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Flexible Motion-Adaptive Video Coding
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Abstract—This paper presents a highly flexible video coding
scheme, based on the use of a redundant dictionary of spatio-
temporal three-dimensional (3-D) functions. Directionality and
anisotropic scaling are key ingredients to the spatial components,
which form a rich collection of two-dimensional (2-D) visual prim-
itives. The temporal component is tuned to capture most of the
energy in the temporal signal evolution, along motion trajectories
in the video sequence. The video coding scheme (MP3D) first
computes motion trajectories that are eventually entropy coded
and sent as side information to the decoder. It then applies a
spatio-temporal decomposition along motion trajectories, using
an adaptive approximation algorithm based on matching pur-
suit (MP). Quantized coefficients and basis function parameters
are entropy-coded in a embedded stream that is constructed to
respect multiple rate constraints. The geometric properties of
the 2-D primitive dictionary allow for flexible spatial resolution
adaptation, so that the flexible MP3D stream enables decoding
at different spatio-temporal resolutions, and multiple rates. The
MP3D scheme is shown to provide rate-distortion performance
that are comparable with state-of-the-art schemes, such as H.264,
MPEG-4, at low and medium bit rate. However, the use of a re-
dundant dictionary is penalizing at high coding rate, which makes
the MP3D algorithm mostly interesting for low rate applications,
or as a flexible base layer in hierarchical coding schemes.

Index Terms—Matching pursuit, redundant expansion, scala-
bility, spatio-temporal atoms, video coding.

1. INTRODUCTION

IGH scalability video coding is becoming a stringent re-

quirement for video streaming and delivery over the In-
ternet and heterogeneous networks. These networks are char-
acterized by a fluctuating channel capacity and a wide range
of clients with different computational and display capabilities.
Hence, the goal of highly scalable video coding is to generate
a single embedded bit stream that can be decoded efficiently at
different bit rates and at various resolutions. This framework im-
poses strong constraints on the encoder: it has to operate without
prior knowledge about the specific bit rate and the format at
which the compressed video will be decoded. For this reason,
video coding algorithms based on the predictive feedback ap-
proach, which combines motion compensation and a discrete
cosine transform (DCT) transform, fail to achieve high scal-
ability. An alternative method is to use a feed-forward or an
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open-loop approach, where a spatio-temporal transform is fol-
lowed by embedded quantization and coding.

Most scalable three-dimensional (3-D)-based approaches
employ a separable two-dimensional (2-D) discrete wavelet
transform (DWT) for the spatial information, and DWT with
either a transversal or lifting implementation along motion
trajectories. Recently however, it was pointed out that the
separable 2-D wavelet transform is not ideally suited for repre-
senting images as it fails to capture regular geometric features
(e.g., edges) [1].

In this paper, we elaborate a new 3-D coding method that
tries to overcome these limitations. Stepping upon previous
work on low bit rate image and video coding using redundant
dictionaries [2]-[4], we introduce a spatio-temporal representa-
tion that consists in applying a sparse decomposition algorithm
along motion trajectories. On the algorithmic point of view,
using redundant dictionaries still represents quite a challenge.
Nevertheless, the recent advances related to sparse approxima-
tions motivate the use of the pure greedy algorithm (also known
as matching pursuit (MP) [5]) as a decomposition strategy
for the video sequence. The MP3D scheme consists of two
modules: 1) motion-adaptive 3-D transform and 2) embedded
quantization and coding. The motion-adaptive 3-D transform
algorithm comprises two steps, which are the motion trajectory
prediction and MP decomposition. The embedded bitstream
is generated through a rate-constrained quantization scheme,
which is applied to the transform coefficients. Then, these quan-
tized coefficients are compressed with the adaptive arithmetic
coding, along with atom indexes. Finally, motion parameters
are entropy-coded and sent as side information to the decoder.
It has been found that at low and medium bit rate, (i.e., less than
500 kbps), the obtained compression performance of MP3D
are very comparable to the state-of-the-art nonscalable coders
H.264 and MPEG-4, and to the scalable schemes MC-EZBC
and H.264 with scalability extensions (denoted in this paper as
H.264/Ext). However at higher bit rates, our redundant dictio-
nary approach becomes less efficient in terms of compression
efficiency when compared to rate-distortion behavior.

An overview of the state-of-the-art 3-D-based video coding
approaches is given in Section II. In Section III, we review
some of the recent results, which are related in signal approx-
imation with redundant dictionaries, and present an overview
of the MP3D coding scheme is given in Section III-C. The mo-
tion-adaptive 3-D transform is presented in details in Section IV.
Then, the generation of an embedded scalable bit stream is
presented in Section V. Experiments carried out on standard
test sequences illustrate the compression efficiency of MP3D
in Section VI. Section VII highlights the scalability features of
the MP3D coding scheme, which are the resolution and SNR
scalability properties. Finally, conclusions and perspectives are
provided in Section VIII.
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II. RELATED WORK

