that are not
partially covering the moving pixels in , such as or
may be deemed irrelevant to some degree, depending on their
proximity.

In this paper, a gravitational centre proximity-based pattern
relevance measure is proposed to dynamically create a smaller-
sized customized pattern codebook (CPC) for each CRMB, by
eliminating irrelevant patterns from the original codebook. A
new real time pattern selection (RTPS) algorithm is then devel-
oped to select the best pattern for a CRMB from the CPC, using a
piecewise-pixel similarity measure. The rationale in using both
relevance and similarity metrics to select the best pattern for a
CRMB, is that it provides a facility to trade off between compu-
tational complexity and picture quality. In selecting the best pat-
tern, the relevance metric uses only one point (the gravitational
centre) to represent all moving pixels in a CRMB, whereas the
similarity metric uses all pixels, so there will be an error between
the two metrics. However, the relevance metric requires only
five add-equivalent operations compared with 767 add-equiv-
alent operations (Section III) for the similarity metric, so it is
more than 150 times faster. The RTPS algorithm uses a novel
mechanism to control the size of the CPC within predefined
bounds, to adapt the computational complexity of the pattern
selection process, so ensuring real time operation. RTPS is thus
able to process arbitrary-sized codebooks while this real-time
constraint is upheld. Furthermore, the computational overhead
of the similarity metric is reduced significantly by performing
the processing on a quadrant-by-quadrant basis with the op-
tion to terminate whenever the measure exceeds a predefined
threshold value.

In order to equitably compare the performance of the RTPS
algorithm with the Fixed-8 algorithm [16], the average size of
the CPC is always kept close to 8. It will be proven that in such
circumstances the computational complexity of RTPS is compa-
rable to the Fixed-8 algorithm, while experimental results will
reveal that for the same bit rate, the peak signal-to-noise ratio
(PSNR) is superior to both the Fixed-8 algorithm and H.263, by
up to 0.8 and 1.52 dB, respectively.

This paper is organized as follows. The pattern relevance and
similarity metrics as well as the RTPS algorithm along with the
MB classification algorithm are detailed in Section II. The actual
RTPS coding technique and computational complexity analysis
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are presented in Sections III and IV, respectively. Experimental
results are fully discussed in Section V to corroborate both the
qualitative and quantitative performance of the RTPS algorithm
compared with H.263 and the Fixed-8 algorithm. Section VI
concludes the paper.

II. PATTERN RELEVANCE AND SIMILARITY METRICS

Let and denote the th MB of the cur-
rent and reference frames, each of size pixels lines,
respectively of a video sequence, where and

. The moving region of the
th MB in the current frame is obtained as follows:

(1)

where is a 3 3 unit matrix for the morphological closing
operation [2], [9], which is applied to reduce noise, and the
thresholding function if and 0 otherwise.

A. Pattern Relevance

Let be the gravitational centre (GC) of a 16 16 binary
matrix , such that

(2)

For the original PC, the relevance of the th MB to a pattern
can be measured as

(3)

where is the Manhattan distance between points and
. If the th MB is a CRMB then the CPC is formed using the

following rule:

(4)

where is the relevance threshold.
It is very important to highlight the role that has in con-

trolling the size of a CPC, as it provides a low computational
complexity filtering mechanism to reduce the pattern set for
a particular CRMB prior to the best pattern being selected by
the similarity metric. If is too low, certain CPCs may be an
empty set leading inevitably to poorer compression by misclas-
sifying some RMBs as AMBs. Conversely if is too high, the
CPC becomes similarly sized to the full PC, thereby negating
the computational benefits of using a small dynamic codebook
to facilitate real-time pattern selection.

