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Semantic video analysis for adaptive content
delivery and automatic description

Andrea Cavallaro, Olivier Steiger, Touradj Ebrahimi

Abstract— We present an encoding framework which exploits indexing of video content is also an desirable feature fortsp
semantics for video content delivery. The video content isrga-  proadcasting [5].
nized based on the idea of main content message. In the work 14 cope with these challenges, video content needs to be

reported in this paper, the main content message is extractefrom - . .
thg video data Ft)hf)ough semantic video analygis, an applicatn- automatically analyzed and adapted to the needs of thefipeci

dependent process that separates relevant information fro non ~ @pplication, to the capabilities of the connected termarad
relevant information. We use here semantic analysis and the network, and to the preferences of the user. Three main

corresponding content annotation under a new perspectivethe  strategies for adaptive content delivery have been prapose

results of the analysis are exploited for object-based enders, throughout the literature, namely Info Pyramid, scalakdd-c
such as MPEG-4, as well as for frame-based encoders, such as dt di Th K ted in thi .
MPEG-1. Moreover, the use of MPEG-7 content descriptors in Ing and transcoding. The work presented in this paper aims

conjunction with the video is used for improving content vizial- {0 g0 beyond traditional adaptation techniques. We focus on
ization for narrow channels and devices with limited capablites. semantic encoding by looking to exploit video analysis iprio
Finally, we analyze and evaluate the impact of semantic vide to encoding (Figure 1). Specifically, we use semantic video
analysis in video encoding and show that the use of semantic 3nq)ysis to extract relevant areas of a video. These areas ar
video analysis prior to encoding sensibly reduces the banddth . . . .
requirements compared to traditional encoders not only foran encoded a_t a hlghgr Ievgl of quality ‘?r summarl.zed in textual
object-based encoder but also for a frame-based encoder. form. The idea behind this approach is to organize the conten
so that a particular network or device does not inhibit thénma
content message. The main content message is dependent on
the specific application. In particular, for applicationgls as
video surveillance and sport video the main content message
|. INTRODUCTION is defined based on motion information.
The contribution of this paper is twofold. On the one

The diffusion of network appliances such as cellular phpnésand, a framework for adaptive video delivery is defined and
personal digital assistants, and hand-held computersesr@a implemented based on video objects and on their associated
new challenge for content delivery: how to adapt the medigetadata. On the other hand, two new modalities of video
transmission to various device capabilities, network abar delivery are proposed in such a framework. The first modality
teristics, and user preferences [1], [2], [3]. Each devige ¢ombines semantic analysis with a traditional frame-based
characterized by certain display capabilities and proegssvideo encoder. The second modality uses metadata to effi-
power. Moreover, such appliances are connected through difently encode the main content message. In particular, the
ferent kinds of networks with diverse bandwidths. Finallyyse of metadata enables not only to make the content more
users with different preferences access the same multimesiarchable, but also to improve visualization and to pveser
content. Therefore there exists a need to personalize tie Waivacy in video-based applications.
media content is delivered to the end user. In addition to theThe paper is organized as follows. Section Il is an overview
above, recent devices, such as digital radio receiversnemd of existing adaptation techniques. Section Il presents th
applications, such as intelligent visual surveillancequiee algorithm for extracting the main content message, the éram
novel forms of video analysis for content adaptation and-sumork for adaptive video delivery and automatic description
marization. Digital radios allow for the display of addit@ using semantic video analysis. Section IV discusses gualit
information alongside the traditional audio stream to@mthe assessment issues, whereas experimental results aratprese
audio content. For instance, digital audio broadcastil§BD in Section V. Finally, Section VI concludes the paper.
allocates 128 Kb/s to streaming audio, whereas 8Kb/s can
be used to send additional information, such as visual data Il. BACKGROUND