Most successful scalable video coding schemes are based
on 3-D separable DWT. Karlsson and Vetterli initiated the
use of DWT for subband video compression [6]. Then, in the
method proposed by Ohm [7], a translational model is assumed
for motion, where the video frames are divided into blocks
that undergo a translation or a rigid motion. A separable 3-D
wavelet transform is then applied on the displaced blocks.
However, the effects of contraction and expansion in the motion
field are observed by the appearance of disconnected pixels
between the blocks. These disconnected pixels are handled
differently, in order to make the transform invertible, which
affects the overall coding performance. In the scheme proposed
by Taubman and Zakhor [8], a warping operator is used in order
to align the frames in the direction of motion prior to applying
the 3-D transform. However, only global camera pan is treated
in their warping operator in order to make it invertible. Kim
and Pearlman [9] uses a 3-D separable transform, by extending
the successful 2-D wavelet-based SPIHT algorithm [10] into
the temporal dimension. However, without motion compen-
sation, it produces some annoying ghosting artifacts at low
bit rate, because of the temporal filtering. This motivates the
exploitation of motion within the spatio-temporal transform.
Subsequently, Choi and Woods [11] propose a motion-com-
pensated 3-D scheme where a hierarchical block matching
motion estimation algorithm with pruning is used with half-pel
precision for displacements. In the same manner as in [7], this
scheme applies a special processing for disconnected pixels,
which enhances coding efficiency. In the same framework, we
can also cite the 3-D embedded subbdand coding with opti-
mized truncation (3-D ESCOT) [12], which has been proposed
by Jizheng et al. In this scheme, a wavelet decomposition is
first applied along motion trajectories, followed by a DWT
decomposition in the spatial dimensions. It is worth noting that
both warping-based and block displacement-based methods
often use Haar wavelets. When longer filters are selected, they
do no bring any significant improvement in terms of coding
efficiency.

Recently, 3-D wavelet based methods have been redesigned
by employing the lifting scheme in the temporal dimension in
order to have perfect reconstruction regardless of the motion
model. The LIMAT scheme [13] employs a lifting implemen-
tation of the DWT, in which each lifting step is compensated
for the estimated scene motion. Mesh-based motion estimation
algorithms are shown to perform better than hierarchical block-
based ones. Another lifting-based scheme that satisfies the in-
vertibility property has been presented in [14].

Finally, in-band motion-compensated temporal filtering
(IBMCTF) [15], has been proposed in order to overcome the
problem of the shift-variance property of the critically sampled
wavelets, encountered when applying the MCTF operation
in the spatial subbands. In fact, the IBMCTF performs the
spatial decomposition of the image sequence first through the
DWT, then it applies the MCTF operation in each subband.
A shift-invariant wavelet representation is thus constructed by
using a complete-to-overcomplete discrete wavelet transform
in order to build a wavelet representation that is overcomplete.

This was shown to improve the scalability and the efficiency of
video compression.

In summary, most of the existing scalable video compression
schemes employ a separable 2-D wavelet transform for the spa-
tial information and a temporal DWT along the motion trajecto-
ries with either a transversal or a lifting implementation. Our ap-
proach differs from the afore-mentioned schemes in that it uses
an overcomplete dictionary for adaptive signal decomposition
in both the spatial and the temporal dimensions. In other words,
this adaptive signal decomposition provides a sparse represen-
tation, consisting of only the atoms that match well the signal
components. Meanwhile, the remaining atoms in the dictionary
are simply ignored in this signal decomposition. This method
allows to achieve competitive performance at low and medium
bit rate while ensuring scalability and flexibility of the com-
pressed bit streams, which become a series of geometric fea-
tures. These nice properties however usually come at a price,
which is a higher computational complexity.

III. MP EXPANSION OF IMAGE SEQUENCES

A. Benefits of Nonlinear Sparse Approximations

Most acclaimed technical solutions to both image and video
compression, namely the JPEG2000 and MPEGx/H.26x fami-
lies of standards, rely on the transform coding. Moving to the
transform domain is classically performed in order to obtain
decorrelated sets of coefficients on which scalar quantization
and entropy coding is performed. The choice of the transform is
thus driven by its de-correlating performances as well as good
properties under quantization and ease of entropy coding. Most
techniques use two well controlled orthonormal basis (ONB):
DCT and wavelets. Performing the transform by means of an
ONB allows for the use of well studied data compression re-
sults, and in both cases fast algorithms help keeping a low com-
plexity algorithm. Unfortunately, restricting a representation to
an ONB fixes a very rigid structure on the components of the
signals that are represented, and sometimes dramatically dam-
ages the coherence and quality of important visual primitives.
This results in annoying artifacts at low bit rates on textures
and edges. To cope with these problems, an interesting line of
research consists in representing the image with a transform
whose building blocks match important signal structures. Un-
fortunately, the price to pay for such a freedom is that no genuine
ONB can be used and a new coding paradigm has to be adopted.
In the following, we will basically derive a coding scheme that
tries to preserve predefined structures in a sequence of frames.
More specifically we view such a sequence as a 3-D space-time
signal I(z,y,t) and we will try to efficiently encode coherent
spatio-temporal structures.

The approach we have chosen relies on expanding the signal
as a linear superposition of N generalized waveforms g.,, tuned
to match the signal structures D

N-1
I=73" cigy. e
i=0
These waveforms are selected among a vast library

D = {g,v € I'} with the only constraint that D is dense in
the space of finite energy signals. In the following, we will
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refer to g, as an atom and to D as a dictionary. The parameter
set I" usually carries important information about the atoms,
for example space and frequency localization. Of course, we
would like also that the necessary parameters in this expansion,
namely the set of coefficients ¢; and indexes +;, yield good
compression performances; this mainly leads to a generic
requirement about (1), namely that this expansion is sparse
enough.

