
SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 100

Semantic video analysis for adaptive content
delivery and automatic description

Andrea Cavallaro, Olivier Steiger, Touradj Ebrahimi

Abstract— We present an encoding framework which exploits
semantics for video content delivery. The video content is orga-
nized based on the idea of main content message. In the work
reported in this paper, the main content message is extracted from
the video data through semantic video analysis, an application-
dependent process that separates relevant information from non
relevant information. We use here semantic analysis and the
corresponding content annotation under a new perspective:the
results of the analysis are exploited for object-based encoders,
such as MPEG-4, as well as for frame-based encoders, such as
MPEG-1. Moreover, the use of MPEG-7 content descriptors in
conjunction with the video is used for improving content visual-
ization for narrow channels and devices with limited capabilities.
Finally, we analyze and evaluate the impact of semantic video
analysis in video encoding and show that the use of semantic
video analysis prior to encoding sensibly reduces the bandwidth
requirements compared to traditional encoders not only foran
object-based encoder but also for a frame-based encoder.

Index Terms— Video analysis, video encoding, object segmen-
tation, metadata, MPEG.

I. I NTRODUCTION

The diffusion of network appliances such as cellular phones,
personal digital assistants, and hand-held computers creates a
new challenge for content delivery: how to adapt the media
transmission to various device capabilities, network charac-
teristics, and user preferences [1], [2], [3]. Each device is
characterized by certain display capabilities and processing
power. Moreover, such appliances are connected through dif-
ferent kinds of networks with diverse bandwidths. Finally,
users with different preferences access the same multimedia
content. Therefore there exists a need to personalize the way
media content is delivered to the end user. In addition to the
above, recent devices, such as digital radio receivers, andnew
applications, such as intelligent visual surveillance, require
novel forms of video analysis for content adaptation and sum-
marization. Digital radios allow for the display of additional
information alongside the traditional audio stream to enrich the
audio content. For instance, digital audio broadcasting (DAB)
allocates 128 Kb/s to streaming audio, whereas 8Kb/s can
be used to send additional information, such as visual data
[4]. Moreover, the growth of video surveillance systems poses
challenging problems for the automatic analysis, interpretation
and indexing of video data as well as for selective content
filtering for privacy preservation. Finally, the instantaneous
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indexing of video content is also an desirable feature for sports
broadcasting [5].

To cope with these challenges, video content needs to be
automatically analyzed and adapted to the needs of the specific
application, to the capabilities of the connected terminaland
network, and to the preferences of the user. Three main
strategies for adaptive content delivery have been proposed
throughout the literature, namely Info Pyramid, scalable cod-
ing and transcoding. The work presented in this paper aims
to go beyond traditional adaptation techniques. We focus on
semantic encoding by looking to exploit video analysis prior
to encoding (Figure 1). Specifically, we use semantic video
analysis to extract relevant areas of a video. These areas are
encoded at a higher level of quality or summarized in textual
form. The idea behind this approach is to organize the content
so that a particular network or device does not inhibit the main
content message. The main content message is dependent on
the specific application. In particular, for applications such as
video surveillance and sport video the main content message
is defined based on motion information.

The contribution of this paper is twofold. On the one
hand, a framework for adaptive video delivery is defined and
implemented based on video objects and on their associated
metadata. On the other hand, two new modalities of video
delivery are proposed in such a framework. The first modality
combines semantic analysis with a traditional frame-based
video encoder. The second modality uses metadata to effi-
ciently encode the main content message. In particular, the
use of metadata enables not only to make the content more
searchable, but also to improve visualization and to preserve
privacy in video-based applications.

The paper is organized as follows. Section II is an overview
of existing adaptation techniques. Section III presents the
algorithm for extracting the main content message, the frame-
work for adaptive video delivery and automatic description
using semantic video analysis. Section IV discusses quality
assessment issues, whereas experimental results are presented
in Section V. Finally, Section VI concludes the paper.