It is also important to understand that in order to ensure image
quality equity to all the CRMBs, the value of must be kept
constant as it directly controls the boundary of proximity under
consideration. For the same value, however, the size of the
CPC will vary for different CRMBs. In order to guarantee on
the average size of a CPC, instead of setting the value of ar-
bitrarily, it must be chosen considering the possible minimum

TABLE I
RELEVANCE THRESHOLD VALUES T (� ) FOR A DYNAMICALLY CREATED

CPC HAVING A LOWER BOUND OF � AND AN UPPER BOUND OF

� (� ) PATTERNS

and maximum sized CPCs. Before explaining this iso- tech-
nique in detail, let us consider an obvious way of achieving a
tighter control on the size of the CPC irrespective of CRMBs
by selecting the first th relevant patterns. This straightforward
approach, however, not only incurs sorting overhead in addi-
tion to the relevance and similarity metrics but also introduces
possibility of including patterns (in the CPC) that are too far to
be relevant with the corresponding CRMB or missing patterns
that are too close to be irrelevant. Experimental results show
that the iso- technique based on (4) outperforms this straight-
forward approach in terms of both image quality and computa-
tional complexity for all , when the average size of the CPC is
matched for both the techniques. The main reason for this im-
provement is the flexibility of the iso- technique in selecting
different numbers of patterns according to the relevance of a
CRMB. For example, for the case of in Table I, be-
tween 4 and 11 patterns may be selected. To guarantee an upper
and lower bound upon the size of a CPC, the following innova-
tive solution is proposed for the iso- technique.

Suppose is the minimum value of that guaran-
tees a lower bound of on the size of any CPC, that is, for
a particular CRMB, there will always be at least number
of patterns available in its CPC to be tested by the similarity
metric. To calculate the exact value of requires con-
sidering all possible real coordinate values as the GCs of po-
tential CRMBs, which is obviously an nondeterministic poly-
nomial (NP)-complete problem. Instead an approximated value
is obtained as follows. First, the minimum distance covering at
least number of patterns is found by considering each in-
teger coordinate within the MB boundary as the GC of a po-
tential CRMB. The maximum value from these minimum dis-
tances is then chosen to guarantee the lower bound irrespective
of CRMBs. This approximation technique can be formulated as
follows:

(5)

Considering only integer coordinates can potentially lead to
underestimating the value of , so reducing the lower
bound on the size of certain CPCs. To minimize this likelihood,
coordinates on an MB boundary are excluded since this leads
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Fig. 2. Example supportingT (4) = 6 (dashed diamond) and � (4) = 11
(solid diamond).

to a tighter bound and in practice, such CRMBs are rarely en-
countered. To also avoid any ambiguity, all such CRMBs are
classified as AMBs.

Interestingly, the computation of also leads to
an upper bound, on the size of a CPC. As with

, because of the infinite number of possible real coor-
dinates, calculating the exact value of is again an
NP-complete problem. Instead an approximated upper bound
is obtained by taking the maximum size among all the CPCs
that can be obtained considering all the integer coordinates
within the MB boundary as the GCs of potential CRMBs. This
approximation technique can be formulated as follows:

if

otherwise.
(6)

This approximation may lead to small variations in the
number of relevance patterns , but such patterns
will always have the least relevance in a CPC so their effect
on performance is negligible. Table I presents and

for all possible values. It is observed that there
exist some consecutive values of for which the same

is obtained e.g., . In such cases,
only the maximum value is displayed. Fig. 2 illustrates
how the relevance metric using can construct a CPC of
size as low as 4 and as high as 11, where each dot represents
the GC of a pattern. Due to the use of Manhattan distance in
(3), the CPC obtained using (4) includes all the patterns in PC
for which the GC is covered by the diamond-shaped (a square
with sides at 45 with the axes of the coordinate system)
area of diagonal value with its centre at the GC of the
corresponding CRMB. Note that if the Euclidian distance were
used, the area would have been a circle of radius TR with its
centre at the GC of the corresponding CRMB. The dashed and
solid diamonds in Fig. 2 cover 4 and 11 patterns, respectively,
by considering the two extreme positions.

Using in (4) constructs a CPC size be-
tween and , with an approximate average of

, i.e., the CPC size can

be variable, which is contrary to other pattern selection tech-
niques. To guarantee each CPC has exactly patterns
requires a sorting procedure to identify the best relevant pat-
terns from the codebook. There is, however, no justification for
introducing this overhead into RTPS. To appreciate the reason
for this, let the corresponding variable and fixed-sized CPCs be

and , respectively. The following two observations
then hold:

1) if size of then ,
which implies the best pattern match from will be
at least as good as that obtained from using ;

2) otherwise, the patterns are too irrel-
evant to contribute significantly in improving the coding
efficiency.