Without more constraints on D, and in particular if it is not an
ONB, there is generally no unique solution to (1). One possible
solution can be to look for the sparsest exact expansion, that is
minimizing the number of coefficients in (1). This unfortunately
leads to an NP hard, combinatorial optimization problem [16].
A close solution may be provided by relaxing this problem and
trying to minimize the /! norm of the coefficients; it leads to the
Basis Pursuit algorithm, deeply studied by Donoho and collab-
orators [17]. Interestingly, this algorithm sometimes provides
the optimal sparsest solution of (1) with particular dictionaries
[18]-[20]. Alternatively, the MP algorithm [5] solves (1) by iter-
atively decomposing the signal using a greedy strategy. Starting
with Rg = I, the nth iteration reads

Rn = <Rn7 g'Yﬂ > g'yn + R'n+1 (2)

where the atom g, is the one having maximum correlation with
R,,. It is given by

gr. = mrgamax|{Ro, g5)] @)

where « is a positive constant that depends on the search
strategy and is equal to 1 in the exhaustive search case. After
N steps, MP yields a sparse approximation

N-1

I=73" (Ri,gy.) gy + Ry )

1=0
where Ry is the residual error. MP converges [21], that is
|Rx|] — O when N tends to infinity and converges even
exponentially in finite dimension [5]. It can be bounded as

|IRN|2 = (1 —a?pH)N (5)

where (3 is a constant that solely depends on D and is getting
close to 1 when the redundancy increases. Recently, more con-
structive results have been obtained concerning the approxima-
tion properties of greedy algorithms [20] but their description is
beyond the scope of this paper. As already shown in [3], MP is
particularly well suited for low rate and adaptive coding of vi-
sual information because it easily yields scalable streams by a
simple truncation. A good approximation is obtained with few
well chosen components, mostly because MP will first pick the
most prominent signal structures in the dictionary. This property
makes it particularly useful at low and medium bit rates.

B. The 3-D Spatio-Temporal Overcomplete Basis

The video sequence is approximated in terms of a series of
3-D spatio-temporal atoms. These atoms, which consist of sep-
arable spatial and temporal components, should have a struc-
ture that is able to efficiently represent the spatial image con-
tent, as well as temporal evolution along motion trajectories.
Many approaches have been proposed to improve image rep-
resentation (e.g., curvelets [1], bandelets [22], contourlets [23])

and all underline that an efficient image representation should
have the following properties: 1) multiresolution; 2) localization
(the basis functions should be localized in space and frequency);
3) directionality (the basis functions should have different ori-
entations); and 4) anisotropy (the basis functions should have a
variety of elongated shapes with different scale ratios).

As for the spatial part of our dictionary, we use the same
construction as proposed in [3], which we sketch here for the
sake of completeness. Two spatial mother atoms have been pro-
posed, satisfying the localization property, a 2-D Gaussian g1,
an edge-like function g5 built on a Guassian, and its second par-
tial derivative in the orthogonal direction

1 2,2
g1(z,y) = ﬁe_(x ) (6)

=2 42 9GP

The 2-D Gaussian is used in order to extract the low frequency
components and to generate a coarse approximation of image
content. Whereas the motivation behind using the second par-
tial derivative of Gaussian, besides the localization property, is
the need to have a function that efficiently captures image sin-
gularities like edges and contours.

The overcomplete spatial dictionary is spanned by shifting,
orienting, and scaling the spatial mother atoms using the fol-
lowing unitary operators:

e Shift:
Uiz yo)9 = 9 (( — 0), (Y — 10)) - ®)
e Orientation:
Uggz = g2 (r-p(,y)) - )
e Scaling:
1 T
Ungr = =01 (5.2) (10)
a a’ a
1 Ty
u(al,ag)QQ - \/m.QQ <a_17 CL_2> . (11)

For implementation issues, spatial position (zg,¥yo) sweeps
the whole image and orientation may take 32 values
6 = in/32, where i = O0,...,31. The scaling factor aj,
j = 1, 2, is logarithmically distributed as a; = 2%/2, with
i=0,...,2[log(Image_size/6)].

The temporal functions, on the other hand, should satisfy
the following objectives. They should capture most of the
signal energy in the low-pass temporal frequencies with few
elements, as this will reduce the ghosting artifacts at low bit
rate. They should satisfy the multiresolution and the local-
ization properties in order to approximate well the temporal
evolution of the video signal. These properties are achieved by
selecting a (3-spline 3™ (¢) function [24]. Trading-off between
temporal and frequency decay, the order of 3"(¢) should be
n > 2. Empirically, the 3rd order 3-spline, (3°(t), was shown
to provide good approximation performances for a group of
pictures (GOP) size of 16. The temporal part of the dictionary
is thus generated by shifting and scaling the 3-spline

rgt =0 (£21))

S

12)
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Fig. 1. Block diagram of the motion-adaptive MP encoder (MP3D).

The atom center £y sweeps the entire GOP size and the scale
s = 2¢ varies according to i = 0, ..., [logy(GOPge)]. It is
noteworthy that, in the temporal scale s = 2t i refers to the
resolution or the number of frames that are processed in the
signal. When ¢ = 0, only 1 frame is processed, which can be
interpreted as the existence of an abrupt motion, a scene change
or an isolated feature. Whereas for : = 1, the support size is of
3 frames. It means that there is a smooth temporal evolution in
the direction of motion localized in 3 frames. More generally,
the larger the support size, the longer the motion trajectory.

To summarize, the redundant spatio-temporal dictionary is
built by applying the coupled operators &/ and 7 on the 3-D
mother atoms, along motion trajectories, in order to take advan-
tage of the nature of the video signal.

C. Overview of the MP3D Coding Scheme

The building blocks of the novel MP video encoder proposed
in this paper, are represented in Fig. 1. The MP3D coder con-
sists of two main modules, namely 1) the motion-adaptive 3-D
spatio-temporal transform and 2) the embedded quantization
and coding.

The video sequence is first segmented into GOP of size N,
with NV = 16 in the remainder of this paper. The motion-adap-
tive 3-D transform performs a motion estimation in the GOP, in
order to define the motion fields in each frame. These eventu-
ally generate motion trajectories along the successive frames of
the GOP. MP is then implemented with a heuristic search algo-
rithm. It provides a sparse representation of the video informa-
tion in a series of spatio-temporal atoms, which are displaced
along the motion trajectories. In a sense, this operation has the
same objective as the motion-compensated temporal filtering
(MCTF) [11], where the signal is filtered in the temporal di-
mension, along a given trajectory. Finally, the atom parameters
are quantized and progressively encoded to generate a scalable
video stream. Lossless coding (DPCM and arithmetic coding)
is applied to the motion field parameters, which are sent as a
constant rate side information layer to the decoder. The motion
adaptive transform and embedded coding stages are described
in details in the next sections.