[4]. Moreover, the growth of video surveillance systemsgsos  Three main approaches have been presented in the literature
challenging problems for the automatic analysis, intetgiien to provide adaptive content delivery, namely Info Pyramid,
and indexing of video data as well as for selective conteg¢alable coding and transcoding. Info Pyramid provides a
filtering for privacy preservation. Finally, the instant@nus general framework for managing and manipulating media
objects [6], [7]. Info Pyramid manages different versioos,
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Fig. 1. Flow diagram of the proposed encoding framework dhasesemantic video analysis and description

for manipulating, translating, transcoding, and genegathe transcoding). Content-blind transcoding strategiesuielspa-
content. When a client device requests a multimedia docymeial resolution reduction, temporal resolution reductiamd
the server selects and delivers the most appropriate iariat bit-rate reduction [10]. Recent transcoding technique&ema
The selection is made based on network characteristics arsg of semantics to minimize the degradation of important
terminal capabilities, such as display size, frame ratégrcoimage regions [11], [12]. In [13], optimal quantization pa-
depth and storage capacity. rameters and frame skip are determined for each video object

As opposed to Info Pyramid, scalable coding processislividually. The bit-rate budget for each object is alltwzhby
multimedia content only once. Lower qualities, lower sglati a difficulty hint, a weight indicating the relative encodiogm-
and temporal resolutions of the same content are then @otaiplexity of each object. Frame skip is controlled by a shapé, hi
by truncating certain layers or bits from the original strgf8].  which measures the difference between two consecutiveeshap
Basic modes of video scalability include quality scalapili to determine whether an object can be temporally downsam-
spatial scalability, temporal scalability, and frequersoala- pled without visible composition problems. Key objects are
bility. Combinations of these basic modes are also possibf&lected based on motion activity and on bit complexity.
Quiality scalabilityis defined as the representation of a video The transcoding strategies described thus far are referred
sequence with varying accuracies in the color patternss Thd asintramedia transcodingtrategies and do not change the
is typically obtained by quantizing the color values withmedia nature of the input signal. On the other ham&rmedia
increasingly finer quantization step siz&patial scalability transcoding or transmoding is the process of converting
is the representation of the same video in varying spatthle media input into another media format. Examples of
resolutions.Temporal scalabilityis the representation of theintermedia transcoding include speech-to-text [14] antbot
same video at varying temporal resolutions or frame ratde-text [15] translation. Both the intramedia and the intedia
Frequency scalabilityncludes different frequency componentsidaptation concepts are used in this paper for video engpdin
in each layer, with the base layer containing low-frequen@g described in the following section.
components and the other layers containing increasingly-hi
frequency components. Such decomposition can be achieved|, A DAPTIVE CONTENT DELIVERY AND DESCRIPTION
via frequency transforms like the DCT or wavelet transfarms USING SEMANTICS
Finally, the basic scalability schemes can be combinedaotre
fine-granularity scalability such as in MPEG-4 FGS [9].
The various scalable coding methods introduced previou
perform the same operation over the entire video frame.
object-based temporal scalability (OTS), the frame rate
foreground objects Is enhanced so that it has a smoot; (fexing. Semantic video analysis and semantic encodiag ar
motion than the paclfground. . described next.

Video transcoding is the process of converting a compressed
video signal into another compressed signal with different o )
properties. Early solutions to video transcoding deteentire A- Seémantic video analysis
output format based on network and appliance constraintsSemantic video analysis is used to extract the main content
independently of the semantics in the content (contendblimessage from the video. The semantics to be included in

The proposed framework for adaptive video delivery and

utomatic description uses video content analysis andrgigma
?Ve-filtering prior to encoding (Figure 1) in order to impeov

e perceived content quality and to provide additionakfun
f nalities, such as privacy preservation and automatiewi
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the analysis is dependent on the specific application. In t
following, we discuss possible semantics and, in particulg
we describe the use of motion as semantics.

Semantic video analysis refers to a human abstraction a
usesa priori information to translate the semantics into ruled
The rules are then applied through an algorithm. Exampl{&= 2
of semantic video analysis based arpriori information are |
template matching, extraction of captions and text, face BT
tection, and moving object segmentation. Template magchin (
is used to implement the semantics when the shape obje
we want to segment is knowa priori. In this case, which
includes in particular the detection of captions and texg t
extraction method searches for specific object featuresring
of geometry. For segmenting faces of people, color-bas
segmentation can be used [16]. The face detection tasksten
in finding the pixels whose spectral characteristics lie in |
specific region in the chromaticity diagram. For extracting 8 | i
moving objectsmotion informationcan be used as semantics. (c) B d)
Several applications, such as sport broadcasting and video