II. BACKGROUND

Three main approaches have been presented in the literature
to provide adaptive content delivery, namely Info Pyramid,
scalable coding and transcoding. Info Pyramid provides a
general framework for managing and manipulating media
objects [6], [7]. Info Pyramid manages different versions,or
variations, of media objects with different modalities (e.g.,
video, image, text, and audio) and fidelities (summarized, com-
pressed, and scaled variations). Moreover, it defines methods
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Fig. 1. Flow diagram of the proposed encoding framework based on semantic video analysis and description

for manipulating, translating, transcoding, and generating the
content. When a client device requests a multimedia document,
the server selects and delivers the most appropriate variation.
The selection is made based on network characteristics and
terminal capabilities, such as display size, frame rate, color
depth and storage capacity.

As opposed to Info Pyramid, scalable coding processes
multimedia content only once. Lower qualities, lower spatial
and temporal resolutions of the same content are then obtained
by truncating certain layers or bits from the original stream [8].
Basic modes of video scalability include quality scalability,
spatial scalability, temporal scalability, and frequencyscala-
bility. Combinations of these basic modes are also possible.
Quality scalabilityis defined as the representation of a video
sequence with varying accuracies in the color patterns. This
is typically obtained by quantizing the color values with
increasingly finer quantization step sizes.Spatial scalability
is the representation of the same video in varying spatial
resolutions.Temporal scalabilityis the representation of the
same video at varying temporal resolutions or frame rates.
Frequency scalabilityincludes different frequency components
in each layer, with the base layer containing low-frequency
components and the other layers containing increasingly high-
frequency components. Such decomposition can be achieved
via frequency transforms like the DCT or wavelet transforms.
Finally, the basic scalability schemes can be combined to reach
fine-granularity scalability, such as in MPEG–4 FGS [9].
The various scalable coding methods introduced previously
perform the same operation over the entire video frame. In
object-based temporal scalability (OTS), the frame rate of
foreground objects is enhanced so that it has a smoother
motion than the background.

Video transcoding is the process of converting a compressed
video signal into another compressed signal with different
properties. Early solutions to video transcoding determine the
output format based on network and appliance constraints,
independently of the semantics in the content (content-blind

transcoding). Content-blind transcoding strategies include spa-
tial resolution reduction, temporal resolution reduction, and
bit-rate reduction [10]. Recent transcoding techniques make
use of semantics to minimize the degradation of important
image regions [11], [12]. In [13], optimal quantization pa-
rameters and frame skip are determined for each video object
individually. The bit-rate budget for each object is allocated by
a difficulty hint, a weight indicating the relative encodingcom-
plexity of each object. Frame skip is controlled by a shape hint,
which measures the difference between two consecutive shapes
to determine whether an object can be temporally downsam-
pled without visible composition problems. Key objects are
selected based on motion activity and on bit complexity.

The transcoding strategies described thus far are referred
to asintramedia transcodingstrategies and do not change the
media nature of the input signal. On the other hand,intermedia
transcoding, or transmoding, is the process of converting
the media input into another media format. Examples of
intermedia transcoding include speech-to-text [14] and video-
to-text [15] translation. Both the intramedia and the intermedia
adaptation concepts are used in this paper for video encoding,
as described in the following section.

III. A DAPTIVE CONTENT DELIVERY AND DESCRIPTION

USING SEMANTICS

The proposed framework for adaptive video delivery and
automatic description uses video content analysis and semantic
pre-filtering prior to encoding (Figure 1) in order to improve
the perceived content quality and to provide additional func-
tionalities, such as privacy preservation and automatic video
indexing. Semantic video analysis and semantic encoding are
described next.

A. Semantic video analysis

Semantic video analysis is used to extract the main content
message from the video. The semantics to be included in
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the analysis is dependent on the specific application. In the
following, we discuss possible semantics and, in particular,
we describe the use of motion as semantics.