Embedded Quantization
ﬂ Cod|ng q
i Bitstream
: Motion Field Coding L .
i Side information

IV. MOTION-ADAPTIVE 3-D TRANSFORM
A. Motion Estimation and Trajectory Prediction

A key element to efficient video coding consists in efficiently
exploiting the temporal redundancy between pictures. This
is generally done by motion estimation, which finds the best
mapping between successive frames. The motion-adaptive
3-D spatio-temporal transform proposed in this work relies
on the definition of motion trajectories that correspond to the
movement of spatial atoms within the GOP.

The motion trajectories, which could be due to either local or
global motion, are obtained through the estimation of the motion
fields in video frames. Motion vectors (MVs), which form mo-
tion fields in a frame, are computed here using a block-matching
(BM) based technique, in the backward direction. Dividing the
frame domain into nonoverlapping blocks induces the smooth-
ness of the estimated motion fields. Block matching is illustrated
in Fig. 2. A block 13,, in the current frame ¢, is mapped to the best
matching block B/, in the previous frame 7 — 1. Equivalently,
the error between 13,,,, and its parent in the previous frame, is
minimized. The spatial displacement vector d,,, between these
two blocks is the MV assigned to each pixel in block 13,,,. These
MVs are then losslessly encoded and transmitted as side infor-
mation to the decoder.

The 3-D atom is constructed by propagating its spatial com-
ponent along the motion trajectory passing by its center in the
reference frame, in the forward as well as the backward direc-
tions. The reference frame is chosen dynamically as the frame
with the largest energy in the GOP. A motion trajectory is de-
fined as the displacement of a pixel, or group of pixels in a
frame, toward previous, as well as successive frames. The mo-
tion fields, which are produced through block matching, and as-
sociated to pixels in a given picture uniquely reference parent
pixels in the preceding picture. Thus, the backward segment
of the motion trajectory is directly given by the motion fields,
and follows the MVs of the successive blocks toward previous
frames in the GOP. However, the motion mapping defined by
block matching is unfortunately not bijective, since parent pixels
may have several children in the following pictures (see Fig. 3).
There is no guarantee that two different blocks in frame ¢ do
not reference overlapping blocks in the frame ¢ — 1. The motion
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Fig. 3. Example of trajectory prediction, for a block in frame ¢.

trajectory segments, in the forward direction with respect to the
reference frame, could be estimated with a forward motion pre-
diction algorithm (i.e., where blocks in frame ¢ are mapped to
blocks in frame ¢ + 1), but this solution is definitely too expen-
sive in terms of complexity, and coding overhead. Instead, the
forward segment of the motion trajectories is inferred from the
backward predicted motion fields, as follows.

A selection strategy is established a priori, in order to com-
pute the most likely forward trajectory of a group of pixels in
frame ¢. A given block B,,, in frame f;, is mapped to the best
matching block By, in frame f;; using only the MVs derived
from backward block matching estimation. The two following
criteria allow to select the best trajectory 1) the minimum dis-
tance to the center of the block, and 2) the scanning order. In the
case where more than one MV from the frame ¢ + 1, point to
a block that overlaps with block B,, in frame f;, the selection
is based on the nearest neighbor criteria. In the low probability
case where this criteria is not sufficient to choose the best can-
didate vector, the scanning order is determinant. Note that some
blocks in frame f; may not have any children in the frame z 4+ 1,
which simply means that the motion trajectory ends in frame <.
The selection of the motion trajectories is represented in the re-
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Framei

maining of the paper by the generic motion mapping operator
W as

where I(x,y, ) denotes the samples of frame ¢ in the video se-
quence I. Fig. 3 illustrates the steps involved during the trajec-
tory prediction. The dotted lines correspond to possible paths
that are discarded during trajectory prediction. Thanks to the
motion mapping definition, the 3-D MP encoder only transmits
backward MVs to the decoder, and all trajectories are computed
similarly at encoder and decoder, according to the definition of
W. We noticed empirically that varying the size of the blocks
B,,, does not influence significantly neither the approximation
performance, nor the coding efficiency of this scheme, for dif-
ferent test sequences. For instance, a block size of 16 x 16 was
employed for video sequences in CIF format. It is very impor-
tant to clarify that we employed the M Vs, in the backward di-
rection, in order to construct the trajectories of the spatio-tem-
poral atoms. Meanwhile, the temporal support of these atoms
is adaptive, i.e., it can extend over a certain number of frames
in the GOP depending on the video sequence content. In fact,
the temporal support is determined by the scale s of the filter
in (12). Moreover, this temporal adaptivity can be considered as
the bi-directional prediction, which is encountered in the other
video coding schemes.

B. MP Expansion

The second part of the 3-D transform consists in computing
a decomposition of the GOP in a series of spatio-temporal
atoms, by applying the MP algorithm along motion trajectories.
A full 3-D search is obviously too computationally complex
as it requires to compute all the scalar products between each
atom and the residual video sequence. Hence, another effective
search policy has been designed to trade off the complexity
against the approximation performance, and is based on a
heuristic search algorithm, described by Algorithm 1. The it-
erative search algorithm first selects the frame with the highest
energy, in the GOP I"(x,y,t), where I°(z, y, ) represents the
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original pictures. It then performs an exhaustive MP search in
the selected frame, in order to find the M candidates among
the spatial atoms in the dictionary, which best fit the picture
characteristics. A fast MP implementation is used, based on a
FFT algorithm: it allows for computing scalar products with all
translated versions of a single atom using one FFT. Each one
of the M candidates! is then used to build the spatio-temporal
atoms, which are aligned on the motion trajectories according
to W, and have the temporal functions as defined in (12). Then,
the best spatio-temporal atom (g(z,y,t)) is selected, i.e., the
one having the largest inner product amplitude with the residual
signal I"(z,y,t) among all the constructed spatio-temporal
candidate atoms. The residual signal is updated accordingly to
become 1" (x,y,t). The process is repeated until the signal
expansion has enough terms, or until a residual error energy
threshold has been reached. Note that even if the MP does
not perform a full search, the algorithm still converges quite
rapidly, i.e., the constant o from (5) stays close to 1.