; ; ; ; ; Fig. 2. Example of semantic video analysis results for tisé sequences (a)
surveillance, deal with segmenting moving objects. Hall Monitor and (c)Highway: (b) separation of foreground and background

A typical tool used to tackle the problem of object segmefior Hall Monitor. (d) separation of foreground and background Hisghway.
tation based on motion is change detection. Different chan§’® background is color-coded in black
detection techniques can be employed for moving camera
and static camera conditions. If the camera moves, change
detection aims at recognizing coherent and incoherentmgovipossible to derive the significance test as
areas. The former correspond to background areas, the latte N2 o
to video objects. If the camera is static, the goal of change  py(i i) > (i, j)|Ho} = [(a/2,9(i,j)"/20°) @)
detection is to recognize moving objects (foreground) dved t I'(q/2)
static background. The semantic analysis we use addressefhen this probability is smaller than a certain significance
the static camera problem and is applicable in the case ofegel, o, we consider thatH, is not satisfied at the pixel
moving camera after global motion compensation. The changssition (i, j). Therefore we label that pixel as belonging to a
detector decides whether in each pixel position the for@tlo moving object. The significance levelis a stable parameter
signal corresponding to an object is present. This decisigiat does not need manual tuning along a sequence or for
is taken by thresholding the frame difference between tifferent sequences. Experimental results indicate tladiti v
current frame and a frame representing the background. WRgues fall in the range from0~2 to 10~°.
frame representing the background is dynamically gengrate The change detection process produces the segmentation of
based on temporal information [17]. The thresholding aimfe moving objects from the background (Figure 2) and, cou-
at discarding the effect of the camera noise after framged with video object tracking [18], enables the subsetiuen

differencing. A locally adaptive threshold(i, j), is used that extraction of object metadata, as described in the follgwin
models the noise statistics and applies a significance Test. section.

this end, we want to determine the probability that frame
difference at a given positioft, ;) is due to noise, and not to Semanti di
other causes. Let us suppose that there is no moving objec?rn Ic encoding

the frame difference. We refer to this hypothesis asrthtt ~ The decomposition computed with semantic video analysis
hypothesisHy. Let ¢(i, j) be the sum of the absolute valueds used with an object-based encoder as well as with a
of the frame difference in an observation windowgopixels traditional frame-based encoder. We will refer to the forme
around(i, j). Moreover, let us assume that the camera noiseGdse asobject-based encodingnd to the latter asrame-
additive and follows a Gaussian distribution with variance based encoding-urthermore, metadata are used to efficiently
Given H,, the conditional pdf of the frame difference followsencode relevant information and to enhance relevant paat of

a x?2 distribution with ¢ degrees of freedom defined by low-quality coded video. These approaches are referred to a
metadata-based encodirend metadata-enhanced encodjng

. - 1 (4-2)/2—g(i,5)? 207 respectively. Relevant examples of the modalities present
Fg(i,j)IHo) = WQ(W) € *in this section are illustrated in Figure 3. The analysis and
(1) evaluation of the different approaches in terms of resuits a
whereT'(-) is the Gamma function, that can be evaluated &andwidth requirements are presented in Section V.
I'(x+1) = 2T'(x), andl'(1/2) = /7. To obtain a good trade- 1) Object-based encodindVith object-based encoding, the
off between robustness to noise and accuracy in the detectemcoder needs to support the coding of individual videoaibje
we choosey = 25 (5 x 5 window centered iz, j)). It is now (e.g., MPEG—4 object-based). Each video object is assitmed