Semantic video analysis refers to a human abstraction and
usesa priori information to translate the semantics into rules.
The rules are then applied through an algorithm. Examples
of semantic video analysis based ona priori information are
template matching, extraction of captions and text, face de-
tection, and moving object segmentation. Template matching
is used to implement the semantics when the shape objects
we want to segment is knowna priori. In this case, which
includes in particular the detection of captions and text, the
extraction method searches for specific object features in terms
of geometry. For segmenting faces of people, color-based
segmentation can be used [16]. The face detection task consists
in finding the pixels whose spectral characteristics lie in a
specific region in the chromaticity diagram. For extracting
moving objects,motion informationcan be used as semantics.
Several applications, such as sport broadcasting and video
surveillance, deal with segmenting moving objects.

A typical tool used to tackle the problem of object segmen-
tation based on motion is change detection. Different change
detection techniques can be employed for moving camera
and static camera conditions. If the camera moves, change
detection aims at recognizing coherent and incoherent moving
areas. The former correspond to background areas, the latter
to video objects. If the camera is static, the goal of change
detection is to recognize moving objects (foreground) and the
static background. The semantic analysis we use addresses
the static camera problem and is applicable in the case of a
moving camera after global motion compensation. The change
detector decides whether in each pixel position the foreground
signal corresponding to an object is present. This decision
is taken by thresholding the frame difference between the
current frame and a frame representing the background. The
frame representing the background is dynamically generated
based on temporal information [17]. The thresholding aims
at discarding the effect of the camera noise after frame
differencing. A locally adaptive threshold,τ(i, j), is used that
models the noise statistics and applies a significance test.To
this end, we want to determine the probability that frame
difference at a given position(i, j) is due to noise, and not to
other causes. Let us suppose that there is no moving object in
the frame difference. We refer to this hypothesis as thenull
hypothesis, H0. Let g(i, j) be the sum of the absolute values
of the frame difference in an observation window ofq pixels
around(i, j). Moreover, let us assume that the camera noise is
additive and follows a Gaussian distribution with varianceσ.
GivenH0, the conditional pdf of the frame difference follows
a χ2

q distribution withq degrees of freedom defined by

f
(

g(i, j)|H0

)

=
1

2q/2σqΓ(q/2)
g(i, j)

(q−2)/2
e−g(i,j)2/2σ2

,

(1)
whereΓ(·) is the Gamma function, that can be evaluated as
Γ(x+1) = xΓ(x), andΓ(1/2) =

√
π. To obtain a good trade-

off between robustness to noise and accuracy in the detection
we chooseq = 25 (5×5 window centered in(i, j)). It is now

(a) (b)

(c) (d)

Fig. 2. Example of semantic video analysis results for the test sequences (a)
Hall Monitor and (c)Highway: (b) separation of foreground and background
for Hall Monitor. (d) separation of foreground and background forHighway.
The background is color-coded in black

possible to derive the significance test as

P{g(i, j) ≥ τ(i, j)|H0} =
Γ(q/2, g(i, j)

2
/2σ2)

Γ(q/2)
. (2)

When this probability is smaller than a certain significance
level, α, we consider thatH0 is not satisfied at the pixel
position(i, j). Therefore we label that pixel as belonging to a
moving object. The significance levelα is a stable parameter
that does not need manual tuning along a sequence or for
different sequences. Experimental results indicate that valid
values fall in the range from10−2 to 10−6.

The change detection process produces the segmentation of
the moving objects from the background (Figure 2) and, cou-
pled with video object tracking [18], enables the subsequent
extraction of object metadata, as described in the following
section.

B. Semantic encoding

The decomposition computed with semantic video analysis
is used with an object-based encoder as well as with a
traditional frame-based encoder. We will refer to the former
case asobject-based encodingand to the latter asframe-
based encoding. Furthermore, metadata are used to efficiently
encode relevant information and to enhance relevant part ofa
low-quality coded video. These approaches are referred to as
metadata-based encodingand metadata-enhanced encoding,
respectively. Relevant examples of the modalities presented
in this section are illustrated in Figure 3. The analysis and
evaluation of the different approaches in terms of results and
bandwidth requirements are presented in Section V.