The property of choosing the reference frame dynamically in
the GOP as the one having the maximum energy, at each itera-
tion, makes the video signal decomposition very adaptive. This
chosen reference frame acts like an intra-block, where M can-
didate spatial atoms are short-listed. Then, the prediction is per-
formed in both directions by constructing the spatio-temporal
atoms and selecting the one that achieves the best energy ex-
traction or the best prediction. Actually, this property limits the
effects of the error propagation problem, which is encountered
in the feedback-based systems.

Algorithm 1 The Heuristic Search Algorithm.

1: Let I%(z,y,t),t = 1...GOPg,. be a group of frames

2: Select a reference frame r with the largest energy

3: Use the 2-D exhaustive search FFT-based algorithm to
find the best M uncorrelated candidates among spatial
atoms in frame 7

4: Search for the best mapped 3-D atom starting from the
M candidates

5: Update the residual I"(x,y,t) accordingly and itera-
tively get back to step 2.

C. The Computational Complexity

The Algorithm 1 is characterized by a computational com-
plexity of order O(pN; logy Ng + kN,GOPy,.) per iteration,
where NN, is the spatial size of the video sequence, p is a pa-
rameter related to the cardinality of the spatial functions of the
dictionary and k is a constant related to M. On the other hand,
if the exhaustive search algorithm were employed, then it would
require an order of O(qGOP g e+ N logy (Ns-GOPy;,e ), where
the constant ¢ depends on the cardinality of the dictionary D and
it is larger than p. Thus, the proposed algorithm can achieve a
speed-up gain of order (¢/p) - GOPg;,e with respect to the full
search one. For instance, the GOPy;,, is set to 16 and ¢/p is at
least 5, in our experiments.

1M is chosen to be proportional to the number of blocks in a picture, in the
current implementation.

V. EMBEDDED CODING AND QUANTIZATION

A. Scalable Coding

After the motion-adaptive 3-D transform, coefficients and
atoms have to be scalably encoded in order to provide a rate
and geometry-adaptive video signal representation. This stage
is key to fully benefit from the intrinsic scalability properties of
MP expansions over a dictionary built on geometric laws. Each
spatio-temporal atom index needs to be coded and transmitted
along with its coefficient. The atom index is represented by the
tuple (pa, Py, Pt, Gz, Gy, at, §), which costs an average of p bits,
where (pz,Dy,Dt), (az,ay,a:), and 6, respectively represent
the position of the atom, the scale and the spatial rotation
parameters.

Since MP by nature produces a progressive series of atoms,
where most energetic components appear first, it makes sense to
code atoms in order of their appearance. The stream then offers
a great flexibility, since even a simple truncation ensures that
the most important features are preserved. Coefficients can be
coded by taking into account the exponential decay of their mag-
nitude, as proposed in [25]. An approach based on successive re-
finement of information [26] can also be implemented, since the
statistics of the exponential distribution of coefficient magnitude
are known. Both approaches allow to reduce the coding rate of
the coefficients, and provide a fully progressive stream. How-
ever, no significant gain can be obtained on the atom indexes,
since their order is mostly random. Hence, they both work well
when atom index size p is small. However, the index size may
be as large as a few tens of bits for 3-D atoms.

An alternative coding method consists in trying to reduce the
index coding rate by changing the initial order of the atoms,
possibly at the price of a higher coefficient coding rate. Inter-
estingly, the spatial position parameters p, and p, are respon-
sible for almost half of the index coding rate. A natural ap-
proach consists in sorting atoms along their spatial position,
row- and column-wise, similar to the method proposed in [27].
Run-length coding of spatial position parameters, and lossless
arithmetic coding of the remaining parameters could then save
up to 7 bits on the average index size (in the case of CIF video
format). Nevertheless, in such a scheme, the stream is no longer
progressive, since atoms are not sorted along their magnitude
anymore, but rather according to their spatial positions. Trying
to get the best out of both coding alternatives, the embedded
coding in the MP3D encoder initially divides the series of atoms
in S disjoint subsets s;, where each subset contains /; elements
as shown in Fig. 4. These subsets can be seen as energy sub-
bands. Their number is dictated by scalability requirements (i.e.,
the number of target decoding rates), and represents a tradeoff
between stream flexibility, and coding efficiency, which respec-
tively increases and decreases with S. In each subset, atoms
are sorted according to their spatial positions, that are further
run-length encoded. Other index parameters and quantized coef-
ficients are encoded with a context adaptive arithmetic encoder
[28]. The resulting bitstream is now piecewise progressive, and
optimal truncation points can be set at subset limits. The rate
control problem belongs to a general class of bit allocation prob-
lems under multiple rate constraints, and is discussed in detail
below.
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Fig. 4. Series of atoms is divided into energy subsets, as a compromise between coding efficiency and flexibility.