(b)
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Fig. 3. Examples of encoding modalities. (a) Sample framenfthe sequenc&occer (b) Semantic frame-based encoding: the background istaely
lowpass-filtered prior to encoding; (c) Metadata-basedodimg: object shapes are superimposed on the backgrouhd&p@ial resolution reduction; (e)
Metadata-enhanced encoding: metadata are used to enle@eant portions of a video

a distinct object class, according to its importance in tens.
The encoding quality can be set depending on the object clag
the higher the relevance, the higher the encoding qualite O
advantage of this approach is the possibility of contrgllin
the sequencing of objects: video objects may be encode
with different degree of compression, thus allowing bette
granularity for the areas in the video that are of more irstetiee
the viewer. Moreover, objects may be decoded in their orde
of priority, and the relevant content can be viewed without (@) (b)
having to reconstruct the entire image (network limitaéon rig. 4. (a) Selective lowpass-iltering simplifies the infation in the
Another advantage is the possibility of using a simplifietackground, while still retaining essential contextudbimation; (b) filtering
background (appliance limitation), so as to enhance the rBe entire image inhibits the main content message
evant objects. Using a simplified background aims at taking
advantage of the task-oriented behavior of the human visual
system for improving compression ratios. Recent work on 3) Metadata-based and metadata-enhanced encodig:
foveation [19] demonstrated that using nonlinear integnat further processing of the video content is performed to cope
of low-level visual cues mimicking the processing in primatwith limited device or network capabilities as well as to
occipital and posterior parietal cortex allows one to da@lgsi automatically generate metadata. Such processing transfo
increase compression ratios. Moreover, the work reporedthe foreground objects extracted through semantic arsalysi
[20] demonstrated that an overall increase in image qualityto quantitative descriptors and enables video annatatio
can be obtained when the increase in quality of the relevarideo annotation is desirable for applications such aswide
areas of an image more than compensates for the decreassuineillance, where terabytes of data are produced and need
quality of the image background. to be searched quickly. Moreover, the descriptors can be
2) Semantic frame-based encodinghe semantic frame- transmitted instead of the video content itself and superim
based encoding mode exploits semantics in a traditionaddra posed by the terminal on a still background. For example, an
based encoding framework (e.g., MPEG-1). The use of thbject identifier and a shape descriptor are used in [21]. The
decomposition of the scene into meaningful objects priobject identifier is a unique numerical identifier descripin
to encoding, referred here aemantic pre-filtering helps the spatial location of each object in the scene. The shape
support low bandwidth transmission. The areas belonging descriptor is used to represent the shape of an object,ngngi
the foreground class, or semantic objects, are used asnregiom a bounding box to a polygonal representation with a
of interest. The areas not included in the region of interegifferent number of vertices (Figure 3(c)). This approash i
may either be eliminated, that is set to a constant value, wseful to preserve privacy in video surveillance applumasi
lowered in importance by using a low-pass filter. The latters well as to reduce bandwidth requirements under critical
solution simplifies the information in the background, whil network conditions. A progressive representation is udeere/
still retaining essential contextual information. An exgen the number of vertices corresponding to the best resolution
of this solution is reported in Fig. 4 (a). On the other hands computed, and any number of vertices smaller that this
filtering the entire image inhibits the main content messageaximum can be used according to the requirements of the
Fig. 4 (b). Another way to take into account less relevamipplication. In addition to the above, other features such a
portions of an image before coding is to take advantage of tbelor and texture descriptors may be added in the desaniptio
specifics of the coding algorithm. In the case of block-bas@docess. The choice of these additional features depends on
coding, each background macroblock can be replaced bythe application at hand.
DC value. Semantic frame-based encoding mimics the wayln addition to the above, the descriptors can be transmitted
humans perceive visual information and allows for a reduncti along with the video itself and used for rendering the video
of information to be coded. content. This solution, consisting in a mixture of videséd
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and text-based modalities, is here referred toenatadata- evaluation metric, thesemantic peak signal-to-noise ratio
enhanced encodindJsing metadata-enhanced encoding, coiSPSNR, is the following:
tent descriptors help enhance parts of the video that adehid

- . . . V2
or difficult to perceive due to heavy compression. In thisecas SPSNR = 10log, [ =2 |, (6)
the video itself is the background and the descriptors fjghl SMSE

relevant portions of the data. One example is the ball invﬁwereVM is the maximum peak-to-peak value of the color
football match for transmission to a PDA or a mobile phon?ange When the object classes are foreground and back-

as shown in Figure 3(e). ground, thenN = 2 in Eq (3). If we denote withw; the
foreground weight, theSPSNR = PSNR whenw; = 0.5.