1) Object-based encoding:With object-based encoding, the
encoder needs to support the coding of individual video objects
(e.g., MPEG–4 object-based). Each video object is assignedto
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Fig. 3. Examples of encoding modalities. (a) Sample frame from the sequenceSoccer; (b) Semantic frame-based encoding: the background is selectively
lowpass-filtered prior to encoding; (c) Metadata-based encoding: object shapes are superimposed on the background; (d) Spatial resolution reduction; (e)
Metadata-enhanced encoding: metadata are used to enhance relevant portions of a video

a distinct object class, according to its importance in the scene.
The encoding quality can be set depending on the object class:
the higher the relevance, the higher the encoding quality. One
advantage of this approach is the possibility of controlling
the sequencing of objects: video objects may be encoded
with different degree of compression, thus allowing better
granularity for the areas in the video that are of more interest to
the viewer. Moreover, objects may be decoded in their order
of priority, and the relevant content can be viewed without
having to reconstruct the entire image (network limitations).
Another advantage is the possibility of using a simplified
background (appliance limitation), so as to enhance the rel-
evant objects. Using a simplified background aims at taking
advantage of the task-oriented behavior of the human visual
system for improving compression ratios. Recent work on
foveation [19] demonstrated that using nonlinear integration
of low-level visual cues mimicking the processing in primate
occipital and posterior parietal cortex allows one to sensibly
increase compression ratios. Moreover, the work reported in
[20] demonstrated that an overall increase in image quality
can be obtained when the increase in quality of the relevant
areas of an image more than compensates for the decrease in
quality of the image background.

2) Semantic frame-based encoding:The semantic frame-
based encoding mode exploits semantics in a traditional frame-
based encoding framework (e.g., MPEG–1). The use of the
decomposition of the scene into meaningful objects prior
to encoding, referred here assemantic pre-filtering, helps
support low bandwidth transmission. The areas belonging to
the foreground class, or semantic objects, are used as region
of interest. The areas not included in the region of interest
may either be eliminated, that is set to a constant value, or
lowered in importance by using a low-pass filter. The latter
solution simplifies the information in the background, while
still retaining essential contextual information. An example
of this solution is reported in Fig. 4 (a). On the other hand,
filtering the entire image inhibits the main content message
Fig. 4 (b). Another way to take into account less relevant
portions of an image before coding is to take advantage of the
specifics of the coding algorithm. In the case of block-based
coding, each background macroblock can be replaced by its
DC value. Semantic frame-based encoding mimics the way
humans perceive visual information and allows for a reduction
of information to be coded.

(a) (b)

Fig. 4. (a) Selective lowpass-filtering simplifies the information in the
background, while still retaining essential contextual information; (b) filtering
the entire image inhibits the main content message

3) Metadata-based and metadata-enhanced encoding:A
further processing of the video content is performed to cope
with limited device or network capabilities as well as to
automatically generate metadata. Such processing transforms
the foreground objects extracted through semantic analysis
into quantitative descriptors and enables video annotation.
Video annotation is desirable for applications such as video
surveillance, where terabytes of data are produced and need
to be searched quickly. Moreover, the descriptors can be
transmitted instead of the video content itself and superim-
posed by the terminal on a still background. For example, an
object identifier and a shape descriptor are used in [21]. The
object identifier is a unique numerical identifier describing
the spatial location of each object in the scene. The shape
descriptor is used to represent the shape of an object, ranging
from a bounding box to a polygonal representation with a
different number of vertices (Figure 3(c)). This approach is
useful to preserve privacy in video surveillance applications
as well as to reduce bandwidth requirements under critical
network conditions. A progressive representation is used where
the number of vertices corresponding to the best resolution
is computed, and any number of vertices smaller that this
maximum can be used according to the requirements of the
application. In addition to the above, other features such as
color and texture descriptors may be added in the description
process. The choice of these additional features depends on
the application at hand.