B. Coefficient Quantization

As already observed in [27], the distribution of MP coef-
ficients magnitudes obeys an exponential probability density
function (pdf):

f(z) = p~teTw, (14)
Without constraint on the number of quantization levels, the
mean-square error optimal entropy constrained scalar quantizer
(ECSQ) for the exponential pdf is the uniform scalar quantizer
designed in [29]. We choose to use a uniform quantizer in
each energy subband, allowing however for a different step
size in each coefficient subset. This allows us to conveniently
model rate and distortion, and develop an efficient rate allo-
cation scheme. As introduced before, the subset s; contains [;
coefficients, whose magnitudes belong to the interval [t; 41, t;]
(see Fig. 5). With these notations, sg gathers the highest
energy atoms, and we assumed t{y9 — oo. Under such as-
sumptions, the number of coefficients in subset s; is given by
l; = L(exp(—(tix+1)/n) — exp(—t; /1)), where L is the total
number of atoms. Uniform quantization in the subset s; then
generates reconstruction centroids ¥}, that are given by

z>0, p>0.

Y@ tiv1, ) = kai + tig +6; (15)
where k represents the quantization bin, and «; is the quanti-

zation step size. Following the notation used in [29], the recon-
struction offset in each set is given by

4

a;e
bi=p———=
1—e

Using conditional probabilities, the entropy H; in each subset
can be written as

0
(1_e<—%>)2

(_(fz‘—ti+1))
log Py + (7“_“;1_“" —log P0> e . -
1— e(_i_;)

(16)

" log?2

with Py equal to

Qi

1l—e""

_ti—tigr ”
1—e Z

Under the assumption that modern coding methods such as
arithmetic coding [28] can achieve rates close to the entropy, the

Py = (18)

B Subset Sy 1
Quantization step size oy
‘é’ o Subset Sq b
Quantization step size o4
- = ] } -
%2
%
[ l] I -
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Coefficient magnitude

Fig. 5. Example of the construction of energy subbands s;.

rate R; required to code the atoms of the subset s; is given by
R; = 1;(H; + p), where p is the average number of bits to code
the atom index, which does not depend on s;. The mean-square
distortion D; in each subset s; is finally composed of two terms:
the quantization error in s;, Al (), and the distortion A(;41)
due to discarding the coefficients with magnitude smaller than
t;+1 (see Fig. 5). Equivalently

D; = Al(a;) + A(tiy) (19)
where
; _titi _n aZe @
Aplag) = (77 =7 ) | - (20)

and
2 _lig1 _li1
Altisr) = 2u (1 e ) —tipreT T (g +2). 21)
Details about the computation of H; and D; are given in
Appendix L.
The distortion of the reconstructed signal given that all the

subsets s; for 5 < 7 are decoded, is denoted as d;. In the case of
1 > 1, it is expressed as

i i1
di = A(tip1) + D Al(aj) = Di+ Y Al(aj).  (22)
j=0 =0

Meanwhile for 2 = 0, dj is equal to Dy.
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C. Rate Allocation

For scalability issues, the bitstream is encoded efficiently at
several target rates, which can be directly defined by the ap-
plication. The rate allocation becomes an optimization problem
with multiple constraints. The bit stream has to be efficiently de-
coded at target rates {rg,r1,...,7N—1}, and the corresponding
distortions {dg,d1,...,dn_1} should be as close as possible
to the best distortion achievable at these target rates. Moreover,
these distortions (dy, dy, . .., dy—1) must form a successive re-
finement chain, i.e., the subset s; is built such that the distortion
d; is minimum for the rate r; given that all the subsets s;, for
7 < 1, are decoded. In such a case, the distortion d; refines d;_1,
which also refines d; o, and so forth, up to dy. The successive
refinement chain condition is denoted as dg — di — do —

- — d—1. This optimization problem can be formalized with
Lagrange multipliers_‘/_\', and becomes equivalent to minimizing
the cost function J(A\) = D + MR subject to 1) R; < r; for
i = 0,---, N — 1 and 2) the successive refinement chain con-
dition, where D = YN " d;, R = [Ro, Ry,..., Rx_1] - Uy,
and U; is an upper triangular matrix of ones. The constrained
optimization problem now consists in finding the thresholds, ¢;,
and the quantizer step sizes, «;, that minimize J (X)

Instead of solving the complex global optimization problem,
the proposed rate allocation strategy adopts a greedy approach,
that optimizes the quantization in each independent subset
successively. Since atoms are allocated to subsets according to
their magnitude, subsets are naturally assigned different priority
levels, with sy becoming the most important one. The rate allo-
cation algorithms starts by minimizing Jo(Ao) = Do + AoRo
under the rate constraint Ry < 7o to find either the threshold
t1 (or equivalently /y) and the step size «y. It then optimizes
iteratively J;(\;) = D; + A R; under the rate constraint
R, < (r; — 22_:10 Ry,). The rate allocation is summarized in
Algorithm 2.

Algorithm 2 The Rate Allocation Algorithm

Let {rg,71,...,7n—1} be the multiple rate constraints.

Set the rightmost threshold ¢ty — oo

Find (O[()7 tl) = arg min(J()(/\()) =Dy + )\oR(]) subject to
Ro < 1o

for: =1...N —1do

Find (ai,tH_l) = arg Hlin(Ji(/\i) =D, + )\LRL) subject

to R < (ri — Yo Re)

end for

Various approaches can be used to minimize each indi-
vidual cost function J;();). Heuristic approaches based on
the pruning strategy operating on trees have been proven to
be efficient [30], [31]. A tree of () subtrees can be built for
each subset s;, where each subtree is a unitree of Card(.A)
nodes, with A4 the set of possible quantization step sizes
a. A set A of fifteen values has been verified to work
well over a large range of bit rates, and therefore we set
A = {120,100,80,70,60,50,40,35,30,---,10,5}. Each
node of a unitree corresponds to a different rate-distortion
(R-D) tuple (R;, D;), and the leaf is the lowest distortion node
(respectively the node with the highest rate). Each unitree then

corresponds to a different number of atoms /; in the subset
(i.e., a different value of #;;1), and the number of unitrees @)
is an arbitrary parameter that is related to the search space
dimension. The search can be limited to values of I; that are
close to L; = (r; — 2;10 Ry)/p, the maximum number of
atoms permitted under the rate constraints, since the index size
is generally larger than the coefficient entropy. In the current
implementation, () is set to 10, and /; is uniformly distributed
between 0.75L; and L;. Finally, the minimization of J;(\;)
consists in pruning the unitrees for the nodes that violate the
rate constraints R; < (r; — 22;10 R}.), and in choosing among
the @ unitrees, the leaf with the minimal distortion.