B. Pattern Similarity

The similarity of the th MB to a pattern can be
measured using the following distance:

(7)

The moving region of the th MB is best represented by pat-
tern such that

(8)

where is the similarity threshold. It is assumed in this paper
that , since if none of the 64-pixels of a particular
pattern cover any part of a moving region, then the pattern sim-
ilarity metric will be .

By exploiting the relational condition in (8), the compu-
tational complexity of (7) can be significantly reduced by
performing the calculation, in order on a quadrant-by-quadrant
level, as

(9)

where is the quadrant number. The calculation in each quad-
rant is terminated whenever for ,
and .

Let be the speed-up factor achieved by using this quadrant-
based approach compared to the method in [16]. For example,
Fig. 3 shows that when for the Miss America sequence,

, i.e., a 10% saving is attained. As the size of a CPC can
only be increased by adding more relatively irrelevant patterns,

increases monotonically with as shown in Fig. 3.
The complete RTPS algorithm is now formally defined in

Fig. 4. The th MB is then classified into one of the three MB
categories using the algorithm in Fig. 5, for all .

III. CODING TECHNIQUES

In this paper, the coding techniques used in [16] are em-
ployed with the following exception. Instead of using fixed-
length codes, all the 32 patterns in the codebook are identified
using the variable-length (Huffman) codes shown in Table II.
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Fig. 3. Values of � for different �min values on the Miss America sequence.

Fig. 4. RTPS algorithm.

Fig. 5. MB classification algorithm.

These were obtained from the average pattern frequencies over
a large number of standard and nonstandard video sequences.

IV. COMPUTATIONAL COMPLEXITY

A. Comprehensive Analysis

Lemma 1: The construction of a CPC from an original PC
in the RTPS algorithm requires on average
“add-equivalent” and 2 “division” operations.

TABLE II
PATTERN ID NUMBER) VARIABLE LENGTH CODE

Fig. 6. Speed-up factor � for � = 4 on seven standard sequences.

Proof: A CRMB will have a minimum of 8 and a max-
imum of moving pixels. Calculating the gravitational
centre of a CRMB using (2) requires on average: 256 “com-
pare”, “add,” and 2 “division” operations. The gravita-
tional centre of every pattern is known a priori. Calculating the
Manhattan distance of this centre with the centres of all the pat-
terns in the PC requires “subtract,” “add,” and
“absolute” operations. One “comparison” operation is required
(Line 3) in the RTPS algorithm.

Lemma 2: The best pattern selection in the RTPS algorithm
requires on average “add-equivalent” op-
erations.

Proof: The similarity measure in (7) requires 255 “add,”
256 “absolute,” 256 “subtract,” and 1 “shift” operations. One
“comparison” operation is required (Line 10) in the RTPS al-
gorithm. A quadrant-by-quadrant level similarity metric, there-
fore, requires “add-equivalent” operations. The average

size is .
As the Fixed-8 algorithm does not apply any relevance metric,

the following lemma can be proven by means of a similar argu-
ment to that used in Lemma 2:

Lemma 3: The Fixed-8 algorithm requires
“add-equivalent” operations.

Theorem 1: The RTPS(4) algorithm using and
has the same computational complexity as the

Fixed-8 algorithm.
Proof: From Table I, , while

in Fig. 6, the average speed-up factor for is
. Using Lemmas 1 and 2, the RTPS(4) algorithm with

and requires
“add-equivalent” and 2 “division” operations,

which represents 5.3% fewer operations than for the Fixed-8
algorithm (Lemma 3). While (4) can be greater than 7.5
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Fig. 7. Comparison of the complexity of the RTPS(� ) and Fixed-�
algorithms.

for some video sequences, the number of operations required
for the RTPS(4) algorithm will never be greater than that in the
Fixed-8 algorithm provided . This upper bound can
be further increased by exploiting the order of the quadrant level
similarity calculations using information relating to the GC of
the CRMB, which leads to a higher value. It can, therefore,
be concluded that the computational efficiency of the RTPS(4)
algorithm is equivalent to that of the Fixed-8 algorithm.