In addition to the above, the descriptors can be transmitted
along with the video itself and used for rendering the video
content. This solution, consisting in a mixture of video-based
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and text-based modalities, is here referred toe asmetadata-
enhanced encoding. Using metadata-enhanced encoding, con-
tent descriptors help enhance parts of the video that are hidden
or difficult to perceive due to heavy compression. In this case,
the video itself is the background and the descriptors highlight
relevant portions of the data. One example is the ball in a
football match for transmission to a PDA or a mobile phone,
as shown in Figure 3(e).

IV. QUALITY ASSESSMENT

Perceptual video quality assessment is a difficult task
already when dealing with traditional coders [22]. When
dealing with object-based coders, the task becomes even
more challenging. For this reason, we use a combination of
subjective and objective evaluation techniques to comparethe
performance of the different encoding modalities. Subjective
evaluation includes the visual comparison of frames and frame
details. This analysis is performed at different bitrates and
at different frame resolutions. Objective evaluation includes
temporal signal-to-noise ratio analysis and the analysis of rate-
distortion curves.

A. Semantic peak signal-to-noise ratio

Traditional peak signal-to-noise ratio (PSNR) analysis uni-
formly weights the contribution of each pixel in an image
when computing the mean squared error (MSE). This analysis
gives the same importance to relevant as well as less relevant
areas of an image. To account for the way humans perceive
visual information, different areas of an image, or object
classes, should be considered [11]. We take into account
object classes through a distortion measure, thesemantic mean
squared error, SMSE, defined as:

SMSE =

N
∑

k=1

wk · MSEk, (3)

whereN is the number of object classes andwk the weight of
classk. Class weights are chosen depending on the semantics,
with wk ≥ 0, ∀k = 1, . . . , N and

∑N
i=1 wk = 1. The mean

squared error of each class,MSEk, can be written as

MSEk =
1

|Ck|
∑

(i,j)∈Ck

d2(i, j), (4)

whereCk is the set of pixels belonging to the object classk
and|Ck| is its cardinality. The class membership of each pixel
(i, j) is defined by semantic video analysis. The errord(i, j)
between the original imageIO and the distorted imageID in
Eq.(4) is the pixel-wise color distance. The color distanceis
computed in the 1976 CIELab color space in order to consider
perceptually uniform color distances with the Euclidean norm
and is expressed as:

d(i, j) =

√

(

∆IL(i, j)
)2

+
(

∆Ia(i, j)
)2

+
(

∆Ib(i, j)
)2

,
(5)

with ∆IL(i, j) = IL
O(i, j) − IL

D(i, j), ∆Ia(i, j) = Ia
O(i, j) −

Ia
D(i, j), and∆Ib(i, j) = Ib

O(i, j)−Ib
D(i, j). The final quality

evaluation metric, thesemantic peak signal-to-noise ratio,
SPSNR, is the following:

SPSNR = 10 log10

(

V 2
M

SMSE

)

, (6)

whereVM is the maximum peak-to-peak value of the color
range. When the object classes are foreground and back-
ground, thenN = 2 in Eq (3). If we denote withwf the
foreground weight, thenSPSNR ≡ PSNR when wf = 0.5.
The largerwf , the more important the contribution of the
foreground. Whenwf = 1, then the foreground only is
considered in the evaluation of the peak signal-to-noise ratio.

An illustration of the impact ofwf in the distortion measure
is shown in in Fig. 5. The figure presents a comparison of the
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Fig. 5. Illustration of the impact ofwf in the distortion measure: average
SPSNR vs. foreground weight forHall monitor sequence. The five labels
correspond to the following sequence types: (1) coded original; (2) tempo-
rally down-sampled; (3) spatially down-sampled; (4) static background; (5)
simplified background. Content-blind coding methods (1)-(3) decrease their
performance when the foreground is given more importance. Methods based
on semantic, (4) and (5), increase their performance when the foreground is
given more importance

average SPSNR of the sequenceHall Monitor for the different
encoding modalities described in Section III-B as functionof
wf . The value ofwf to be used is estimated as described in
the next section.