VI. EXPERIMENTAL RESULTS
A. Rate-Distortion Comparison Against H.264 and MPEG

In this section, we evaluate the R-D performances of our
codec by comparing it with two reference schemes: MPEG42
and H.264 .3 The standard Foreman, Football and Bus sequences
in CIF format at 30 fps have been used to generate the results.
In all experiments, we used a GOP size of 16. Moreover, in both
schemes, we used only the I- and P-frame type, i.e., each GOP
in the image sequence consists of the sequence having a struc-
ture as: IPP..PIPP. The I-frame is coded using the Intra-frame
prediction whereas the P-frame is coded using the Inter-frame
prediction. Notice that no frame of type B is used. It can be seen
on Fig. 6(a) and (b) that the PSNR of MP3D is higher than the
one of MPEG-4 by about 1-1.5 dB for Foreman and Football se-
quences and over a wide range of bit rates. Meanwhile, it is only
slightly inferior to the performance of H.264, staying within a
1-dB gap (see Fig. 6). We noted that the results for the Foreman
sequence are always penalizing our scheme at high rate. On the
other hand, our scheme performs better on the Football sequence
for example, where it stays close to H.264 over the whole range
of bit rates under consideration. Our codec does not perform
very well on textures (see Fig. 7): once most geometrical infor-
mation has been encoded, PSNR tends to saturate at higher rates.
Finally, one should remember that both H.264 and MPEG-4 are
nonscalable video coding schemes optimized for compression
performance, contrarily to MP3D. In the next section, we com-
pare MP3D to another highly scalable scheme for completeness.

B. R-D Comparison Against MC-EZBC and H.264/Ext

An objective evaluation of MP3D against MC-EZBC* and
H.264 with the scalability extensions, which is referred to as
H.264/Ext, in terms of PSNR performances, is given in Fig. 6.
The GOP size was set to 16 in both schemes. For the MC-EZBC
scheme, we set the parameter of the temporal levels to four. We
used also a single layer coding for the MVs (MVs) in order to
have a fair comparison with MP3D since it has only one layer for
MVs in the current version of MP3D. In the case of H.264/Ext,

MPEG-4 Reference Software [Online] Available: http://megaera.ee.nctu.
edu.tw/mpeg/

3H.264/AVC Reference Software [Online] Available: http://bs.hhi.de/
suehring/tml/

4MC-EZBC Software [Online] Available: http://mpeg.nist.gov/cvsweb/

SH.264 With Scalability Extension [Online] Available: http://mpeg.nist.gov/
cvsweb/
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Fig. 6. Rate-distortion performances of MP3D. (a) Football sequence.
(b) Foreman sequence. (c) Bus sequence.

we used only the I-and P-frames, i.e., the image sequence has
the following structure: IPP..PIPP. The number of layers in the

H.264/Ext was set to five. For the Football sequence, MP3D has
ahigher PSNR than MC-EZBC over the whole range under con-
sideration. For the Foreman and Bus sequences however, there
exists a cross-over point where MP3D loses its advantage to
H.264/Ext and MC-EZBC schemes. At some higher rate, coding
the atoms results in a less significant PSNR improvement. Nev-
ertheless, we observed that MP3D is always more efficient at
low and medium rate (less than 500 kbps).

C. Visual Quality Comparison

Fig. 7 shows visual comparisons of the first frame from the
Football sequence decoded at 550 kbps, using the schemes
mentioned before. One can see that H.264 produces more
uniform regions. The regions in MP3D are also very smooth,
but most prominent edges are well captured due to the nature
of the dictionary we used. On the other hand, MP3D lost most
textures. The frame coded by MC-EZBC shows a trade-off
in representing smooth areas and texture components, while
MPEG-4 produces an overall slightly inferior visual quality. Of
course these tests are not conclusive, but they allow to show the
behavior of MP3D in capturing first the geometrical features in
image sequences.

VII. SCALABILITY PROPERTIES

The scalability features are intrinsic in MP3D due to the mul-
tiresolution structure of the dictionary, the nature of MP and the
embedded coding. All these characteristics make the bitstream
highly scalable, offering 3-D geometric (i.e., spatio-temporal)
and SNR scalabilities. The geometric properties of the dictio-
nary enable a very easy sequence adaptation prior to decoding.
As a result, a single bitstream can be decoded at any spatial
resolution (as long as the re-scaling is isotropic) and at various
frame rates, without resorting to costly re-encoding or post-pro-
cessing operations. These properties significantly differ from
simple transcoding schemes, and we chose to refer to them as
geometric scalability.