B. Intuitive Approach

The computational overhead involved in the similarity metric
is always greater than that of the relevance metric. While a detail
mathematical analysis of the number of operations involved is
omitted, the following intuitive and simplified conclusion can
be made from Lemmas 1 and 2:

Theorem 2: The computational complexity of a pattern se-
lection algorithm is directly proportional to the average (integer)
number of patterns used in the similarity metric.

Fig. 7 provides a comparison of the computational overhead
of the RTPS versus Fixed- algorithms using Theorem 2.
While the graph supports Theorem 1, it clearly demonstrates the
benefit of the RTPS algorithm in being able to control the com-
putational complexity across a wide range with only one degree
of freedom (parameter ). Crucially however, in doing so,
the RTPS algorithm always makes use of the entire codebook
at some stage of the selection process. RTPS can thus support
real-time pattern selection for each RMB by considering, the
maximum number of pattern similarity measures that are able
to be supported by the hardware concerned. Moreover, the basic
principles used in the RTPS algorithm can be easily extended to
arbitrarily sized PCs.

V. EXPERIMENTAL RESULTS

Both the RTPS and Fixed-8 algorithms were tested on a large
number of standard and nonstandard video sequences of QCIF
digital video format [15] containing different degrees of ob-
ject and camera motion. For brevity all the experimental results
are presented using the first 100 frames of seven popular test

Fig. 8. Percentage of RMBs where the same pattern is selected by the RTPS(4)
and Fixed-32 algorithms and the Fixed-8 and Fixed-32 algorithms.

Fig. 9. Percentage of RMBs in the Miss America sequence where the same
pattern is selected by both the RTPS(� ) and Fixed-32 algorithms.

video sequences. The motion estimation used a full-search block
matching algorithm with half-pel [15] accuracy. Although, the
performance of the Fixed-8 algorithm has already been demon-
strated better than that of the H.263 standard [16], the latter is
included for comparative purposes.

A. Comparison With the Optimal Fixed-32 Algorithm

For the PC in Fig. 1, the Fixed-32 algorithm always selects
the optimal pattern for each RMB. This means that all other
pattern selection algorithms that use a subset of patterns from
this codebook in the similarity measure, e.g., the RTPS
algorithm, , and the Fixed- algorithm, , can
at best only match the optimal result obtained using the Fixed-32
algorithm.

Fig. 8 shows that when the RTPS(4) algorithm selected the
optimal pattern for 95% of the RMBs, the Fixed-8 algorithm
was only able to select on average 55% of the RMBs in the test
video sequences. This observation not only reaffirms the signif-
icance of extending the size of PC from 8 to 32 as originally
proposed in [11] but also reveals a key benefit of the RTPS al-
gorithm, which is that it is able to select the optimal pattern in
a very high number of cases, while using a pattern similarity
measure of only around eight patterns. Fig. 9 further demon-
strates that for the Miss America sequence where the RTPS al-
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TABLE III
PERCENTAGE OF DIFFERENT MB TYPES GENERATED BY THE RTPS(11),

RTPS(4), AND FIXED-8 ALGORITHMS

TABLE IV
PSNR OF STANDARD SEQUENCES USING THE H.263, FIXED-8, AND

RTPS(4) ALGORITHMS

gorithm selected the optimal pattern for more than 99% cases
using a value as low as 9. Moreover, it has been empirically
proven that the RTPS(11) algorithm performs as well as the op-
timal Fixed-32 algorithm, while requiring %
fewer operations (Fig. 7).

Table III shows the percentage of SMB, RMB, and AMB
for selected standard test sequences. The relationship between
the number of AMBs and overall bit rate is clearly evident in
the table where the larger the number of AMBs, the higher the
bit rate. RTPS(4) provides superior performance to the Fixed-8
algorithm because it captures additional RMBs by classifying
more CRMBs into RMBs, so reducing the number of AMBs.

B. Objective Quality Assessment

For the same bit rate, the RTPS(4) algorithm consistently out-
performs H.263 and the Fixed-8 algorithm in terms of achieving
a higher PSNR, in comparing the reconstructed frames with
the original, for all test video sequences. Table IV presents the
comparative average PSNR values for the first 100 frames of
the seven standard sequences. The RTPS(4) algorithm improved
PSNR in the range of 0.28–0.81 dB from the Fixed-8 algorithm
and between 0.21 and 1.52 dB against H.263 for the standard
test sequences shown in Table IV.