B. Determination of the foreground weight

Subjective performance evaluation experiments have been
performed to estimate the foreground weight leading to the
closest match between SPSNR prediction and human judg-
ment. Twenty non-expert observers of different ages and
backgrounds have been presented a series of video sequences
according to ITU-T Recommendation P.910,Absolute Cate-
gory Rating[23]. The evaluation has been carried out using
the MPEG–4 test sequencesAkiyo, Hall Monitor, Children,
andCoastguard. Video sequences have been generated using
the encoding strategies described in Section III-B, at different
bitrates, and rated by the observers on a scale ranging from 0
(bad) to 100 (excellent). This range of values was presented
to the observers in a training phase.

The foreground weight,wf , is determined for each test
sequence by maximizing the Pearson correlation [24] between
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SPSNR and subjective results. The results are summarized in
Table I. For the sequenceAkiyo, where the foreground covers
a large area of each frame and the background is simple, the
the observers focused mostly on foreground, thus leading toa
value ofwf = 0.97. For Hall Monitor, whose background is
more complex and objects are smaller, the foreground attracted
slightly more the attention than the background (wf = 0.55).
The sequenceChildrenhas a very complex and colored back-
ground that attracted the observers’ attention, thus resulting
in foreground and background being equally weighted (wf =
0.5). The sequenceCoastguardcontains camera motion that
prevented the observer from focusing on background steadily,
even though the background is quite complex. In this case, the
resulting foreground weight iswf = 0.7. In general, results
confirm that large moving objects and complex background
tend to attract user’s attention. Based on the data collected with
subjective experiments, it is possible to predict the foreground
weight based on the following formula:

wf = α · r + (δ − β · r)σb + γ · v + δ, (7)

where r represents the portion of the image occupied by
foreground pixels, expressed asr = |Cf |/(|Cf | + |Cb|), with
|Cf | and |Cb| representing the number of foreground and
background pixels, respectively. The background complexity
is taken into account withσb, the standard deviation of the
luminance of background pixels. The presence of camera
motion is considered with the termv: v = 1 for moving
camera, andv = 0 otherwise.α, β, γ, and δ are constants
whose values are determined based on the results of the
subjective experiments and are the following:α = 5.7, β =
0.108, γ = 0.2 and δ = 0.01. The final value ofwf is the
average of the foreground weights over the sequence.

In addition to semantic weight, Table I provides information
aboutaccuracy, monotonicityand consistencyof the SPSNR
metric. Accuracy is given by Pearson linear correlation coeffi-
cientrp, monotonicity by Spearman rank-order correlation co-
efficient rs, and consistency by outliers ratioro [24]. Pearson
correlation of PSNR,rp(0.5), is given for comparison. Pearson
correlationrp and Spearman correlationrs are close to 1 for
all sequences. Thus, accuracy and monotonicity of SPSNR are
high. Outliers ratioro is around 10%, thus consistency of the
metric is good as well. Note that using semantics improves
accuracy by up to 8% (Akiyo), as compared to PSNR.

TABLE I

FOREGROUND WEIGHT ANDSPSNRACCURACY

Akiyo Hall monitor Children Coastguard

wf 0.97 0.55 0.50 0.7
rp(wf ) 0.95 0.90 0.95 0.92
rp(0.5) 0.87 0.89 0.95 0.90
rs(wf ) 0.90 0.84 0.95 0.93
ro(wf ) 0.10 0.11 0.07 0.07

V. EXPERIMENTAL RESULTS

In this section, experimental results of the proposed seman-
tic video encoding and annotation framework with standard
test sequences are presented. The results illustrate the impact

of semantic analysis on the encoding performance of frame-
based as well as object-based coders and demonstrate the use
of the proposed approach for advanced applications, such as
privacy preservation in video surveillance. Sample results are
shown from the MPEG–4 test sequenceHall Monitor and
from the MPEG–7 test sequenceHighway. Both sequences
are in CIF format at 25 Hz. The modalities under analysis are:
(1) coded original sequence; (2) temporal resolution reduction
(from 25 frames/s. to 12.5 frames/s.); (3) spatial resolution
reduction (from CIF to QCIF); (4,6) video objects composited
with static background; (5,7) video objects composited with
simplified background. The background is simplified using a
Gaussian9x9 low-pass filter withµ = 0 andσ = 2.