IV. QUALITY ASSESSMENT The largerwy, the more important the contribution of the

Perceptual video quality assessment is a difficult tadfreground. Whenw; = 1, then the foreground only is

already when dealing with traditional coders [22]. Wheﬁonsidered in the evaluation of the peak signal-to-noitie.ra

dealing with object-based coders, the task becomes eve
more challenging. For this reason, we use a combination Gl
subjective and objective evaluation techniques to comfteae .
performance of the different encoding modalities. Sulbject

evaluation includes the visual comparison of frames andddra | . . .
details. This analysis is performed at different bitratesl a s T —
at different frame resolutions. Objective evaluation untes
temporal signal-to-noise ratio analysis and the analyfsiate-

n illustration of the impact ofu; in the distortion measure
shown in in Fig. 5. The figure presents a comparison of the

distortion curves. £ 2
A. Semantic peak signal-to-noise ratio ol |
1)
Traditional peak signal-to-noise ratio (PSNR) analysis un @
formly weights the contribution of each pixel in an image e

when computing the mean squared error (MSE). This analysis B o 06 o065 07 o 08 oss oo o 1

Foreground weight

gives the same importance to relevant as well as less relevan
areas of an image. To account for the way humans percefig 5. lllustration of the impact ofv; in the distortion measure: average

visual information, different areas of an image, or Obje@tPSNR vs. foreground weight fddall monitor sequence. The five labels
' ' correspond to the following sequence types: (1) coded raigi(2) tempo-

Cla_ssesa should be Cons?dere_d [11]. We take in_to accoWl; down-sampled; (3) spatially down-sampled; (4) staiackground; (5)
object classes through a distortion measurestdmantic mean simplified background. Content-blind coding methods @))decrease their

I rr MSE fin . performance when the foreground is given more importancethttls based
squa ed errof SMSE, defined as on semantic, (4) and (5), increase their performance wheridieground is
N given more importance
SMSE = > " wy, - MSEx, (3)
k=1 average SPSNR of the sequetad! Monitor for the different

whereN is the number of object classes amg the weight of encoding modalities described in Section 1I-B as functidn
classk. Class weights are chosen d%pending on the semanticg, The value ofw; to be used is estimated as described in
with w, > 0,Vk = 1,...,N and ) ;" w, = 1. The mean the next section.

squared error of each clasgdSE;, can be written as
B. Determination of the foreground weight

Subjective performance evaluation experiments have been
performed to estimate the foreground weight leading to the
whereC}, is the set of pixels belonging to the object cldss closest match between SPSNR prediction and human judg-
and|Cy| is its cardinality. The class membership of each pixehent. Twenty non-expert observers of different ages and
(i,4) is defined by semantic video analysis. The ekir j) backgrounds have been presented a series of video sequences
between the original imagh, and the distorted imaggs in  according to ITU-T Recommendation P.91&psolute Cate-
Eq.(4) is the pixel-wise color distance. The color distaixe gory Rating[23]. The evaluation has been carried out using
computed in the 1976 ClEab color space in order to considerthe MPEG—4 test sequencégkiyo, Hall Monitor, Children,
perceptually uniform color distances with the Euclideammo and Coastguard Video sequences have been generated using
and is expressed as: the encoding strategies described in Section 111-B, aedéht
bitrates, and rated by the observers on a scale ranging from 0

d(i,j) = \/(AIL(i,j))2 + (Ala(i,j))2 + (Alb(z‘,j))z, (bad) to 100 (excellent). This range of values was presented

(5) to the observers in a training phase.
with ATE(i,5) = 15(i,5) — 15(i, j), AI%(i,5) = I8 (i, ) — The foreground weightwe, is determined for each test
I8 (i, 7), andAI°(i, ) = I4(i, j) — 1% (i, j). The final quality sequence by maximizing the Pearson correlation [24] betwee