For example, a coded video signal I of spatial size W x H
with a frame rate F’' can be spatially decoded into a video signal I
of spatial resolution « W x e H at the same frame rate as follows.
First the full atom trajectory is reconstructed at the initial size
using the motion field operator WW. Then each individual atom
is analytically re-scaled by simply transcoding its index values
(scales and positions) as described in [2]. The new signal reads

~ N-1 .
I=>"acW(g) (23)
=0

where ¢; are the atom coefficients and WW(g,,) corresponds
to the motion-mapped atom W(g.,) after transcoding. We
noted that, when transcoding by a < 1, thus to a lower resolu-
tion, possible aliasing from very small atoms saturate quickly
PSNR quality as rate increases. The smallest atoms are simply
discarding by stream truncation. Fig. 8 shows frame 1 of the
Foreman sequence decoded in QCIF format from the bitstream
corresponding to CIF format. One sees that spatial resolution
adaptation nicely preserves edges after transcoding. These



RAHMOUNE et al.: FLEXIBLE MOTION-ADAPTIVE VIDEO CODING WITH REDUNDANT EXPANSIONS 187

(b)

(d)

(©)

Fig. 7. Visual comparison for frame 1 of football decoded at 550 kbps. (a) Original. (b) MP3D. (c) MC-EZBC. (d) H.26L. () MPEG-4.

Fig. 8. Frame 1 of Foreman decoded in QCIF from the CIF bitstream.

structures are indeed well captured by our dictionary and the
corresponding atoms are simply re-scaled, when decoded at a
different resolution. This clearly brings a great advantage in
visual quality.

Besides geometric scalability, MP3D provides natural
signal-to-noise ratio (SNR) scalability because of the exponen-
tial decay of MP coefficients and the embedded quantization. It
was noticed in Section V that the amplitude of atom coefficients
has a small variation within most of the subsets (except for
the first one). Therefore, simple truncation of the embedded
bitstream in a given subset still ensures that the decoder receives
most of the signal energy for the available bandwidth, as shown
on Fig. 9.

VIII. CONCLUSION

In this paper, we introduced a video coding scheme based
on motion-adaptive decompositions in a redundant dictionary
of waveforms. The overcomplete dictionary is designed to
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Fig. 9. PSNR of the Foreman sequence encoded according to the multirate
constraint {75 135245 360 500} kbps and decoded at various intermediate rates.

model image primitives, mostly edges, which are likely to
display coherent trajectories over time. The MP algorithm is
first used to compute a compact signal representation. In par-
allel, the sequence motion field is estimated by classical block
matching techniques and used to recover the trajectories of
most prominent image primitives. The data is then filtered along
these trajectories using a redundant temporal dictionary. An
embedded multirate allocation method was designed to offer a
progressively refinable bit stream. Target rate points are defined
at the encoder, and the decoder can recover those R-D points
by truncating the stream. Suboptimal decoding is still possible
in-between predefined target rates and simulations show only a
slight degradation in R-D performance. The compressed video
sequence can further be decoded at any spatial resolution due
to the parametric structure of the redundant libraries used to
represent the information. These geometric stream manipu-
lations are lightweight and can be performed at the decoder
or by some simple network intelligence. Comparisons with
state-of-the-art scalable and nonscalable codecs illustrate the
good performance of the proposed technique at low bit rates
and motivate its possible use as a flexible base layer in a more
general scalable framework. The computational complexity of
our encoding scheme is clearly one of its main drawbacks, and
faster implementations are currently under study.

APPENDIX [
ENTROPY AND DISTORTION IN COEFFICIENT SUBSETS

Let s; be the subset of all possible atoms whose coefficient
modulus belongs to [t;41,t;] according to the exponential dis-
tribution in (14). By assuming a uniform quantization step size
of «, the total number of possible quantization levels (or the
number of bins) n should be

o ti—tip
= —

(24)

The conditional probability of bin k given s; is p(k|s;) (which
is denoted by Py) is

p(k)
p(klsi) = (25)
(klsi) ()
_tigitak i41t+o(k+1)
e M — e m
= prra— (26)
e n —e n
1—e ® ak
= ti—tit1 e * (27)
1—e" H
= Pe . (28)

with Py is defined in (18).
Now, the resulting entropy necessary to code all the quantized
values in s; is

n—1

— )" Pilog, Py
k=0

n—1
— Z POeJ‘Tk log, (Poefoﬁ_f)
log2 Z e~ <— — logP(])

By using the closed form of a finite sum of an arithmetico-
geometric progression, we obtain

« —& _a(n=1)

Py | € " (l—e n )
= 2
log 2 (1—6_7)

log Py + (% - long) e
- = (29)

l1—ew»

H;

I

Now substituting n of (24) in (29), we get the final expression
of H; as in (17).

When the mean-square error (MSE) measure is used, the re-
construction centroids are defined as

it1+a(k+1
ftl:1+ak( ):Efe(:v)da:
it1+a(k+1
S felw)da
fo x fo(x)dx
foa fe(x)dx

—a
ae H

Yk (a tl+l7:u’)

:Ozk‘-l-tH_l +

:O‘k+ti+1+/1’_ —a
1—en

=ak + 11 + 65,

where 6; is defined as in (16).

Finally, the distortion D; is defined as the total distortion for
coefficients whose magnitude is smaller than ¢; which is com-
posed of two terms, one Afl due to quantization error in s; and
the other A(¢;41) due to discarding the coefficients whose mag-
nitude is smaller than ¢;41, i.e., D; = Afl + A(tig1).
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Afl is defined as the average cumulative distortion by using
the reconstruction codewords y;, over the entire subset s;, i.e.,

ne1 tip1+a(k+1)
i i)2
NS (k) f)tr GO
k=04 i +ak
i n—1 . el
_- Ze—“v/ (0= 6:)2f.(x)de.  (31)
k=0 0 _

M
Clearly y does not depend on k and it is given as
2%
v =yt (1—6_%) —%.

l1—e»

Now, by substituting v and n in (30) we obtain Afl as

. 2,-2
. _tiga _tg a“e #
Al = (e vo—e u) u? -

o\ 2
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The second term A(#;41) is a defined as follows:

tig
Atisr) = 2?2 f.(x)dx
0

=e i (a® + 2zp+ 207220,

t; t;
= 2,[1,2 (1 — 67%) — t7‘,+167%(ti+1 + 2)

which gives the final expression of D; as in (19).
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