The following coders have been used in the encoding
process: (i) TMPGEnc 2.521.58.169 using constant bitrate
(CBR) rate control for frame-based MPEG–1; (ii) MoMuSys
MPEG-4 VM reference software version 1.0 using VM5+
global rate control for object-based MPEG–4; (iii) Expway
MPEG-7 BiM Payload encoder/decoder version 02/11/07 for
MPEG–7 metadata; (iv) Kakadu JPEG2000 codec version
4.2 for JPEG200 still images. The value of the foreground
weight used in the objective evaluation iswf = 0.55 for
Hall Monitor, as determined with the subjective experiments,
and wf = 0.53 for Highway, computed using Eq. (7) with
r = 0.07, σb = 48, v = 0.

Figure 6 shows the rate-distortion diagrams for the test
sequences. The average SPSNR for five encoding modalities is
plotted against the encoding bitrate. Figures 6 (a) and (b) show
the rate-distortion diagrams for MPEG–1 at bitrates between
150 Kbit/s and 1000 Kbit/s. At low bitrates (150-300 Kbit/s),
semantic encoding with static background (4) leads to a larger
SPSNR than any of the content-blind methods (1-3). This is
because inter-coded static background blocks do not produce
residue and most of the available bitrate can be allocated to
foreground objects. In Figures 6 (c) and (d), foreground and
background are encoded in two separate streams using object-
based MPEG–4 at bitrates between 100 Kbit/s and 500 Kbit/s.
Here semantic analysis is used in all five modalities. It possible
to notice that quality is improved at low bitrates by low-pass
filtering the background or using a still frame representingthe
background.

Figure 7 shows a sample frame from each test sequence
coded with MPEG–1 at 150 Kbit/s with and without semantic
pre-filtering. Figure 8 shows magnified excepts of both test
sequences coded with MPEG–1 at 150 Kbit/s. Figure 8 (top)
shows the person that carries a monitor inHall monitor. The
amount of coding artifacts is notably reduced by semantic
pre-filtering ((d) and (e)). In particular, the person’s mouth
and the monitor are visible in (e), whereas they are corrupted
by coding artifacts in the non-semantic modalities. Similar
observations can be made for Figure 8 (bottom), which shows
a blue truck entering the scene at the beginning of theHighway
sequence. Coding artifacts are less disturbing on the object in
(d) and (e) than in (a)-(c). Moreover, the front-left wheel of
the truck is only visible with semantic pre-filtering ((d) and
(e)).

Next, we evaluate the cost of sending metadata for metadata-
based and metadata-enhanced encoding. Table II shows the



SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 106

200 300 400 500 600 700 800 900 1000
15

20

25

30

35

40

Bitrate [Kbit/s]

S
P

S
N

R
 [d

b]

(1) Original sequence
(2) 12.5 frames/s.
(3) QCif
(4) Lowpass−filtered bckg
(5) Static bckg

200 300 400 500 600 700 800 900 1000
15

20

25

30

35

40

Bitrate [Kbit/s]

S
P

S
N

R
 [d

b]

(1) Original sequence
(2) 12.5 frames/s.
(3) QCif
(4) Lowpass−filtered bckg
(5) Static bckg

(a) (b)

100 150 200 250 300 350 400 450 500
15

20

25

30

35

40

Bitrate [Kbit/s]

S
P

S
N

R
 [d

b]

(1) Original sequence
(2) 12.5 frames/s.
(3) QCif
(6) Lowpass−filtered bckg
(7) Static bckg

100 150 200 250 300 350 400 450 500
15

20

25

30

35

40

Bitrate [Kbit/s]