1 o
MSE = 7 . d(id), @
Gkl e
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SPSNR and subjective results. The results are summarizedirsemantic analysis on the encoding performance of frame-
Table I. For the sequend&kiyo, where the foreground coversbased as well as object-based coders and demonstrate the use
a large area of each frame and the background is simple, tfethe proposed approach for advanced applications, such as
the observers focused mostly on foreground, thus leadirgg t@rivacy preservation in video surveillance. Sample rasait
value ofwy = 0.97. For Hall Monitor, whose background is shown from the MPEG—4 test sequenidall Monitor and
more complex and objects are smaller, the foreground &ttacfrom the MPEG-7 test sequenttighway Both sequences
slightly more the attention than the background & 0.55). are in CIF format at 25 Hz. The modalities under analysis are:
The sequenc€hildrenhas a very complex and colored back{1) coded original sequence; (2) temporal resolution rédaoc
ground that attracted the observers’ attention, thus tiegul (from 25 frames/s. to 12.5 frames/s.); (3) spatial resotuti

in foreground and background being equally weighted £ reduction (from CIF to QCIF); (4,6) video objects compodite
0.5). The sequenc€oastguardcontains camera motion thatwith static background; (5,7) video objects compositechwit
prevented the observer from focusing on background steadd8implified background. The background is simplified using a
even though the background is quite complex. In this case, Baussiardz9 low-pass filter withy, = 0 ando = 2.

resulting foreground weight is; = 0.7. In general, results The following coders have been used in the encoding
confirm that large moving objects and complex backgroumocess: (i) TMPGEnc 2.521.58.169 using constant bitrate
tend to attract user’s attention. Based on the data cotleciitn (CBR) rate control for frame-based MPEG-1; (ii) MoMuSys
subjective experiments, it is possible to predict the fovsagd MPEG-4 VM reference software version 1.0 using VM5+

weight based on the following formula: global rate control for object-based MPEG—-4; (iii) Expway
B 5 5 7 MPEG-7 BiM Payload encoder/decoder version 02/11/07 for
wp=a-r+ (0= F-1)op+7-v+9, (M) MPEG-7 metadata: (iv) Kakadu JPEG2000 codec version

where r represents the portion of the image occupied tﬂ/.z for JPEG200 still images. The value of the foreground
foreground pixels, expressed as= |C¢|/(|C¢| + |Cy|), with weight used in the objective evaluation is; = 0.55 for
|C}| and |C,| representing the number of foreground anhlall Monitor, as determined with the subjective experiments,
background pixels, respectively. The background complexiand wy = 0.53 for Highway, computed using Eg. (7) with
is taken into account withr,, the standard deviation of ther = 0.07, 05 = 48,v = 0.
luminance of background pixels. The presence of cameraFigure 6 shows the rate-distortion diagrams for the test
motion is considered with the term: v = 1 for moving Sequences. The average SPSNR for five encoding modalities is
camera, and) = 0 otherwise.«, 3, v, andé are constants plotted against the encoding bitrate. Figures 6 (a) andh(@ys
whose values are determined based on the results of the rate-distortion diagrams for MPEG-1 at bitrates betwee
Subjective experimentg and are the fo||owir¢g:: 57, 8 = 150 Kbit/s and 1000 Kbit/s. At low bitrates (150-300 KbII/S)
0.108, v = 0.2 andé = 0.01. The final value ofw; is the semantic encoding with static background (4) leads to atarg
average of the foreground weights over the sequence. ~ SPSNR than any of the content-blind methods (1-3). This is
In addition to semantic weight, Table | provides informatiobecause inter-coded static background blocks do not peoduc
aboutaccuracy monotonicityand consistencyof the SPSNR residue and most of the available bitrate can be allocated to
metric. Accuracy is given by Pearson linear correlationffoe foreground objects. In Figures 6 (c) and (d), foreground and
cientr,, monotonicity by Spearman rank-order correlation cdackground are encoded in two separate streams using-object
efficientr,, and consistency by outliers ratig [24] Pearson based MPEG—4 at bitrates between 100 Kbit/s and 500 Kbit/s.
correlation of PSNRy,(0.5), is given for comparison. Pearsontere semantic analysis is used in all five modalities. It iibss
correlationr, and Spearman correlation are close to 1 for to notice that quality is improved at low bitrates by low-pas
all sequences. Thus, accuracy and monotonicity of SPSNR &ligring the background or using a still frame representirey
high. Outliers ratior, is around 10%, thus consistency of thdackground.
metric is good as well. Note that using semantics improvesFigure 7 shows a sample frame from each test sequence