It is especially noteworthy that while the RTPS(4) algorithm
improved the PSNR of the Foreman sequence by only 0.21 dB,
the Fixed-8 algorithm actually degraded the PSNR value by
0.07 dB, an anomaly that was reported in [16]. The main reasons
for the RTPS(4) algorithm consistently outperforming H.263
are: 1) the extended MB classification definition [12] and 2) the
use of an enlarged PC. The RTPS(4) algorithm improved PSNR

Fig. 10. Frame level PSNR in the Miss America sequence using the H.263,
Fixed-8, and RTPS(4) algorithms for target bit rate 23.67 kb/s.

Fig. 11. Average PSNR for the Miss America sequence using the H.263,
Fixed-8, and RTPS(4) algorithms at different bit rates.

consistently even at the frame level as evidenced in Fig. 10 for
the Miss America sequence.

Fig. 11 further shows that the PSNR improvement of the
RTPS(4) algorithm is consistent across different operating bit
rates. In the Miss America example, RTPS(4) improved the av-
erage PSNR by 1 and 0.75 dB, respectively, compared with
H.263 and the Fixed-8 algorithm, for the full range of operating
bit rates between 23.5–27 kb/s.

C. Subjective Quality Assessment

The human visual system does not respond to stimuli in a
straightforward manner. It is therefore, widely accepted that ob-
jective assessment based on PSNR does not always provide re-
liable assessments of image quality, since a higher PSNR may
not always guarantee better image quality [15]. It has become
common practice in international coding-standard activities to
combine both objective and subjective assessments in evalu-
ating and comparing video coding algorithms.

To compare the perceptual performance of the three relevant
algorithms, the original frame #3, reconstructed frames, and
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Fig. 12. (a) Miss America frame 3. (b)–(d) Reconstructed frames using
the H.263, Fixed-8, and RTPS(4) algorithms, respectively. (e)–(g) Frame
differences (�3) of (b), (c), and (d), respectively with respect to (a).

frame differences are presented in Figs. 12 and 13 for the Miss
America and Claire sequences, respectively. The particular bit
rates used in coding these two sequences for all three algorithms
are 23.67 kb/s for Miss America and 18.62 kb/s for Claire. The
intensity of each frame difference image has been magnified by
a factor of three in order to provide an improved visual compar-
ison. In both examples, reconstructed frames using the RTPS(4)
algorithm can be readily perceived as superior to those of the
Fixed-8 and H.263 algorithms, so endorsing the enhanced quan-
titative performance of the RTPS algorithm that was highlighted
in previous sections.

VI. CONCLUSION

This paper has presented a new RTPS algorithm which in-
novatively incorporates both a pattern relevance and similarity
metric to achieve faster pattern selection from an original
32-PC. A novel strategy for dynamically controlling the size
of a CPC has been developed with upper and lower bounds

Fig. 13. (a) Claire frame 3. (b)–(d) Reconstructed frames using the H.263,
Fixed-8, and RTPS(4) algorithms, respectively. (e)–(g) Frame differences (�3)
of (b), (c), and (d), respectively with respect to (a).

defined. RTPS algorithm can control the computational com-
plexity across a wide range by conditioning this lower bound.
This arrangement ensures the RTPS algorithm always uses
the complete codebook at some stage of the pattern selection
process and still manages to keep the computational complexity
within real-time constraint. This principal can be easily ex-
tended to arbitrarily sized PCs. The computational efficiency
of the similarity measure is significantly improved by using
a predefined threshold and computing the metric on a quad-
rant-by-quadrant basis. Overall, the computational efficiency
for the RTPS(4) algorithm has been proven to be commensu-
rate with the Fixed-8 algorithm, while for the same bit rate,
the quantitative and qualitative performance of the RTPS(4)
algorithm is superior to both the Fixed-8 algorithm and H.263
low bit rate video coding standard. RTPS(4) improved the
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PSNR value for all experimental test sequences by up to 0.81
dB compared with the Fixed-8 algorithm and up to 1.52 dB for
H.263.
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