S
P

S
N

R
 [d

b]

(1) Original sequence
(2) 12.5 frames/s.
(3) QCif
(6) Lowpass−filtered bckg
(7) Static bckg

(c) (d)

Fig. 6. Rate-distortion diagrams. (a)Hall monitor, MPEG–1; (b)Highway, MPEG–1; (c)Hall monitor, MPEG–4 object-based; (d)Highway, MPEG–4
object-based

bitrate required by three types of description forHall Monitor
and Highway using MPEG–7 binary format (BiM). MPEG–
7 binary format is used for sending summary information
to terminals with limited capabilities and to enhance heavily
compressed videos. The descriptions are represented by the
spatial locators of the foreground objects, their bounding
boxes, and an approximation of their shape with 20-sided
polygons, respectively. The metadata size increases with the
description complexity and with the number of objects in the
scene (Hall Monitor vs. Highway). The cost for metadata-
enhanced encoding can be further reduced by sending the
description of critical objects only. In addition to the above,

TABLE II

AVERAGE BITRATE OFMPEG–7 BIM SEQUENCE DESCRIPTION

DESCRIPTION Spatial locator Bounding box Polygon shape

Hall monitor 21 Kbit/s 59 Kbit/s 89 Kbit/s
Highway 26 Kbit/s 66 Kbit/s 98 Kbit/s

metadata-enhanced encoding is used for privacy preservation
in video surveillance. Figure 9 shows an example of different

level of information hiding obtained using object descriptors
for the sequenceHall Monitor. A surveillance operator can
be shown different video types, ranging from the full appear-
ance of the objects (Figure 9 (a)) to the visualization of a
position locator that allows the operator to derive statistics
about number of objects, their behavior and position without
disclosing their identity (Figure 9 (d)). Intermediate levels of
visualization include the approximation of object shapes that
hides the identity of the subjects captured by the surveillance
camera, while allowing to derive information about their size
and form (Figure 9 (b)), and the bounding box (Figure 9 (c)).
The encoding cost associated with this additional functionality
added to a surveillance system is 21 Kbit/s for the spatial
locator, 59 Kbit/s for the bounding box and 89 Kbit/s for the
polygonal shape. The choice of the description to be used
depends on the trade-off between privacy and the monitoring
task at hand.

VI. CONCLUSIONS

We presented a content-based video encoding framework
which is based on semantic analysis. Semantic analysis enables
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(a) (b) (c)

Fig. 7. Frame 190 ofHall monitor (top) and frame 44 ofHighway (bottom) coded with MPEG–1 at 150 Kbit/s using different modalities: (a) coded original
sequence; (b) static background; (c) simplified background

the decomposition of a video into meaningful objects. Using
this decomposition, the encoder may adapt its behavior to code
relevant and non relevant objects differently. Three modalities
of video delivery have been discussed, analyzed, and com-
pared using standard encoders. The first exploits semantics
in traditional frame-based encoding. Semantically pre-filtering
the video prior to coding leads to significant improvements in
video compression efficiency in terms of bandwidth require-
ments as well as visual quality at low bitrates. The second
modality uses metadata to efficiently encode relevant infor-
mation. Object descriptors are generated for content retrieval
as well as used for coding at very low bit-rates or for devices
with limited capabilities. The third modality combines video
and metadata for visualization. Metadata are used for content
enhancement at low bitrates and for preserving privacy in
video surveillance applications.

In the specific implementation discussed in Section V, the
semantics is defined by motion. Given the modularity of the
proposed encoding framework other semantics can also be
used in the analysis step. Examples are face detection and
text segmentation.

The quality metric used in this work is a promising first step
towards measuring the quality taking semantics into account.
Future work includes the study and definition of a perceptual
metric that accounts for user satisfaction, depending on the
application and the user preferences. To this end, an objectof
interest metric, such as that used in [3], will be an important
building block of the overall quality metric. This quality
metric will be used to automatically select the best encoding
technique that maximizes user experience.
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