accuracy by up to 80/0A(|(|yo), as compared to PSNR. coded with MPEG-1 at 150 Kbit/s with and without semantic
pre-filtering. Figure 8 shows magnified excepts of both test
TABLE | sequences coded with MPEG-1 at 150 Kbit/s. Figure 8 (top)
FOREGROUND WEIGHT ANDSPSNRACCURACY shows the person that carries a monitoHall monitor. The
| [ AKiyo | Hall monior | Chidien | Coasiguard | amOL_mt _of coding artifacts is no'_[ably reduced by 7semant|c
= 507 555 550 o7 pre-filtering (_(d) and _(e_)). I_n particular, the person’s rtiou
rp(we) || 0.95 0.90 0.95 0.92 and the monitor are visible in (e), whereas they are cortupte
rp(0.5) || 0.87 0.89 0.95 0.90 by coding artifacts in the non-semantic modalities. Simila
rs(wr) 0.90 0.84 0.95 0.93 ; ; ;
o) 516 oL 507 507 observations can be made for Figure 8 (bottom), which shows

a blue truck entering the scene at the beginning oHighway
sequence. Coding artifacts are less disturbing on the binjec
(d) and (e) than in (a)-(c). Moreover, the front-left wheél o
the truck is only visible with semantic pre-filtering ((d)dan

In this section, experimental results of the proposed sem4n)).
tic video encoding and annotation framework with standard Next, we evaluate the cost of sending metadata for metadata-
test sequences are presented. The results illustrate frecimbased and metadata-enhanced encoding. Table Il shows the

V. EXPERIMENTAL RESULTS
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Fig. 6. Rate-distortion diagrams. (&all monitor, MPEG-1; (b)Highway MPEG-1; (c)Hall monitor, MPEG-4 object-based; (djighway, MPEG-4

object-based

bitrate required by three types of description ftall Monitor level of information hiding obtained using object desarist
and Highway using MPEG-7 binary format (BiM). MPEG-for the sequencéiall Monitor. A surveillance operator can

7 binary format is used for sending summary informatiobe shown different video types, ranging from the full appear
to terminals with limited capabilities and to enhance higaviance of the objects (Figure 9 (a)) to the visualization of a
compressed videos. The descriptions are represented by pghsition locator that allows the operator to derive stiatst
spatial locators of the foreground objects, their boundirapout number of objects, their behavior and position withou
boxes, and an approximation of their shape with 20-sidelisclosing their identity (Figure 9 (d)). Intermediate dév of
polygons, respectively. The metadata size increases Wéh visualization include the approximation of object shapes t
description complexity and with the number of objects in thieides the identity of the subjects captured by the surveita
scene Kall Monitor vs. Highway). The cost for metadata- camera, while allowing to derive information about theiesi
enhanced encoding can be further reduced by sending #mal form (Figure 9 (b)), and the bounding box (Figure 9 (c)).
description of critical objects only. In addition to the abp The encoding cost associated with this additional funetiibn
added to a surveillance system is 21 Kbit/s for the spatial
locator, 59 Kbit/s for the bounding box and 89 Kbit/s for the
polygonal shape. The choice of the description to be used
depends on the trade-off between privacy and the monitoring
task at hand.

TABLE I
AVERAGE BITRATE OFMPEG—-7 BM SEQUENCE DESCRIPTION

[ DEscRIPTION| Spatial locator| Bounding box| Polygon shape]

Hall monitor 21 Kbit/s 59 Kbit/s 89 Kbit/s
Highway 26 Kbit/s 66 Kbit/s 98 Kbit/s

VI. CONCLUSIONS

metadata-enhanced encoding is used for privacy presanvati We presented a content-based video encoding framework
in video surveillance. Figure 9 shows an example of differewhich is based on semantic analysis. Semantic analyside=nab
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Fig. 7. Frame 190 oHall monitor (top) and frame 44 oHighway (bottom) coded with MPEG-1 at 150 Kbit/s using different malittes: (a) coded original
sequence; (b) static background; (c) simplified background
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